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Abstract

The purpose of these notes is to construct the cross product C∗-algebras of a C∗-algebra by a locally
compact group. The interested reader can observe how the theory we develop is analogous to the
construction of the cross product C∗-algebras of a C∗-algebra by a countable discrete group. We will
assume that the reader has a basic knowledge of Harmonic Analysis on locally compact groups, but we
will provide a summary. We will also assume that the reader is familiar with the basics of the Bochner
integral for continuous functions of compact support (although we will avoid full use of the Bochner
integral whenever possible).

This document is for educational purposes and should not be referenced. Please contact the author
of this document if you need aid in finding the correct reference. Comments, corrections, and recom-
mendations on these notes are always appreciated and may be e-mailed to the author (see his website
for contact info).

To begin, let us quickly review some basic Harmonic Analysis on locally compact groups.

Preliminaries 1. Let G be a locally compact group. We recall that G has a Haar measure µ (that is a
positive, inner regular, Borel measure such that µ(tE) = µ(E) for all t ∈ G and E ⊆ G Borel) that is unique
up to scaling. Moreover there is a continuous homomorphism ∆ : G→ R+ such that µ(Es) = ∆(s)µ(E) for
all E ⊆ G measureable.

A reader familiar with Harmonic Analysis will recall that L1(G) (the absolutely integrable functions with
respect to the Haar measure) is a Banach ∗-algebra with the operations

f ∗ g(s) =

∫
G

f(t)g(s−1t)dt f∗(t) = ∆(t)−1f(t−1)

where dt represents dµ(t). Moreover, we recall that L1(G) has a norm one approximate identity of positive,
self-adjoint functions.

Theorem 2. If G is a locally compact group then L1(G) has a norm one approximate identity of posi-
tive, self-adjoint functions.

Proof: Let {Uλ}Λ be a neighbourhood basis of e with m(Uλ) ∈ (0,∞) for all λ, Uλ compact for all λ,
and Uλ = U−1

λ (since m is a Haar measure, m(Uλ) > 0 and the measure of every compact set is finite. Since

G is locally compact, we can find a neighbourhood basis of such sets). Let gλ(t) = ∆(t)−
1
2χUλ(t) for all

t ∈ G. Since Uλ is compact and ∆ is a continuous homomorphism of G into R+, inf{∆(t)−
1
2 | t ∈ Uλ} > 0.

Thus since χUλ ∈ L1(G), gλ ∈ L1(G). Notice that

g∗λ(t) = ∆(t)−1∆(t−1)−
1
2χUλ(t−1)

= ∆(t)−1∆(t−1)−
1
2χUλ(t−1)

= ∆(t)−1∆(t)
1
2χU−1

λ
(t)

= ∆(t)−
1
2χUλ(t) = gλ(t)



Hence g∗λ = gλ. Lastly, we notice that ‖gλ‖1 ≥ m(Uλ) inf{∆(t)−
1
2 | t ∈ Uλ} > 0.

Let fλ = 1
‖gλ‖1

gλ so fλ ∈ L1(G), f∗λ = fλ, fλ(s) ≥ 0 for all s ∈ G, and ‖fλ‖ = 1. We claim that {fλ}Λ is

a norm one approximate identity for L1(G). To see this, fix h ∈ L1(G). If h is a continuous function with
compact support, then

‖h− fλ ∗ h‖1 =

∫
G

∣∣∣∣h(t)−
∫
G

fλ(s)h(s−1t)ds

∣∣∣∣ dt
=

∫
G

∣∣∣∣∫
G

(h(t)− h(s−1t))fλ(s)ds

∣∣∣∣ dt fλ is positive with norm 1

≤
∫
G

∫
G

|h(t)− h(s−1t)|fλ(s)dsdt

=

∫
G

∫
G

|h(t)− h(s−1t)|fλ(s)dtds Fubini’s Theorem as the domains of integration are compact

=

∫
G

‖hs − h‖1 fλ(ts)ds

≤ sup{‖hs − h‖1 | s ∈ Uλ}

where hs(t) = h(s−1t). Since h ∈ Cc(G), sup{‖hs − h‖1 | s ∈ Uλ} tends to zero so ‖h− h ∗ fλ‖1 → 0. Next
if g ∈ L1(G) is arbitrary, for all ε > 0 we can find a continuous function with compact support h so that
‖g − h‖1 < ε. Then ‖fλ ∗ g − fλ ∗ g‖ < ε so we can apply the above estimate to conclude ‖g − fλ ∗ g‖1 → 0.
Hence {fλ}Λ is a left norm one approximate identity for L1(G). Since f∗λ = fλ, limΛ ‖fλ ∗ g − g‖1 = 0 for all
g ∈ L1(G), and L1(G) is a Banach ∗-algebra, limΛ ‖g ∗ fλ − g‖1 = limΛ ‖fλ ∗ g∗ − g∗‖1 = 0 for all g ∈ L1(G).
Whence {fλ}Λ is a norm one approximate identity for L1(G). �

Our first goal is to generalize the notion of L1(G) to allow functions to take values in a C∗-algebra. The
following structure allows us to do this.

Definition 3. A C∗-dynamical system (A, G, α) consists of a C∗-algebra A, a locally compact group G,
and a group homomorphism α : G → Aut(A) such that t 7→ α(t)(A) is continuous for all A ∈ A. For each
t ∈ G we denote α(t) by αt.

For a discrete group, the condition t 7→ α(t)(A) is continuous for all A ∈ A is satisfied by every group
homomorphism α : G→ Aut(A) and thus is not necessary.

Now we will show that every C∗-dynamical system (A, G, α) generates an L1(G) like structure with func-
tions taking values in A.

Construction 4. Let (A, G, α) be a C∗-dynamical system. Consider Cc(G,A); the set of continuous
functions from G into A with compact support. Define a norm on Cc(G,A) by ‖f‖1 =

∫
G
‖f(t)‖A dt. It is

trivial to verify that ‖ · ‖1 is indeed a norm. Next define a twisted convolution on Cc(G,A) by

f ∗ g(s) =

∫
G

f(t)αt(g(t−1s))dt

To see that f(t)αt(g(t−1s)) is actually integrable, notice for all t, r ∈ G∥∥αr (g(r−1s)
)
− αt

(
g(t−1s)

)∥∥ ≤ ∥∥αr (g(r−1s)− g(t−1s)
)∥∥+

∥∥αr (g(t−1s)
)
− αt

(
g(t−1s)

)∥∥
Thus if ε > 0 there exists a neighbourhood U of t so that if r ∈ U then

∥∥αr(g(t−1s))− αt(g(t−1s))
∥∥ < ε

2
as r 7→ αr(A) is continuous for all A ∈ A by the definition of a C∗-dynamical system. Moreover, since g
is continuous, there exists a neighbourhood V of t so that if r ∈ V then

∥∥g(r−1s)− g(t−1s)
∥∥ < ε

2 . Thus if
r ∈ V ∩ U then∥∥αr(g(r−1s))− αt(g(t−1s))

∥∥ ≤ ∥∥g(r−1s)− g(t−1s)
∥∥+

∥∥αr(g(t−1s))− αt(g(t−1s))
∥∥ < ε

2



Whence t 7→ f(t)αt(g(t−1s)) is a continuous function with compact support and therefore is integrable.
For ∗ to be a multiplication on Cc(G,A), we need to show that f ∗ g is continuous and has compact

support. Notice if s, s′ ∈ G then

‖f ∗ g(s)− f ∗ g(s′)‖ ≤
∫
G

∥∥f(t)(αt(g(t−1s)− g(t−1s′)))
∥∥ dt ≤ ∫

G

‖f(t)‖
∥∥g(t−1s)− g(t−1s′)

∥∥ dt
Since g has compact support and thus is uniformly continuous, for all ε > 0 there exists an open neighbour-
hood of e, Uε, such that if a−1b ∈ Uε, then ‖g(a)− g(b)‖ < ε. Whence if s−1s′ ∈ Uε,

‖f ∗ g(s)− f ∗ g(s′)‖ ≤ ε ‖f‖1
so f ∗ g is a continuous function. We notice that f(t)αt(g(t−1s)) = 0 unless t ∈ supp(f) and t−1s ∈ supp(g).
Thus if s /∈ supp(f)supp(g), f ∗ g(s) = 0. As supp(f)supp(g) is the product of two compact sets and thus is
compact, f ∗ g has compact support.

We claim this multiplication turns Cc(G,A) into an algebra. The only non-trivial property to check is
associativity. Thus if f, g, h ∈ Cc(G,A), then

(f ∗ (g ∗ h))(s) =

∫
G

f(t)αt((g ∗ h)(t−1s))dt

=

∫
G

f(t)αt

(∫
G

g(r)αr(h(r−1t−1s))dr

)
dt

=

∫
G

f(t)

∫
G

αt(g(r))αtr(h(r−1t−1s))drdt

=

∫
G

f(t)

∫
G

αt(g(t−1r))αr(h(r−1s))drdt r 7→ t−1r

=

∫
G

∫
G

f(t)αt(g(t−1r))αr(h(r−1s))dtdr Fubini as the functions have compact support

=

∫
G

(f ∗ g)(r)αr(h(r−1s))dr

= ((f ∗ g) ∗ h)(s)

Whence Cc(G,A) is an algebra.
Next we claim the norm on Cc(G,A) is submultiplicative. Indeed if f, g ∈ Cc(G,A) then

‖f ∗ g‖1 =

∫
G

‖f ∗ g(s)‖ ds

=

∫
G

∥∥∥∥∫
G

f(t)αt(g(t−1s))dt

∥∥∥∥ ds
≤
∫
G

∫
G

‖f(t)‖
∥∥g(t−1s)

∥∥ dtds
=

∫
G

∫
G

‖f(t)‖ ‖g(s)‖ dsdt

=

∫
G

‖f(t)‖ ‖g‖1 dt

= ‖f‖1 ‖g‖1
as desired.

Next define an adjoint operation ∗ on Cc(G,A) by f∗(s) = ∆(s)−1αs(f(s−1))∗ for all f ∈ Cc(G,A). We
claim that f∗ ∈ Cc(G,A) for all f ∈ Cc(G,A). To see this, we know that s 7→ ∆(s)−1 is continuous and∥∥αs(f(s−1))∗ − αt(f(t−1))∗

∥∥ ≤ ∥∥αs(f(s−1)− f(t−1))
∥∥+

∥∥αs(f(t−1))− αt(f(t−1))
∥∥

≤
∥∥f(s−1)− f(t−1)

∥∥+
∥∥αs(f(t−1))− αt(f(t−1))

∥∥
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Fix t ∈ G and let ε > 0. Since f ∈ Cc(G,A) there exists an open neighbourhood U1 of t such that if
s ∈ U1 then

∥∥f(s−1)− f(t−1)
∥∥ < ε

2 . Since s 7→ αs(f(t−1)) is continuous, there exists an open neigh-

bourhood U2 of t such that if s ∈ U2 then
∥∥αs(f(t−1))− αt(f(t−1))

∥∥ < ε
2 . Whence if s ∈ U1 ∩ U2 then∥∥αs(f(s−1))∗ − αt(f(t−1))∗

∥∥ < ε. Thus s 7→ αs(f(s−1))∗ is continuous so f∗ is continuous. Since f has
compact support, clearly f∗ has compact support.

To show that ∗ is an involution, we note that ∗ is clearly conjugate linear. Next if f, g ∈ Cc(G) then

(g∗ ∗ f∗)(s) =

∫
G

g∗(t)αt(f
∗(t−1s))dt

=

∫
G

∆(t−1)αt(g(t−1))∗αt
(
∆((t−1s)−1)αt−1s(f(s−1t))∗

)
dt

=

∫
G

∆(s−1t)∆(t−1)αt(g(t−1))∗αs(f(s−1t))∗dt

=

∫
G

∆(s−1)(αs(f(s−1t))αt(g(t−1)))∗dt

=

∫
G

∆(s−1)(αs(f(t))αst(g(t−1s−1)))∗dt

= ∆(s−1)αs

(∫
G

f(t)αt(g(t−1s−1))dt

)∗
= ∆(s−1)αs

(
(f ∗ g)(s−1)

)∗
= (f ∗ g)∗(s)

so ∗ is anti-multiplicative. Lastly

(f∗)∗(s) = ∆(s−1)αs(f
∗(s−1)) = ∆(s−1)αs(∆(s)αs−1(f(s))) = f(s)

Whence ∗ is an involution on Cc(G,A).
Lastly we claim that ‖f∗‖1 = ‖f‖1. To see this, we notice that each αt is an isometry so

‖f∗‖1 =

∫
G

∆(t−1)
∥∥αt(f(t−1))∗

∥∥ dt
=

∫
G

∆(t−1)
∥∥f(t−1)

∥∥ dt
=

∫
G

‖f(t)‖ dt = ‖f‖1

as desired.
Let L1(G,A, α) be the completion of Cc(G,A) with respect to the above norm and operations. Whence

L1(G,A, α) is a Banach ∗-algebra.

It is trivial to verify that (C, G, 1) is a C∗-dynamical system (where 1(g) = IdC) and L1(G,C, 1) = L1(G)
as the continuous functions of compact support are dense in L1(G). Notice that if f ∈ L1(G) and A ∈ A then
the function g(t) = Af(t) is an element of L1(G,A, α) (since if f ∈ L1(G), there exists continuous function
of compact support {fn} that converge to f in L1(G). Thus {Afn} is a Cauchy sequence in L1(G,A, α) and
then converges to an element g ∈ L1(G,A, α). We denote g by Af). It is possible to get around some of the
technicalities that we will face by knowledge of the Bochner integral, but for the sake of the reader we will
not do this.

Before we discuss the representation theory of L1(G,A, α), we get most of the tedious technical results
out of the way.
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Lemma 5. Let (A,G, α) be a C∗-dynamical system. Then there exists a bounded homomorphism
λ : A→ B(L1(G,A, α)) such that λ(A)f ∈ Cc(G,A) for all f ∈ Cc(G,A) and A ∈ A with (λ(A)f)(t) = Af(t)
for all t ∈ G, (λ(A)f)∗(s) = f∗(s)αs(A

∗) for all f, g ∈ Cc(G,A), s ∈ G, and A ∈ A, λ(A)(f ∗g) = (λ(A)f)∗g
for all f, g ∈ L1(G,A, α), and (λ(A)f)∗ ∗ g = f∗ ∗ (λ(A∗)g) for all f, g ∈ L1(G,A, α).

Proof: For each A ∈ A and f ∈ Cc(G,A) define (λ(A)f)(s) = Af(s) for all s ∈ G. Clearly λ(A)f ∈ Cc(G,A)
and λ(A) is linear for all A ∈ A. Notice

‖λ(A)f‖1 =

∫
G

‖Af(t)‖ dt ≤ ‖A‖ ‖f‖1

so λ(A) extends to a bounded linear map on L1(G,A, α). Define λ : A → B(L1(G,A, α)) by A 7→ λ(A).
Clearly λ is linear and multiplicative when restricted to Cc(G,A) and thus λ is a homomorphism.

Notice that

((λ(A)f) ∗ g)(s) =

∫
G

Af(t)αt(g(t−1s))dt = A

∫
G

f(t)αt(g(t−1s))dt = A((f ∗ g)(s)) = (λ(A)(f ∗ g))(s)

for all f, g ∈ Cc(G,A). Thus by continuity and density of Cc(G,A) in L1(G,A, α) (λ(A)f) ∗ g = λ(A)(f ∗ g)
for all f, g ∈ L1(G,A, α). Moreover

(λ(A)f)∗(s) = ∆(s−1)αs((λ(A)f)(s−1))∗ = ∆(s−1)αs(Af(s−1))∗ = ∆(s−1)αs(f(s−1))∗αs(A
∗) = f∗(s)αs(A

∗)

Lastly we notice

((λ(A)f)∗ ∗ g)(s) =

∫
G

(λ(A)f)∗(t)αt(g(t−1s))dt

=

∫
G

f∗(t)αt(A
∗)αt(g(t−1s))dt

=

∫
G

f∗(t)αt((λ(A)g)(t−1s))dt = (f∗ ∗ (λ(A∗)g))(s)

for all f, g ∈ Cc(G,A). Thus by continuity and density of Cc(G,A) in L1(G,A, α) (λ(A)f)∗∗g = f∗∗(λ(A∗)g)
for all f, g ∈ L1(G,A, α). �

Lemma 6. Let (A,G, α) be a C∗-dynamical system. For each s ∈ G the map g 7→ gs on Cc(G,A)
(where gs(t) = g(s−1t) for all t ∈ G) extends to an invertible linear isometry on L1(G,A, α). Moreover the
map t 7→ gt is left uniformly continuous for all g ∈ L1(G,A, α).

Proof: It is clear that g 7→ gs is a linear isometry on Cc(G,A) and thus extends to a linear isometry
on L1(G,A, α). Since (gs)s−1 = g = (gs−1)s for all g ∈ Cc(G,A), g 7→ gs is invertible.

Let f ∈ L1(G,A, α) be arbitrary and let ε > 0. Choose g ∈ Cc(G,A) such that ‖g − f‖1 <
ε
3 . Let K =

supp(g) which is compact. Since g is uniformly continuous, there exists a neighbourhood V of e such that

‖g − gs‖∞ <
ε

6(µ(K) + 1)

for all s ∈ V . Since the support of g − gs is K ∪ sK, we have that

‖g − gs‖1 ≤
∫
G

‖g(t)− gs(t)‖ dt

≤
∫
K∪sK

‖g − gs‖∞ dt

≤ µ(K ∪ sK) ‖g − gs‖∞
≤ 2µ(K)

ε

6(µ(K) + 1)
<
ε

3
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for all s ∈ V . Therefore for all s ∈ V ,

‖f − fs‖1 ≤ ‖f − g‖1 + ‖g − gs‖1 + ‖gs − fs‖1 < ε

since g − f 7→ gs − fs is a linear isometry.
Lastly, notice that hs − ht = (h − hs−1t)s for all h ∈ Cc(G,A) and thus for all h ∈ L1(G,A, α) by

continuity. Therefore ‖fs − ft‖1 = ‖(f − fs−1t)s‖1 < ε for all s−1t ∈ V . Hence the map is left uniformly
continuous. �

Lemma 7. Let (A,G, α) be a C∗-dynamical system. For each s ∈ G there exists an invertible linear
isometry α̃s ∈ B(L1(G,A, α)) defined by (α̃s(f))(t) = αs(f(t)) for all t ∈ G and f ∈ Cc(G,A). Moreover we
have the following properties:

1. If A ∈ A and f ∈ L1(G), then α̃s(Af) = αs(A)f

2. α̃t(((α̃t−1f) ∗ g)t) = ft ∗ g for all f, g ∈ L1(G,A, α)

3. α̃s((α̃t(gt))s) = α̃st(gst) for all s, t ∈ G and g ∈ L1(G,A, α).

4. α̃t((λ(A)(α̃t−1(gt−1)))t) = λ(αt(A))g for all A ∈ A, t ∈ G, and g ∈ L1(G,A, α).

Proof: Define α̃s : Cc(G,A)→ Cc(G,A) by (α̃s(f))(t) = αs(f(t)) for all t ∈ G and f ∈ Cc(G,A). Since αs
is an isometry, α̃s(f) ∈ Cc(G,A) for all f ∈ Cc(G,A). Clearly α̃s is linear and

‖α̃s(f)‖1 =

∫
G

‖αs(f(t))‖ dt =

∫
G

‖f(t)‖ dt = ‖f‖

as αs is an isometry. Whence α̃s extends to a linear isometry on L1(G,A, α). Since α̃s ◦ α̃s−1 = Id on

Cc(G,A), α̃s
−1

= α̃s−1 .
If g ∈ L1(G,A, α) is of the form g(t) = Af(t) for some f ∈ L1(G) and A ∈ A, then there exists

fn ∈ Cc(G) such that limn→∞ ‖g −Afn‖1 = 0. Since α̃s(Afn) = αs(A)fn for all n, we have α̃s(g) = αs(A)g
by continuity and the definition of how we are viewing A · L1(G) ⊆ L1(G,A, α).

Next suppose f, g ∈ Cc(G,A). Then

((ft) ∗ g)(s) =

∫
G

ft(r)αr(g(r−1s))dr

=

∫
G

f(t−1r)αr(g(r−1s))dr

=

∫
G

f(r)αtr(g(r−1t−1s))dr

=

∫
G

αt(αt−1(f(r))αr(g(r−1t−1s)))dr

= αt

(∫
G

αt−1(f(r))αr(g(r−1t−1s))dr

)
= αt

(∫
G

(α̃t−1(f))(r)αr(g(r−1t−1s))dr

)
= αt

(
((α̃t−1(f)) ∗ g)(t−1s)

)
= αt (((α̃t−1(f)) ∗ g)t(s))

= (α̃t (((α̃t−1(f)) ∗ g)t))(s)

Thus (ft) ∗ g = α̃t (((α̃t−1(f)) ∗ g)t) for all t ∈ G, f, g ∈ Cc(G,A). Thus α̃t(((α̃t−1f) ∗ g)t) = ft ∗ g for all
f, g ∈ L1(G,A, α) by continuity and density.
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Next suppose g ∈ Cc(G,A) and s, t ∈ G. Then

α̃s((α̃t(gt))s)(r) = αs((α̃t(gt))s(r))

= αs((α̃t(gt))(s
−1r))

= αs(αt(gt(s
−1r)))

= αst(g(t−1s−1r))

= αst(gst(r)) = α̃st(gst)(r)

for all r ∈ G. Whence α̃s((α̃t(gt))s) = α̃st(gst) for all s, t ∈ G and g ∈ Cc(G,A). The general result holds
by the density of Cc(G,A) in L1(G,A, α) and continuity.

Lastly suppose g ∈ Cc(G,A), t ∈ G, and A ∈ A. Then for all s ∈ G

α̃t((λ(A)(α̃t−1(gt−1)))t)(s) = αt((λ(A)(α̃t−1(gt−1)))t(s))

= αt((λ(A)(α̃t−1(gt−1)))(t−1s))

= αt(A((α̃t−1(gt−1))(t−1s)))

= αt(A)αt(αt−1(gt−1(t−1s)))

= αt(A)αt(αt−1(g(s)))

= αt(A)g(s)

= (λ(αt(A))g)(s)

Thus α̃t((λ(A)(α̃t−1(gt−1)))t) = λ(αt(A))g for all g ∈ Cc(G,A), t ∈ G, and A ∈ A. By continuity,
α̃t((λ(A)(α̃t−1(gt−1)))t) = λ(αt(A))g for all g ∈ L1(G,A, α), t ∈ G, and A ∈ A. �

The last extremely technical facts we need before moving on is the knowledge of a particular bounded ap-
proximate identity of L1(G,A, α) and corollaries of the proof. The following was already proven for (C, G, 1)
and is also trivial when A is unital.

Proposition 8. Let (A, G, α) be a C∗-dynamical system, {fβ}Λ be the norm one approximate identity
of positive, self-adjoint functions for L1(G) from Theorem 2, and let {Eβ}Λ be any C∗-bounded approxi-
mate identity for A (where both approximate identities are re-indexed by (a1, b1) ≤ (a2, b2) if a1 ≤ a2 and
b1 ≤ b2). If we define gβ = Eβfβ , {gβ}Λ is a left bounded (by 1) approximate identity for L1(G,A, α).
In addition, for any fixed s ∈ G, {αs(Eβ)}Λ is a C∗-bounded approximate identity for A so if we define
hβ = α̃s(gβ) = αs(Eβ)fβ , then {hβ}Λ is a left bounded (by 1) approximate identity for L1(G,A, α).

Proof: Notice

‖gβ‖1 =

∫
G

‖Eβfβ(t)‖ dt =

∫
G

‖Eβ‖ fβ(t)dt = ‖Eβ‖ ≤ 1

as claimed. Suppose g ∈ Cc(G,A) has the form g(t) = Af(t) for some A ∈ A and f ∈ Cc(G). Since
gβ = Eβfβ and fβ is the L1(G) limit of positive elements of Cc(G) with support contained in supp(fβ)
(by Urysohn’s Lemma), there exists a net {fβ,γ}γ of elements of Cc(G) such that supp(fβ,γ) ⊆supp(fβ),
limγ ‖fβ,γ − fβ‖1 = 0 (and thus limγ ‖Eβfβ,γ − gβ‖1 = 0) and ‖fβ,γ‖1 = 1 (by renormalizing our net). But
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then

‖gβ ∗ g − g‖1 = lim
γ
‖(Eβfβ,γ) ∗ g − g‖1

= lim
γ

∫
G

‖((Eβfβ,γ) ∗ g)(s)− g(s)‖ ds

= lim
γ

∫
G

∥∥∥∥∫
G

Eβfβ,γ(t)αt(Af(t−1s))dt−Af(s)

∥∥∥∥ ds
=

∫
G

∥∥∥∥∫
G

Eβαt(A)fβ,γ(t)f(t−1s)dt−
∫
G

Afβ,γ(t)f(s)dt

∥∥∥∥ ds
≤ lim sup

γ

∫
G

∥∥∥∥∫
G

Eβαt(A)fβ,γ(t)f(t−1s)dt−
∫
G

Eβαt(A)fβ,γ(t)f(s)dt

∥∥∥∥ ds
+

∫
G

∥∥∥∥∫
G

Eβαt(A)fβ,γf(s)dt−
∫
G

Afβ,γ(t)f(s)dt

∥∥∥∥ ds
≤ lim sup

γ
‖A‖

∫
G

∫
G

|fβ,γ(t)f(t−1s)− fβ,γ(t)f(s)|dtds

+

∫
G

∫
G

‖Eβαt(A)−A‖ |fβ,γ(t)f(s)|dtds

≤ lim sup
γ
‖A‖

∫
G

∫
G

fβ,γ(t)|f(t−1s)− f(s)|dsdt

+

∫
G

∫
G

(‖Eβαt(A)− EβA‖+ ‖EβA−A‖)|f(s)|fβ,γ(t)dsdt

≤ lim sup
γ
‖A‖

∫
G

fβ,γ(t) sup{‖fr − f‖1 | r ∈ supp(fβ,γ)}dt

+

∫
G

(‖αt(A)−A‖+ ‖EβA−A‖) ‖f‖1 fβ,γ(t)dt

≤ ‖A‖ sup{‖fr − f‖1 | r ∈ supp(fβ)}
+ ‖f‖1 sup{‖αr(A)−A‖ | r ∈ supp(fβ)}+ ‖f‖1 ‖EβA−A‖

Since each of our final terms converges to zero over β (since fβ have compact support indexed such that
if U is any open neighbourhood of e, there exists a β′ such that supp(fβ) ⊆ U for all β ≥ β′, t 7→ ft is a
continuous map from G to L1(G), t 7→ αt(A) is continuous on G (and αe(A) = A), and Eβ is a bounded
approximate identity for A), we obtain limΛ gβ ∗ g = g.

Next we claim that span{g ∈ Cc(G) | g(t) = Af(t) for all t ∈ G,A ∈ A, f ∈ Cc(G)}
‖ · ‖∞ = Cc(G,A). To

see this, suppose f ∈ Cc(G,A). Let ε > 0 and let K = supp(f) which is compact. Since X is a locally
compact Hausdorff space there exists a compact set K ′ that is a neighbourhood for each element of K.
Moreover K and X \K ′ are disjoint closed set so there exists a continuous function f0 : X → [0, 1] such that
f0|K = 1 and supp(f0) = K ′ by Urysohn’s Lemma. Thus f(x) = f(x)f0(x) for all x ∈ G.

Consider the open sets Ux = {y ∈ G | ‖f(x)− f(y)‖ < ε} where x ∈ K ′. Since K ′ is compact, there
exist a finite set {x1, . . . , xn} ⊆ K ′ such that K ′ ⊆

⋃n
i=1 Uxi . Hence for all x ∈ K ′ there exists an xi such

that ‖f(x)− f(xi)‖ < ε.
Choose a partition of unity for K ′; that is continuous functions hi : G → [0, 1] such that hi|K′\Uxi = 0,∑n
i=1 hi = 1 on K ′ and

∑n
i=1 hi(x) ∈ [0, 1] for all x ∈ G \K ′ (i.e. create a partition of unity on the compact

Hausdorff space K ′. By the Tietz Extension Theorem, we can extend each hi to a continuous function on G
with range in [0, 1]. Since

∑
hi is continuous on K ′ and equal to 1, there exists a compact neighbourhood

F of K ′ such that
∑
hi is greater than 1

2 on F . By Urysohn’s Lemma, there exists a function w : G→ [0, 1]
that is 1 on K ′ and 0 on G \ F . Then the functions (

∑
hi(x))−1w(x)hi(x) (if x ∈ F , 0 elsewhere) will be

continuous and have the desired properties).
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Let h =
∑n
i=1 f(xi)f0hi ∈ Cc(G,A). If x ∈ K ′

‖f(x)− h(x)‖ =

∥∥∥∥∥f0(x)f(x)

(
n∑
i=1

hi(x)

)
−

n∑
i=1

f0(x)hi(x)f(xi)

∥∥∥∥∥
=

∥∥∥∥∥
n∑
i=1

f0(x)(f(x)− f(xi))hi(x)

∥∥∥∥∥
≤

n∑
i=1

‖f(x)− f(xi)‖ f0(x)hi(x)

≤
n∑
i=1

εhi(x) = ε

as 0 ≤ f0(x) ≤ 1, if x /∈ Uxi hi(x) = 0, and if x ∈ Uxi ‖f(x)− f(xi)‖ ≤ ε. Moreover if x /∈ K ′ then f(x) = 0
and h(x) =

∑n
i=1 f0(x)hi(x)f(xi) = 0 as f0(x) = 0. Therefore ‖f − h‖ ≤ ε. Whence span{g ∈ Cc(G) |

g(t) = Af(t) for all t ∈ G,A ∈ A, f ∈ Cc(G)} is dense in Cc(G,A).
Fix g ∈ Cc(G,A). By the above proof, for any compact neighbourhood K ′ of supp(g) and any ε > 0 there

exists {fi}ni=1 ∈ Cc(G) with supp(fi) ⊆ K ′ and {Ai}ni=1 ⊂ A so that ‖g −
∑n
i=1Aifi‖ <

ε
µ(K′)+1 (compact

subsets have finite measure). Therefore∥∥∥∥∥g −
n∑
i=1

Aifi

∥∥∥∥∥
1

=

∫
G

∥∥∥∥∥g(t)−
n∑
i=1

Aifi(t)

∥∥∥∥∥ dt ≤ ε
Thus span{g ∈ Cc(G) | g(t) = Af(t) for all t ∈ G,A ∈ A, f ∈ Cc(G)}

‖ · ‖1 ⊇ Cc(G,A)
‖ · ‖1 = L1(G,A, α).

Fix g ∈ L1(G,A, α) and let ε > 0. Choose {fi}ni=1 ∈ Cc(G) and {Ai}ni=1 ⊂ A such that if h =
∑n
i=1Aifi

then ‖g − h‖1 <
ε
3 . Since limΛ ‖gβ ∗ (Afi)−Afi‖1 = 0, by linearity there exists an β′ ∈ Λ such that for all

β ≥ β′, ‖gβ ∗ h− h‖1 <
ε
3 . Thus for all β ≥ β′

‖gβ ∗ g − g‖1 ≤ ‖gβ ∗ g − gβ ∗ h‖1 + ‖gβ ∗ h− h‖1 + ‖h− g‖1
≤ ‖gβ‖1 ‖g − h‖1 +

ε

3
+
ε

3

≤ ε

3
+
ε

3
+
ε

3
= ε

Thus limΛ gβ ∗ g = g for all g ∈ L1(G,A, α). �

Corollary 9. Let (A,G, α) be a C∗-dynamical system. Then t 7→ α̃t(gt) is continuous for all g ∈ L1(G,A, α).

Proof: Suppose f ∈ Cc(G), A ∈ A, and s, t ∈ G. If g = Af then

‖α̃s(gs)− α̃t(gt)‖1 = ‖α̃s(gs)− α̃s(gt)‖1 + ‖α̃s(gt)− α̃t(gt)‖1

≤ ‖gs − gt‖1 +

∫
G

‖αs(A)f(r)− αt(A)f(r)‖ dr

≤ ‖gs − gt‖1 + ‖αs(A)− αt(A)‖ ‖f‖1

Since lims→t ‖gs − gt‖1 = 0 by left uniform continuity of t 7→ gt and lims→t ‖αs(A)− αt(A)‖ = 0 by the
definition of a C∗-dynamical system, lims→t ‖α̃s(gs)− α̃t(gt)‖1 = 0. Thus t 7→ α̃t(gt) is continuous in this
case.

By linearity t 7→ α̃t(ft) is continuous for all f ∈ span{g ∈ Cc(G,A) | g = Af,A ∈ A, f ∈ Cc(G)}. Let
g ∈ L1(G,A, α) and fix t ∈ G and ε > 0. Since span{g ∈ Cc(G,A) | g = Af,A ∈ A, f ∈ Cc(G)} is dense in
L1(G,A, α) there exists an f ∈ span{g ∈ Cc(G,A) | g = Af,A ∈ A, f ∈ Cc(G)} so that ‖g − f‖1 <

ε
3 . By
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above there exists a neighbourhood V of t such that if s ∈ V then ‖α̃s(fs)− α̃t(ft)‖1 <
ε
3 . Thus if s ∈ V

then

‖α̃s(gs)− α̃t(gt)‖1 ≤ ‖α̃s(gs)− α̃s(fs)‖1 + ‖α̃s(fs)− α̃t(ft)‖1 + ‖α̃t(ft)− α̃t(gt)‖1
≤ ‖gs − fs‖1 +

ε

3
+ ‖ft − gt‖1

= ‖g − f‖1 +
ε

3
+ ‖f − g‖1

≤ ε

3
+
ε

3
+
ε

3
= ε

Whence lims→t α̃s(gs) = α̃t(gt) so t 7→ α̃t(gt) is continuous for all g ∈ L1(G,A, α). �

Corollary 10. Let (A,G, α) be a C∗-dynamical system. If f, g ∈ Cc(G,A) then
∫
G
λ(f(t))α̃t(gt)dt = f ∗ g.

Proof: Notice that the left hand side of the desired equation is actually and element of Cc(G,A) since
t 7→ λ(f(t))α̃t(gt) is a continuous map from G to Cc(G,A) by the above lemmas and corollary. Therefore∫
G
λ(f(t))α̃t(gt)dt is continuous being a Bochner integral of a function with values in C0(G,A) (continuous

functions from G to A that vanish at infinity) which is complete. Moreover, we obtain for all s ∈ G that(∫
G

λ(f(t))α̃t(gt)dt

)
(s) =

∫
G

(λ(f(t))α̃t(gt))(s)dt

=

∫
G

f(t)(α̃t(gt)(s))dt

=

∫
G

f(t)αt(gt(s))dt

=

∫
G

f(t)αt(g(t−1s))dt

= (f ∗ g)(s)

Whence the result follows. �

We are finally ready to explore the representation theory of L1(G,A, α). We recall that a ∗-homomorphism
σ : L1(G,A, α) → B(H) is contractive being a ∗-homomorphism from a Banach ∗-algebra to a C∗-algebra.
Moreover we recall that a ∗-homomorphism σ : L1(G,A, α) → B(H) is said to be non-degenerate if
H = σ(L1(G,A, α))H and is said to have trivial null space if σ(L1(G,A, α))ξ = {0} implies ξ = 0. We
begin with the following proposition showing it suffices to consider non-degenerate representations. Note
that the proposition generalizes to any Banach ∗-algebra with a left bounded approximate identity.

Proposition 11. Let (A, G, α) be a C∗-dynamical system and H a Hilbert space. Suppose σ : L1(G,A, α)→
B(H) is a ∗-homomorphism and let K = σ(A)H. Let σ′ : L1(G,A, α)→ B(K) be defined by σ′(f) = σ(f)|K
for all f ∈ L1(G,A, α). Then σ′ is a non-degenerate representation of L1(G,A, α). In fact, σ(f)h = 0 for all
h ∈ K⊥. Hence ‖σ′(f)‖ = ‖σ(f)‖ for all f ∈ L1(G,A, α). Moreover, if σ is faithful then σ′ is faithful. Lastly
σ is non-degenerate if and only if σ(L1(G,A, α)) has trivial null space.

Proof: Firstly if K is a closed subspace then σ′ is a well-defined representation as K is a reducing subspace
for σ(L1(G,A, α)). We shall show that σ′ is non-degenerate by showing σ′(L1(G,A, α))K = K and this will
also show us that K is a subspace. Let k ∈ K = σ(L1(G,A, α))H. Thus there exists fn ∈ L1(G,A, α) and
hn ∈ H such that k = limn σ(fn)hn. By Proposition 8, L1(G,A, α) has a left bounded (by 1) approximate
identity {fβ}Λ. Let ε > 0. Since k = limn σ(fn)hn there exists an N ∈ N such that ‖k − σ(fN )hN‖ ≤ ε

3 and
since {fβ}Λ is a left bounded approximate identity for L1(G,A, α), there exists a β′ ∈ Λ such that for all
β ≥ β′, ‖fβfN − fN‖1 ≤

ε
3(‖hN‖+1) . Since σ is a contraction ‖σ(fβfN )− σ(fN )‖ ≤ ε

3(‖hN‖+1) . Hence for all
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β ≥ β′

‖k − σ(fβ)k‖ ≤ ‖k − σ(fN )hN‖+ ‖σ(fN )hN − σ(fβfN )hN‖+ ‖σ(fβfN )hN − σ(eβ)k‖

≤ ε

3
+ ‖σ(fN )− σ(fβfN )‖ ‖hN‖+ ‖σ(fβ)‖ ‖σ(fN )hN − k‖

<
ε

3
+

ε

3(‖hN‖+ 1)
‖hN‖+ 1

ε

3
≤ ε

Hence σ(fβ)k → k so k ∈ σ(L1(G,A, α))K = σ′(L1(G,A, α))K. Moreover, if k1, k2 ∈ K and α ∈ C, then
σ(fβ)(αk1 + k2)→ αk1 + k2 so that αk1 + k2 ∈ K. Hence K is a subspace. Moreover

K ⊆ σ′(L1(G,A, α))K = σ(L1(G,A, α))K ⊆ σ(L1(G,A, α))H = K

Hence K = σ′(L1(G,A, α))K so σ′ is a well defined, non-degenerate representation.
Suppose h ∈ K⊥. We claim that σ(f)h = 0 for all f ∈ L1(G,A, α). To see this, suppose k ∈ K. Then

〈σ(f)h, k〉 = 〈h, σ(f∗)k〉 = 0

since h ∈ K⊥ and σ(f∗)k ∈ K. Similarly, if k ∈ K⊥ then 〈σ(f)h, k〉 = 0. Hence σ(f)h = 0 as claimed.
Consequently ‖σ(f)‖ = ‖σ′(f)‖ as σ′(f) = σ(f)|K. If σ is faithful and σ′(f1) = σ′(f2), then σ(f1)|K =
σ(f2)|K and since σ(f1)|K⊥ = σ(f2)|K⊥ = 0, σ(f1) = σ(f2) so f1 = f2. Hence σ′ is faithful.

Lastly suppose σ is non-degenerate so that H = K = σ(L1(G,A, α))H. Suppose σ(L1(G,A, α))k = {0}.
Then, by repeating the first part of this proof, we obtain that ‖k‖ = ‖k − σ(fβ)k‖ < ε for all ε > 0 with a
suitable choice of β. Hence k = 0 so that σ(L1(G,A, α)) has trivial null space. Now suppose σ(L1(G,A, α))
has trivial null-space and suppose further that H 6= σ(L1(G,A, α))H. Then there exists a k ∈ H \ {0} such

that k ∈ σ(L1(G,A, α))H
⊥

. However, from earlier work, this implies that σ(f)k = 0 for all f ∈ L1(G,A, α)
which contradicts the fact that σ(L1(G,A, α)) had trivial null-space. �

We would like to be able to complete L1(G,A, α) with respect to a C∗-norm to create a C∗-algebra. To
do this, we will need to know that a ∗-representation of L1(G,A, α) exists. This leads us to the concept of
a covariant representations of a C∗-dynamical system.

Definition 12. Let (A, G, α) be a C∗-dynamical system. A covariant representation of (A, G, α) is a
pair (π, U) where π : A → B(H) is a ∗-homomorphism and t 7→ Ut ∈ B(H) is a unitary representation of G
(which we require to be SOT-continuous) so that Utπ(A)U∗t = π(αt(A)) for all t ∈ G and A ∈ A.

Proposition 13. Every C∗-dynamical system has a covariant representation.

Proof: Let (A, G, α) be a C∗-dynamical system and let π : A → B(H) be any ∗-homomorphism. Con-
sider the Hilbert space K = L2(G,H) (which (if the reader is not familiar with) can be viewed as the

completion of all continuous functions f ∈ Cc(G,H) with
∫
G
‖f(t)‖2H dt < ∞ with respect to the inner

product 〈f, g〉 =
∫
G
〈f(t), g(t)〉Hdt). Define π̃ : A → B(L2(G,H)) by (π̃(A)f)(s) = π(αs−1(A))f(s) and

Λt ∈ B(L2(G,H)) by (Λtf)(s) = f(t−1s) for all f ∈ Cc(G,H) and extending by continuity. It is necessary
to check π̃ and Λt are well-defined and have the desired properties.

Fix A ∈ A. We notice if f ∈ Cc(G,H), then since s 7→ αs−1(A) is continuous for all A ∈ A, π̃(A)f ∈
Cc(G,H). Clearly π̃(A) is linear. Moreover∫

G

‖(π̃(A)f)(s)‖ ds =

∫
G

‖π(αs−1(A))f(s)‖ ds ≤ ‖A‖ ‖f‖2

Whence π̃(A) extends to a bounded linear operator on L2(G,H). Next we notice that

(π̃(A)π̃(B)f)(s) = π(αs−1(A))((π̃(B)f)(s)) = π(αs−1(A))π(αs−1(B))f(s) = π(αs−1(AB))f(s) = (π̃(AB)f)(s)
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for all A,B ∈ A and f ∈ Cc(G,H). Thus π̃ extends to a homomorphism. Lastly we notice that

〈π̃(A)∗f, g〉 = 〈f, π̃(A)g〉

=

∫
G

〈f(s), π(αs−1(A))g(s)〉ds

=

∫
G

〈π(αs−1(A∗))f(s), g(s)〉ds

= 〈π̃(A∗)f, g〉

for all A ∈ A and f, g ∈ Cc(G,H). Whence π̃ extends to a ∗-homomorphism.
Fix t ∈ G. Since s 7→ (Λtf)(s) = f(t−1s) is a continuous function for all f ∈ Cc(G,H), Λt is well-defined.

It is clear that Λt is linear. Notice

‖Λtf‖2 =

∫
G

∥∥f(t−1s)
∥∥ ds =

∫
G

‖f(s)‖ ds = ‖f‖2

for all f ∈ Cc(G,H) so Λt is an isometry and thus extends to an isometry on L2(G,H). Moreover
(ΛtΛt−1f)(s) = (Λt−1f)(t−1s) = f(s) for all f ∈ Cc(G,H) and t ∈ G. Whence Λt is invertible with
Λ−1
t = Λt−1 so Λt extends to a unitary operator on L2(G,H). Moreover it is trivial to verify that ΛtΛs = Λts

on Cc(G,H) for all s, t ∈ G. Thus t 7→ Λt is a group homomorphism. Lastly we must verify that t 7→ Λtf
is continuous for all f ∈ L2(G,H). Since each Λt is a bounded operator of norm one, it suffices to verify
this on Cc(G,H). However, if f ∈ Cc(G,H), we clearly see that t 7→ ft is (uniformly) continuous. Whence
t 7→ Λt is a unitary representation of G.

Lastly we notice for all f ∈ Cc(G,H), A ∈ A, and t ∈ G that

(Λtπ̃(A)Λ∗t f)(s) = (π̃(A)Λ∗t f)(t−1s)

= π(αs−1t(A))(Λ∗t f)(t−1s)

= (π(αs−1(αt(A)))f)(s)

= (π̃(αt(A))f)(s)

Since Cc(G,H) is dense in L2(G,H), we obtain that Λtπ̃(A)Λ∗t = π̃(αt(A)) so (π̃,Λ) is a covariant represen-
tation of (A, G, α). �

To get a ∗-representation of L1(G,A, α), we have the following result.

Theorem 14. Let (A, G, α) be a C∗-dynamical system. Suppose (π : A → B(H), U) is a covariant repre-
sentation of (A, G, α). Then there exists a ∗-homomorphism σ(π,U) : L1(G,A, α)→ B(H) defined by

σ(π,U)(f) =

∫
G

π(f(t))Utdt

for all f ∈ Cc(G,A). If π is non-degenerate then σ(π,U) is non-degenerate.
Conversely, if σ : L1(G,A, α) → B(H) is a non-degenerated ∗-homomorphism, there exists a covariant

representation (π, U) such that σ(π,U) = σ.

Proof: Let (A, G, α) be a C∗-dynamical system. Suppose (π : A → B(H), U) is a covariant represen-
tation of (A, G, α). For each f ∈ Cc(G,A), define σ(π,U)(f) =

∫
G
π(f(t))Utdt. This is clearly well-defined

since f ∈ Cc(G,A) so t 7→ π(f(t))Ut is bounded and continuous with respect to the strong operator topology
(and thus ξ 7→

∫
G
π(f(t))Utξdt defines a bounded linear operator on H). Clearly σ(π,U)(f) is linear and since

∥∥σ(π,U)(f)
∥∥ ≤ ∫

G

‖π(f(t))‖ dt ≤
∫
G

‖f(t)‖ dt = ‖f‖1
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σ(π,U)(f) is bounded. By continuity σ(π,U) extends to a linear map from L1(G,A, α) to B(H). Since for all
f, g ∈ Cc(G,A)

σ(π,U)(f ∗ g) =

∫
G

π((f ∗ g)(s))Usds

=

∫
G

π

(∫
G

f(t)αt(g(t−1s))dt

)
Usds

=

∫
G

∫
G

π(f(t))π(αt(g(t−1s)))Usdtds

=

∫
G

∫
G

π(f(t))π(αt(g(t−1s)))Usdsdt

=

∫
G

∫
G

π(f(t))Utπ(g(t−1s))U∗t Usdsdt

=

∫
G

∫
G

π(f(t))Utπ(g(s))Ut−1Utsdsdt

=

∫
G

∫
G

π(f(t))Utπ(g(s))Usdsdt

=

∫
G

π(f(t))Utσ(π,U)(g)dt

= σ(π,U)(f)σ(π,U)(g)

σ(π,U) must have extended to be a homomorphism. Moreover for all f ∈ Cc(G,A) and ξ, η ∈ H

〈σ(π,U)(f
∗)ξ, η〉 =

〈(∫
G

π(f∗(t))Utdt

)
ξ, η

〉
=

∫
G

〈π(f∗(t))Utξ, η〉 dt

=

∫
G

∆(t)−1
〈
π(αt(f(t−1)))∗Utξ, η

〉
dt

=

∫
G

∆(t)−1
〈
ξ, Ut−1π(αt(f(t−1)))η

〉
dt

=

∫
G

〈ξ, Utπ(αt−1(f(t)))η〉 dt

=

∫
G

〈Utπ(αt−1(f(t)))η, ξ〉 dt

=

∫
G

〈π(f(t))Utη, ξ〉 dt

= 〈σ(π,U)(f)η, ξ〉
= 〈σ(π,U)(f)∗ξ, η〉

Thus σ(π,U) must have extended to be a ∗-homomorphism as desired.
Next suppose that π is non-degenerate. To show that σ(π,U) is non-degenerate, it suffices to show that

σ(π,U) has trivial null-space by Proposition 11. Suppose ξ ∈ H is such that σ(π,U)(L1(G,A, α))ξ = {0}. Let
{fβ}Λ be the norm one bounded approximate identity for L1(G) from Theorem 2. Then for each A ∈ A,
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Afβ ∈ L1(G,A, α) and

‖π(A)ξ‖ =
∥∥π(A)ξ − σ(π,U)(Afβ)ξ

∥∥
=

∥∥∥∥π(A)ξ −
∫
G

π(Afβ(t))Utξdt

∥∥∥∥
=

∥∥∥∥π(A)(ξ −
∫
G

fβ(t)Utξdt)

∥∥∥∥
=

∥∥∥∥π(A)

∫
G

fβ(t)(ξ − Utξ)dt
∥∥∥∥

≤ ‖π(A)‖
∫
G

fβ(t) ‖ξ − Utξ‖ dt

≤ ‖π(A)‖
∫
G

fβ(t) sup{‖ξ − Urξ‖ | r ∈ supp(fβ)}dt

= ‖π(A)‖ sup{‖ξ − Urξ‖ | r ∈ supp(fβ)}

Since r 7→ Urξ is continuous with Ueξ = ξ and by the construction of the fβ ’s, we obtain that ‖π(A)ξ‖ =
limΛ ‖π(A)‖ sup{‖ξ − Urξ‖ | r ∈ supp(fβ)} = 0. Whence π(A)ξ = 0 for all A ∈ A. Since π is non-
degenerate, ξ = 0. Whence σ(π,U) is non-degenerate by Proposition 11.

The converse direction is significantly harder (even though we have most of the technical preliminaries
out of the way) and relies heavily on the left bounded approximate identity for L1(G,A, α) from Proposition
8. Suppose σ : L1(G,A, α) → B(H) is a non-degenerated ∗-homomorphism. Therefore σ(L1(G,A, α))H is
dense in H. Since Cc(G,A) is dense in L1(G,A, α), σ(Cc(G,A))H is dense in H.

Let {gβ}Λ be the left bounded approximate identity for L1(G,A, α) from Proposition 8 and fix A ∈ A.
We claim that SOT-limΛ σ(λ(A)gβ) exists. Let ε > 0. If g ∈ L1(G,A, α) and η ∈ H, there exists a β′ ∈ Λ so
that if β1, β2 ≥ β′ then ‖gβ1

∗ g − gβ2
∗ g‖ < ε

(‖A‖+1)(‖η‖+1) . Thus if β1, β2 ≥ β′

‖σ(λ(A)gβ1
)σ(g)η − σ(λ(A)gβ2

)σ(g)η‖ = ‖σ((λ(A)gβ1
) ∗ g − (λ(A)gβ2

) ∗ g)η‖
≤ ‖(λ(A)gβ1

) ∗ g − (λ(A)gβ2
) ∗ g‖ ‖η‖

≤ ‖λ(A)(gβ1
∗ g − gβ2

∗ g)‖ ‖η‖ Lemma 5

≤ ‖A‖ ‖gβ1
∗ g − gβ2

∗ g‖ ‖η‖

≤ ‖A‖ ε

(‖A‖+ 1)(‖η‖+ 1)
‖η‖ < ε

Thus {σ(λ(A)gβ)(σ(g)η)}Λ is a Cauchy net in H and thus converges. Notice ‖σ(λ(A)gβ)‖ ≤ ‖λ(A)(gβ)‖ ≤
‖A‖ ‖gβ‖ ≤ ‖A‖ by Lemma 5. Fix ξ ∈ H and let ε > 0. Since σ(Cc(G,A))H is dense in H there exists a
g ∈ Cc(G,A) and η ∈ H so that ‖ξ − σ(g)η‖ ≤ ε

3(‖A‖+1) . By above there exists a β′ ∈ Λ such that for all

β1, β2 ≥ β′ ‖σ(λ(A)gβ1
)σ(g)η − σ(λ(A)gβ2

)σ(g)η‖ < ε
3 . Whence for all β1, β2 ≥ β′

‖σ(λ(A)gβ1
)ξ − σ(λ(A)gβ2

)ξ‖ ≤ ‖σ(λ(A)gβ1
)ξ − σ(λ(A)gβ2

)σ(g)η‖+ ‖σ(λ(A)gβ1
)σ(g)η − σ(λ(A)gβ2

)σ(g)η‖
+ ‖σ(λ(A)gβ2

)σ(g)η − σ(λ(A)gβ2
)ξ‖

≤ ‖σ(λ(A)gβ1
)‖ ‖ξ − σ(g)η‖+

ε

3
+ ‖σ(λ(A)gβ2

)‖ ‖σ(g)η − ξ‖

≤ ‖λ(A)gβ1
‖ ε

3(‖A‖+ 1)
+
ε

3
+ ‖λ(A)gβ2

‖ ε

3(‖A‖+ 1)

≤ ‖A‖ ε

3(‖A‖+ 1)
+
ε

3
+ ‖A‖ ε

3(‖A‖+ 1)
< ε

Thus {σ(λ(A)gβ)ξ}Λ is a Cauchy net in H and thus converges. Therefore TAξ = limΛ σ(λ(A)gβ)ξ defines a
map from H to itself. Since each σ(λ(A)gβ) is linear so TA is linear and since ‖σ(λ(A)gβ)ξ‖ ≤ ‖A‖ ‖ξ‖ for
all β, TA ∈ B(H) with ‖TA‖ ≤ ‖A‖.
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Define π : A → B(H) by π(A) = SOT-limΛ σ(λ(A)gβ). Notice for all A ∈ A, g ∈ Cc(G,A), and η ∈ H
that

π(A)σ(g)η = lim
Λ
σ(λ(A)gβ)σ(g)η

= lim
Λ
σ((λ(A)gβ) ∗ g)η

= lim
Λ
σ(λ(A)(gβ ∗ g))η Lemma 5

= σ(λ(A)(g))η

From this it is clear that π is linear and multiplicative on σ(Cc(G,A))H (as λ is linear and multiplicative)
and thus on H by continuity and density. Moreover we notice

〈π(A)∗σ(g)ξ, σ(f)η〉 = 〈σ(g)ξ, π(A)σ(f)η〉
= 〈σ(g)ξ, σ(λ(A)f)η〉
= 〈σ((λ(A)f)∗ ∗ g)ξ, η〉
= 〈σ(f∗ ∗ (λ(A∗)g))ξ, η〉 Lemma 5

= 〈σ(λ(A∗)g)ξ, σ(f)η〉
= 〈π(A∗)σ(g)ξ, σ(f)η〉

for all A ∈ A, g, f ∈ Cc(G,A), and ξ, η ∈ H. Since σ(Cc(G,A))H is dense in H, we obtain that π is a
∗-homomorphism.

Now we define the unitary representation of G. Notice for each t ∈ G, g ∈ Cc(G,A) and η ∈ H that
σ((gβ)t)σ(g)η = σ(α̃t(((α̃t−1(gβ)) ∗ g)t))η by Lemma 7.2. From Proposition {α̃t−1(gβ)}Λ is a left bounded
approximate identity for L1(G,A, α). Whence

lim
Λ
σ((gβ)t)σ(g)η = lim

Λ
σ(α̃t(((α̃t−1(gβ)) ∗ g)t))η

= σ(α̃t(gt))η ∈ H

by earlier continuity results. Since ‖σ((gβ)t)‖ ≤ ‖gβ‖ ≤ 1, we obtain (as in the π(A) case) that SOT-
limΛ σ((gβ)t) is a well-defined bounded linear operator with norm at most one.

Define a map from G to B(H) by t 7→ Ut = SOT-limΛ σ((gβ)t). Notice for all g ∈ Cc(G,A) and η ∈ H
that Ut(σ(g)η) = σ(α̃t(gt))η. Therefore UsUt(σ(g)η) = Usσ(α̃t(gt))η = σ(α̃s((α̃t(gt))s))η = σ(α̃st(gst))η =
Ust(σ(g)η) by Lemma 7.3 (the elimination of Us holds since gt ∈ Cc(G,A) so α̃t(gt) ∈ Cc(G,A)). Since
σ(Cc(G,A))H is dense in H, UsUt = Ust so t 7→ Ut is a group homomorphism. Since each Ut has norm at
most one, this is a contractive group homomorphism.

Notice for all g ∈ Cc(G,A) and η ∈ H that Ueσ(g)η = limΛ σ(gβ)σ(g)η = limΛ σ(gβ ∗ g)η = σ(g)η as
{gβ} is a left bounded approximate identity. Whence Ue = IH on a dense subset so Ue = IH. Therefore
I = UtUt−1 = Ut−1Ut so each Ut is invertible. Since ‖Ut‖ ≤ 1 and ‖Ut−1‖ ≤ 1, we must have that each Ut is
an isometry and thus an invertible isometry. Whence each Ut is a unitary.

To verify that t 7→ Ut is a unitary representation of G, we must show that t 7→ Utξ is continuous for all
ξ ∈ H. Since ‖Ut‖ = 1 for all t, it suffices to show this on a dense subset of H, namely σ(Cc(G,A))H. For
all g ∈ Cc(G,A) and η ∈ H Ut(σ(g)η) = σ(α̃t(gt))η. Since t 7→ α̃t(gt) is continuous by Corollary 9 and σ is
continuous, we obtain the desired result. Whence t 7→ Ut is a unitary representation of G.

We claim that (π, U) is a covariant representation of (A, G, α). To see this we notice for all g ∈ Cc(G,A)
and ξ ∈ H that

Utπ(A)U∗t (σ(g)ξ) = Utπ(A)σ(α̃t−1(gt−1))ξ

= Utσ(λ(A)α̃t−1(gt−1))ξ

= σ(α̃t((λ(A)α̃t−1(gt−1))t))ξ

= σ(λ(αt(A))g)ξ Lemma 7.4

= π(αt(A))(σ(g)ξ)
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(as all functions in consideration are in Cc(G,A) so any formulae developed for π and U hold). Since
σ(Cc(G,A))H is dense in H, Utπ(A)U∗t = π(αt(A)) for all t ∈ G and A ∈ A. Whence (π, U) is a covariant
representation of (A, G, α).

It remains only to verify that σ(π,U) = σ. Then for all f, g ∈ Cc(G,A) and ξ ∈ H

σ(π,U)(f)(σ(g)ξ) =

(∫
G

π(f(t))Utdt

)
(σ(g)ξ)

=

∫
G

π(f(t))Utσ(g)ξdt

=

∫
G

π(f(t))σ(α̃t(gt))ξdt

=

∫
G

σ(λ(f(t))(α̃t(gt)))ξdt

= σ

(∫
G

λ(f(t))(α̃t(gt))dt

)
ξ

= σ (f ∗ g) ξ Corollary 10

= σ(f)(σ(g)ξ)

Since σ(Cc(G,A))H is dense in H, σ(π,U)(f) = σ(f) for all f ∈ Cc(G,A). Since σ and σ(π,U) are continuous
and Cc(G,A) is dense in L1(G,A, α), we obtain σ = σ(π,U) as desired. �

The last result we need is that one of the ∗-homomorphisms on L1(G,A, α) given by Theorem 14 is
faithful. This ∗-homomorphism will be given by one from Proposition 13 assuming the representation of A
taken is faithful.

Proposition 15. Let (A, G, α) be a C∗-dynamical system. Let π : A → B(H) be any faithful repre-
sentation. If π̃ : A→ B(L2(G,H)) and Λ : G→ U(L2(G,H)) is the covariant representation induced by π in
Proposition 13, then the ∗-homomorphism σ(π̃,Λ) : L1(G,A, α)→ B(L2(G,H)) from Theorem 14 is injective.

Proof: Let f ∈ L1(G,A, α) be arbitrary. Unfortunately, we cannot avoid the Bochner integral here.
By considering the definition of σ(π̃,Λ) for elements of Cc(G,A) and how elements of L1(G,A, α) are limits
of elements of Cc(G,A), we obtain σ(π̃,Λ)(f) =

∫
G
π̃(f(t))Λtdt for all f ∈ L1(G,A, α). Suppose there exists

an f ∈ L1(G,A, α) so that σ(π̃,Λ)(f) = 0. Let {fλ} be the bounded approximate identity for L1(G) from
Theorem 2 and let ξ ∈ H be arbitrary. Since fλ is non-zero only on a compact set, ξfλ ∈ L2(G,H) (you can
show that this function is indeed in L2(G,H) if you take the definition given in Proposition 13). Then 0 =
σ(π̃,Λ)(f)(ξfλ) =

∫
G
π̃(f(t))Λt(ξfλ)dt as an element of L2(G,H). Whence 0 =

(∫
G
π̃(f(t))Λt(ξfλ)dt

)
(s) =∫

G
π(αt−1(f(t)))ξfλ(t−1s)dt for almost all s ∈ G. Since fλ is a bounded approximate identity for L1(G), it

is trivial to show that ∫
G

π(αt−1(f(t)))ξfλ(t−1s)dt→ π(αs−1(f(s)))ξ

by using typical convolution tricks. Whence 0 = π(αs−1(f(s)))ξ for almost every s (where the almost
everywhere set depends on ξ). (Note all of the following functions can be shown to be measurable in the sense
of the Bochner integral) Thus, considering s 7→ π(αs−1(f(s))) ∈ L1(G,B(H)), we obtain π(αs−1(f(s))) = 0
almost everywhere (since it it were not zero as a function in L1(G,B(H), it would be non-zero on a positive
measure subset and thus its values when applied to ξ would be non-zero in a positive measure set). Since
π is a faithful representation (by viewing s 7→ αs−1(f(s)) ∈ L1(G,A) we obtain αs−1(f(s)) = 0 almost
everywhere. Thus, since αs−1 is faithful, f(s) = 0 for almost all s. Whence f = 0. Thus σ(π̃,Λ) is injective
as desired. �
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Using Proposition 13, Theorem 14, and Proposition 15, we see that if (A, G, α) is a C∗-dynamical system,
then there exists a faithful ∗-homomorphism from L1(G,A, α) into B(H) for some Hilbert space H. Since
every ∗-homomorphism from a Banach ∗-algebra to a C∗-algebra is contractive, this allows us to define a
C∗-norm on L1(G,A, α).

Definition 16. Let (A, G, α) be a C∗-dynamical system. Define a C∗-norm on L1(G,A, α) by

‖f‖ = sup
σ
‖σ(f)‖

where the supremum is taken over all (non-degenerate) ∗-representations of L1(G,A, α). Based on the theory
developed, it is trivial to verify that this is a well-defined C∗-norm. Let A oα G denote the completion of
L1(G,A, α) with respect to this norm. Whence Aoα G is a C∗-algebra known as the cross product of A by
G.

Recall how the covariant representation in Proposition 13 was developed from any ∗-homomorphism
π : A→ B(H). We can define another C∗-norm on L1(G,A, α) by

‖f‖r = sup
σ
‖σ(f)‖

where the supremum is taken over all ∗-representations of L1(G,A, α) that are created by the proof of
Proposition 13. Based on the theory developed, it is trivial to verify that this is a well-defined C∗-norm. Let
Aoα,r G denote the completion of L1(G,A, α) with respect to this norm. Whence Aoα,r G is a C∗-algebra
known as the reduced cross product of A by G.

It is trivial to verify that if A = (C, ‖ · ‖∞), G is a locally compact group, and α : G → Aut(A) by
α(g) = Id for all g, then A oα,r G ' C∗r (G) and A oα G ' C∗(G) (every unitary representation of G is a
covariant representation of (C, G, α)).

By construction, it is clear that there is a one-to-one correspondence between representations of L1(G,A, α)
on Hilbert spaces and between representations of Aoα G. By Theorem 14 there is a one-to-one correspon-
dence between non-degenerate representations of A oα G and non-degenerate covariant representations of
(A, G, α). Therefore Aoα G encodes the representation theory of (A, G, α).
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