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Abstract

The purpose of this document is to define and develop various notions of numerical ranges of op-
erators. This document is designed to include the some of the basic and most important properties of
each numerical range which appear as important technical details in the proofs of many approximation
properties. In particular, we shall prove one of the most essential results about the numerical range - the
Toeplitz-Hausdorff Theorem.

The reader of these notes must have a basic knowledge of the bounded linear maps on a Hilbert
space. For some of the more advanced topics, an understanding of approximate unitarily equivalence of
operators and spectral theorems for normal operators will be useful. Note that all inner products in this
document are linear in the first variable. Moreover H will denote a Hilbert space, B(H) will denote the
bounded linear maps on H, and σ(T ) will denote the spectrum of an element T ∈ B(H).

This document is for educational purposes and should not be referenced. Please contact the author
of this document if you need aid in finding the correct reference. Comments, corrections, and recom-
mendations on these notes are always appreciated and may be e-mailed to the author (see his website
for contact info).
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1 Numerical Radius

We shall begin with the basic concept of the numerical radius of an operator. One approach to the theory
of the numerical radius would be to first develop the numerical range of an operator which will be done in
Section 2. However we shall avoid this approach to make the concept of the numerical radius as simple as
possible. Since the computations of the numerical radius of an operator are identical to the computations
of the numerical range of an operator, we shall postpone examples until Section 2. Thus we begin with the
definition of the numerical radius of an operator.

Definition 1.1. Let T ∈ B(H). The numerical radius of T is

nr(T ) := sup{|〈Tξ, ξ〉| | ξ ∈ H, ‖ξ‖ ≤ 1} ∈ [0,∞).

As mentioned in the opening of this section, we shall postpone specific examples of computations of the
numerical radius until Section 2. However, in certain situations, the numerical radius is easy to compute.
For example, the following shows the numerical radius of a self-adjoint operator is the norm of the operator
and Theorem 1.7 will show the same for normal operators.

Proposition 1.2. Let T ∈ B(H) be a self-adjoint operator. Then nr(T ) = ‖T‖.

Proof. Clearly
nr(T ) ≤ {‖Tξ‖ ‖ξ‖ | ξ ∈ H, ‖ξ‖ ≤ 1} ≤ ‖T‖ .

To show the other inequality we recall that

‖T‖ = {|〈Tξ, η〉| | ξ, η ∈ H, ‖ξ‖ , ‖η‖ ≤ 1}.

The goal of the proof is ‘to change η into ξ’ in the above expression. To begin, fix ξ and η ∈ H with ‖ξ‖ ≤ 1
and ‖η‖ ≤ 1. For a reason that will become apparent later, choose θ ∈ [0, 2π) such that

|〈Tξ, η〉| = eiθ〈Tξ, η〉.

Let η′ := e−iθη ∈ H so that ‖η′‖ ≤ 1 and 〈Tξ, η′〉 = |〈Tξ, η〉| ∈ R.
Next recall the polarization identity which states

〈Tξ, η′〉 =
1

4
(〈T (ξ + η′), ξ + η′〉 − 〈T (ξ − η′), ξ − η′〉+ i〈T (ξ + iη′)ξ + iη′〉 − i〈T (ξ − iη′), ξ − iη′〉) .

(if you are not familiar with this, simply expand out the right hand side and you will get the left). Notice
that each inner product in the above expression is a real number as T is self-adjoint. Since each inner product
is a real number and, by our choice of η′, 〈Tξ, η′〉 is real we must have the complex terms sum to zero and
thus

〈Tξ, η′〉 =
1

4
(〈T (ξ + η′), ξ + η′〉 − 〈T (ξ − η′), ξ − η′〉) .

By applying the definition of the numerical radius and a simple scaling argument, we see that |〈Tζ, ζ〉| ≤
‖ζ‖2 nr(T ) for all ζ ∈ H. Whence

|〈Tξ, η〉| ≤ 1

4
(|〈T (ξ + η′), ξ + η′〉|+ |〈T (ξ − η′), ξ − η′〉|) ≤ 1

4
nr(T )

(
‖ξ + η‖2 + ‖ξ − η‖2

)
.

Thus, by applying the Parallelogram Law (a rare use of the law!), we obtain that

|〈Tξ, η〉| ≤ 1

4
nr(T )

(
2 ‖ξ‖2 + 2 ‖η′‖2

)
≤ nr(T )

as claimed. As η, ξ ∈ H were arbitrary elements with norm at most one, the expression for ‖T‖ shows that
‖T‖ ≤ nr(T ).
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Our next goal is to show that the numerical radius is a norm on B(H) that is equivalent to the operator
norm. However, the numerical radius need not equal the norm of an operator which will be demonstrated
in Example 2.12. To show that the numerical radius is a norm, we begin with the following simple lemma.

Lemma 1.3. Let T ∈ B(H). Then nr(Re(T )) ≤ nr(T ) and nr(Im(T )) ≤ nr(T ).

Proof. Simply applying definitions gives

nr(Re(T )) = sup
{∣∣∣〈(T+T∗

2

)
ξ, ξ
〉∣∣∣ | ξ ∈ H, ‖ξ‖ ≤ 1

}
≤ sup

{
1
2 |〈Tξ, ξ〉|+

1
2 |〈ξ, T ξ〉| | ξ ∈ H, ‖ξ‖ ≤ 1

}
= nr(T ).

The proof that nr(Im(T )) ≤ nr(T ) is identical.

Theorem 1.4. For all T ∈ B(H), nr(T ) ≤ ‖T‖ ≤ 2nr(T ). Moreover T 7→ nr(T ) defines a norm on B(H).

Proof. Clearly
nr(T ) ≤ {‖Tξ‖ ‖ξ‖ | ξ ∈ H, ‖ξ‖ ≤ 1} ≤ ‖T‖ .

To prove the second inequality write T = Re(T ) + iIm(T ). Then Re(T ) and Im(T ) are self-adjoint ele-
ments so combining Proposition 1.2 and Lemma 1.3 gives ‖Re(T )‖ = nr(Re(T )) ≤ nr(T ) and ‖Im(T )‖ =
nr(Im(T )) ≤ nr(T ). Thus

‖T‖ ≤ ‖Re(T )‖+ ‖Im(T )‖ ≤ 2nr(T )

as claimed.
It is trivial to verify that T 7→ nr(T ) is a non-negative valued map, nr(λT ) = |λ|nr(T ), and nr(T +S) ≤

nr(T ) + nr(S) for all S, T ∈ B(H). Lastly, if nr(T ) = 0 then ‖T‖ ≤ 2nr(T ) = 0 so that T = 0. Whence nr
defines a norm on B(H).

To complete this section we desire to show that the numerical radius of a normal operator is equal to the
norm of the operator. To do this, we will need to appeal to a theorem of Weyl, von Neumann, and Berg which
states that any normal operator is approximately unitarily equivalent to a diagonal normal operator. Thus
it is necessary to demonstrate that the numerical radius is invariant under approximate unitary equivalence.
First we demonstrate the triviality that the numerical radius is invariant under unitary equivalence.

Lemma 1.5. Let T ∈ B(H). Then nr(UTU∗) = nr(T ) for every unitary operator U ∈ B(H).

Proof. If U is a unitary operator, it is clear that ξ is a unit vector in H if and only if U∗ξ is a unit vector.
Therefore, since

〈UTU∗ξ, ξ〉 = 〈TU∗ξ, U∗ξ〉

for all ξ ∈ H, the result clearly follows from the definition of the numerical radius.

With the above and Theorem 1.4, we easily obtain that the numerical radius is invariant under approxi-
mate unitary equivalence.

Lemma 1.6. Let T, S ∈ B(H) be approximately unitarily equivalent (that is, there exists a sequence (Un)n≥1
of unitaries such that limn→∞ ‖UnSU∗n − T‖ = 0). Then nr(S) = nr(T ).

Proof. Suppose there exists a sequence (Un)n≥1 of unitaries such that limn→∞ ‖UnSU∗n − T‖ = 0. Therefore,
since the numerical radius is a norm by Theorem 1.4 and by Lemma 1.5,

nr(T ) ≤ nr(T − UnSU∗n) + nr(UnSU
∗
n) ≤ ‖T − UnSU∗n‖+ nr(S).

Therefore, since limn→∞ ‖UnSU∗n − T‖ = 0, we obtain that nr(T ) ≤ nr(S). Since (U∗n)n≥1 is also a sequence
of unitaries such that limn→∞ ‖U∗nTUn − S‖ = 0, by repeating the above argument we obtain that nr(S) ≤
nr(T ). Hence nr(S) = nr(T ) as desired.
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Hence we easily obtain the following using the Weyl-von Neumann-Berg Theorem.

Theorem 1.7. Let N ∈ B(H) be a normal operator. Then nr(N) = ‖N‖.

Proof. From Theorem 1.4 it is clear that nr(N) ≤ ‖N‖. Moreover, since N is a normal operator, it is
elementary to show that ‖N‖ = sup{|λ| | λ ∈ σ(N)}. Choose λ ∈ σ(N) such that |λ| = ‖N‖. By the
Weyl-von Neumann-Berg Theorem N is approximately unitarily equivalent to a diagonal normal operator
D such that 〈Dξ, ξ〉 = λ for some unit vector ξ ∈ H. Therefore, by Lemma 1.6,

nr(N) = nr(D) ≥ |λ| = ‖N‖

which completes the proof.
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2 Numerical Range - Basic Properties and Examples

In this section we will develop the basic properties of the numerical range of an operator. As the numerical
range and radius of an operator are intimately connected, we will draw more information about the numerical
radius in this section. We shall also demonstrate several examples of the numerical ranges of operators that
will be vital examples. In particular, we shall completely describe the numerical range of any 2× 2 matrix
in terms of its eigenvalues and eigenvectors which is surprisingly the vital ingredient in the proof of the
Toeplitz-Hausdorff Theorem in Section 3.

We begin with the definition of the numerical range.

Definition 2.1. Let T ∈ B(H). The numerical range of T , denoted W (T ), is the non-empty set

W (T ) := {〈Tξ, ξ〉 | ξ ∈ H, ‖ξ‖ = 1}.

Remarks 2.2. It is clear from the definitions of the numerical range and radius that

nr(T ) = sup{|λ| | λ ∈W (T )}.

Thus these two topic are intimately related.

Before we move onto to compute the numerical ranges of certain operators, we demonstrate how the
numerical range contains more information than the spectrum. In particular, there are several operators
that have a single point as spectrum (e.g. quasinilpotent operators) yet these is only one operator whose
numerical range is a given singleton.

Proposition 2.3. Let T ∈ B(H) and let λ ∈ C. Then W (T ) = {λ} if and only if T = λIH.

Proof. It is clear that W (λIH) = {λ} for any λ ∈ C.
Suppose W (T ) = {λ} for some T ∈ B(H). Then for all ξ ∈ H with ‖ξ‖ = 1,

〈(λIH − T )ξ, ξ〉 = λ− 〈Tξ, ξ〉 = λ− λ = 0.

Hence 〈(λIH − T )ξ, ξ〉 = 0 for all ξ ∈ H and thus λIH − T = 0.

Note that the above gives the trivial example that nr(λIH) = |λ|.
Before computing specific examples of numerical ranges of operators, it is also useful to develop some of

the basic machinery of the numerical range as this will ease in the computations.

Proposition 2.4. Let T, S ∈ B(H). Then

1. W (T ∗) = W (T ).

2. W (T ) contains all of the eigenvalues of T .

3. W (T ) is contained in the closed disk of radius ‖T‖ around the origin.

4. If a, b ∈ C then W (aT + bIH) = aW (T ) + b.

5. If U ∈ B(H) is a unitary then W (UTU∗) = W (T ).

6. W (T ) ⊆ R if and only if T is self-adjoint.

7. If H is finite dimensional, W (T ) is closed and thus compact.

8. W (T + S) ⊆W (T ) +W (S).
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Proof. Property (1) clearly follows from the fact that 〈T ∗ξ, ξ〉 = 〈Tξ, ξ〉 for all ξ ∈ H.
Property (2) follows from the fact that if λ is an eigenvalue of T with non-zero eigenvector ξ0, then

ξ := 1
‖ξ0‖ is a unit eigenvector for T with eigenvalue λ and thus λ = 〈Tξ, ξ〉 ∈W (T ) as desired.

Property (3) trivially follows from the fact that |〈Tξ, ξ〉| ≤ ‖Tξ‖ ‖ξ‖ ≤ ‖T‖ for all ξ ∈ H with norm one.
Property (4) follows trivially from the fact that 〈(aT + bIH)ξ, ξ〉 = a〈Tξ, ξ〉+ b for all ξ ∈ H with norm

one.
Property (5) follows from the fact that 〈UTU∗ξ, ξ〉 = 〈T (U∗ξ), U∗ξ〉 for all ξ ∈ H and ξ has norm one if

and only if U∗ξ has norm one.
Property (6) follows from the fact that T ∈ B(H) is self-adjoint if and only if 〈Tξ, ξ〉 ∈ R for every ξ ∈ H

which is equivalent to 〈Tξ, ξ〉 ∈ R for every ξ ∈ H with norm one.
To see that Property (7) holds, we notice that compactness follows if W (T ) is closed by part (3). Suppose

(λn)n≥1 is a sequence in W (T ) that converges to λ ∈ C. For each n ∈ N, choose ξn ∈ H with norm one such
that λn = 〈Tξn, ξn〉. Since H is a finite dimensional Hilbert space, the unit ball of H is compact and thus
there exists a sequence (ξnk

)k≥1 that converges to a unit vector ξ ∈ H. This implies that

〈Tξ, ξ〉 = lim
n→∞

〈Tξn, ξn〉 = lim
n→∞

λn = λ

and thus λ ∈W (T ) as desired.
Property (8) clearly follows from the definition of the numerical range.

To begin our examples of numerical ranges of operators, we will first discuss the unilateral backward
shift.

Example 2.5. Let H be a separable Hilbert space with an orthonormal basis {en}n≥1. Let T ∈ B(H) be
the unilateral backward shift operator; that is T (e1) = 0 and T (en) = en−1 for all n ≥ 2. Then W (T ) is the
open unit disk centred at the origin. To begin, we notice that if ξ ∈ H has norm one, then

|〈Tξ, ξ〉| ≤ ‖Tξ‖ ‖ξ‖ ≤ 1

with equality if and only if Tξ and ξ are multiples of each other and ‖Tξ‖ = 1. This would imply that
Tξ = λξ for some λ ∈ C with |λ| = 1. However, if ξ =

∑
n≥1 anen, the equation Tξ = λξ would imply that

λan = an+1 for all n ∈ N. Thus |an| = |a1| for all n ∈ N which is impossible as 1 = ‖ξ‖2 =
∑
n≥1 |an|2.

Thus W (T ) is a subset of the open unit disk.
To see that W (T ) is the open unit disk, let λ ∈ C be such that |λ| < 1. Let ξ0 :=

∑
n≥1 λ

nen ∈ H which

exists as
∑
n≥1 |λn|2 converges. Thus Tξ0 = λξ0. Hence λ is an eigenvalue for T and thus λ ∈ W (T ) by

Proposition 2.4 part (2). Hence W (T ) is the open unit disk.

Remarks 2.6. Notice that if T is the unilateral backward shift then W (T ) is open and not closed. This
provides an example of where Proposition 2.4 part (7) fails. Moreover this demonstrates that nr(T ) = 1 =
‖T‖.

Next we will demonstrate the important example of the numerical range of diagonal operators.

Example 2.7. Let H be a separable Hilbert space and let T ∈ B(H) be a diagonal operator; that is, there
exists an orthonormal basis {en}n≥1 of H and a bounded set {an}n≥1 of scalars such that Ten = anen for
all n ∈ N. Let ξ =

∑
n≥1 cnen be an arbitrary unit vector. Thus

∑
n≥1 |cn|2 = 1 and

〈Tξ, ξ〉 =
〈∑

n≥1 ancnen,
∑
n≥1 cnen

〉
=

∑
n≥1 an|cn|2.

Hence

W (T ) =

∑
n≥1

anbn | bn ≥ 0,
∑
n≥1

bn = 1

 .
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We claim that W (T ) = conv({an}n≥1); the convex hull of {an}n≥1. It is clear from the above expression
that W (T ) is convex and conv({an}n≥1) ⊆W (T ).

Suppose λ ∈ W (T ). Then, either λ ∈ conv({an}n≥1) or, by a corollary to the Hahn-Banach theo-
rem (or low-dimensional topology), there exists a closed half-plane with λ on the boundary that contains
conv({an}n≥1). By Proposition 2.4 part (4) and the fact conv(a{an}n≥1 + b) = aconv({an}n≥1) + b for
all a, b ∈ C, by performing a translation and rotation we can assume that λ = 0 and conv({an}n≥1) is
contained in the closed upper half-plane. Since λ ∈ W (T ), there exists {bn}n≥1 such that bn ≥ 0 for all
n ∈ N,

∑
n≥1 bn = 1, and 0 =

∑
n≥1 anbn. Since each bn is positive and each an is contained in the

closed upper half-plane, bn = 0 whenever an contains an imaginary part. Therefore, since
∑
n≥1 bn = 1 and

0 =
∑
n≥1 anbn, either am = 0 and bm = 1 for some m ∈ N, or there exists m1,m2 ∈ N such that am1

> 0
and am2

< 0. It is then apparent that 0 ∈ conv({an}n≥1). Hence W (T ) = conv({an}n≥1) as desired.

Remarks 2.8. Example 2.7 has many interesting consequences. To begin, let T ∈ B(H) be a diagonal
self-adjoint operator with spectrum [0, 1]. Then, depending on whether 0 and 1 appear along the diagonal
of T , it is apparent from Example 2.7 that W (T ) is either [0, 1], (0, 1], [0, 1), or (0, 1) and any of these occur
for some such self-adjoint operator. Hence, unlike the numerical range as demonstrated in Lemma 1.6, the
numerical range of an operator is not invariant under approximate unitary equivalence. Moreover this gives
additional examples that the numerical range need not be closed.

Another interesting consequence is the following: if N ∈ B(H) is a normal operator, it need not be the
case that σ(N) ⊆W (N) nor W (N) ⊆ σ(N). Indeed we have seen that a self-adjoint diagonal operator with
spectrum [0, 1] can have (0, 1) as its numerical radius so σ(N) ⊆W (N) may not occur. Furthermore, if N is a
diagonal normal operator with diagonal entries {an}n≥1, then σ(N) = {an}n≥1 yet W (N) = conv({an}n≥1)
so, for certain choices of an, W (N) need not be a subset of σ(N).

Remarks 2.8 show that the numerical range does not behave nicely as it need not be closed and does not
appear to have any direct relation to the spectrum. These problems occur directly because the numerical
range is not closed. The following then shows that the spectrum and concepts of approximate unitary
equivalence behave nicely with respect to the closure of the numerical range.

Theorem 2.9. Let T ∈ B(H). Then σ(T ) ⊆W (T ).

Proof. Let λ ∈ σ(T ). Then either λIH − T is not bounded below, or λIH − T is bounded below but not
onto. Suppose λIH−T is not bounded below. Then there exists a sequence of unit vectors ξn ∈ H such that
limn→∞ ‖(λIH − T )ξn‖ = 0. Thus

0 = lim
n→∞

〈(λIH − T )ξn, ξn〉 = lim
n→∞

λ− 〈Tξn, ξn〉.

As each 〈Tξn, ξn〉 ∈W (T ), λ ∈W (T ) in this case.
Now suppose λIH − T is bounded below but not onto. Therefore ker(λI − T ∗) = Im(λIH − T )⊥ is non-

empty so λ is an eigenvalue of T ∗. Hence λ ∈ W (T ∗) Proposition 2.4 part (2) so λ ∈ W (T ) by Proposition
2.4 part (1).

Theorem 2.10. Let T, S ∈ B(H) be approximately unitarily equivalent. Then W (T ) = W (S).

Proof. Suppose there exists a sequence (Un)n≥1 of unitaries such that limn→∞ ‖UnSU∗n − T‖ = 0. Fix
λ ∈W (T ) and choose a unit vector ξ ∈ H such that λ = 〈Tξ, ξ〉. Therefore

lim
n→∞

|λ− 〈S(U∗nξ), U
∗
nξ〉| = lim

n→∞
|〈(UnSU∗n − T )ξ, ξ〉| = 0.

Therefore, since U∗nξ is a unit vector for all n ∈ N, 〈S(U∗nξ), U
∗
nξ〉 ∈ W (S) for all n ∈ N so λ ∈ W (S).

Therefore, since λ ∈W (T ) was arbitrary, W (T ) ⊆W (S). The result then follows by symmetry.

Combining Theorem 2.10, Example 2.7, and the Weyl-von Neumann-Berg Theorem, we have the following
result relating the spectrum and numerical range of a normal operator.
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Theorem 2.11. Let N ∈ B(H) be a normal operator. Then W (N) = conv(σ(N)).

Proof. By the Weyl-von Neumann-Berg Theorem, there exists a diagonal normal operator D such that N and
D are approximately unitarily equivalent and σ(N) = σ(D). Therefore, by Theorem 2.10, W (N) = W (D).
However, by Example 2.7, W (D) is the convex hull of the eigenvalues {an}n≥1 of D. Since the eigenvalues
of D are dense in the spectrum of D, it is clear that

W (D) = conv({an}n≥1) = conv(σ(N)) = conv(σ(N))

as σ(N) is compact subset of C so its convex hull is closed. Hence the result is complete.

Our next example may seem simplistic, but we shall see in Remarks 2.13 and in the proof of Theorem
2.14 that the following example may be the most important example given yet.

Example 2.12. Consider

M :=

[
0 1
0 0

]
∈M2(C).

Then W (M) is the closed disk of radius 1
2 centred at the origin. To see this we note that it is elementary to

show that ξ ∈ C2 is a unit vector if and only if we can write ξ = (cos(θ)eiθ1 , sin(θ)eiθ2) for some θj ∈ [0, 2π)
and θ ∈ [0, π2 ]. However

〈M(cos(θ)eiθ1 , sin(θ)eiθ2), (cos(θ)eiθ1 , sin(θ)eiθ2)〉 = cos(θ) sin(θ)ei(θ2−θ1).

By ranging over all possible θj ∈ [0, 2π) and θ ∈ [0, π2 ] and using the fact that the range of cos(θ) sin(θ) =
1
2 sin(2θ) over θ ∈ [0, π2 ] is [0, 12 ], we see that W (M) is precisely the closed disk of radius 1

2 centred at the
origin.

Remarks 2.13. Note Example 2.12 shows that nr(M) = 1
2 6= 1 = ‖M‖ thus demonstrating that the

numerical range and operator norm are not equal norms (even though they are equivalent by Theorem 1.4).
Moreover this demonstrates that ‖M‖ = 2nr(M) thus showing the non-trivial inequality in Theorem 1.4 is
strict.

To complete this section, we shall demonstrate the most important use of Example 2.12 which gives a
complete description of the numerical ranges of element of M2(C). Surprisingly this is the main step in the
proof of the all-important Toeplitz-Hausdorff Theorem which will be given in Section 3

Theorem 2.14. For A ∈M2(C), either

1. if A = λI2, then W (A) = {λ},

2. if the eigenvalues of A are equal and A is not a multiple of the identity, W (A) is a non-trivial closed
disk centred at the eigenvalues of A, or

3. if the eigenvalues λ1 and λ2 of A are distinct, W (A) is a possibly degenerate ellipse with foci λ1 and
λ2. Moreover, if ξi is any unit eigenvector for λi, then the eccentricity of W (A) is |〈ξ1, ξ2〉|−1 and the

length of the major axis is |λ1−λ2|√
1−|〈ξ1,ξ2〉|2

.

Proof. It is clear that (1) follows from Proposition 2.4 part (4).
To see that (2) holds, suppose that the eigenvalues of A are equal and A is not a multiple of the identity.

Let λ ∈ C be the eigenvalue of A. Then, by basic theory of matrices, there exists a unitary U ∈ M2(C)
such that A = U(λI2 + aM)U∗ where a ∈ C is non-zero and M is the matrix in Example 2.12. Therefore,
by Proposition 2.4 parts (4) and (5),

W (A) = W (U(λI2 + aM)U∗) = W (λI2 + aM) = λ+ aW (M)

so the result follows from Example 2.12.
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Finally, we arrive at the significant case. Suppose A ∈ M2(C) has two distinct eigenvalues. Since
W (A+ aI2) = W (A) + a for all a ∈ C, it is easy to see that we may assume that there exists a λ ∈ C such
that the eigenvalues of A are λ and −λ as the conclusions of this case are invariant under translations (and
as the eigenvectors of translations are the eigenvectors of the original matrix). Since the eigenvalues of A
are ±λ, it is clear that tr(A) = 0.

Let ξ1 be a unit eigenvector for λ and let ξ2 be a unit eigenvector for −λ. If ξ1 and ξ2 are orthogonal, it
is easy to see using Example 2.7 that W (A) is the line segment connecting λ to −λ. As a line segment is an

ellipse with foci at the endpoints, with infinite eccentricity, and with a major axis of length 2λ = |λ−(−λ)|√
1−|〈ξ1,ξ2〉|2

,

the proof is complete in this setting.
Hence we may assume that 〈ξ1, ξ2〉 6= 0. Choose θ ∈ [0, 2π) such that e−iθ〈ξ1, ξ2〉 is real. Therefore, if

η1 := ξ1 + eiθξ2 then

〈Aη1, η1〉 = 〈λξ1 − λeiθξ2, ξ1 + eiθξ2〉 = λ− λ+ λe−iθ〈ξ1, ξ2〉 − λeiθ〈ξ2, ξ1〉 = 2iλIm(e−iθ〈ξ1, ξ2〉) = 0.

Let η2 be any unit vector that is orthogonal to η1. Since tr(A) = 0 and 〈Aη1, η1〉 = 0, we easily obtain that
〈Aη2, η2〉 = 0. Therefore, A is unitarily equivalent to a matrix B of the form

B =

[
0 a
b 0

]
for some a, b ∈ C. Therefore, as the numerical range is invariant under unitary conjugation by Proposition
2.4 part (5), W (A) = W (B). Moreover, notice that the eigenvalues of B are ±

√
ab for some choice of the

square root function of complex numbers. Since the eigenvalues of A and B are equal, we must have that√
ab and −

√
ab are distinct.

Write a = |a|eiα and b = |b|eiβ where α, β ∈ [0, 2π). Consider the matrix

V :=

[
1 0

0 e
1
2 i(α−β)

]
∈M2(C).

Since |e 1
2 i(α−β)| = 1, is it easy to see that V is a unitary matrix such that

V ∗ =

[
1 0

0 e
1
2 i(−α+β)

]
and

C := V BV ∗ =

[
0 ae

1
2 i(−α+β)

be
1
2 i(α−β) 0

]
= e

1
2 i(α+β)

[
0 |a|
|b| 0

]
.

Moreover, if |a| < |b|, we can conjugate by the matrix

W :=

[
0 1
1 0

]
so that we may assume that 0 ≤ |b| ≤ |a|. Moreover if |b| = 0 then the eigenvalues of B and thus A are both
zero which is a contradiction. Hence we may assume 0 < |b|. Furthermore, if |b| = |a|, then A is unitarily
equivalent to a self-adjoint operator which implies the eigenvectors of A are orthogonal and thus we are done
by our first case. Hence we may assume that 0 < |b| < |a|. Therefore, if

D :=

[
0 |a|
|b| 0

]
we obtain by Proposition 2.4 parts (4) and (5) that W (A) = e

1
2 i(α+β)W (D), the eigenvalues of D (specifically

±
√
|a||b|) are a complex multiple of modulus one of the eigenvalues of A (so the absolute value of the

difference of the eigenvalues of D and the absolute value of the difference of the eigenvalues of A agree), and
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the eigenvectors of D correspond to the eigenvectors of A via a unitary operator (so the inner product of
the unit eigenvectors of the two eigenvalues of D and the inner product of the unit eigenvectors of the two
eigenvalues of A agree). Hence it suffices to prove the result for D where 0 < |b| < |a|.

To compute W (D), we note that it is elementary to show that ξ ∈ C2 is a unit vector if and only if we
can write ξ = (cos(θ)eiθ1 , sin(θ)eiθ2) for some θj ∈ [0, 2π) and θ ∈ [0, π2 ]. However

〈D(cos(θ)eiθ1 , sin(θ)eiθ2), (cos(θ)eiθ1 , sin(θ)eiθ2)〉 = |a| sin(θ)eiθ2 cos(θ)e−iθ1 + |b| cos(θ)eiθ1 sin(θ)e−iθ2

= cos(θ) sin(θ)
(
|a|ei(θ2−θ1) + |b|e−i(θ2−θ1)

)
.

Therefore, as any θj ∈ [0, 2π) are possible,

W (D) = {cos(θ) sin(θ)(|a|eiφ + |b|e−iφ) | θ ∈ [0, π2 ], φ ∈ [0, 2π)}
= {cos(θ) sin(θ)((|a|+ |b|) cos(φ) + (|a| − |b|) sin(φ)) | θ ∈ [0, π2 ], φ ∈ [0, 2π)}.

It is an exercise in elementary geometry that W (D) is then an ellipse centred as 0 with major axis of length
2
(
1
2 (|a|+ |b|)

)
= |a| + |b| (as cos(θ) sin(θ) obtains every value between 0 and 1

2 as θ varies from 0 to π
2 ),

with minor axis of length |a| − |b|, and with foci at ±
√(

|a|+|b|
2

)2
−
(
|a|−|b|

2

)2
= ±

√
|a||b| which are the

eigenvalues of D. Thus it remains only to demonstrate the eccentricity and length of the major axis are of
the above form.

However, it is easy to verify that the only possible unit eigenvectors of
√
|a||b| and −

√
|a||b| for D are

ζθ =
eiθ√

1 + |b|
|a|

[
1√
|b|
|a|

]
and ωφ =

eiφ√
1 + |b|

|a|

[
1

−
√
|b|
|a|

]

where θ, φ ∈ [0, 2π). Therefore, as

|〈ζθ, ωφ〉| =
1

1 + |b|
|a|

(
1− |b|
|a|

)
=
|a| − |b|
|a|+ |b|

which is the reciprocal of the eccentricity of W (D) and

|
√
|a||b| − (−

√
|a||b|)|√

1− |〈ζθ, ωφ〉|2
=

2
√
|a||b|√

1− |a|
2−2|a||b|+|b2

|a|2+2|a||b|+|b|2

=
2
√
|a||b|√
4|a||b|

(|a|+|b|)2

= |a|+ |b|

which is the length of the major axis, the proof is complete.
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3 Numerical Range - The Toeplitz-Hausdorff Theorem

In this section we shall prove Theorem 3.2, the all-important Toeplitz-Hausdorff Theorem. The proof of
this theorem is a surprisingly simple result given Theorem 2.14 as proved in the previous section. Once
the Toeplitz-Hausdorff Theorem has been completed, we shall demonstrate two interesting results (of the
many) that immediately follow. We also note that the Toeplitz-Hausdorff Theorem will be use in subsequent
sections.

We begin with the following trivial lemma that essentially completes the proof of Theorem 3.2.

Lemma 3.1. Let H be a Hilbert space and let L be a closed linear subspace of H. If PL is the projection
onto L and T ∈ B(H), then W (PLT |L) ⊆W (T ).

Proof. It is clear that if ξ ∈ L is a unit vector, then ξ ∈ H is also a unit vector and

〈PLT |Lξ, ξ〉L = 〈Tξ, ξ〉H ∈W (T ).

Hence W (PLT |L) ⊆W (T ) as desired.

Theorem 3.2 (Toeplitz-Hausdorff). Let T ∈ B(H). Then W (T ) is convex.

Proof. Suppose α, β ∈ W (T ) are distinct scalars. Then there exists two unit vectors ξ, η ∈ H such that
〈Tξ, ξ〉 = α and 〈Tη, η〉 = β. If ξ = λη for some λ ∈ C, then |λ| = 1 as ‖ξ‖ = 1 = ‖η‖ and thus

α = 〈Tξ, ξ〉 = 〈λTη, λη〉 = β

which is a contradiction. Similarly η 6= λξ for any λ ∈ C so ξ and η are linearly independent.
Let L := span{ξ, η} which is a two-dimensional subspace of H. Since ξ, η ∈ L and by Lemma 3.1,

α, β ∈W (PLT |L) ⊆W (T ).

However, since L is two-dimensional, W (PLT |L) is convex by Theorem 2.14. Hence

tα+ (1− t)β ∈W (PLT |L) ⊆W (T )

for all 0 < t < 1. Hence, as α, β ∈W (T ) were arbitrary, W (T ) is convex as desired.

With the proof of Theorem 3.2 complete, we note the following two interesting results that demonstrate
the power of the theorem.

Theorem 3.3. Let A ∈Mn(C) have trace zero. Then A is unitarily equivalent to an matrix whose diagonal
entries are all zero.

Proof. It suffices to show that Cn has an orthonormal basis {ηk}nk=1 such that 〈Aηk, ηk〉 = 0 for all 1 ≤ k ≤ n.
Let {ek}nk=1 be the standard orthonormal basis of Cn. Therefore, as the trace of A is zero, we obtain that

0 =
1

n

n∑
k=1

〈Aek, ek〉.

Therefore, since 〈Aek, ek〉 ∈ W (A) for all 1 ≤ k ≤ n and since W (A) is convex by Theorem 3.2, 0 ∈ W (A).
Hence there exists a unit vector f1 ∈ Cn such that 〈Af1, f1〉 = 0.

Extend {f1} to an orthonormal basis {fk}nk=1. Let L1 := span{f2, f3, . . . , fn} which is an (n − 1)-
dimensional space. Moreover, since A has trace zero and 〈Af1, f1〉 = 0, PL1A|L1 also has trace zero when
viewed as an (n−1)× (n−1) matrix. The result then follows by induction on n by selecting an orthonormal
basis {ηk}nk=2 for L1 such that 〈Aηk, ηk〉 = 0 for all 2 ≤ k ≤ n.

Theorem 3.4 (Folk). Let T ∈ B(H) be such that λ ∈ ∂W (T ). If no closed disk of W (T ) contains λ, then
λ is an eigenvalue of T .
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Proof. Let λ ∈ ∂W (T ) be such that no closed disk of W (T ) contains λ. Choose a unit vector ξ ∈ H such
that 〈Tξ, ξ〉 = λ. Notice if ξ were an eigenvector of T with eigenvalue α, then

α = 〈αξ, ξ〉 = 〈Tξ, ξ〉 = λ.

Suppose ξ is not an eigenvector of T . Then L := span{ξ, T ξ} is a two-dimensional subspace of H. Let
A := PLT |L. Therefore, since ξ ∈ L,

λ ∈W (A) ⊆W (T ).

Moreover, since λ ∈ ∂W (T ), λ ∈ ∂W (A). However A is not a multiple of the identity or else λ ∈ W (A)
implies A = λIL by Proposition 2.3 which implies Tξ = Aξ = λξ which is a contradiction. Hence W (A) is
either as described in conclusion (2) or conclusion (3) of Theorem 2.14. Either way, every point of W (A)
is then contained in a closed disk contained in W (A). Since λ ∈ W (A) ⊆ W (T ), W (A) and thus W (T )
contains a closed disk containing λ which is a contradiction. Hence ξ is an eigenvector with eigenvalue λ as
desired.
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4 Numerical Range - Hildebrandt’s Theorem

In this section we will provide a proof of Hildebrandt’s Theorem which relates the spectrum of an operator
with the numerical ranges of all operators in the similarity orbit. The proof requires a result due to Rota
and this is where we start.

Proposition 4.1 (Rota). Let T ∈ B(H) be such that σ(T ) is contained in the open unit disk. Then

V :=
∑∞
k=0(T ∗)kT k is an invertible positive operator with

∥∥∥V 1
2TV −

1
2

∥∥∥ < 1; that is T is similar to a

contraction.

Proof. To see that the series is norm convergent, we notice that

lim sup
k→∞

∥∥(T ∗)kT k
∥∥ 1

k ≤ lim sup
k→∞

∥∥T k∥∥ 2
k = ρ(T )2

where ρ(T ) is the spectral radius of T . Since σ(T ) is a subset of the open unit disk, ρ(T ) < 1 so

lim supk→∞
∥∥(T ∗)kT k

∥∥ 1
k < 1. Hence the sum converges absolutely by the root test.

Clearly V is a positive operator being a sum of positive operators. Moreover, we notice that T ∗V T =
V − IH. Thus, since T ∗V T ≥ 0, V ≥ IH so V is invertible. Furthermore∥∥∥V 1

2TV −
1
2

∥∥∥2 =
∥∥∥V − 1

2T ∗V TV −
1
2

∥∥∥ =
∥∥∥V − 1

2 (V − I)V −
1
2

∥∥∥ =
∥∥I − V −1∥∥ .

However, since V ≥ I, 0 < V −1 ≤ I. Thus σ(V −1) ⊆ (0, 1] so σ(I − V −1) ⊆ [0, 1) and thus
∥∥I − V −1∥∥ < 1.

Hence
∥∥∥V 1

2TV −
1
2

∥∥∥ < 1 as desired.

Theorem 4.2 (Hildebrandt). Let T ∈ B(H). Then

conv(σ(T )) =
⋂{

W (V TV −1) | V ∈ B(H), V an invertible operator
}
.

Proof. We note that σ(V TV −1) = σ(T ) for every invertible operator V ∈ B(H). Therefore σ(T ) =
σ(V TV −1) ⊆ W (V TV −1) for all invertible operators V ∈ B(H) by Theorem 2.9. Therefore, since the
numerical range of any operator is convex by Theorem 3.2, we obtain that conv(σ(T )) ⊆W (V TV −1) for all
invertible operators V ∈ B(H). Hence

conv(σ(T )) ⊆
⋂{

W (V TV −1) | V ∈ B(H), V an invertible operator
}
.

Suppose to the contrary that the above inclusion is strict. Therefore there exists a λ ∈ C such that
λ ∈ W (V TV −1) for all invertible operator yet λ /∈ conv(σ(T )). Therefore, by translating and scaling using
Proposition 2.4 part (4), we may assume that conv(σ(T )) is a subset of the open unit disk and |λ| ≥ 1.
However, since σ(T ) ⊆ conv(σ(T )) is a subset of the open unit disk, Proposition 4.1 implies that there exists
an invertible element V ∈ B(H) such that

∥∥V TV −1∥∥ < 1. Therefore Proposition 2.4 part (3) implies that

W (V TV −1) is a subset of the open unit disk which contradicts the fact that λ ∈ W (V TV −1) and |λ| ≥ 1.
Hence the proof is complete.

13



5 Essential Numerical Range

In this section we will develop the essential numerical range of an operator. The role of the essential numerical
range in comparison with the essential spectrum mimics the role of the numerical range in comparison with
the spectrum. We shall begin with the definition of the essential numerical range and subsequently show that
the essential numerical range has an alternate definition that is similar in flavour to the numerical range of
an operator (Theorem 5.7), that the essential numerical range is a non-empty, closed, convex set (Corollary
5.8), that the essential numerical range is invariant under approximate unitary equivalence (Lemma 5.9),
and that the essential spectrum of an operator is contained within the essential numerical range (Theorem
5.10).

In this section H will denote an infinite dimensional Hilbert space (the concept of the essential numerical
range does not make sense in the finite dimensional setting), K(H) will denote the set of compact operators
on H, σe(T ) will denote the essential spectrum of an operator T ∈ B(H), and π : B(H) → B(H)/K(H) will
denote the canonical quotient map.

We begin with the definition of the essential numerical range of an operator.

Definition 5.1. Let T ∈ B(H). The essential numerical range of T , denoted We(T ), is the set

We(T ) :=
⋂

K∈K(H)

W (T +K).

Remarks 5.2. It is clear that the essential numerical range of an operator is contained in the closure of the
numerical range. However, unlike with the numerical range, it is not apparent that the essential numerical
range is non-empty.

In order to give examples and develop the theory of the essential numerical range, we need the following
result pertaining to compact operators.

Lemma 5.3. Let T ∈ B(H). Then T is compact if and only if limn→∞〈Tξn, ξn〉 = 0 for every orthonormal
set {ξn}n≥1.

Proof. Let T ∈ B(H) be compact and let {ξn}n≥1 be an orthonormal set. Let Pn be the projection onto
span{ξ1, . . . , ξn}. Since T is compact, limn→∞ ‖(IH − Pn)T (IH − Pn)‖ = 0. Therefore, since

|〈Tξn+1, ξn+1〉| = |〈(IH − Pn)T (IH − Pn)ξn+1, ξn+1〉| ≤ ‖(IH − Pn)T (IH − Pn)‖ ,

we obtain that limn→∞〈Tξn, ξn〉 = 0.
Suppose that T ∈ B(H) is such that limn→∞〈Tξn, ξn〉 = 0 for every orthonormal set {ξn}n≥1. Note that

there exists unit vectors ξ, η ∈ H such that

|〈Tξ, η〉| ≥ ‖T‖
2
.

However, the polarization identity implies that

‖T‖
2
≤ |〈Tξ, η〉| ≤ 1

4

4∑
k=1

|ik〈T (ξ + ikη), ξ + ikη〉|.

Hence there exists a k such that

|〈T (ξ + ikη), ξ + ikη〉| ≥ ‖T‖
2
.

Since
∥∥ξ + ikη

∥∥ ≤ 2, we obtain that there exists a unit vector ζ1 ∈ H such that

|〈Tζ1, ζ1〉| ≥
‖T‖

8
.
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Let P1 be the orthogonal projection onto the span of ζ1. By repeating the above procedure, there exists
a unit vector ζ2 orthogonal to ζ1 such that

|〈Tζ2, ζ2〉| ≥
‖(IH − P1)T (IH − P1)‖

8
.

Whence, by proceeding by recursion, there exists an orthonormal set {ζn}n≥1 such that if Pn is the projection
onto the span of {ζ1, . . . , ζn} then

|〈Tζn, ζn〉| ≥
‖(IH − Pn−1)T (IH − Pn−1)‖

8
.

Since limn→∞〈Tζn, ζn〉 = 0 by assumption,

lim
n→∞

‖(IH − Pn)T (IH − Pn)‖ = 0

and thus T is compact (being the limit of the finite rank operators −PnT − TPn + PnTPn).

With the above result pertaining to compact operators, we have our first example.

Example 5.4. Notice We(IH) = {1}. To see this, recall from Example 2.3 that W (IH) = {1} so We(IH) ⊆
{1}. To verify the other inclusion, let K ∈ K(H) be compact and let {en}n≥1 be any orthonormal set. Thus

1 = 1 + lim
n→∞

〈Ken, en〉 = lim
n→∞

〈(IH +K)en, en〉

so 1 ∈W (I +K). Since K ∈ K(H) was arbitrary, We(IH) = {1}.

Using Lemma 5.3 and Proposition 2.4, we obtain the analog of Proposition 2.4 for the essential numerical
range.

Proposition 5.5. Let T ∈ B(H). Then

1. We(T +K) = We(T ) for all K ∈ K(H).

2. We(T
∗) = We(T ).

3. We(T ) is contained the the close disk of radius ‖π(T )‖ centred around the origin.

4. If a, b ∈ C, We(aT + bIH) = aWe(T ) + b.

5. If U ∈ B(H) is a unitary, then We(UTU
∗) = We(T ).

6. We(T ) contains all eigenvalues of T of infinite multiplicity.

Proof. Property (1) follows trivially from the definition of the essential numerical range.
For Property (2), we notice for every compact operator K ∈ K(H) that W (T + K) = W (T ∗ +K∗) by

Proposition 2.4 part (1). Since the adjoint map is an bijection on the set of compact operators, the property
easily follows.

For Property (3), we notice for every compact operator K that W (T +K) is contained in the closed disk
of radius ‖T +K‖ centred at the origin by Proposition 2.4 part (3). Hence the property follows.

Property (4) follows trivially from part (4) of Proposition 2.4.
Property (5) follows trivially from part (5) of Proposition 2.4 and the fact that UKU∗ is compact if and

only if K is compact for any fixed unitary U .
To see Property (6), let λ be an eigenvalue of T with infinite multiplicity. Therefore there exists an

orthonormal set {en}n≥1 such that Ten = λen for all n ∈ N. Thus, for any compact operator K,

λ = λ+ lim
n→∞

〈Ken, en〉 = lim
n→∞

〈(T +K)en, en〉

so λ ∈W (T +K) for every compact operator K. Hence λ ∈We(T ) as desired.
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To extend our example set of essential numerical ranges of operators, we have the following corollary that
is the essential version of Proposition 2.3.

Corollary 5.6 (Anderson-Stampi). Let T ∈ B(H). Then T is of the form T = λIH+K where K is compact
if and only if We(T ) = {λ}.

Proof. It is clear from Example 5.4 and parts (1) and (4) of Proposition 5.5 that

We(λIH +K) = We(λIH) = λWe(IH) = {λ}

which completes one direction.
Suppose that T ∈ B(H) is such that We(T ) = {λ} for some λ ∈ C. Then,

We(T − λIH) = {0}

by part (4) of Proposition 5.5. Therefore, by part (3) of Proposition 5.5, ‖π(T − λIH)‖ = 0. Therefore
T − λIH is compact and thus there exists a compact operator K ∈ K(H) such that T = λIH + K as
desired.

To continue our study of the essential numerical range of an operator, it is vital to develop the following
alternate definition of the essential numerical range of an operator. Note how this corresponding definition
relates to the definition of the numerical range.

Theorem 5.7. Let T ∈ B(H). Then λ ∈We(T ) if and only if there exists an orthonormal sequence (ξn)n≥1
such that limn→∞〈Tξn, ξn〉 = λ.

Proof. Suppose there exists an orthonormal sequence (ξn)n≥1 such that limn→∞〈Tξn, ξn〉 = λ. Then, for
every compact operator K ∈ K(H),

λ = lim
n→∞

〈Tξn, ξn〉 = lim
n→∞

〈(T +K)ξn, ξn〉 ∈W (T +K)

by Lemma 5.3. Therefore, since K was arbitrary, λ ∈We(T ).
Let λ ∈We(T ). Therefore λ ∈W (T ) so there exists a unit vector ξ1 such that

|〈Tξ1, ξ1〉 − λ| ≤
1

2
.

Let L1 := span{ξ1}, let P1 be the orthogonal projection onto L1, let µ1 ∈W ((IH − P1)T |L⊥1 ), and let

F1 := µ1P1 − P1TP1 − P1T (IH − P1)− (IH − P1)TP1.

Clearly F1 is a finite rank operator on H and thus is compact. Therefore

λ ∈W (T + F1) = W (µ1P1 + (IH − P1)T (IH − P1)).

However, it is clear that

W (µ1P1 + (IH − P1)T (IH − P1))
= {〈(µ1P1 + (IH − P1)T (IH − P1))η, η〉 | η ∈ H, ‖η‖ = 1}
= {µ1 ‖η1‖2 + 〈(IH − P1)T (IH − P1))η2, η2〉 | η1 ∈ L1, η2 ∈ L⊥1 , ‖η1‖

2
+ ‖η2‖2 = 1}

= {µ1 ‖η1‖2 + ‖η2‖2 〈(IH − P1)T (IH − P1)) 1
‖η2‖η2,

1
‖η2‖η2〉 | η1 ∈ L1, η2 ∈ L⊥1 , ‖η1‖

2
+ ‖η2‖2 = 1}.

However, since µ1 ∈ W ((IH − P1)T |L⊥1 ) and W ((IH − P1)T |L⊥1 ) is convex by Theorem 3.2 we obtain that

W (µ1P1 + (IH−P1)T (IH−P1)) = W ((IH−P1)T |L⊥1 ). Hence λ ∈W ((IH − P1)T |L⊥1 ) so there exists a unit

vector ξ2 ∈ L⊥1 (so ξ2 is orthogonal to ξ1) such that

|〈Tξ2, ξ2〉 − λ| ≤
1

22
.
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If ξ1, . . . , ξn are orthonormal vectors such that

|〈Tξn, ξn〉 − λ| ≤
1

2n

we can repeat the above procedure with Ln := span{ξ1, . . . , ξn}, Pn the orthogonal projection onto Ln,
µn ∈W ((IH − Pn)T |L⊥n ), and

Fn := µnPn − PnTPn − PnT (IH − Pn)− (IH − Pn)TPn

to obtain a unit vector ξn+1 orthogonal to each ξk for 1 ≤ k ≤ n such that

|〈Tξn+1, ξn+1〉 − λ| ≤
1

2n+1
.

Hence, by recursion, there exists an orthonormal sequence (ξn)n≥1 in H such that limn→∞〈Tξn, ξn〉 = λ as
desired.

With the above alternate definition of the essential numerical range of an operator, we obtain the following
results that are the essential versions of Theorem 3.2, Theorem 2.10, Theorem 2.9, and Theorem 2.11
respectively.

Corollary 5.8. Let T ∈ B(H). Then We(T ) is a non-empty, compact, convex set.

Proof. To see that We(T ) is non-empty, let (ξn)n≥1 be an orthonormal sequence. Therefore (〈Tξn, ξn〉)n≥1
is a sequence of complex numbers bounded by ‖T‖ and thus has a convergent subsequence. Hence We(T ) is
non-empty by Theorem 5.7. Moreover, it is clear that We(T ) is closed and convex being the intersection of
closed, convex sets.

Lemma 5.9. Let T, S ∈ B(H) be two operators that are approximately unitarily equivalent. Then We(S) =
We(T ).

Proof. Since S and T are approximately unitarily equivalent, there exists a sequence (Un)n≥1 of unitaries
such that

lim
n→∞

‖UnTU∗n − S‖ = 0 = lim
n→∞

‖T − U∗nSUn‖ .

Let λ ∈ We(T ). Then, by Theorem 5.7, there exists an orthonormal sequence (ξn)n≥1 such that λ =
limn→∞〈Tξn, ξn〉. Since (〈U∗mSUmξn, ξn〉)n≥1 is a bounded sequence of complex numbers, for each fixed
m ∈ N there exists a convergent subsequence (〈(U∗mSUm − T )ξnk

, ξnk
〉)k≥1 of (〈U∗mSUmξn, ξn〉)n≥1 that

converges to a complex number µm with absolute value at most ‖U∗mSUm − T‖. Thus

λ+ µm = lim
k→∞

〈Tξnk
, ξnk
〉+ 〈(U∗mSUm − T )ξnk

, ξnk
〉 = lim

k→∞
〈U∗mSUmξnk

, ξnk
〉 ∈We(U

∗
mSUm).

However, We(U
∗
mSUm) = We(S) by Proposition 5.5 part (5). Therefore, since limm→∞ µm = 0 and We(S)

is closed, λ ∈We(S). Hence We(T ) ⊆We(S). The reverse inclusion the follows by symmetry.

Theorem 5.10. Let T ∈ B(H). Then σe(T ) ⊆We(T ).

Proof. Let λ ∈ σe(T ) and let S := λIH − T . There are three cases: the range of S is not closed, the kernel
of S is infinite dimensional, or the kernel of S∗ is infinite dimensional.

If the range of S is not closed, then S is not bounded below on the orthogonal complement of ker(S). Let
L := ker(S)⊥. Then there exists a unit vector ξ1 ∈ L such that ‖Sξ1‖ ≤ 1. Then, since S is not bounded
below, there must exist a unit vector ξ2 ∈ L orthogonal to ξ1 such that ‖Sξ2‖ ≤ 1

2 . By repeating this process
ad nauseum, we obtain an orthonormal sequence (ξn)n≥1 such that limn→∞ ‖Sξn‖ = 0. Thus λ ∈We(T ) by
Theorem 5.7.

If the kernel of S is infinite dimensional, it is easy to construct an orthonormal sequence (ξn)n≥1 such
that 〈Sξn, ξn〉 = 0 for all n. Hence λ ∈ We(T ) by Theorem 5.7. Similarly if the kernel of S∗ is infinite
dimensional then λ ∈We(T

∗) by Theorem 5.7. Thus λ ∈We(T ) by Proposition 5.5 part (2) as desired.
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Corollary 5.11. Let N ∈ B(H) be a normal operator on an infinite dimensional Hilbert space H. Then
We(N) = conv(σe(N)).

Proof. By Theorem 5.10, σe(N) ⊆We(N). Thus conv(σe(N)) ⊆We(N) by Corollary 5.8.
To see the other inclusion, we recall that there exists a diagonal normal operator D with σ(D) = σ(N)

and σe(D) = σe(N) such that N and D are approximately unitarily equivalent. Hence We(D) = We(N)
and conv(σe(D)) = conv(σe(N)). Hence it suffices to show that We(D) ⊆ conv(σe(D)).

Recall from Example 2.7 that the numerical range of a diagonal operator is the convex hull of the diagonal
entries. For each ε > 0, the number diagonal entries of D that lie outside σe(D) is finite and thus there
exists a diagonal compact operator Kε such that W (D +Kε) is the closed convex hull of the diagonal entries
of D that lie within ε of σe(D). Thus, as We(D) is contained in the intersection of all such W (D +Kε),
We(D) is contained in the closed convex hull of the diagonal entries of D that are in σe(D). Hence We(D)
is contained in the closed convex hull of σe(D). As σe(D) is compact, conv(σe(D)) = conv(σe(D)) and thus
We(D) ⊆ σe(D) as desired.
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6 Essential Numerical Radius

In this section we will use the essential numerical range from Section 5 to obtain a notion of the essential
numerical radius of an operator. The results for the essential numerical radius will mimic those for the
numerical radius by our results in Section 5.

In this section H will denote an infinite dimensional Hilbert space, K(H) will denote the set of compact
operators on H, σe(T ) will denote the essential spectrum of an operator T ∈ B(H), and π : B(H) →
B(H)/K(H) will denote the canonical quotient map.

We begin with the definition of the essential numerical radius.

Definition 6.1. Let T ∈ B(H). The essential numerical radius of T , denoted nre(T ), is

nre(T ) := sup{|λ| | λ ∈We(T )}.

For our first example of the essential numerical radius of an operator, we appeal to Corollary 5.11 to
obtain the essential version of Theorem 1.7.

Example 6.2. Let N ∈ B(H) be a normal operator. Then nre(N) = ‖π(N)‖. Indeed by Corollary 5.11
We(N) = conv(σe(N)). Thus

nre(T ) = sup{|λ| | λ ∈ conv(σe(N))} = sup{|λ| | λ ∈ σe(N)} = ‖π(N)‖

(as π(N) is normal) as desired.

Our main goal of this section is to show that the essential numerical radius is a norm on the Calkin algebra
equivalent to the essential norm as done with the numerical radius and the operator norm in Theorem 1.4.
This is done via the following lemma that mimics Lemma 1.3.

Lemma 6.3. Let T ∈ B(H). Then nre(Re(T )) ≤ nre(T ) and nre(Im(T )) ≤ nre(T ).

Proof. Let λ ∈ We(Re(T )). By Theorem 5.7 there exists an orthonormal sequence (ξn)n≥1 such that λ =
limn→∞〈Re(T )ξn, ξn〉 = limn→∞Re(〈Tξn, ξn〉) ∈ R. Since (Im(〈Tξn, ξn〉))n≥1 is a sequence bounded by
‖T‖, there exists a subsequence (Im(〈Tξnk

, ξnk
〉))k≥1 that converges to some real number µ. Therefore

λ+ iµ = lim
k→∞

〈Tξnk
, ξnk
〉 ∈ nr(T )

by Theorem 5.7. Therefore, as λ, µ ∈ R, |λ| ≤ |λ + iµ| ≤ nre(T ). Hence, as λ ∈ We(Re(T )) was arbitrary,
nre(Re(T )) ≤ nre(T ).

The proof that nre(Im(T )) ≤ nre(T ) is identical.

Proposition 6.4. Let T ∈ B(H). Then nre(T ) ≤ ‖π(T )‖ ≤ 2nre(T ). Moreover, π(T ) 7→ nre(T ) is a norm
on the Calkin algebra.

Proof. Fix T ∈ B(H). Then, by Example 6.2 and Lemma 6.3,

‖π(T )‖ ≤ ‖π(Re(T ))‖+ ‖π(Im(T ))‖ ≤ nre(Re(T )) + nre(Im(T )) ≤ 2nre(T ).

The other inequality follows trivially from Proposition 5.5 part (3).
It is trivial to verify that π(T ) 7→ nre(T ) is a well-defined as We(T ) = We(T + K) for all compact

operators K ∈ K(H) and all T ∈ B(H) by Proposition 5.5 part (1). Clearly nre(T ) ≥ 0 for all T ∈ B(H).
Furthermore nre(λT ) = |λ|nre(T ) for all T ∈ B(H) and λ ∈ C by Proposition 5.5 part (4).

To see that nre(T +S) ≤ nre(T ) + nre(S) for all S, T ∈ B(H), suppose λ ∈We(T +S). By Theorem 5.7
there exists an orthonormal sequence (ξn)n≥1 such that λ = limn→∞〈(T+S)ξn, ξn〉. Since (〈Tξn, ξn〉)n≥1 and
(〈Sξn, ξn〉)n≥1 are bounded sequences, there exists a subsequence (nk)k≥1 such that λT := limk→∞〈Tξnk

, ξnk
〉

and λS := limk→∞〈Sξnk
, ξnk
〉 exist. Hence λT ∈We(T ) and λS ∈We(S) by Theorem 5.7 are such that

|λ| = |λT + λS | ≤ |λT |+ |λS | ≤ nre(T ) + nre(S).
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Therefore, since the above holds for all λ ∈We(T + S), nre(T + S) ≤ nre(T ) + nre(S) as desired.
Finally, if nre(T ) = 0 then ‖π(T )‖ ≤ 2nre(T ) = 0 so π(T ) = 0. Hence nre defines a norm on the Calkin

algebra.

Note the above proof also shows that We(T + S) ⊆We(T ) +We(S) for all T, S ∈ B(H).
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7 Maximal Numerical Range

In this section we will develop the notion of the maximal numerical range of an operator. In particular, we
will show that the maximal numerical range is non-empty, closed, and convex. In some sense, the maximal
numerical range contains only asymptotic extremes of the numerical range which can be seen in the following
definition.

Definition 7.1. Let T ∈ B(H). The maximal numerical range of T , denoted W0(T ), is the set

W0(T ) :=
{
λ ∈ C | ∃(ξn)n≥1 ⊆ H such that ‖ξn‖ = 1, lim

n→∞
〈Tξn, ξn〉 = λ, lim

n→∞
‖Tξn‖ = ‖T‖

}
.

Remarks 7.2. It is clear that W0(T ) is contained in the closed disk of radius ‖T‖ centred at the origin,
W0(λIH) = {λ}, and that W0(λT ) = λW0(T ) for all λ ∈ C and T ∈ B(H). Moreover, it is clear that
W0(T ) ⊆W (T ).

We shall split the proof that the maximal numerical range is a non-empty, closed, convex set into two
parts. Again the fact that the maximal numerical range is convex follows from Theorem 3.2.

Lemma 7.3. Let T ∈ B(H). Then W0(T ) is non-empty and closed.

Proof. To see that W0(T ) is non-empty, we note by the definition of the operator norm that there exists a
sequence of unit vectors (ξn)n≥1 such that

lim
n→∞

‖Tξn‖ = ‖T‖ .

Therefore, since (〈Tξn, ξn〉)n≥1 is a bounded sequence, there exists a subsequence that converges to some
λ ∈ C. Thus λ ∈W0(T ) and thus W0(T ) is non-empty.

Let (λn)n≥1 be a sequence in W0(T ) that converges to some λ ∈ C. By the definition of W0(T ), for each
n ∈ N there exists a unit vector ξn such that ‖T‖ ≤ ‖Tξn‖ + 1

n and |λn − 〈Tξn, ξn〉| < 1
n . Therefore it is

easy to see that limn→∞ ‖Tξn‖ = ‖T‖ and limn→∞〈Tξn, ξn〉 = λ. Hence λ ∈W0(T ).

Theorem 7.4. Let T ∈ B(H). Then W0(T ) is convex.

Proof. Without loss of generality we may assume that ‖T‖ = 1 by Remarks 7.2. To see that W0(T ) is
convex, let λ, µ ∈ W0(T ) be distinct. Therefore there exists sequences of unit vectors (ξn)n≥1 and (ηn)n≥1
such that

lim
n→∞

‖Tξn‖ = 1 = lim
n→∞

‖Tηn‖ , lim
n→∞

〈Tξn, ξn〉 = λ, and lim
n→∞

〈Tηn, ηn〉 = µ.

First we claim that there exists a constant K ∈ R such that |〈ξn, ηn〉| ≤ K < 1 for all n sufficiently large.
To see this, suppose otherwise. Then, by replacing (ξn)n≥1 and (ηn)n≥1 with subsequences, we may assume
that limn→∞ |〈ξn, ηn〉| = 1. However, if for each n ∈ N we write ηn = αnξn + ζn where ζn is orthogonal to
ξn, then limn→∞ |〈ξn, ηn〉| = 1 implies that limn→∞ |αn| = 1 and thus limn→∞ ‖ζn‖ = 0 as ‖ξn‖ = 1 = ‖ηn‖
for all n ∈ N. Therefore

µ = limn→∞〈Tηn, ηn〉
= limn→∞〈T (αnξn + ζn), (αnξn + ζn)〉
= limn→∞ |αn|2〈Tξn, ξn〉+ αn〈Tξn, ζn〉+ αn〈Tζn, ξn〉+ 〈Tζn, ζn〉
= λ+ 0 + 0 + 0 = λ

which is a contradiction. Hence the claim has been proved.
Let β be any complex number that is a convex combination of λ and µ. For each n ∈ N let Pn be the

projection onto span{ξn, ηn}. Therefore, by the proof of Theorem 3.2 and since

lim
n→∞

〈Tξn, ξn〉 = λ, and lim
n→∞

〈Tηn, ηn〉 = µ,

21



we can select unit vectors ωn ∈ span{ξn, ηn} such that 〈Tωn, ωn〉 is a convex combination of 〈Tξn, ξn〉
and 〈Tηn, ηn〉 and limn→∞〈Tωn, ωn〉 = β. Thus, to show that β ∈ W0(T ), it suffices to show that
limn→∞ ‖Tωn‖ = ‖T‖ = 1.

Since ωn ∈ span{ξn, ηn} for each n ∈ N, there exists scalars an, bn ∈ N such that ωn = anξn + bnηn. Let
M := 1√

1−K2
. Then we claim that |an|, |bn| ≤M for sufficiently large n. Indeed we notice that

1 = ‖ωn‖2 = |an|2 + |bn|2 + 2Re(anbn〈ξn, ηn〉)

so
1 ≥ |an|2 + |bn|2 − 2K|an||bn|

for sufficiently large n. This implies that a triangle of side lengths |an| and |bn| with an angle of cos−1(K)
in between those sides has a third side length of at most 1. In terms of an upper bound for |an|, this will
occur when the side opposite to the angle cos−1(K) is perpendicular to the third side and of length 1. In
this case, sin(cos−1(K)) = 1

|an| so the maximum of |an| is 1
sin(cos−1(K)) = 1√

1−K2
= M via some elementary

geometry. Similarly |bn| ≤M as desired.
However, this implies that

1 ≥ ‖Tωn‖2
= 〈T ∗Tωn, ωn〉
= ‖ωn‖2 − 〈(IH − T ∗T )ωn, ωn〉
= 1− an〈(IH − T ∗T )ξn, ωn〉 − bn〈(IH − T ∗T )ηn, ωn〉.

However, since
0 ≤ ‖(IH − T ∗T )ξn‖2

= ‖ξn‖ − 2 ‖Tξn‖2 + ‖T ∗Tξn‖2

≤ 1− ‖Tξn‖2

and similarly 0 ≤ ‖(IH − T ∗T )ηn‖2 ≤ 1− ‖Tηn‖2, we obtain that

lim
n→∞

‖(IH − T ∗T )ξn‖ = 0 = lim
n→∞

‖(IH − T ∗T )ηn‖ .

However, since each ωn is a unit vector and |an|, |bn| ≤ M for sufficiently large n, the above implies that
limn→∞ ‖Tωn‖ = 1 as desired.
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8 C∗-Numerical Range

To complete this document, we will briefly outline the generalization of the numerical range of an operator
in B(H) to an operator in a C∗-algebra. As the only proof follows trivially from C∗-algebra theory, the proof
is omitted.

Definition 8.1. Let A be a C∗-algebra and let S(A) be the state space of A. If A ∈ A, the numerical range
of A in A, denoted V (A), is the set

V (A) := {ϕ(A) | ϕ ∈ S(A)}.

Remarks 8.2. Recall that ϕ ∈ S(A) if and only if there exists a non-degenerate ∗-homomorphism π : A→
B(H) and a unit vector ξ ∈ H such that ϕ(A) = 〈π(A)ξ, ξ〉. Therefore

V (A) =
⋃

π : A→ B(H)
π a non-degenerate ∗-homomorphism

W (π(A))

for every A ∈ A.

Proposition 8.3. Let A be a C∗-algebra and let A ∈ A. Then V (A) is a non-empty, convex, compact set
contained in the ball of radius ‖A‖ centred at the origin.

Proof. This result follows trivially from the theory of the state space of a C∗-algebra.
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