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Abstract

The purpose of this document is to define and develop the basic properties of partial isometries.
Partial isometries are useful tools in the theory of C∗-algebra and von Neumann algebras as they allow
for the construction of an equivalence relation on the set of projections. The reader of these notes need
only a basic knowledge of the bounded linear maps on a Hilbert space. Note that all inner products in
this document are linear in the first variable.

This document is for educational purposes and should not be referenced. Please contact the author
of this document if you need aid in finding the correct reference. Comments, corrections, and recom-
mendations on these notes are always appreciated and may be e-mailed to the author (see his website
for contact info).

We begin with the definition of an isometry.

Definition. A bounded linear operator V ∈ B(H) is said to be an isometry if ‖V ξ‖ = ‖ξ‖ for all ξ ∈ H.

It is useful to note the following properties of isometries.

Lemma. Let V ∈ B(H) be an isometry. Then 〈V ξ, V η〉 = 〈ξ, η〉 for all ξ, η ∈ H.

Proof: Fix ξ, η ∈ H. Notice

‖ξ‖2 + 2Re(〈ξ, η〉) + ‖η‖2 = 〈ξ + η, ξ + η〉
= ‖ξ + η‖2

= ‖V (ξ + η)‖2
= 〈V (ξ + η), V (ξ + η)〉
= ‖V ξ‖2 + 2Re(〈V ξ, V η〉) + ‖V η‖2

= ‖ξ‖2 + 2Re(〈V ξ, V η〉) + ‖η‖2 .

Hence Re(〈ξ, η〉) = Re(〈V ξ, V η〉). By repeating the above with η replaced with iη, we obtain that

Im(〈ξ, η〉) = Re(−i〈ξ, η〉) = Re(−i〈V ξ, V η〉) = Im(〈V ξ, V η〉).

Hence 〈V ξ, V η〉 = 〈ξ, η〉 as desired. �

Proposition. An operator V ∈ B(H) is an isometry if and only if V ∗V = IH.

Proof: Suppose V ∈ B(H) is an isometry. Then 〈ξ, η〉 = 〈V ξ, V η〉 = 〈V ∗V ξ, η〉 for all ξ, η ∈ H. Hence
〈(IH − V ∗V )ξ, η〉 = 0 for all ξ, η ∈ H. Therefore V ∗V = IH.

Suppose V ∈ B(H) is such that V ∗V = IH. Then for all ξ ∈ H

‖V ξ‖2 = 〈V ξ, V ξ〉 = 〈V ∗V ξ, ξ〉 = 〈ξ, ξ〉 = ‖ξ‖2 .

Hence ‖V ξ‖ = ‖ξ‖ for all ξ ∈ H so V is an isometry. �



Based on the above proposition and the GNS construction, we make the following definition.

Definition. Let A be a unital C∗-algebra. An operator V ∈ A is said to be an isometry if V ∗V = IA.

With the basic theory of isometries complete, we turn our attention to the theory of partial isometries.

Definition. A bounded linear operator V ∈ B(H) is said to be a partial isometry if V |ker(V )⊥ is an

isometry; that is, for every ξ ∈ ker(V )⊥, ‖V ξ‖ = ‖ξ‖.

The following theorem contains all essential basic properties about a given partial isometry.

Theorem. Let V ∈ B(H). The following are equivalent:

1. V is a partial isometry.

2. V ∗ is a partial isometry.

3. V V ∗ is a projection.

4. V ∗V is a projection.

5. V ∗V V ∗ = V ∗

6. V V ∗V = V

Moreover, the range of V is closed, V V ∗ is the projection onto ran(V ), and V ∗V is the projection onto
ker(V )⊥.

Proof: 1) implies 5): Suppose V is a partial isometry. Fix ξ ∈ H and consider 〈V ∗V V ∗ξ, η〉 and 〈V ∗ξ, η〉
for η ∈ H. If η ∈ ker(V ) then

〈V ∗V V ∗ξ, η〉 = 〈V V ∗ξ, V η〉 = 0 = 〈ξ, V η〉 = 〈V ∗ξ, η〉.

However, since V is an isometry on ker(V )⊥ = ran(V ∗) and thus preserves the inner product of two elements
of ran(V ∗) (see above), if η ∈ ker(V )⊥ = ran(V ∗) then

〈V ∗V V ∗ξ, η〉 = 〈V (V ∗ξ), V η〉 = 〈V ∗ξ, η〉.

Since ker(V )⊕ ker(V )⊥ = H, we obtain that 〈V ∗V V ∗ξ, η〉 = 〈V ∗ξ, η〉 for all ξ, η ∈ H so V ∗V V ∗ = V ∗.
5) if and only if 6): Notice V ∗V V ∗ = V ∗ if and only if V = (V ∗)∗ = (V ∗V V ∗)∗ = V V ∗V .
5) implies 3) and 4): Notice V V ∗ is self-adjoint and V V ∗V V ∗ = V (V ∗V V ∗) = V V ∗ by our assumptions

of 5). Thus V V ∗ is a projection. Similarly V ∗V is self-adjoint and V ∗V V ∗V = (V ∗V V ∗)V = V ∗V so V ∗V
is a projection.

3) implies 1): Suppose V V ∗ is a projection and let ξ ∈ ker(V )⊥ = ran(V ∗). Then there exists a sequence
(ξn)n≥1 ∈ H such that limn→∞ V ∗ξn = ξ. Notice

‖V ξ‖2 = limn→∞ ‖V V ∗ξn‖2
= limn→∞〈V V ∗ξn, V V ∗ξn〉
= limn→∞〈(V V ∗)2ξn, ξn〉
= limn→∞〈V V ∗ξn, ξn〉
= limn→∞ ‖V ∗ξn‖2 = ‖ξ‖2 .

Thus, as ‖V ξ‖ = ‖ξ‖ for all ξ ∈ ker(V )⊥, V is a partial isometry.
Rest of the Proof: In the above, we have shown that 1), 3), 5), and 6) are equivalent. By applying these

equivalences to V ∗ instead of V , we obtain that 2), 4), 6), and 5) are equivalent. Whence all of the above
are equivalent.
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Suppose V satisfies the above six equivalences. To see that ran(V ) is closed, suppose ξ ∈ ran(V ). Then
there exists a sequence of vectors (ξn)n≥1 ∈ H such that ξ = limn→∞ V ξn. Then

V (V ∗ξ) = lim
n→∞

V (V ∗(V ξn)) = lim
n→∞

V ξn = ξ.

Hence ξ ∈ ran(V ) so ran(V ) is closed.
Next we desired to show that V V ∗ is the projection onto the range of V . To begin, suppose that

ξ ∈ ran(V ). Then ξ = V η for some η ∈ H so

V V ∗ξ = V V ∗V η = V η = ξ.

However, if ξ ∈ (ran(V ))⊥ = ker(V ∗), clearly V V ∗ξ = 0. Thus V V ∗ is clearly the orthogonal projection
onto ran(V ).

To see that V ∗V is the projection onto ker(V )⊥ = ran(V ∗), we notice that V ∗ is a partial isometry and
thus ran(V ∗) is closed by the above proof. Whence ker(V )⊥ = ran(V ∗). Since V ∗V is the projection onto
ran(V ∗) by the above paragraph, the proof is complete. �

Based on the above theorem, we make the following definition for C∗-algebras and trivially obtain the
subsequent result by the GNS construction.

Definition. Let A be a C∗-algebra. An operator V ∈ A is said to be a partial isometry if V ∗V is a
projection.

Corollary. Let A be a C∗-algebra. If V ∈ A is a partial isometry then V V ∗ is also a projection. Hence
V ∗ ∈ A is also a partial isometry. Moreover, if P := V ∗V and Q := V V ∗, then V P = V and QV = V .
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