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Abstract

Do you want to read these notes? You sure you want to know? The proofs contained in this document
are not for the faint of heart. If somebody said it was a happy little tale, if somebody told you it was just
your average straightforward proof not a technicality in sight... somebody lied.

The purpose of these notes is to prove the embedding theorem of Kirchberg and Phillips, Theorem
11.11, that states every unital, separable, exact C*-algebra has a unital embedding into the Cuntz algebra

Os.

These notes are based are based on several references that will be acknowledged at the beginning

of each chapter. These notes are meant to be as self-contained as possible except for some well-known
results in theory of C*-algebras. In particular, the author assumes the reader has a basic knowledge of
the following ideas:

1.

Basic C*-Algebra Theory (including C*-norms, invertible elements, normal operators, self-adjoint
operators, positive operators, continuous functional calculus, abelian C*-algebras, finite dimensional
C*-algebras, polar decomposition, ideals, quotients, pure states, representations, irreducible repre-
sentations, GNS, continuity of *-homomorphisms, compact operators, C*-bounded approximate
identities, quasicentral C*-bounded approximate identities)

Basic von Neumann Algebra Theory (WOT-convergence, SOT-convergence, von Neumann’s Double
Commutant Theory, Borel functional calculus, partial isometries, Murray von Neumann equivalence
of projections, polar decomposition, commutants, the Strong Kadison Transitivity Theorem)

. Completely Positive Maps (definitions, operator systems, completely bounded norms, Stinespring’s

Theorem, Arveson’s Extension Theorem, injectivity, conditional expectations, point-norm topology,
bounded-weak topology)

. Tensor Products of C*-Algebras (minimal and maximal tensor products, theory of states and rep-

resentations on tensor products)

. Nuclear C*-Algebras (tensor product and completely positive map definition, examples of nuclear

C*-algebras)

. Exact C*-Algebras (completely positive map and tensor product definition, examples of exact C*-

algebras)

7. Inductive Limits of C*-Algebras (including AF C*-algebras)

. Cross Products of C*-Algebras (definitions of reduced and full cross products, cross product of a

nuclear C*-algebra by Z is nuclear, reduced and full cross products by Z are the same)

. Quasidiagonal C*-Algebras (definition given, cones of C*-algebras are quasidiagonal)

Two excellent references that cover most of these topics are [Da] and [BO].

This document is for educational purposes and should not be referenced. Please contact the author
of this document if you need aid in finding the correct reference. Comments, corrections, and recom-
mendations on these notes are always appreciated and may be e-mailed to the author (see his website

for contact info).
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1 Basic Properties of the Cuntz Algebras

In this chapter we will develop some basic properties of the Cuntz algebras. To be more specific, we will show
that the Cuntz algebras are simple and nuclear. In fact, in our proof that the Cuntz algebras are simple we
will prove a stronger result which, in the next chapter, will imply that the Cuntz algebras are purely infinite.

The results for this chapter were developed from the excellent book [Da] (if you are reading these notes,
you should definitely invest in this book) and from the original paper [Cu2]. Note that Lemma V.4.5 in [Da]
has a small problem at the end as Lemma V.4.4 does not apply directly. In these notes, we modify Lemma
V.4.4 to correct this mistake.

We begin with the definition of the Cuntz algebras.

Definition 1.1. For a natural number n > 2, the Cuntz algebra O, is the universal C*-algebra generated
by n isometries S, Ss,...,.5, such that Z?Zl S;S; = I. The Cuntz algebra O is the universal C*-algebra
generated by an infinite collection of isometries {S;}:2; such that Y, S;S7 < I for alln € N.

Remarks 1.2. The statement “the Cuntz algebra O, is the universal C*-algebra generated by n isometries
Si,89,...,S, such that >_1" | S;SF = I” means that if 2 is any C*-algebra with n isometries {T}*}7 ; C 2
such that Y"1 | T(T)* = Iy (such C*-algebra exists by considering the specific isometries in B(H)) then
there exists a C*-homomorphism 7 : O,, — 2 such that 7(S;) = T*. We note that such a universal C*-
algebra exists by taking a direct sum of all such C*-algebras and the fact that H@Qsz'QlH =1 for all ¢ so the
norm of any element in *-alg{@®uT¥, ..., &y T} is finite. The same remarks apply for O..

*

Remarks 1.3. Clearly O, and each O, are separable being the closure of a *-algebra generated by a
countable number of operators. Using the fact that the S;’s in O,, are isometries and Z?:l S; S} = I imply
that S;S; are projections and thus S;S; =0 if ¢ # j (and the same for O.). Thus S;S; = 6; ;1.

To discuss the Cuntz algebras, it is useful to develops some notation.

Notation 1.4. For a word p = (i1,42,...,%y,) with i; € {1,2,...,n} (or N for O), we define

S, =848, Si,,-
Let |p| denote the length of the word .

With this notation in hand, we make the following observations using Remarks 1.3.
Lemma 1.5. Let p and v be words in {1,...,n} (or N) such that S};S, # 0. Then

1. If |u| = |v| then p=v and S;;S, = I.

2. If |u| > [v| then there exists a word y’ such that p= vy’ (as words) and S5, = S;,.

3. 1If |l < |v| then there exists a word v' such that v = uv' (as words) and S;,S, = S,

As a simple corollary, we have the following.

Corollary 1.6. Forn > 2 orn = oo, every element in *-alg{S;}1—, can be written as a linear combination
of elements of the form S, S where  and v are words with letters in {1,...,n}.

To prove the desired properties of the Cuntz algebras, we will need a specific C*-subalgebra which will
be of vital importance.

Notation 1.7. For each n > 2 or n = oo and for each k € N, let
Sk = span{S,S; | |u| = |v| =k, n and v are words with letters in {1,...,n}}

Let §" = Uk21 §7. Notice that §",§} C Oy, for all m > n.



Lemma 1.8. Forn > 2, §¢ ~ M, (C) and §" is the UHF algebra with supernatural number n>°. Moreover
§° ~ R and §°° is an AF C*-algebra.

Proof. To see that §} ~ M, (C), we simply note that the set
{SuS; | |p| = |v| =k, p and v are words with letters in {1,...,n}}

is a set of matrix units for § by Lemma 1.5 with precisely n* elements. To see that §" is the UHF algebra
with supernatural number n°°, we need to analyze the embeddings of §} into §7, .

To see that §} embeds into ., ; with the ‘correct’ embedding, we notice for any word p and v with
letters in {1,...,n} and |u| = |v| = k that

S8, =S, (Zn: SiSi*> S, = Zn:SmSji
i=1 i=1

Therefore, by grouping the matrix units of §,, in the appropriate way, we obtain that §" is the UHF
algebra with supernatural number n>°.
The proof that §3° ~ R is identical. To see that F> is AF, we note since §; C §p,; C SZI% for all n

that §°° = J,,~, &7 and thus the result follows. O
Next we note that there exists a very important map from O,, to §" for all n > 2 and n = cc.

Theorem 1.9. There exists a faithful conditional expectation ®,, : O,, — F" for alln > 2 orn = co. That
is, ®p, : O, = F" is a unital, (completely) positive map such that ®,(T) =T for all T € F".

Proof. Fix n > 2 or n = co. For each A € T, we notice that {\S;}_, are also a set of isometries that satisfy
the universal property of the Cuntz algebras. Therefore there must exists an *-automorphism py of O,, such
that px(S;) = AS;. Hence px(S;) = A7LS; and p(S,S:) = A#I=IVIS, S% Thus the map from T to O,
defined by A — px(T) is continuous for all T € *-alg{S;}?,. Therefore, since *-alg{S;}?_; is dense in O,
and ||pa]| =1 for all A € T, the map T to O,, defined by A — px(T) is continuous for all T € O,

Define @, : O,, — O,, by

©,(7) = [ pa(T)ax
T
which exists by continuity. We notice for all words p and v with letters in {1,2,...,n} that

* - * 0 if [u] # |v|
®,(9,5%) = [ Ael-lvlg g dA{ .
( / u) /IF / v SMSV lf |M|:|V‘

Hence it is easy to see that ®,, maps into §". Moreover, if T' € §} then ®,,(T) = T. Hence, by extending by
continuity, ®,,|z» = Idz~. In addition, since each py is a *-homomorphism and the integration of positive
(or matrices of positive) operators is positive, ®,, is a conditional expectation onto F".

To see that ®,, is faithful, let T € O,, be positive with T" # 0. Therefore there exists a state ¢ on O,
such that o(T) > 0. Since p1(T) = T, pA(T) > 0 for all A, and A — px(T) is continuous, the function
A = @(pa(T)) is a continuous function from T to [0,00) that is strictly positive at 1. Hence standard
integration theory implies

o(@,(1) = [ olpa(T)ir >0
so ®,(T) # 0. Hence ®,, is faithful. O

To prove that O, is simple, the above conditional expectation will need to be examined further. To
begin, we need a technical lemma.

Lemma 1.10. Let n > 2 or n = oo. Let p and v be words in {1,2,...,n} such that |u| # |v|. Let
m > max{|ul|,|v|} and let S, = ST"Sa. Then S3(S,S,)S, = 0.



Proof. Since |u| # |v|, Lemma 1.5 implies that if S;;S, # 0, then either S5, = S}, where y/’ is a word of
length at least one and at most m or S;Sl, = S, where v/ is a word of length at least one and at most m.

In the first case, (55,)S, = S5, is non-zero only if S, = S‘lu/l as || < m. However, if S, = Sll"/‘ then
83(815,)8, = 85(5)18, = s3(s7)m sy s, = 0

as 575y = 0.
In the second case, S3(5},S,) = S35, is non-zero only if S, = S|1” | as [/| < m. However, if S,, = S‘ly !
then
53(57:5,)8, = 8550118, = S3(51)" 1575 = 0

as 5551 = 0. O

Theorem 1.11. Let n > 2. For each m € N there exists an isometry W, n, € O,, that commutes with §7,
such that ©,,(T) = Wy TW, n, € &, for all

n,m

T € span{S,S; | |ul,|v| < m,u and v are words with letters in {1,...,n}}.

Proof. Let Sy = S7"S2 and let Wy, ., = thsl:m S59,55. We claim that W), ,, is an isometry. To see this,
we notice that

Wy Wom = > SeS55:858,85 = > S5558,S5 = > 8585 =1

le|=[6]=m |6]=m [8]=m

where szm SsS3 = I comes from the fact that Y ., S;S7 = I, by dividing the sum into all S5 that start
with the same m — 1 letters, using the identity to decrease the length of the words, and repeating.
To see that W, ,, commutes with §7, (and to begin to obtain the other equality), we notice that if u is
a word of length m then
WiamSy = SuSy and S W, = S,5;

Therefore, if S,,S} is one of the matrix units for §7, (so |u| = |v| =m) then
WamSuSy = 5,855 = SuSoWh.m

Hence W,, ,, must commute with §7},. Moreover, from the above computation, the fact that W, ,, is an
isometry, and our knowledge of ®,, from Theorem 1.8, we obtain that Wy ,.S,S, W, », = 5,5, = ®,,(5,5;).
Next notice that if p and v are words with letters in {1,...,n} of length at most m with |u| # |v|, then

Wy SuSsWaim = > 55555855,855:8,57 = 0= 0,(5,55)

le|=ld]=m
as if S5S,S)Se is non-zero, it can be written as S;,S, with |p'| = m — |u| # m — [v| = [/| and so
838558, 8eSy = 555,,,5,,5y = 0 by Lemma 1.9. Hence the result follows. O

Using the above proof, it is easy to prove the following for O.

Theorem 1.12. Let n > 2. For each m € N there exists an isometry W, € Oy such that o(T) =
(W) W) TW, € Fr C O for all

n,m n,m

T € span{S,S; | |ul,|v| < m,p and v are words with letters in {1,...,n}}

Using the above isometries and some clever tricks, we are finally able to prove the following.

Theorem 1.13. Let n > 2. If X € O,, is non-zero then there exists A, B € O,, such that AXB = 1.



Proof. Since X # 0, X*X # 0 and thus ®,(X*X) # 0 as ®, is faithful. Hence we may assume without
loss of generality that ||®,(X*X)|| = 1. By density, we can choose Y in the algebraic span of elements of
the form S, S} such that | X*X —Y|| < 1. By considering the real part of Y, we may assume that Y is
self-adjoint. Thus ||®,,(X*X) — @,(Y)| < % so [|[@,(Y)] > 3.

Since Y is in the algebraic span of elements of the form §,5;, there exists an m € N such that YV is a
linear combination of elements of the form S,,S;; where ||, |[v| < m. Therefore, by Theorem 1.10, there exists
an isometry Wy, n, such that ®,(Y) = Wy, YW, € §,. Since [,(Y)]| > 2 and ®,(Y) is a self-adjoint
element of a matrix algebra, there exists a rank one projection P € §7, such that

P&,(Y) = @,(V)P = [8,(V)| P > 2P

Moreover, since P and S7*(S7)™ are both rank one projections in §7,, there exists an isometry U € §7, such
that UPU* = ST*(S7)™.
Finally, let

1
Z = ﬁ(Sf)mUPW;m € O,.
|2 (Y)]2

Then 1 5

1Z]] <€ ———< ISTI™ U IPI[Wer |l < —=

|20 (V)12 V3

(as S1, U, and W, ,, are isometries and P is a projection) and
* ]' *\ 1M * * m *\1Mm * m *\m Qm *\ 1 m
ZYZ == W(Sl) UPWn77nYWn’mPU Sl == (Sl) UPU Sl == (Sl) Sl (Sl) Sl - I

Hence i1 )
1= 2X*X2*| = ||Z(Y = X*X)Z*| < | Z)*|Y - X*X| < 31-3

so ZX*XZ* is a self-adjoint, invertible operator.
Let B = Z*(ZX*XZ*)"2. Then

(B*X*)XB = (ZX*XZ*)_%ZX*XZ*(ZX*XZ*)_% =1
as desired. O

If we follow the above proof with n = oo, we notice at the step where Y is chosen that we can bound
the number of letters used in the words in the algebraic expression for Y as Y is a finite sum of operators of
the form S,S). Therefore, by applying Theorem 1.11, we see that the remainder of the proof follows (with
Wi.m replaced with W) ). Hence we obtain the following.

Theorem 1.14. If X € O, is non-zero, then there exists A, B € Oy such that AXB =1.
Using the above theorems, we easily obtain the following result.

Theorem 1.15. Oy, and O,, are simple for all n > 2. Moreover, if Ty, ..., T, € B(H) are isometries such
that Y"1 | T; 17 = I, then C*(T1,...,T,) ~ O,. In addition, if {T;}3°, € B(H) are isometries such that
i LTy <1 foralln €N, then C*({T;}52;) ~ Oc.

Proof. The proof that the C*-algebras are simple is trivial.

If Th,...,T, € B(H) are isometries such that . | ;77 = I, then, by the universal property of the
Cuntz algebra, there exists a *-homomorphism 7 : O,, = C*(T1,...,T,) such that 7(S;) = T;. Clearly this
implies that 7 is surjective. Since O,, is simple and 7 is not the zero map, m must be injective.

The Oy proof is similar. O



With the above result in hand, we can prove that if 2 is a C*-algebra generated by n isometries, then 2
is either O,, or a quotient of 2 is isomorphic to O,,.

Lemma 1.16. Let A be a C*-algebra generated by n isometries S1,S2, ..., S, such that Z?:l SiSf=P<1.
Then the ideal (I — P) generated by I — P is isomorphic to the compact operators and A/R ~ O,,.

Proof. Since P contains the range of each S;, (I — P)S; = 0 = S (I — P) for all . Therefore, since it is
trivial to see that Lemma 1.5 applies to 2, we obtain that (I — P) has

span{S,(I — P)S; | |u] < oc,|v] < oo}

as a dense subset. Moreover, it is trivial to verify that

* «_J O if v
(SM(I—P)SV)(SM/(I—P)S,,/) - { S,(I—-P)S; ifv= u
and thus {S,(I — P)S;} forms an infinite collection of matrix units whose span is dense in (I — P). Hence
(I — P) ~ R as claimed.
To see that A/(I — P) ~ O,,, we notice that if 7 : 24 — 2(/RK is the canonical quotient map, then 7(.S;)
are isometries in 2/8 such that

ZW(SZ')’]T(SZ')* =m(P)=n(P)+n(I—-P)=n()

i=1
which is the unit of /K. Hence, as 2/8 is generated by m(S;), we obtain that 2A/8 ~ O,, as claimed. O

Remarks 1.17. Notice that the above result implies that O,,, contains a C*-subalgebra 2( such that 2(/& ~
O,, for all m > n > 2 . Similarly, for all n > 2, O contains a C*-subalgebra 2l such that 2A/& ~ O, for all
n > 2.

Our next goal is to show that each O,, and O, are nuclear C*-algebras. The idea behind the proof is to
construct a C*-algebra B that is the reduced cross product of a nuclear C*-algebra 2 by the integers and
show that O,, is isomorphic to a compression of this cross product C*-algebra. We remark that the reduced
cross product of a nuclear C*-algebra by the integers is nuclear (see Chapter 4 of [BO] for this proof and the
construction of the reduced cross product. The idea of the proof of nuclearity is to compress 8 by projections
corresponding to finite subsets of Z. This operation is a completely positive map into A @i, M,,(C) where
n is the number of elements of the finite subset of Z. Then a completely positive map is constructed from
A Rmin Mp(C) to B that asymptotically does the right thing as long as Folner sets are taken for the finite
subsets of Z. Then B is nuclear as each 2 @i M., (C) is nuclear. This also can be used to show that the
reduced cross product is the same as the full cross product) and the compression of a nuclear C*-algebra
is nuclear (as if € C © are nuclear and there is a conditional expectation of ® onto €, then € must be
nuclear by elementary arguments). To begin this proof, we start with a fixed n > 2 as we will deal with O
separately.

Notation 1.18. For all j € Z let %; = ®72,;M,,(C) (where this means the closure of all operators of the
form A; @ - - ® A, ® I ® I ® - - - with respect to the infinite tensor norm). Then 2; ~ F" for all j.

Construction 1.19. With the notation as above, we have a canonical sequence of embeddings
e 3 A3 Ay =5 A =5 Ay = A = A g — -

where the inclusion 2(; < ;_1 is given by X — E11 ® X € My, (C) Qmin A; ~ A,;_1 (where {E; ;} are the
canonical matrix units of M, (C)). Let B be the C*-algebra that is the direct limit of this chain. Hence
B is an inductive limit of AF C*-algebras and thus B is AF. In fact B ~ & Quin §° (to see this, we
notice that the embeddings do not change the 2y ~ F" term and K = lim_, M ,»(C) with the embeddings
Mk (C) = Mkt ((C) by T T @0, & --- @ 0,,). Therefore, since B is AF, B is nuclear.



Since each ; is isomorphic, there is a canonical automorphism of 98, which we will denote ¥, given by
shifting the sequence to the left. Notice if 7' € 2; then W(T') € A;44 is the operator T' € ;41 which is the
operator Ky 1 @ T in ;.

Let € = B xy Z. Thus € is a nuclear C*-algebra by the above discussion. Let U € € be the unitary
implementing ¥ (that is U(X) = UXU* for all X € 9B). Notice that € is the closure of all operator of the

form
N
A=Y TU
i=—N

where T; € B and N € N. By letting T; = U *T;U" (for i < 0), we obtain that € is the closure of all operator
of the form

A=Y UT +To+ Y TU
i<0 i>0
where T} € B.
Let P € %y be the unit. Therefore P € € is a projection. Notice that

UPU* = U(P) = E;, ® P € Y.

Hence UPU* = P(UPU*) (as P is the unit for 2y) and thus UP = PUP as U* is invertible. Therefore it
is easy to see that

PT,U'P = (PT,P)(UP) fori >0 and PU'T;P = (UP)*PT;P for i < 0.

Let V. =UP. Thus
PAP =Y V'PT,P+PTyP+ Y PI;PV".
i<0 i>0
Let & = PCP. Thus the above computations show that € is generated by PBP = 2 (think about it!)
with V. Moreover € is nuclear being the compression of a nuclear C*-algebra. Our goal is to show that
¢ ~ O,. To show this, it suffices by Theorem 1.14 to construct n isometries in & that generate € with the
desired properties.

Theorem 1.20. With n and € as above, € ~ O,, so O,, is nuclear when n > 2.

Proof. Let S; = (E; 1 @ P)V (where E; ;1 @ P € 2g) for ¢ € {1,...,n}. It suffices to show that each \S; is an
isometry, Y | S;S; = P, and € = C*(S,...,5,). To begin, we notice that

S:S; = PU*(E,, ® P\UP =PV Y (E,, ® P)\P=PPP=P
(where any elements and tensors are viewed in ). Hence each S; is an isometry. Moreover
S;S; = (Eju@P)UPPU*(E,;®P) = (E;; ®P)¥(P)(E1,;®P) = (Ej1 ®P)(E11®P)(E1;®P) = E; ;@ P.
Thus . .
Y SiS;=Y E,oP=I®P=P.
i=1

i=1
Thus it remains only to show that C*(Sy,...,S,) = €. Since 2y and V generate &, it suffices to show that
Ao U{V}I C C*(5y,...,5).

To see that Ay C C*(S1,...,S,), we notice that 2y = @2, M,,(C) = M,,(C)®* @ A;. Thus, a little
thought shows that

span { U {Ej, iy ®---®Ej, ;,, ® P | P the unit of Qlk}}
k>0



is dense in 2Ag. To show that the above span is in C*(S1,...,Sy,), we recall that S;S7 = F; ; ® P and

Sk(Eij ® P)S; = (Eya1 ® P)(UP(E;; ® P)PU")(E1, ® P)
= (Bk1 @ P)(U(E;; ® P)U")(E1,e ® P)
= (Ep1 @ P)(E11 @ (E;j @ P))(Eve® P)
=FEQ(E;jQP)=FEy,QFE; ; ® P

Thus, by repeating the above arguments, we see that if u = (j1,...,J%) and v = (41, ...,1) then
Eﬁié;: =Ej, i @ - QEj;, ®P

and thus 20y € C*(51,...,5).
Finally, to see that V'€ C*(S1,...,S,), we notice that

VV* =UPU* € 2.

Thus
V=UP=UP(P)P =UPU"(E11 @ P)UP =VV*(51) € Ay -S1 € C*(S1,...,5n)
as desired.
Thus € = C*(S1,...,S,) = O, so O, is nuclear. O

To prove that O is also nuclear, we will only sketch the differences that need to be taken and the proof
will follow by similar arguments to those shown above.

Theorem 1.21. O is nuclear.

Proof. For each j € NU{0} let 2; = SI§>®(S7)? C On. Then it is clear that A; ~ Ay = F> for all j > 0 (by

the *-homomorphism T+ (S7)7T(S1)7). Moreover it is not difficult to see (but perhaps slightly annoying

to write down) that ;1 ~ CI + (& ®min ;) where the CI comes from S~ '1(S7)7~! € A;_; and
SIS0, iy Sin S5, -+ 85,85 )(ST) )

Ik J27 01

corresponds to the operator

Eiy gy © (8](Siy -+ 83,85, -+ 55,)(51)7)

Jk
in R ®min Qlj
Next we extend our notation by letting A;_1 = CI + (R Quin 2;) for all j € Z. Then we can consider
the sequence of C*-algebras

A3 Ay > A = Ag = A = A g — -

where the inclusion A; — 2, _; is given by X — E1 1 ®X € RQuminA; C A;_1 (where {Ei,j}aojzl are matrix
units for &). Let B be the C*-algebra that is the direct limit of this chain. Since each ; is AF, it is clear
that B is AF and thus nuclear. Since each 2l; is isomorphic, let ¥ be the automorphism of ‘B given by
shifting to the left. The remainder of the proof follows as in the O,, case. O

To conclude this section, we desire to draw a relation between the various Cuntz algebras and show that
the matrix algebras of certain Cuntz algebras are Cuntz algebras. We will show that certain Cuntz algebras
embed into others and that O, embeds into each O,,.

Theorem 1.22. Oy(,—1)41 can be unitarily embedded into Oy, for all k > 1. Moreover Oy can be embedded
in O, for alln > 2.



Proof. Fixn >2and k > 1. If k =1 then k(n — 1) + 1 =n 80 Op(,—_1)41 sits inside O,,. Otherwise suppose
k > 2. Let {Si,...,S,} be the generators for O,,. Let

X = {S5Smt1<men—1,0<e<k—1 U {SE}.

Thus | X| = k(n— 1)+ 1. Notice (SS,,)*(S.Sm) = I and (S*)*(S¥) = I for all £,m in our ranges. Moreover

n—1k—1 n—1 n—2 k—1
SESE 4+ DD SESm S (S0) = SE(SH) + > SETSSn (S T+ Y Y 888 S5 (S5)
m=1 ¢=0 m=1 m=1 =0
n—1k—2
(Z SmS*) (S D0 S8 S (S5
m=1 ¢=0
n—1k—2
_Sk 1(S*)k 1_|_ S S S* (S*)
m=1 ¢=0

n—1 1
= S2(S5P+ D> 8ESS (S

m=1 ¢=0

n—1 n—1
= S2(S5)+ D SnSmSnSn+ > SmSh,
m=1 m=1

n n—1
. <Z sms;> Si4+ > SmSh,
m=1 m=1
n—1

= 5uS5 4+ >SS, =

m=1

Whence X generates a copy of O (,—1)41 inside O,, as desired.

Let S; and S2 be two of the generators for O,. Let X = {S{S}s>0. Notice (5{S2)*(S{S2) = I for all
¢ > 0. Moreover (S{S2)*(SFSs) = 0 if £ # k. Therefore {(S{S2)(S51S2)*}¢>0 are projections with orthogonal
ranges (as S{Ss is an isometry) so Y ;_(5152)(S{92)* < I for all n > 0. Whence X generates a copy of
O« inside O,, as desired. O

The following result is our first result that shows the matrix algebras of some Cuntz algebra is a Cuntz
algebra.

Proposition 1.23. If k divides n then My (O,,) is isomorphic to O,.

Proof. Suppose k divides n (n > 2) and that O,, is generated by S1,...,S,. Let {E; ;} be the canonical
matrix units for My (C) € Myp(O,). For 0 < j < # and 1 < i < k, consider the operator T;; =

i3
S Swj4eEie. We notice {T;jbo<jcn 1<i<k has k (%) =

k * k
TiTjTLj = (Z Skj+mEi7m> (Z Skj+gEi7g>
m=1 (=1

n elements such that

k
= D SijsmSkj+tEm,e
m, =1
k
= Z Epo=1Iy
=1

10



and

Therefore

k k *
Tivj ;,j’ - (Z Skj—o—mEi,m) (Z Skj/+[Ei/7g>
{=1

m=1

k
> " SkjreSij B
=1

k k k
DD Tl = D Y SkireSijpeBi

i=10<j<} i=10<j<p (=1

k n
=2 SuS; B

i=1 g=1

k
=Y Eii=I
i=1

Whence {T; j}o<j<n 1<i<k generates a copy of O, inside M (O,). We claim that C*({T} ;}o<j<z 1<i<k) =
M (0,,). To see this, we notice that

k
Z T ;T ; = Z ZsijSZjuEi,i’

0<j<n 0<j<m £=1

= Zn: SyStEy i
q=1

= Ei,i'

Whence {Ei’j} Q C*({Ti,j}0§j<%,1§i§k)~ Since Skj+gE1’1 = Tl,jEZ,l, we have

for all 1 < g < n. Whence

Using the fact that

SqEr1 € C°({T} j}o<j<n 1<i<k))

OnE11 C C*({Tij o<j<p 1<i<k))-

E; ;€ C*({Tij}o<j<n 1<i<k))

for all 4, j, My(On) = C*({T} }o<j<n 1<i<k)) as desired. Whence My,(0,) ~ O, for all k that divides

n.

O

Finally, we will demonstrate that Oy has a very interesting property (that the author cannot recall what

it is called).

Theorem 1.24. For alln > 1 M, (03) is isomorphic to Os.

Proof. If n = 1 we are trivially done and if n = 2 we are done by Theorem 1.20. Thus suppose n = k + 1
where k > 2. Let Oy be generated by the isometries S; and Sy. Let

0
1

0
T

0
0
1

0
0
0

0
0 Sy 8,8, S3S, ... SyTls, Sk
0 0 0 0 0 0 0
and T = .
0 0 0 0 0 0 0 0
Sy S,

11



Let {E” f;ril be the canonical matrix units. It is trivial to verify that 171y = Ip41 = 13T, TVTT =

Zf;l E; ;, and ToT5 = Eq 1. Hence ThT} 4+ ToTy = I. Whence, if M,,(O2) is generated by T; and Ts, then
M, (03) = C*(T1,Ts) ~ Oy by Theorem 1.14.
We notice that E; 1 = ToTy € C*(T1,T3). Moreover E,111 = ThE,; for all 1 < ¢ < k — 1. Hence
{Ei 1}, € C*(Th,Ty). Since C*(Ty,Ty) is self-adjoint, we obtain {E; ;}F,_, € C*(T1,T).
Fix 1 < ¢ < k. Notice
TgEq,l = Sg_lleLl € O*(T17T2).

Since C*(T},T») is self-adjoint,
S1(S5) By € CF(Th, Th).

However T1 Ej 1 = S1Ey41,1 € C*(T1,T5). Therefore
(S1Ek11,1)(S7(83)77 Er ) = S157(85)7 Eyy1,1 € CH(Th, Tn)

for 1 < ¢ < k. However

k
Ept1p =TT — ZEj,j € C* (T, Ty).
=2
Whence
Eyi1k01T1 Bt i1 = S2Bky1,6+1 € C*(Th, T2).
Therefore

S§718187(55) 1 Byy1 1 € OF(Th, T2)

forall 1 <g<k.
Next notice that

k—1
(Tl - ZEHM) Ty = (S157(55) " + 9295 (S5)" ) Eryan = (95) ' Epyr1 € CF(T1, T).

=1
Therefore
(S2Ek1,641) " ((S5)" " Ergr,1) = (S2)" (85" Ergr1 € CF(T1, T).

Since

k—1
(S2)F 1 (S5)F 1+ SET SIS (95) T = =SS5+ 5157 =1

q=1

and

84718185 (S3) 1 L By 11 € C(T1, T)

for all 1 < ¢ <k, Exy11 € C*(Th,T2) Whence C*(T4,T>) contains all the matrix units.
Next we notice that S1E1 1 € C*(T4,Ts) from above and

Eq j+1(S2Ek11 k+1)Ert11 = SoEr 1 € C* (11, T3).

Therefore O,,E11 C C*(11,T2) and since the matrix units are in C*(73,T%), we obtain that M, (O2) =
C*(Ty,T») as desired. O

12



2 Purely Infinite C*-Algebras

In this chapter we will further our knowledge of simple C*-algebras. In particular, we will be interested
in simple C*-algebras that have certain types of projections. We will then narrow our focus to the ‘purely
infinite’ C*-algebras and we will use Theorem 1.12 to conclude that the Cuntz algebras are purely infinite.
Purely infinite C*-algebras are of major interest to us and will be studied further in the next chapter.

The results for this chapter were developed from the excellent book [Da] (if you are reading these notes,
you should definitely invest in this book).

We begin with several definitions pertaining to projections in a C*-algebra.

Definition 2.1. Let 2 be a C*-algebra. A projection P € 2 is said to be infinite if there exists a non-zero
proper subprojection @ € 21 of P such that @ ~ P (that is, there exists a partial isometry V' € 2 such that
P =V*V and Q := VV* < P). We say that P is properly infinite if there exists non-zero projections @
and @2 in 2 such that P ~ Q1 ~ Q2 and Q1 + Q2 < P (note this last condition automatically implies that
@1 and Q2 are orthogonal).

A C*-algebra 2 is said to be infinite if it contains an infinite projection and is said to be properly infinite
if it contains a properly infinite projection.

Our first result is that if a C*-algebra is simple and infinite then it is properly infinite. Before we prove
this, we have a simple technical lemma.

Lemma 2.2. Let 2 be a simple (not necessarily unital) C*-algebra. If Q € A is a projection and P € 2 is
any non-zero positive operator then there exists elements Z; € 2 such that QQ = Z?Zl Z;PZ}.

Proof. Without loss of generality, |P|| = 1. Since 2 is simple, @ is in the closure of the algebraic ideal
generated by P. Therefore there exists {X;}7,, {V;}1; C % such that [|Q — >/, X;PY;| < 3. Hence

20 — zn:XiPYi - Zn:Yi*PX;* <1.

i=1 i=1

Thus . .
20<I+) XiPYi+) Y/PX]
i=1 i=1
in the unitization of %A so . .
2Q<Q+ )Y QX PY,.Q+ ) QY PX;Q.
i=1 i=1

However, since (X; — Y;*)P(X} -Y;) >0, X;PY;, + Y*PX} < X;PX? +Y*PY;* so

Q <) QXiPY,Q+) QY PX;Q

i=1 i=1

IN

Y QX PX;Q+) QY PY,Q
=1 i=1

<Z 161> + |Yi||2> Q.

i=1

IN

Let
n n n
=Y IXIP+VillP  and A=) QX;PX;Q+) QY PYiQ.
=1 1=1 =1

13



Hence @ < A < ¢Q. By viewing @ as a projection in B(H) and using the fact that Q@ < A < ¢Q, we see that
A commutes with Q, (I — Q)A=A(I — Q) =0, and 6(A) C {0} U1, ¢]. Define f € C({0}U[1,¢]) by

0 ifxz=0
f(z) { =% ifze [1, ]

Hence f(A) is well-defined and, by considering the decomposition of B(H) given by Q,
Q= fAAF(A) =D F(AQX,PX;Qf(A) + Z F(A)QY; PY,Qf(A).
i=1

Therefore @ can be written as Q =Y .-, Z;PZ;} with Z; € 2. O

Lemma 2.3. Let A be a simple, infinite C*-algebra. Then for every infinite projection @Q € A there exists
partial isometries {V,}5°; C A such that Q = V,}V,, for alln € N and Y ;_, ViV < Q for alln € N. Hence
Q is a properly infinite projection.

Proof. Let Q € A be an infinite projection. Let V' € 2 be a non-zero partial isometry such that P :=
VV* < V*V = Q. Since 2 is simple and @@ — P > 0, Lemma 2.2 implies that there exists X; € 2 such that

Y XHQ—-P)X; =Q. Let

n

T =Y Vi HQ-P)X

i=1
Since V is a partial isometry in 2 with (Q — P)V =0 = V*(Q — P), V¥(Q — P) have pairwise orthogonal
ranges for all i (as (V(Q — P))*(VI(Q — P)) = (Q — P)VI=4(Q — P) = 0 for all j > i). Moreover, each
Vi=1(Q — P) is a partial isometry as (VH(Q — P))*(VH(Q — P)) = (Q — P). Therefore

T =Y XHQ-P)(V)TWVITHQ - P)X ZX (@-P)Xi=Q.
i,j=1

Hence 77 must be a partial isometry so 1175} is a projection. Since the range of 1} is clearly contained in
the span of the ranges of V=1(Q — P) and each V~1(Q — P) is a partial isometry, we obtain that

Iy < i VITHQ - PPV = i VIEHQ VYT = - VIV
i=1 i=1
For each i > 2 let T; = V"~V € A. Then clearly each T; is an isometry with T;*T; = ) and
T,T; = Vn(ifl)Tle(V*)n(iq) < Vn(ifl)(v )n i-1) _ /(i (V*)n(i)

for all i > 2. Hence Y2 | TiTF = Q — VFO(V*)¥i) < Q for all k > 1 as desired. O

Applying the above result and Theorem 1.15, we trivially obtain the following.
Corollary 2.4. Let A be a simple, infinite C*-algebra. Then A contains O as a C*-subalgebra.

Moreover, combining this result with Remarks 1.16, we obtain the following.

Corollary 2.5. If 2 is a simple, infinite C*-algebra then O, is a quotient of a C*-subalgebra of A for all
n > 2.

Proof. By Corollary 2.4 O,, C 2. By Remarks 1.16 O contains a C*-subalgebra 2 such that O,, is a
quotient of 2. O

Our final result pertaining to simple C*-algebras and infinite projections is the following.

14



Proposition 2.6. Let 2 be a simple C*-algebra. Suppose that P and @Q are projections in A and P is
infinite. Then Q is equivalent to a subprojection of P.

Proof. By Lemma 2.2 there exists elements {Z;}7, C 2 such that Q = Y"1, Z;PZ; and, by Lemma 2.3,
there exists partial isometries {V;}7, C 2 such that V;*V; = Pand Y~ V;V;* < P. Let V := """ | Z, PV;*.
Then . .
VV* =" ZPV;ViPZ; = ZPZ; = Q.
i,j=1 i=1
Hence V is a partial isometry so V*V is a projection. Moreover, since 2211 ViV < P, VP =V and
PV, =V, so
PV*VP =Y PV,PZ!Z;PV;P =V*V
i,j=1

and thus Q = VV* ~ V*V < P as claimed. O

Before we move onto purely infinite C*-algebra, we first need to develop a little theory about hereditary
C*-subalgebras.

Definition 2.7. Let 2 be a C*-algebra. A non-zero subset B of 2l is said to be hereditary if whenever
0< A< B with A€ and B € B then A € 8.

To prove some results about hereditary subalgebras, we need the following technical lemma.

Lemma 2.8. Let 2 be a C*-algebra. Suppose A, B € 2 are such that 0 < A*A < B. Then there exists an
element C € 2 such that A = CB1.

~ -1 1
Proof. Let 2 be the unitization of 2. For each n € N, let C,, := A (B + %I) 2 B1 which lies in 2 as 2 is
an ideal in A. We claim that C,, is a Cauchy sequence in 2. To see this, for each n,m € N let

- N
D = (B+) —(B+> ca
n m

_1
and let f,, € C([0, | B||]) be the continuous functions defined f,(z) = x4 (z+ 1) 2. It is clear that (fy)n>1
is a Cauchy sequence in the uniform norm on C([0, ||B]|]) and thus (f,(B))n>1 is a Cauchy sequence in .
Moreover we notice that

”Cn - Cm||2 = ||(Cn - Cm)*(cn - Cm)”
- HB%DR,WA*ADWBi

< |\ B4 Do BD B

= HB%Dn,mDn,mB%
= [ fa(B) = fu(B)]

and thus (Cp,)p>1 is a Cauchy sequence in 2.
Let C :=1lim,,_,oc C,, € A. Then
2

HAfCB% — lim H(A—CHB%)*(A—CnBi)’
n— oo
1 * 1
1 T2 1 1 T2 1

— lim (Im — (B + I) B2> A*A <IQ[ — (B + I) B2> |
n—o0 n n
. 1\°? 1 ’ 1\"? 1

< lim sup <Ig[—(B+I> B?) B(IQ[—(B+I> B2>H
n— o0 n n

= limsup || g (B)]|

n—roo
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2
where g, (z) = (1 . x-fl> x. Since 0 < /—F7 <1, we have

SO

3=

L <

1
1 n
n

+

2
T
0<gplx)< |1-— _ Tr =
< gn@) < <\/x+}b> T

2
for all z > 0. Hence ||g,(B)| < £ so HA — CBi|| <limsup, .. L =0. Hence A = CB7 as desired. O

Note that the above result can be used to show that closed ideals in a C*-algebra (which are automatically
C*-subalgebras) are hereditary C*-subalgebras.

Lemma 2.9. Let A be a C*-algebra and A € 2A be positive. Then AAA is the smallest hereditary C*-
subalgebra containing A. Moreover every separable hereditary subalgebra has this form.

Proof. Let A be a positive element of 2. Clearly AAA is a C*-subalgebra of 2. For every € > 0 define

1

fe(ﬂﬂ):{ &7 if x €[0,¢]

< ifx>e
Then f. is continuous on o(A) (and f.(0) = 0) so f.(A) € 2. Since f.(z)z? =z ifx > ecand 0 < f(z)2*> <=z
if z €0,€, ||fe(x)a? — xHU(A) — 0 as e = 0. Hence Af.(A)A — A as e = 0. Thus A € AAA.

Next we claim that A(A is contained in any hereditary C*-subalgebra of 2 containing A. To see this,
suppose 9B is a hereditary C*-subalgebra of 2 containing C*(A4). If C' € 2 is positive then 0 < ACA <
|C|I* A2. Since ||C||> A2 € C*(A) C B and B is hereditary, ACA € B. As this holds for all positive C' € 2
and every element of 2[ is the linear combination of four positive elements, AAA C B. Hence AAA C B.

To see that A2A is a hereditary C*-subalgebra of 2, suppose B € 2 and C € A2A are such that
0<B<C. Thus 0< BBz < C. By Lemma 2.8, there exists a D € 2 so that B2z = DC'i. Whence B =
CiD*DC%. Since C € AUA, Ci € C*(C) C AAA. Thus there exists A, € 2 so that CF = lim,,_,., AA,A.
Thus B = lim,,_, A(A,AD*DAA,)A € AAA. Whence AAA is hereditary.

Lastly, we desire to show that every separable hereditary C*-subalgebra of 2 has the form AAA for some
A € 2 positive. Suppose B be a C*-subalgebra of 2 that is separable and hereditary. Since B is separable,
there is a countable set {4, },>1 of positive elements of B of norm at most 1 so that B = C*({A4,}n>1).
Let A:=3" o, Z%An € B. Consider € := AAA which is a hereditary C*-subalgebra of 2 since A > 0. Since

A € € by above, 0 < %An < A for all n, and € is hereditary, 4, € € for all n so B = C*({A,}n>1) C €.

However, if X € 2l is positive, 0 < AXA < || X|| A% and || X|| A% € B. Whence A(2;)A C B so AAA C B
and thus € C 8. Hence B = ¢ as desired. O

Now we are finally ready to define one of the main objects of study in these notes.

Definition 2.10. A C*-algebra 2 is said to be purely infinite if every hereditary C*-subalgebra is an infinite
C*-algebra.

It turns out that the Cuntz algebras are our first examples of purely infinite C*-algebras. The easiest
way to show this is the following theorem.

Theorem 2.11. Let A be a unital, simple C*-algebra that is not isomorphic to C. Then the following are
equivalent.

1. A is purely infinite.
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2. For all A € A\ {0}, there exists X, Y € A such that XAY = I.

3. For all positive A € A\ {0} and € > 0, there exists an X € A such that XAX* = I and || X| <
1A 72 +e.

Proof. Suppose (3) holds and let X € A\ {0}. Then X*X > 0 so there exists a Y € 2 such that I =
Y(X*X)Y* = (YX*)X(Y*). Therefore (3) implies (2).

Suppose that (2) holds. We desire to show that 2 is purely infinite. Let B be a hereditary C*-subalgebra
of 2 and let B € B be a non-zero positive element that is not invertible (such an element always exists
unless B = C and thus, since B is hereditary, we would have 2l = C). By (2) there exists X,Y € 2\ {0}
such that XB2Y = I. Therefore

I =Y*B3X*XB*Y < || X|*Y*BY

Therefore, if Zy := || X]| (Y*BY)fé, I = (ZyY*)B(Y Zp). Hence there exists a Z € 2 such that ZBZ* = I
(thus proving (3) without the norm estimates).

Let V := B2Z*. Therefore V*V = I. Moreover P := VV* = B2Z*ZB% € 8. Thus, as P < | Z|* B
and B is not invertible, P # I so V is a proper isometry. Hence V(I — P)V* is a non-zero projection. Let
W =V P. Then ) ) ) ) )

W =B2Z*B27*ZB? € B22B2 C B
by Lemma 2.9. Moreover W*W = PV*V P = P and WW* = V PV*. However, since VPV* and V(I -P)V*
are orthogonal projections with VPV*+ V(I — P)V* = VV* = P and V(I — P)V* is non-zero, VPV* must
be a proper subprojection of P in B that is equivalent to P in 5. Hence 93 is infinite and, as B was an
arbitrary hereditary C*-subalgebra of %A, 2 is purely infinite.

Lastly, suppose that (1) holds and let A € 2( be a positive operator of norm 1. For each 0 < € < %, define

the function
0 frx<l—e

fe(a?)={ 1-L(1-2) ifzell—ql]

Let B, := f.(A)2Af.(A) which is a hereditary C*-subalgebra of 2 by Lemma 2.9. Therefore, since 2 is purely
infinite, there exists an infinite projection P, € B.. By considering spectral projections in B(#H) and by
considering the definition of B., we clearly have that P. < E4([1 — ¢,1]). Therefore P.AP. > (1 — ¢)P..
Since 2 is simple, Proposition 2.6 implies that the identity I of 2l is equivalent to a subprojection of P..
Hence there exists a proper isometry V. such that V.V* < P.. Therefore VP, = V* and PV, = V..
Let
Be:= VIAV, = (V2P)A(PY) = (1- OV PV = (1 VoVe = (1 - o)L

Therefore B, is invertible and
1
(B *VO)A(VB™2) = 1.
Finally, we notice that

V.B,* <(l-ot<lte

|

(as Be > (1 —€)I and 0 < € < %) which completes the proof. O

_1
<o

Thus, by Theorems 1.12 and 1.13, we have the following.
Corollary 2.12. O and O,, are purely infinite for all n > 2.
To conclude this section, we make the following observation (thus explaining the term ‘purely infinite’).

Lemma 2.13. Let 2 be a unital, purely infinite C*-algebra. If P € A is a non-zero projection then PAP is a
unital, purely infinite C*-algebra. Hence all projections in a purely infinite C*-algebra are infinite. Moreover,
if A is simple, PP is simple.
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Proof. Clearly PP is a unital C*-algebra. To see that PRIP is purely infinite, suppose B is a hereditary
C*-subalgebra of PP. Clearly B is a C*-subalgebra of 2. We claim that B is a hereditary C*-subalgebra
of 2. To see this, suppose that A € 2 and B € 9B are such that 0 < A < B. Since B € PP and P2P is a
hereditary C*-subalgebra of 20 by Lemma 2.9, A € PAP. Therefore, since B is a hereditary C*-subalgebra
of PRAP, A € 8. Hence B is a hereditary C*-subalgebra of 2. Since 2l is purely infinite, 8 is an infinite
C*-algebra. Hence PRIP is purely infinite. Therefore P2LP contains an infinite projection and thus P is
infinite.

Lastly, suppose that 2( is simple. Suppose J is a non-zero ideal in PAP. Therefore, there exists a non-zero
positive operator A € J. By Lemma 2.2 there exists X;,Y; €  such that I = 7 | X;AYj. Hence, as
AePAP, P = Z?Zl(PXjP)A(PYjP) € J. Hence J = PP as desired. O

Using the above lemma along with Lemma 2.3 and Proposition 2.6, we have the following important
result.

Theorem 2.14. Let 2 be a unital, simple, purely infinite C*-algebra and let P and Q be projections in A
with P non-zero. Then there exists a projection Q' € 2A such that Q ~ Q' and Q' < P.

Proof. Since P is non-zero, Lemma 2.13 implies that P is an infinite projection. Therefore, since 2| is unital
and simple, Lemma 2.3 implies that P is properly infinite. Therefore, there exists a non-zero projection
P’ € A such that P ~ P’ and P’ < P. However Lemma 2.13 also implies P’ is an infinite projection so
Proposition 2.6 implies that there exists a projection Q' € 2 such that Q@ ~ Q" and Q' < P’ < P. O
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3 Tensor Products of Purely Infinite C*-Algebras

In this chapter, we will study the minimal tensor product of two unital, simple, purely infinite C*-algebras.
The main goal of this chapter is to prove that the three properties listed in the previous sentence are preserved
under taking minimal tensor products.

Most of the results for this chapter were developed from the book [Ro2] and the additional papers
referenced there. The portion of the chapter on excising states is from the paper [AAP].

It is clear that the minimal tensor product of two unital C*-algebras is again a unital C*-algebra. It is
also well-known that the minimal tensor product of two simple C*-algebras is again a simple C*-algebra. As
many proofs involving tensor products of C*-algebras are incorrect, we include a proof here. We begin with
the following observation.

Lemma 3.1. Let 7 : AR@umin B — € be a *-homomorphism such that |aes is injective. Then 7 is injective.

Proof. Let m : A ®min B — € be a *-homomorphism which is injective when restricted to 2 ® B. Let «
be the C*-norm on 7(A ® B) ~ A ® B induced by €. Thus, as A R, B C € is the smallest C*-algebra
generated by 7(2® B), we have that 7 : AQpuin B — AR, B is a continuous *~homomorphism. Since every
*-homomorphism of a C*-algebra is contractive, a(t) < ||t]|,;, for all t € A ©® B and thus o = || -||,,;, (as
||| in is the smallest C*-norm on 2 ® B). Whence 7 is an isometry that is the identity on a dense subset
and thus 7 is injective on A iy B. O

To proceed with the proof that the minimal tensor product of two simple C*-algebras is simple, we will
need the technical Lemma 3.3. To prove said lemma, we will need to make some common definitions.

Definition 3.2. Let 20 C B(H) be a C*-algebra. The commutant of 2 in B(H), denoted 2, is the set
A :={T € B(H) | AT =TA for all A€ M}.

The double commutant of 2, denoted 9", is the set A" := (A’)".
We say that a von Neumann algebra 9 is a factor if M N M’ = {Cly}.

The following proof is based on Proposition 4.20 of [Ta].

Lemma 3.3. Let M C B(H) be a factor and let m : MOM' — B(H) be the product map (i.e. m(T®S) =TS
which will be well-defined since M and M’ commute). If 7 (Y ;| Ai ® B;) = 0 for some (A;)"—; C M and
(Bi)?zl g m/, then Z?:l Az &® .Bz =0.

Proof. Suppose that m (31| A; ® B;) = 0so >, A;B; = 0. Let H,, be any finite dimensional Hilbert
space with orthonormal basis {e1,...,e,} and let K :=H ® H,,. Let

Ko = spcm{ZBBﬁ@ei | BeM' ¢ e H}.

i=1
Notice that

<Z BBi{®e;,y Amn® ej> =Y (BBi¢, Ajn)
i=1

i=1 j=1

|

s
Il
-

(A;BBi&,n)

()

for all n,& € H and B € M. Thus Z;;l A%n ®e; is orthogonal to K for all n € H.
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Let P be the projection of K onto Ky. We can view P as an n X n matrix [P; ;] where P; ; € B(H) since
‘H,, is finite dimensional. Notice for any B € MM’ and £ € H that

> BBj¢@e;=[Pi;]Y BBjt®e;= Y P ;BBit®e;.
Jj=1 Jj=1 i,5=1

Therefore we clearly obtain that BB; = Y. | P, ;BB; for all B € M’ (specifically B = I will be useful) and
all 1 <j<n.
Since we have seen that 2?21 Ain @ e; is orthogonal to Ko for all n € H, we have that

0=P> Anee; =Y P jAnae;
j=1 ij=1
SO Z?Zl P;;A; = 0. By taking adjoints (and noting that P = P* so P};
> j—14;P;i =0.
Notice that (B® 1)Ky C Ky for all B € M’ and for any A € 9 and B € M

= P;;), we obtain that

(A1) (Z BBt ® ei> =Y ABBi{@e; = » BBi(Af) @¢; € Ky.

i=1 i=1 i=1

Whence Ky is invariant under 9 ® CI and 9 @ CI. Thus Ky is invariant under (90t U M) @ CI and by
taking SOT-limits, it is invariant under (9 UIM)" @ CI. However (9 U M) = CI since M is a factor so
Ko is invariant under B(#H) ® CI. Since Ky is fixed by B(H) ® CI, P must commute with B(H) ® CI and
thus P € CI ® B(#,). This implies that each P, ; is a scalar multiple of I;. But then

ZAi ®B; = ZAZ' ® ZPi,ij
i=1 i=1 =1

= Z A; ® Py ;B;

ij=1

= > P,;Ai®B,

3,j=1

as desired. O]

Proposition 3.4. Let 2 and B be C*-algebras. Then ARy B is simple if and only if a = | - || and both

A and B are simple.

min

Proof. First suppose that a # || -||,;,- Then the *-homomorphism 7 : A ®4 B — A Quin B is such that
0C ker(m) C A®, B. Thus A ®, B is not simple. Similarly, if @ = || - ||, and A is not simple, then there
exists a non-zero ideal J # 2. Whence J ® 9B is an algebraic ideal of 2 ® 8. Thus J @uin B is a non-zero
ideal of A Rpupin B. To see that J Rmin B # A Qmin B we note that there exists a state ¢ on 2 such that
©(J) = 0 (consider the quotient map). Then, if ¢ is any state on B, ¢ X 1) extends to a state on A @mpin B.
However, (p x ¥)(J ® B) = {0} so (¢ X ¥)(F Qmin B) = {0} by continuity. Since ¢ X ¥ # 0 on A Ruin B,
J Qmin B # A Rpmin B 50 A @pin B is not simple. Similarly, if B is not simple, A Rpi, B is not simple.
Suppose that a = || -[|,,;, and both 2 and B are simple. If A ®min B was not simple, by considering
the quotient map and an irreducible representation of the quotient algebra there would exists a non-faithful
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irreducible representation of 2 ®unin, B. Thus it suffices to check that every irreducible representation of
A @min B is faithful. Let 7 : A Qmin B — B(H) be an irreducible representation. Then there exists non-
degenerate *-homomorphism 7 : 2 — B(H) and m : B — B(H) such that 7 = 7 x mo (7, must be
non-degenerate or else m would have an invariant subspace). Since 7 is irreducible, m(2 ®min B)" = CI.
However, by density and continuity, CI = (A @uin B) = 71 (A) N 7(B)’. Since m (A) C mo(B)', 71 (A)”
is a factor. Moreover m(B) C 71 (2)’.

By Lemma 3.1, to show that 7 is injective, it suffices to show that 7|yey is injective. However, if

(X, A4 ®B;)=0,>" m(A;)m(B;) =0. By Lemma 3.3,

O—Zﬂ'l @71'2 ) 7T1®7T2 <ZA ®B>

Since 2 and B are simple (and thus have no closed ideals) m; and 7o must be injective. Whence 71 ® g is
injective and thus 0 = (m @ ma) (3.1, A; ® B;) implies > | A; ® B; = 0. Whence 7|yep is injective so
A Qmin B is simple. O

It remains to show that the minimal tensor product of purely infinite C*-algebras is again purely infinite.
The proof of this fact will come from a simple application of Kirchberg’s Slice Lemma. However, to prove
Kirchberg’s Slice Lemma (and for later results), we will need to discuss excising states in a C*-algebra.

Definition 3.5. Let 2 be a C*-algebra and let ¢ be a state on 2[. A net (A))a of positive elements of A
with norm one is said to excise ¢ if limy ||p(A4)A3 — AyAA,|| =0 for all A € 2.

Example 3.6. Let X be a compact Hausdorff space, let x € X be fixed, and define ¢ : C(X) — C by
o(f) = f(x). Let (Ux)a be a neighbourhood basis of the point z. By Urysohn’s Lemma there exists a net
(fa)a of positive, norm one elements of C'(X) such that fy(z) =1 and fy|yg = 0. By standard continuous

function arguments, it is easy to see that limy Hf(x)ff — fAffAHOO =0 for all f € C(X). Hence ¢ excised
by (fx)a-

Notice in the above example that ¢ was a pure state. This leads us to the following result.

Proposition 3.7. Let A be a unital C*-algebra and let ¢ : A — C be a pure state. Then ¢ can be excised
by a decreasing net (Ax)a such that o(Ay) =1 for all \.

Proof. Let L:={B € | ¢(B*B) =0} and let 9 := LN L*. First we claim that 9 is a C*-algebra. To see
this, we recall from the GNS construction that £ is a closed left ideal in 2. Therefore it is clear that 9 is a
closed, self-adjoint linear space. To see that 91 is an algebra, we notice that if A, B € 91, then AB € L since
B € L and L is a left ideal and AB € L* since A € L* and L* is a right ideal. Hence 91 is a C*-algebra (in
fact, it can be shown to be hereditary).

Let (E\)a is any C*-bounded approximate identity for the C*-algebra M. For each A € A, define

A,\ = IQ[ - E)\.
Clearly (A))a is a decreasing net of positive operators that is majorized by Iy and
P(Ax) = p(Ia) — p(Ey) =1

since E/\% € M C L so the definition of £ implies ¢(Ey) = 0. Hence ||Ax]| =1 for all A € A.
Next we claim that ker(y¢) = £ + L*. To see this, we notice that if A € £ then

0 < lp(A)] < p(A"A)p(Iyla) =0

by Cauchy Schwarz inequality for positive sesquilinear forms. Hence £ C ker(yp). Similarly, if A € £*,
©(A*) = 0 so p(A) = 0 as ¢ is positive. Hence £ 4+ L£* C ker(y). To see the other inclusion, suppose
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B € ker(y). Since ¢ is positive and thus ¢(B*) = ¢(B) = 0, Re(B), Im(B) € ker(p). Hence it suffices to
show that if B € ker(¢) and B is self-adjoint then B € £ + L*.

Let m: A — B(H) and £ € H be the cyclic representation of ¢ given by the GNS construction. Hence
p(A) = (m(A)E, &) for all A € A. Since ¢ is a pure state, 7 is irreducible. Let B € ker(p) be self-
adjoint. Therefore o(B) = (m(B)¢£,£) = 0. Hence m(B)¢ and £ are orthogonal vectors. By the Strong
Kadison Transitivity Theorem, there exists a self-adjoint A € 2 such that 7(A)(7(B){) = 0 and w(A)¢ = €.
Therefore

¢((AB)"(AB)) = (r(A)m(B)¢, m(A)m(B)§) = 0

and
¢((B—AB)(B — AB)") = (n(B)§ — m(B)m(A)§, m(B){ — m(B)m(A)§) =0

as all the operators under consideration are self-adjoint. Hence AB € £ and B — AB € L* so B € L+ L*.
Hence ker(p) = L+ L* as desired.

Finally we notice that if A € 2 then A — p(A)Iy € ker(yp). Hence there exists T,S € £ such that
A — p(A)Iy =T + S*. Notice T*T,5*S € L since L is a left ideal and T, S € L. Since T*T and S*S are
self-adjoint, T*T, S*S € M. Hence

lim [[AxAAN — p(A) A3 = lim [ A5 (A = @(A) ) Al
= lim | AN (T + 57) Ax ||
< limAsup 1T (Iao — EX)|| + [[(Ia — EX)S™||

< limASUP 1T (I — EX)|| + [|S(Ia — EN)|

< limsup | 77T (I — Bx)||* + 115" S (T = En)[[* =0
A

as (E\)a is a C*-bounded approximate identity of 9. Therefore, since A € 2 is arbitrary, (Ay)a excises
©. O

It turns out to be easy to extend our knowledge of state that can be excise by taking weak*-limits.

Proposition 3.8. Let A be a unital C*-algebra and let ¢ : A — C be a state that is a weak”-limit of pure
states. Then @ can be excised in 2.

Proof. For each finite subset A1, ..., A, and each € > 0 there exists a pure state ¥ on 2 such that |[(A;) —
w(A;)| < eforall i € {1,...,n}. By Proposition 3.7, there exists a positive element B € 2 with ||B|| =1
such that ||[¢(4;)B? — BA;B|| < e for all i € {1,...,n}. Hence

l(A:)B? — BA;B|| < |p(Ai) — ¥(A:)| | BI” + ||[(A:)B® — BA; B|| < 2¢

for all i € {1,...,n}. Therefore, since the above works for every € > 0 and every finite subset of 2, ¢ can be
excised on 2. 0

Now that we have developed which states we can excise, we can finally prove Kirchberg’s Slice Lemma.
Before we begin, we shall prove a small technical lemma.

Lemma 3.9. Let A be a unital C*-algebra, let A,B € Ay, and fit € > ||[A— B||. Then there exists a
contraction D € 2 such that DBD* = (A — €I); (where (A — €l)4 is the positive part of A —€l).

Proof. For each r > 1 define g, : [0,00) — [0,00) by gr(x) = min{x,2"}. It is clear that g.(B) — B as
r — 1. Since ||A — B|| < e, there exists an ro > 1 such that |4 — g,,(B)| < €. Let By := gr,(B) and
let 0 < € :=||A—gr(B)|| <e Thus A—¢; < By. By the definition of g,,, we see that By < B and
By < B™. Since €1 < ¢, by considering the Continuous Functional Calculus (and assuming e < 1) we can
find a contraction E € C*(A) such that E(A — e1I)E = (A —€el);. Hence (A —el)y < EByE.
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Let X := BO%E € A and view 2 as a unital C*-subalgebra of B(H). Therefore there exists a partial
isometry V € B(H) such that X = V|X|. It is well-known that V is the WOT-limit of X (X*X + 11) ?
and thus V € 2. Let Y := V((A —el)4)2 € A”. We claim that ¥ € 2. To see this, we notice that Y is

1
the WOT-limit of 7,, := X (X*X 4+ 1I)72 (4 — el);)? € A Hence it suffices to show that (Th)n>1 is a
Cauchy sequence in 2. However, since (A — el); < EByE = X*X, we see that if

L\ L\
T = (X*X + I) - <X*X + I)
n m

then
2
”Tn - Tm”
= ”(Tn - Tm)(T; - T;z)”
= [|[XZnm(A — €)1 Znm X" ||
1 3 1 ~3 1 -3 1 -3
< || X <X*X+I> —(X*X+I> X*X (X*X+I> —<X*X+I) X
n m n m
1 112
1 -2 1 -2
= ‘XX* (XX*-l-I) - XX (XX*+I>
n m
However, since f,(xz) = i; converges to /z uniformly on o(XX*), we see that (T},),>1 is a Cauchy

sequence in 2A. Hence Y € A as desired.
Next we notice that

VY = (A= el)y) V' V((A—el)y)? = (A—el)y

since (A — el); < EByFE = X*X and V*V is the projection onto ker(|X|)* = ran(X*X). Moreover, we
see that

YY* = V(A —el) V' < VX*XV* = VIX|(V|X|)* = XX* = Bf E2BE < B, < B"™.

S
For each n € N let D,, := Y* (B™ +11)"2 B e (and is well-defined as rog > 1). We claim that
(Dp)n>1 is a Cauchy sequence in 2. To see this, we notice that

HDn _Dm”2
= H(Dn - Dm)*(Dn

ro— 1
= Boz1 <<BTO+I
n

|
!
2

E A 1\ 7? 1N 2\ e
- (B”’ + 1> YY* (B”’ + 1> - <B”’ + 1) B>
m n m
1 1\ °® 1\ ¢
rg—1
) B0 <<B”’ + I) - (B”O + I> ) B
n m
2

IA
W
S
L
/N
7N
oyl
S
+
S
~
N——— N———
|
=
\
N
Sy
g
+
3
~
N————
e

1

ro— L

Therefore, since h,(x) = \;La converges to V 2™~z uniformly on o(B), we see that (D,,)n>1 is Cauchy
ro— 3 -
in 2A. ’
Let D :=lim,,_,o D,,. Then

1\
DB? = lim Y* (BTO T I) B? =Y*
n

n—oo
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_1
since (BTO + %I) ?B% converges in the WOT to the projection P onto ker(B™)%, YY* < B implies

Y*P =Y™* and the norm limit exists and thus must be the same as the WOT-limit. Hence
DBD* =YY =(A—¢€l)4

Finally, to see that D is a contraction, we notice (since YY* < By < B)

1 1

0—1 1 Tz B ro—1
(B’"O + 1) YY* (B’“O + I) Bz
n

1
n
L\ L\
< B¥% <B’“° + I) <B”’ + 1) B™
n n
1 —1
= B0 <BT0 + I)
n

and thus ||D! D, || <1 for all n. Hence |D]|| <1 as desired.

D:D, =

O

Lemma 3.10 (Kirchberg’s Slice Lemma). Let 2 and B be unital C*-algebras, and let © be a hereditary
C*-subalgebra of A Ruin B. Then there exists a non-zero element Z € A Quin B such that ZZ* € D and

Z*Z = A® B for some A€y and B € B,.

Proof. Let T € © be a non-zero positive element. Since the elementary tensors of the pure states of 2 and
B separate points in A @min B, there exists pure states ¢ € A* and ¢ € B* such that (p ® ¢)(T) # 0. Let
B; = (¢ ® Idg)(T) € B4 (as p ® Id is a positive map). Therefore ¥(B1) = (¢ ® ¥)(T) # 0 so By is a

non-zero element of B. By scaling T, we may assume without loss of generality that ||B;] = 1.

Since T € A @min B there exists X; € A and Y; € B such that ||Y;|| = 1 for all 4 and

- 1
— X, Y, —.
=1 min
Hence
1
B - ZQO 12

By Proposition 3.7, there exists a positive element Ay € A with ||A;|| = 1 such that
1 1 1
HAfX,»Af - <p(X¢)A1H <o
for all i € {1,...,n}. Hence

1 1
H(Af RNT(AZ @) — A ® 31H

[ /\

3 3 _
(A? ® Ip) ZX@Y (A2 @1p)— A4, ® B

(i(@(Xi)Al) & Y;-) - A ®B

i=1

(Z(@(Xi)z‘h) ® Yz) -A® <Z @(Xi)Yz) H =~

i=1

|
—
Do
—
Lo
—_
o

Hence, by Lemma 3.9 (as everything is positive), there exists an R € A Quin B such that

1 1 1
R*(A? @ Ip)T(A? ® Is)R = ((Al ® By) — 419@;3) .
+
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Fix § such that § < § <1 and let A := (A —6ly)4 € A4 \ {0} and B := (By — 6Ip)4+ € B, \ {0}. We
claim that there exists an element S € C*(Ay, It) ®min C*(B1, Is) such that

1
5" <<A1 ® By) - 4Im®m%> S—A®B.
+

To see this, we notice that

(410 B1) = {nom ) A B € C (A1 o) S C (1, )
+

and C*(Az, Iy) ®min C*(B1, Is) is an abelian C*-algebra. However, if ¢ is a multiplicative linear functional
on C*(A1,Iy) ®min C*(B1, Is), then it is easy to see that ¢ = ¢1 ® ¢o where ¢; is a multiplicative linear
functional on C* (A1, Iy) and ¢ is a multiplicative linear functional on C*(By, Is). If ¢(A ® B) # 0, then
¢1(A) # 0 and ¢2(B) # 0. Therefore, there must exists A1, Ao > 0 such that ¢1(A1) = A\ and ¢o(B1) = A2
(as multiplicative linear functionals on abelian C*-algebras are precisely the pure state and thus evaluations
at a point). Hence

1 1 1
¢ <<(A1 ® By) — 4Im®mm%>+> > A2 — 17 6% — T

Therefore, as % < § < 1, the above implies that

GEATHABD) £0) C {¢>eA | ¢<(<A1®Bl)—im®m%) ) #o}
+

where A is the maximal ideal space of C*(Ajy, Iy) ®min C*(B1, ). Therefore, by considering C'(A) ~
C* (A1, It) @min C*(B1, Is ), we obtain that there exists a positive element S € C* (A1, Iy) @min C*(B1, Is)
such that )

5" (<A1 ©B) -

Im®111i11%> S = A ® B'
+

Let Z := T3 (A? ® Iy)RS. Then

1 1 1
Z*7Z =S5"R*(A? @ Ip)T (A ® Ig)RS = S~ <(A1 ® By) — 4Ig[®mm%> S=AQ®B
+

and

0< ZZ* = TH(A? ® I3)RSS*R*(A}  Is)T? < |RSS*R|| T
so ZZ* € ® as ® is hereditary. O
Theorem 3.11. Let A be a unital, purely infinite C*-algebra and let B be a unital C*-algebra such that

every hereditary C*-subalgebra contains a non-zero projection. Then A Q@umin B is purely infinite. Therefore
A Qmin B and M, () are purely infinite if A and B are unital, purely infinite C*-algebras.

Proof. Let ® be a hereditary C*-subalgebra of 2®,;, 8. By Kirchberg’s Slice Lemma, there exists a non-zero
element Z € A @iy B such that ZZ* € © and Z*Z = A® B where A € A, \ {0} and B € B4 \ {0}.
Notice that (ZZ*)(2 @min B)(ZZ*) C D as D is hereditary. Define

7 (Z*2) (N Duoin B2 Z) — (Z2°)(A Do B)(Z27)

by 7(T) = VI'V* where V € (A Quin B)” C B(H) is the partial isometry such that Z = V|Z| (it is not yet
clear 7 has the correct codomain). We claim that 7 is a well-defined isomorphism. To see this we notice that
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VZ*ZV* = ZZ* and that 7 is clearly a *~-homomorphism on these spaces as VV* is the projection onto the
range of Z and V*V is the projection onto the range of Z*. Finally, if T' € A ® i, B is positive,

V((Z*2)T(2* Z2))\V* = Z|Z|T\Z|Z* € A @pmin B

and
VI(Z*Z2)T(Z*Z2)V* = Z|1Z|IT\Z|1Z* < |T\|ZZ*ZZ*
so V(Z*Z2)T(Z*2)V* € (ZZ*)(A Qumin B)ZZ*) as (ZZ*)(A @min B)(ZZ*) is hereditary. Hence 7 does
indeed map (Z*Z)(2A @min B)(Z*Z) to (ZZ*)(A Qmin B)(ZZ*). Since 7~ Y(T) = V*TV will also be a
*-homomorphism, we obtain that 7 is an isomorphism.
Therefore, to show that © has an infinite projection, it suffices to show that (Z*Z) (A ®@min B)(Z*Z) has
an infinite projection. However

AAA @uin BBB C (A® B)(A @min B)(A® B) = (Z*Z)(A @min B)(Z*2)
Therefore, since AAA and BB B are hereditary C*-subalgebra of 20 and 8 respectively, since 2 is purely

infinite, and since every hereditary C*-subalgebra of B contains a non-zero projection, it is easy to see that
® has an infinite projection. Hence 2 ®in 9B is purely infinite. O
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4 K-Theory for Purely Infinite C*-Algebras

In this chapter we will develop the K-theory for unital, simple, purely infinite C*-algebras. Luckily, as
the K-theory for said algebras is straightforward, a reader without knowledge of K-theory may survive this
chapter. For a unital, simple, purely infinite C*-algebras 2(, we will define two abelian groups, Ky(2l) and
K1(21), using the projections and unitaries in 2. As the theory of projections in unital, simple, purely
infinite C*-algebras is ‘nice’, the development of Ky(2() can be done in a simpler fashion than usual. The
development of K7(2() must be done in the usual fashion and then shown to be ‘nice’ for unital, simple,
purely infinite C*-algebras.

The ideas of this chapter were developed from the original paper [Cul]. There is a significant amount of
information in this paper that we will not use and the interested reader should take the time to go through
this paper.

We will begin with the construction of K(2() for a unital, simple, purely infinite C*-algebra 2.

Construction 4.1. Let 2l be a unital, simple, purely infinite C*-algebra. For each non-zero projection
P € 2 let [P]o denote the equivalent class of P (see Definition 2.1 for the equivalent relation).

Recall that Iy is a properly infinite projection in 2l by Lemma 2.3 and thus we can write Iy = Py + Qg
where Py and )y are orthogonal infinite projections. Therefore, if P and ) are non-zero projections in 2,
Proposition 2.6 implies that there exists projections P’ ~ P and Q' ~ @ such that P’ < Py and Q' < Qg
(and thus P'Q’' = 0).

If P and @ are non-zero projections in 2, we define

[Plo +[Qlo = [P"+ Qo

where P’ and @’ are any non-zero projections in 2 such that P’ ~ P, Q' ~ Q, and P'Q' =0 (so P+ Q' is a
non-zero projection). The above paragraph shows that such P’ and @’ exist. Moreover, if P ~ P, Q" ~ @,
and P”"Q"” = 0, it is not difficult to show that P’ + Q' ~ P" + Q" as, it V*V = P/, VV* = P" W*W = @/,
and WW* = Q"”, orthogonality implies (V + W)*(V 4+ W) =P +Q and (V+ W)(V +W)* = P" +Q".
Hence this is a well-defined operator on the non-zero projections.
Let
Ko(2) := {[P]o | P a non-zero projection in 2}

equipped with the additive operator given above. Clearly
[Plo+[Qlo = [P'+Q'lo = [Q + P'lo = [Qlo + [Plo
for all non-zero projections P, @ € A so K((2) is an abelian semigroup.

Before continuing, we point out the following technical yet common lemmas.

Lemma 4.2. Let A be a C*-algebra and suppose P, Q, and R are projections in A such that Q, R < P,
Q~R,and QR=0. Then P—Q ~ P — R.

Proof. Let V' € 2 be the partial isometry such that V*V = @Q and VV* = R. Since QR =0= RQ, QV =0
(as the range of V is the range of R) and RV* = 0 (as the range of V* is the range of @Q)). Hence V*Q = 0
and VR = 0.

Let W:=P—-Q— R+ V. Then

wWwW = (P-Q—-R+V*(P-Q—-R+V)

P-Q—-R+V)—0—RV+(V*=V*R+V*V)
P-Q—-R+V)-—RV+(V*-V*R+Q)
P-Q-R+V)-V4+(V*-V*+Q)
= P—-R

Il
A~ N S N
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and

wWw* = (P-Q—-R+V)(P-Q—-R+V*)
= (P-Q—-R4+V")—-QV*—0+(V -VQ+VV*)
= (P-Q—-R+V*) — QV* (V-VQ+R)
= (P-Q—-R+V*)— +(V-V+R)
= P - Q
as desired. O]

Lemma 4.3. Let A be a C*-algebra and let Q,Q’, and Qo be non-zero projections in 2 such that Q' < Q and
Q ~ Qo. Then there exists a non-zero projection Qf € 2 such that Q) ~ Q', Qf < Qo, and Q—Q" ~ Qo— Q.

Proof. Let V € 2 be such that V*V = Q and VV* = Qp. If V! = VQ' then
(V/)*VI — Q/QQI — Q/ and V/(V/)* — VQIV* < VQV* — QO

(where the strict inequality comes from the fact that VQ'V* = VQV™* implies Q' = V*VQ'V*V =
V*VQV*V = @ which is a contradiction). Let Qf := V'(V')*. Thus Q) ~ Q" (so Q[ is non-zero) and
Q) < Qo. Moreover

(V-VHV-V)=VV VTV =VV)+V)V) =Q -VQV"-VQV"+Qy=Qo—Q
and
(V-=V)yV-v)=vv-V)yv-v )+ (V) (V)=0-QQ-QQ +Q =Q -
0 Q — Q' ~ Qo — Q) as desired. O
The reason K(2l) is special for unital, simple, purely infinite C*-algebras is the following.

Theorem 4.4. Let 2 be a unital, simple, purely infinite C*-algebra. Then Ko(2A) (as defined in Construction
4.1) is a group.

Proof. To show that 2 is a group, it suffices to show that 2 has an identity element and each element in 2
has an additive inverse.

Fix an arbitrary non-zero projection ) € 2. Since 2 is a unital, simple, purely infinite C*-algebra,
Lemma 2.3 implies there exists non-zero projections P’ and Q' such that Iy ~ P', P’ < Iy, Q@ ~ @', and
Q' < Q. Our goal is to show that

[In — P'lo = [Q - Q'lo
and to use this to show that [Iy — P']o is the identity element of Ky () for any choice of projection P’.
By Proposition 2.6 implies there exists a non-zero projection () such that Q ~ Qg and Qg < P’. Hence,

by Lemma 4.3, there exists non-zero projection Qf € 2 such that Qp ~ Q', Qp < Qo, and Q@ — Q" ~ Qg — Qf.
Therefore, since Iy — P’ and Qy — @, are orthogonal projections (as Qo < P’), we obtain that

[Io = Plo +[Q — Q'Jo = [Ta = Plo + [Qo — Qplo = [Ia — (P — Qo + Q)lo-
However, since Qo ~ @y, there exists a partial isometry V' € 2 such that V*V = Qg and VV* = Qf. Since
Q) < Qo < P', we obtain that VQo =V = VP, and Q)V =V = QoV = P'V. Thus QoV* = V* = P'V*
and V*Q) = V* = V*Qq = V*P'. Therefore, if W := (P’ — Qo) + V, we obtain that
W*W = (P' = Qo) + V*(P' = Qo) + (P' = Qo)V + V'V = (P —Qo) + 0+ 0+ Qo = P

and

WW* =(P' —Qo)+ V(P —Qo)+ (P —Qu)V*+VV* = (P = Qo) +0+0+ Q) =P — Qo+ Q.
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Therefore, Lemma 4.2 implies that
Iy — P ~Iy— (P — Qo+ Qp)

SO
[Ty = P'lo = [la — (P" = Qo + Qp)lo = [Ta — Plo + [Q — Q'Jo.

However, the roles of Iy, P’, @, and Q' are easily interchanged in the above proof (we did not use any special

properties of Iy ) so we also obtain that

Q- Qo =[Q — Qo + [Ia — Plo.

Hence
Ho— P'lo=[Ia — Plo+[Q - Qo =[Q — Qo

as addition is commutative.
Therefore, to see that [Iy — P']o is an identity element of Ky(2(), we notice that

Qo+ [In — Plo=[Qlo+[Q - Q'lo =[Q+ (Q — Q"]o = [Qlo

by the definition of addition in Ky(21). Therefore, as @ was an arbitrary non-zero projection in 2, we obtain
that [Iy — P']o is an identity element in Ko ().

To see that every element of K(2() has an additive inverse, fix a non-zero projection @ € 2. Since 2 is
purely infinite, Lemma 2.13 implies @ is properly infinite and thus Lemma 2.3 implies there exists non-zero
orthogonal projections " and @’ in 2 such that Q ~ Q' ~ Q" and Q’,Q" < Q. From the above proof
[Q — Q']o is an identity element of K(2l). Since

Qb +[Q-Q -Q"o=[Q"o+Q-Q -Q"o=[Q"+(Q-Q -Q")=[Q-Q

by the definition of addition in Ky(2A), [Q — Q" — Q"]o is an additive inverse of [Q]o in K(). As @ was an
arbitrary non-zero projection, Ko(2l) is a group. O

Remarks 4.5. For those familiar with general K-theory for C*-algebras, we will briefly outline why the
above definition of Ky(21) is equivalent to the traditional definition. Recall that if 2 is a unital, simple,
purely infinite C*-algebra then M,,(2) is a unital, simple, purely infinite C*-algebra by Theorem 3.11.
Therefore, if P,Q € M, (), P and @ are equivalent to orthogonal projections inside the canonical copy of
A C M, (2) (in the (1,1)-entry). Thus the abelian semigroup defined in the usual construction of K(2() is
identically the Ky(2) constructed in Construction 4.1 and thus already a group (so nothing changes when
the Grothendieck group of this semigroup is taken).

With the development of Ky(2() complete, we turn to the development of K ().

Definition 4.6. Let 2 be a unital C*-algebra. Let
URL) :={U € 2 | U is a unitary}

which will be called the unitary group of 2.

We will say that U,V € U(2l) are homotopically equivalent in U (2l) if there exists a continuous path
v : [0,1] — U(A) such that v(0) = U and (1) = V. We will use U ~; V to denote U and V are
homotopically equivalent.

Let Up(2A) denote the path-connected component of Iy in U(2A); that is

Up(A) :={U eUA) | U ~n Ini}
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Remarks 4.7. Suppose U,V,W € U(A) are such that U ~j V and V ~j, W. Therefore there exists
continuous functions v : [0,1] — U () and « : [0,1] — U () such that

v0)=U, ~(1)=V =a(0), and «(l)=W.

If 7o : [0,1] — U(R) is defined by 7o(t) = v(1 —¢) for all t € [0,1], 4o is a continuous function such that
v(0) =V and v9(1) = U. Thus V ~p, U. Moreover, if ag : [0,1] — U(2A) is defined by ag(t) = v(2t) for all
t€10,3] and ag(t) = (2t — 1) for all t € [1,1], then « is a continuous function (as (1) = a(0)) such that
ap(0) = U and agp(1) = W. Hence U ~, W. As U ~;, U is trivial (by taking the constant function with
constant value U), ~y, is an equivalence relation on the set of unitaries.

Moreover, if Uy ~p, Vi and Uy ~j, Vo then U Uy ~p, ViV4 (as if 4, : [0, 1] — U(RL) is a continuous function
such that v(0) = U; and (1) = V; then, if v : [0, 1] — U() is defined by ~o(t) = 1 (t)y2(t) for all ¢ € [0, 1],
7o is a continuous function such that vo(0) = U1U; and vo(1) = Vi Va).

To begin our study of K (), we will first investigate Uy(2(). Lemma 4.8 will be used in an essential part
of the construction of K7(2() and Lemma 4.9 is more of general interest (and provided some motivation in
Chapter 5).

Lemma 4.8. Let 2 be a unital C*-algebra. Then the following are true:
1. If A € U is self-adjoint, et € Uy(A).
2. If U € U(A) is such that o(U) # T, then U = €' for some A € Uy, and thus U € Up(A).
3. If U,V € UA) are such that ||[U — V| < 2, then V = Ue' for some A € Wy and thus U ~p, V.

Proof. To see that (1) holds, let A € 2 be self-adjoint and define v : [0,1] — U(A) by ~(t) = €*4. By the
Continuous Functional Calculus, 7 is a continuous function into () with v(0) = Iy and (1) = e*4. Hence

iA
e e UO(QI)
To see that (2) holds, notice that if U € U(2) is such that o(U) # T, then U = ¢4 for some self-adjoint
A € A by the Continuous Functional Calculus (i.e. A = —iln(U) for some choice of logarithmic branch).

Thus (2) follows from (1).

To see that (3) holds, notice that if U,V € U(A) are such that ||[U — V|| < 2 then ||[Iy — U*V]| < 2 so
—1 ¢ o(U*V) by the Continuous Functional Calculus. Therefore, (2) implies U*V = e*4 for some A € Ay,
and thus U*V ~y, Iy. Hence V.= U(U*V) ~p, U(Iy) = U as desired. O

Lemma 4.9. Let 2 be a unital C*-algebra. Then Uy(A) is an open and closed normal subgroup of U(A).

Moreover
n

UO(Q[) = H eiAj ‘ ne N7 {Aj}?:l C lea

j=1

Proof. If U,V € Uy(A) then U ~y, I and V ~p, Iy so UV ~p, I3 = Iy and thus UV € Uy(A). Moreover,
if U € Up(A) then U ~p, Iy so U™ ~p Iy (as if v : [0,1] — U(2L) is a continuous function such that
v(0) = U and (1) = Iy then, if 7o : [0,1] — U(R) is defined by vo(t) = ~v(¢)* for all ¢ € [0,1], v is a
continuous function such that vo(0) = U~ and (1) = Iy). Hence Uy(2) is a subgroup of U(2A). Moreover,
it U € Up(A) and V € U(2A) then

VUV* ~p VIgV* = Iy

so VUV* € Uy(A). Hence Up(2A) is a normal subgroup of U ().
To see that Up(2) is open in U (), notice if U € Up(A) and V € U(A) are such that ||[U — V|| < 2 then
V ~p U ~p I by Lemma 4.8 so V' € Up(A). Thus Uy(2) is open.

Since
URD)\ Up(A) = U Uldp (1),
Ueld(A)\Uo (A)
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UL \ Up(2A) is a union of open sets and thus open. Hence Uy(2) is closed in U(21).

Finally, to show that Uy (1) is the desired set, we notice the inclusion D is trivial as Uy(2) is a subgroup
and e € Uy(A) for all A € ,, by Lemma 4.8. To see the other inclusion, suppose to the contrary that
there exists a unitary U € Uy(2A) such that U ¢ {[]/_; 'Y | n € N, {4;}7_, C Asa}. Since U € Up(2A),
there exists a continuous function « : [0, 1] — Uy () such that v(0) = Iy and (1) = U. Let

n

g=inf{te(0,1] [ 4() ¢ q[[e™ | neN {4} A

j=1

which clearly exists as v(1) = U. Since + is continuous, there exists a § > 0 such that ||y(¢) —v(¢)]] < 1 for
all t € [¢ — 6,q+ 0]. Thus ||v(¢ — ) —~(t)|]| < 2 for all t € [g — 0, g5]. Therefore Lemma 4.8 implies that for
all t € [q — 6, q + 0] there exists an A; € A,, such that y(t) = e'4*y(q — §). However, by the definition of ¢,

n
vg—8) =]
j=1
for some n € N and {Aj};?zl C Agq sO
n
y(t) = e H 't
j=1
for all t € [¢ — 0,q + d]. As the above contradicts the definition of ¢, we have a contradiction so the result

follows. O

The construction of K () is more difficult than Ky (2() as we will need to consider an equivalent relation
on the set of unitary operators in matrix algebras of 2l. In order to do this, we need the following essential
lemma due to Whitehead.

Lemma 4.10 (Whitehead). Let 2 be a unital C*-algebra and let U,V € U(A). Then
U 0 uv 0 VU 0 V o
[0 v]”h[ 0 Im}’vh[ 0 Im]”h[o U]
in Ma(2L).
Proof. Let

[0 Iy
w0 5],

Then it is clear that W? = Iy, (e so o(W) C {1, —1}. Hence W ~y, Ing, (). However, a trivial computation
shows that
U 0 U o vV o0
v =L e vl

U 0 U 0 vV o0 [ouv o
0 V|| 0 Iy || o g [T = o g |

Repeating the above with U replaced with Iy gives
Iy 0] [V 0]
0 V|0 Iy |
U 0] [In 0 v o] [V olJ[UuU o]_[VU 0
0 V] |0 V][0 Io| ™| 0 In|[0 Ia| | 0O In|"

Finally, the third ~ in the statement of the theorem follows by symmetry. O

and thus

and thus
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We can now begin to define K7 (2(). First we need to construct the following group.

Definition 4.11. Let 2( be a unital C*-algebra. For two matrices T € M,,(2) and S € M,,, () let diag(T, S)
denote the matrix in M, ., () where the upper-left n x n matrix is 7', the lower-right m X m matrix is S,
and all other entries are zero.

For each n € N define the group homomorphism «,, : U (M, () = UM 41 (A)) by a,(T) = diag(T, Iy)
for all T € UM, (). Let Uoo (A) := limy, 00 U(M,, (A)); that is Us (A) is the inductive limit of the unitary
groups of M,,(2() under the above inclusions. Recall that, abstractly, Us (2) can be viewed as the union
of all U(M,()). Thus for any two U,V € Us, there exists n,m € N such that U € U(M,(2)) and
V eUM,,(2)).

We define a relation ~; on U (2A) as follows: if U € UM, (A)) and V € UM, (A)), U ~1 V if and
only if there exists a k& > max{m,n} such that diag(U, Irq,_,2)) and diag(V, Irq,_,. (2)) are homotopically
equivalent in U (M (2)).

The first step in developing K7 (2) is the following.
Theorem 4.12. Let A be a unital C*-algebra. The relation ~1 on Uso(2) is an equivalence relation.

Proof. Tt is clear that if U € Uso(A) then U ~1 U. Moreover, if V € U () and U ~; V then it is clear that
V ~1 U as homotopic equivalence is an equivalence relation on U (M (2L)).

Finally, suppose U € U(M, (), V € UM, (), and W € U(M,(2)) are such that U ~; V and
V ~q W. Then there exists k; > max{m,n} and ks > max{m, £} such that

diag(U, In,, ) ~n diag(V,In,, . 20)
in UMy, (L)) and
diag(V, Iy, ) ~n diag(W, Iy, ()
in U(Mp, (). Let k := max{ki, ko}. It is then clear that
diag(U, Ipm, _, ) ~n diag(V, In,_, )

in U(Mj(A)) and
diag(V, I, _,. ) ~n diag(W, Iy, (21))

in U(My(2)) as taking a direct sum with an identity will preserve homotopic equivalence (that is, take the
direct sum of the continuous path with the constant path with constant value the identity to obtain the new
continuous path). Therefore, as homotopic equivalence is an equivalence relation in U(My (1)), U ~1 W as
desired. O

Notation 4.13. Let 2 be a unital C*-algebra and let U € U, (). Let [U]; denote the equivalence class of
U in U () with respect to the equivalence relation ~q (see Definition 4.11 and Theorem 4.12).

Before we define K7(2l), we desire to describe the abelian operation on the ~j-equivalence classes of
Uso ().

Proposition 4.14. Let 2 be a unital C*-algebra. Then
1. For alln € N [Ty, )1 = [La1-
2. For all U,V € U (), the operation [U]1[V]1 = [diag(U, V)] is well-defined.
3. For allU,V € Uso(A) [UNL[V]1 = [V]1[U]1 and [Uh[Iu]1 = [U4].
4. If U,V e UM, (RL)) then [Uh[V]L = [UV]1 so [UL[U*1 = [Tal1-
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Proof. Notice (1) is trivial by the definition of ~.
To see (2), suppose U; € U(M,,;()) and V; € U(M,,,(A)) are such that U ~; U" and V' ~y V'
Therefore there exists a k; > max{ni,n2} and a ko > max{mj, ma} such that

diag(Ul, IMkl—nl (g[)) ~h diag(Ug, IMklfnz (g{))

in UMy, (1)) and
diag(Vi, Iy, oy 20) ~h diag(V Ing,, ., 20)

in U(My,(2)). As taking direct sums with the identity preserves homotopic equivalence, we can increase k;
to assume that m; divides k1 — ny and mo divides k1 — no.
By taking direct sums of continuous paths, it is clear that

diag(Ul, IMkl—nl (A)» Vl, IMkQ—ml (Ql)) ~p diag(Ug, IMkl_n2 (A)» Vé, IMkz»—mz (Ql))

in U (Mg, +1,(2)). By the fact that my divides k; — nq and mq divides k1 — no, by applying Lemma 4.10
klﬂ:ilnl times, we see that

diag(Uv, Inay, ., 20 Vis Iy, ) ~n diag(Un, Vis Iy, 20 IMy, o, 20)
in U( My, +x,(20)) and, by applying Lemma 4.10 ’“7;72”2 times,

diag(Uz, Ina,,, ., 05 Vos Indy, oy ) ~ diag(Uz, Vo, Inay )5 Iy g (20)

in U(Mpg, 41, (). Hence [diag(Uy, V1)]1 = [diag(Us, Va)]1 so this operation is well-defined.

To see (3), we note that [U1[Iu]1 = [diag(U, Iy)]1 = [U]y is trivial by the definition of ~;. For the
other equation, suppose U € UM, (A)) and V € UM, (A)). Then, for any k£ > max{m,n}, [U}y =
[diag(U, L, )] and [V]1 = [diag(V, Im, _,, 1))]1. However

diag(diag(U, Ia, ., ), diag(V, Iy, _,.))) ~n diag(diag(V, Ia, . ), diag(U, I, )))
in My(Mj(2)) by Lemma 4.10 so

[diag(U, Lpm,_,, )] [diag(V, Iag,, . )1 = [diag(V, Ly, ., c)]1[diag(U, Inq,, ., 2))) 1

and thus [U]1[V]1 = [V]1][U]1 as desired.
To see (4), note if U,V € U(M,,(A)) then diag(U, V') is homotopically equivalent to diag(UV, L4, (2r)) in
Mo (M, () by Lemma 4.10 and thus the result follows. O

Thus we can define K ().
Definition 4.15. Let 2 be a unital C*-algebra. We define K;(2l) to be the set

Ki() = {{UlL | U €Uo(A)}

together with the well-defined (by Proposition 4.14) binary operation [U]1[V]1 = [diag(U,V)];. Thus K7 ()
is an abelian group by Proposition 4.14.

Note that the above holds for any unital C*-algebra. Moreover, it is clear that if U,V € U(2l) are such
that U ~p, V in 2 then [U]; = [V];. Hence, as Up(2) is a subgroup of U(2), there exists a well-defined
group homomorphism from U () /Uy () to K1 () defined by U — [U];. Our goal is to show that this group
homomorphism is a group isomorphism for unital, simple, purely infinite C*-algebras.

To begin this proof, we have the following lemma which is stronger than what we currently need but will
be of use in Chapter 5.
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Lemma 4.16. Let 2 be a unital, purely infinite C*-algebra, let U € U(RL), and let A1,..., A\, € o(U) be
distinct. Then for any € > 0 there exists a V. € U() and infinite, orthogonal projections Py,..., P, € 2
such that |[U = V|| < ¢, each P; commutes with V, and P;VP; = \;jP;. Moreover V.= V' 4+ 37| \;P;

where V' is a unitary operator in (Ig[ -2 Pj) plt (191 — > Pj).

Proof. Tt is easy to choose non-zero, positive, continuous functions f1,..., f, on o(U) with the support of
each f; contained in the set {\ | |]A—\;| < €}. By choosing € small enough, we can assume that the supports
of f1,..., fn are disjoint.

Consider the hereditary C*-subalgebras f;(U)2Lf;(U) for all j. Since 2 is purely infinite, there exists
infinite projections P; € f;(U)20f;(U). Since the supports of fi,..., f, are disjoint, elements of different
f;(U)2Af;(U) are orthogonal so P, ..., P, € 2 are infinite orthogonal projections. Moreover, it is clear that
P;UP; =0 for all ¢ # j as U commutes with each f;(U).

Let

Vor=> NP+ |Ia—Y P |U|Ia=> P;| et
j=1 j=1 j=1

Then
U = VoIl < max{|AP; - PUP |} <= ¢

since, by construction, P;UP; = 0 = P;VyP; whenever ¢ # j and P; < Ey({\ | |A — Aj| < €}). Hence, by
selecting € small enough, we obtain that Vj is invertible. Moreover, we can assume that ||[VoVy — Ia|| < 2e

SO
1 2e

1—2 1-2¢
Let V be the partial isometry in the polar decomposition of V. Since Vp is invertible, V € U(2l) and
V = Vo|Vo|~". Thus

Vol ™' = 1| <1-

2e
1—2e¢
which can be made arbitrarily small. Finally, to see that P;VP; = AP; for all j, we notice that P;Vp =
VoP; = AP; for all j. Therefore P; commutes with C*(V}). Hence P;|Vp|P; = (Pj‘/b*PjVOPj)% = P; so

U = VI < 17 = Vol + [|[Vo - VolVol ]| < e +

PV P; = PjVoPj|Vo| ' P = AP,
for all j as desired. O

Corollary 4.17. Let 2 be a unital, simple, purely infinite C*-algebra and let U € U(A). Then there exists
a non-trivial projection P € A and a unitary V € PAP such that U ~, V + (Iy — P).

Proof. If o(U) = {e“}, let P be any non-trivial projection in 2. Then U = e'*Iy = '*P + ¢! (Iy — P). Let
V = e P € U(PAP) and define v : [0,1] — U(A) by v(t) = e!*P + e'*!(Iy — P). Hence v is a continuous
path into U (2) such that v(0) =V 4+ (Iy — P) and y(1) = U. Hence U ~p, V + (Iy — P).

Otherwise, let A1, A2 € o(U) be distinct points. By Lemma 4.16 there exists infinite orthogonal projec-
tions Py, P, € 2l and a unitary V' € (Iy — Py — P»)2(Iy — Py — P,) such that

HU — (V’ + AP+ )\QPQ)” < 2.

Hence U ~jp, V' + A1 Py + Ao P by Lemma 4.8. Thus, if we let P := Iy — Py and V := V’/ + A\ Py, then P €
is a projection and V' € U(PAP) are such that U ~j V + Aa(Iy — P). By the same arguments as used in
the above paragraph, V 4+ Aa(Iy — P) ~p V + (Iy — P) so U ~, V + (Iy — P). O

In the development of K (2() we used the matrix algebras M, (2() to construct Uy (2A) and the correct
equivalence relation. There is an alternative method for investigating K;(2() where the unitary group of
the unitization & i, A is used. This is the motivation for the following lemma which will be essential in
proving our desired result.
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Lemma 4.18. Let 2 be a unital, simple, purely infinite C*-algebra, let U € U(RA), and let E € R be any rank
one projection. Then U € Uy(A) if and only if EQU + (Igg, ..a — F ® Iy) ~n Igg,..a in the unitization of
R Qmin A.

Proof. Tt is clear (by taking direct sums) that if U € Up(A) then E Q@ U + (Ipg, o — E @ In) ~n Igg, .2
Thus suppose E @ U + (Igg, a0 — E ® Iy) ~p Iag, - By Corollary 4.17, U ~p U’ + (Iy — P) in 2 for
some non-trivial projection P € 2 and some unitary U’ € PAP. Hence

E@ (U + (Ia — P)) + (Ingmwa — £ @ In) ~n Ingua-

Since Iy — P is non-zero and 2 is a unital, simple, purely infinite C*-algebra, Lemma 2.3 implies that
there exists a non-zero projection @) < Iy — P such that @ ~ Iy — P. Since Iy — P — @ is non-zero,
Lemma 2.3 implies that there exists a collection of pairwise orthogonal projections {R;};>1 in 2 such that
R <Iy—P—-Qand Rj ~ Iy —P—Q forall j € N. Let Ry := P+ and let V' € 2 be the partial isometry
such that V*V = @ and VV* = Iy — P. Therefore, since Q < Iy — P, VP = PV = V*P = PV* = 0.
Therefore, if W := P + V* then

WW*=(P+V*)(P+V)=P+V*V=P+Q=Ry

and
WW=(P+V)(P+V*") =P+ VV*=1Iy

so Ry ~ Iy. Therefore {R;};>0 is a set of pairwise orthogonal projections all of which are equivalent to Iy.
For each n € N let V,, € 2 be the isometry such that V,,V,; = R, with V) = W. For each m € N let
Fpn:=Ro+Ri+- -+ R, €, and define ¢, : Mp,11(A) = F,,AF, by

m—+1

Om([Aig]) = D VierAi Vi,

ij=1

To see that ¢,, maps into F,,2F,,, we note that F}, is a projection so it suffices to show that

Fondm([Aij]) Fm = dm([Ai5])

for all [A; ;] € Mn41(). However, since {R;};>0 is a set of pairwise orthogonal projections and V;V}* = R;
for all 5 > 0, Vj*Vl- = 01if i # j. Therefore F;,,V; = V; if m > j and V;*F,, = V;* if m > i. Therefore
Frndm([Aij]) Fin = ém([Ai ;]) for all [A; 5] € My 1(R) is clear. Moreover, as V*V; = 0 if i # j, it is trivial
to verify that ¢, is a unital, injective *~-homomorphism. To see that ¢,, is surjective, we notice that if A €

then
m+1 m+1

FnAF, = Z Ri 1AR; 1 = Z VielVis AV Vit = dm (V21 AV a]).

i,j=1 1,5=1

Hence ¢,, is a unital *-isomorphism and thus M,,11(2) and F,,2AF,, are isomorphic.

It is clear that F;,AF), embeds into F}, 414 F,,+1 for all m € N. Moreover, under the above isomorphism,
this trivial imbedding corresponds to the canonical imbedding of M,,+1(2l) into the upper-left (m + 1) x
(m + 1) entries of M,42(21). Hence it is trivial to verify that the C*-algebra generated by J,,,~; FimnAFm
and Iy is canonically isomorphic to the untization of & ®unin A. However, since -

U+ Iy—P)= U +Q)+ (Fn — Ro) + (Ia — F)
for all m € N, by identifying Ry with E, U’ + (Iy — P) corresponds to the unitary

E® ¢y (U 4+ Q)+ (Ig,na — E® Iy)
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in the untization of 8 ®uyin, A. However, as Vy = P + V* where VV* = Iy — P and V*V = @ (so
VP =PV =V*P=PV*=0)and as U’ € PUP,

(U +(Ua—=P)) = (P+V)U' + (Ia—P)(P+V)
= U 4V*(Iy—P)V
= U +V*VV*V
= U +Q.

Hence ¢ '(U' + Q) = U’ + (Iy — P).

Since E @ (U' + (Iy — P)) + (Igg,na — E ® In) ~n Iag,o and U’ + (Iy — P) corresponds to the
unitary E ® ¢ H(U' + Q) + (Ing,ma — E @ Iy) under the unital isomorphism of the C*-algebra generated
by U,,,>1 Fm@F,, and Iy is canonically isomorphic to the untization of & @min A, U’ + (Iog — P) ~p, Iy as a
unital *-isomorphism applied to a path of unitaries is a path of unitaries. Hence U ~y, Iy as desired. O

With the above in-hand, to continue our quest in showing Kj(2() = U(A)/Uy(A) we desire to show that
any unitary U € U(M,,(21)) is ~1-equivalent to a unitary V € U(R) C UM, (). This, along with Lemma
4.18, will enable us to finish the proof. Our main tools are the following two lemmas.

Lemma 4.19. Let 2 be a unital C*-algebra and let V € 2 be a partial isometry such that V2 = 0. Then for
every unitary U € U(V*VAV*V) the unitaries

Up:=U+ Iy —V*V) and Us:=VUV*+ (Iyq—VV¥)
are homotopically equivalent in U(2A).

Proof. It is clear that Uy and Us are unitaries in 2. Moreover, it is clear that W := V4+V*+(Ig—VV*-V*V)
is a unitary since VV* and V*V are orthogonal projections (as V2 = 0). Since W* =W, o(W) CRNT =
{1,—1} so Lemma 4.8 (part 2) implies that W € Uy ().

Notice, since V*U =0 = UV, that

WU W* = (V4+V* 4+ Iy —VV*=V*V)U+ (Ig = V*V)(V+V*+ (Iyg —VV*=V*V))
= (VU+(V+V Iy —V*V)+ Iy = VV*=V*V))(V+V*4 (Iyg — VV* = V*V))
= (VU+V* 4+ Iy —VV* =V*V))(V+V*+ (Iyg —VV* = V*V))
= VUV AV +VV4 Uy —VV*=V*V)V+V*)+ Iy —VV*=TV*V)
= VUV*4+V*V+0+ Iy —VV*=V*V)
= VUV*4+ Iy —VV* =Us.
Hence
Uy = WU W™ ~y, InU Iy = Uy
as desired. O

Lemma 4.20. Let 2 be a unital C*-algebra and let V. € M, () be a partial isometry. Then for every
unitary U € U(V*V M, (R)V*V), the unitaries

U, .= dz’ag(U + (IMn(Ql) — V*V),IMn(g[)) and Uy = diag(VUV* + (IMn(Ql) — VV*), IMn(Q[))
are homotopically equivalent in U(Map(2L)).

Proof. Consider the partial isometry Vy := diag(V,0) € Mao,(2(). Then it is clear that diag(U,0) €
UVy VoMo, (OVLVE),

i * U+ (I - V*V 0
Uy = diag(U,0) + (In,, ) — Vo Vo) = [ +( M () ) ] ,

0 Ia )
and

; * " VUV* + (I —VV* 0
Uy = ‘/Odl(lg(U7 O)VO + (IMzn(Ql) - %VO ) = |: + ( M () ) :| )

0 a2
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However, if

|0 T, o o
Vl,{o o and Vo = vV ool

then Vi and V5 are clearly partial isometries in Ma, () such that VZ = 0 = V2, Vo = V1V, and V5'Va =
diag(V*V,0) = V' V. Therefore, by first applying Lemma 4.19 with diag(U, 0) € U(V; VoMo, ()VoVy) and
V5, we obtain that

Uy ~p Vadiag(U, 0)V5' + (L, () — V2V )

However it is easy to verify that

0 0

Hence, as V*Vi = diag(0, In, () and thus diag(0, VUV 4 (Ing, ) — VV™)) € UV ViM2, (A)VVL),
Lemma 4.19 implies
W ~p V1WV1* + (IM%(Q‘) — V1V1*).

However

VIW VY + (L, ) — VIVY) = U2

so Uy ~p, Us as desired (alternatively (Vi + Vi)W (Vy + Vi) = Uy and Vi 4+ V{* is a self-adjoint unitary and
thus homotopic to I, a))- O

With the above completed, we can now prove the necessary theorem about K;(2() to move on with our
studies.

Theorem 4.21. Let A be a unital, simple, purely infinite C*-algebra. The group homomorphism ¢ :
U /Uy () — K1 () defined by U — [U)y is a group isomorphism.

Proof. To see that ¢ is injective, suppose U,V € U(2) are such that [U]; = [V];. By the definition of ~,
there exists a & € N such that diag(U, I, ) ~n diag(U, Iag, ) in U(Mp41(2)). Therefore, if E € R is
any rank one projection then

ERU+ (Ipgpwa —E@Iy) ~pn EQV + ([agpna — £ @ Iy)
in the unitization of 8 @iy, A. Thus
E ® UV* + (Iﬁ@minﬁ - E ® IQ[) ~h Iﬁ@minm

in the unitization of & @iy A so UV* € Uy(2() by Lemma 4.18. Thus ¢ is injective.

To see that ¢ is surjective, suppose U € U(M,,()) for some n € N. Thus it suffices to show that there
exists a W € U() such that [W]y = [U];. Since M,,(2) is a unital, simple, purely infinite C*-algebra by
Theorem 3.11, there exists an isometry V' € M,,(2) such that VV* = E; ; where Ej ; is the projection with
Iy in the (1, 1)-entry and zeros elsewhere. Therefore

diag(U, IMH(Q[)) ~h dzag(VUV* + (IMn(Ql) — El,l)a IMn(Ql))

in U(Ms, () by Lemma 4.20. Therefore, if W := VUV* (which can be viewed as a unitary operator in
2(), we obtain that

(U1 = [diag(U, Im,, @)l = [diag(VUV™ + (I, 20 — E11), Im,2)] = [Wh
so ¢ is surjective. O

The main only use of the above in the rest of this paper will be done in conjunction with the following
result which is essential in the proof of Theorem 5.11.
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Lemma 4.22. Let A be a unital C*-algebra such that there exists two isometries Ty, Ty € A with TYT} +
TQTQ* = IQ[. Then
[MUTY + TUT3)h = ([UL)?

for any unitary U € .

Proof. The following proof is motivated by the ideas of Lemma 4.10. Since 77 and 75 are isometries in 2
such that TVT} + 12Ty = Iy, 171> = 0 = T5T;. Consider the operator W := 11Ty + T51}. Then W = W*
and

W? =TT T Ty + ThTsToTy + ToTyTh Ty + ToT ToTy = 0+ ThTy + ToTy +0 = Iy.

Hence W is a self-adjoint unitary operator in 2 so W ~yj, Iy by Lemma 4.8. However
(MYUTY + TyT5 YW(TWUTY + ToT5)W = (TVUTy + ToT7 ) (ThU Ty + ToTy) = TVUTY + ThyUTy .

Hence
TUTy + ToUTy ~p (TVUTY + T3 In(TVUTY 4+ ToTy ) Iy = T1U2T1* + 1Ty

However, by applying Lemma 4.20 with n = 1 and the isometry V = T3, we obtain that
diag(U?, Iy) ~p, diag(TyUTy + (Iy — TyTY), In) = diag(TyU? Ty + ToT5 , Iy)
in U(M2 (1)) and thus
[UT] + ToUTy)y = [MUTy + ToTy)y = [diag(TYUTy + ToTy, In)]1 = [diag(U?, Iy)]1 = [U?]1 = ([U]1)?
with the last equality coming from Proposition 4.14. O

Remarks 4.23. To end this section, we note that Ky(O,) and K;(O,,) are known. In particular [Cul]
showed that Ko(O,,) = Z,—1 and K1(0,,) =0 for all n > 2. It will be necessary in the final step of Theorem
11.11 to know that Ky(O5) is trivial. However, we will obtain this fact as a corollary of Theorem 6.12.
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5 Approximation Properties of Purely Infinite C*-Algebras

In this chapter we will begin to study purely infinite C*-algebras and their various properties. First we will
look at a larger class of C*-algebras, known as the real rank zero C*-algebra, and see that purely infinite
C*-algebras have real rank zero which will give us several interesting properties. Then we will show that
purely infinite C*-algebras have the weak finite unitary property.

The results for the real rank zero portion of this chapter were developed from the excellent book [Da] (if
you are reading these notes, you should definitely invest in this book). The portion of this chapter on the
weak finite unitary property was developed from the original paper [Ph].

We begin with the definition of what it means for a C*-algebra to have real rank zero.

Definition 5.1. A unital C*-algebra 2 is said to have real rank zero if the set of invertible self-adjoint
elements, AL !, is dense in the set of all self-adjoint elements, As,.

sa

A non-unital C*-algebra is said to have real rank zero if its unitization has real rank zero.

Example 5.2. Clearly C'(X) has real rank zero for a compact Hausdorff space X if and only if X is totally
disconnected. Clearly every von Neumann algebra has real rank zero. Therefore all finite dimensional C*-
algebras have real rank zero. Moreover, it is easy to see that the inductive limit of C*-algebras of real rank
zero has real rank zero and thus AF C*-algebras have real rank zero. Moreover, the following proposition
gives us more examples.

Proposition 5.3. Let A be a unital, purely infinite C*-algebra. Then A has real rank zero.

Proof. Let A € 2 be a self-adjoint operator with ||A|| = 1 and let € > 0. Consider the two functions on R
defined by
0 if |[z] <€
fe(x) = max{e — |z][,0} and g(z)=< z—e€ ifz>e¢
rz+e fr<e
Clearly ge(x)fe(x) = 0 for all x € R. Moreover, clearly ||g.(A) — Al <e.

Let B := f.(A)f.(A) which is a hereditary C*-subalgebra of 2. Therefore, since 2 is purely infinite,
there exists an infinite projection P € %B. Since g.(z)fc(x) = 0 for all x € R, g.(A)B = {0} = Bg.(A).
Therefore g.(A)P = 0 = Pg.(A) so g.(A) = (I — P)ge(A)(I — P). Hence, as g.(4) > 0, B # A so P # I.
Hence I — P # 0. Therefore, since P is infinite, Proposition 2.6 implies that I — P is equivalent to a
subprojection of 2. Therefore, there exists a partial isometry V' € 2 such that V*V =1 — P and VV* < P.
Let Q = VV™.

Consider the element

Be = ge(A) +e(V+ V") +e(P - Q).

By viewing 2l as a unital C*-subalgebra of B(#), we notice that the matrix decomposition of B, with respect
to(I —PYH®QH® (P — Q)H (where V : (I — P)YH — QH is viewed as the identity) is

Therefore, since

R | R B S SN | Ky

€ €

it is easy to see that B, is an invertible, self-adjoint operator. Moreover
[ Be — All < [lge(A)]| + 3¢ < 4e

Hence, as A € %, was arbitrary, the proof is complete. O]
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Corollary 5.4. O, has real rank zero for alln > 2 and n = oco.

The most interesting properties of real rank zero C*-algebras are contained in the following.
Theorem 5.5. Let 2 be a unital C*-algebra. Then the following are equivalent:

1. (RRO) AU has real rank zero.

2. (FS) The element of A with finite spectrum are dense in Us,.

3. (HP) Every hereditary C*-subalgebra of A has an approzimate identity of projections (where the net of
projections need not be increasing).

Proof. We will show that (1) implies (2), (2) implies (3), and (3) implies (1). Note that (2) implies (1) is
trivial.

Suppose 2 has real rank zero. The idea is to take an arbitrary self-adjoint element, modify it a little
using the real rank property so that its spectrum consists of disjoint intervals, and then approximate this
new operator using spectral projections. Let A € 2 be a self-adjoint operator with norm 1 and let € >
0. Let =1 = z1,22,...,2, = 1 be an increasing subset of [~1,1] that forms an §-net for [-1,1]. Let
€1 = 7. Since 2 has real rank zero, there exists an element A; € %, such that A; — 211 is invertible and
(A1 —21I) — (A —z1I)|| < €1. Hence [|[A — A1 < €7.

Next choose 0 < ez < g such that [r; — €2, 71 + €] does not intersect o(A;). Since A has real rank
zero, there exists an element As € g, such that Ay — xo1 is invertible and ||(Ag — z2) — (41 — x21)|| < €.
Hence ||Az — A;]| < e3. Moreover, by the choice of e, } (A; — xlf)_lH < et s0

HI— (Al — $1I)_1(A2 — ‘TII)H < H(Al — (Elj)_ln ||A2 — A1|| <1

Hence (A; — 211)7*(Ay — x11) and thus Ay — x11 must be invertible. Therefore x1, 1o ¢ o(A3).
Next choose 0 < €3 < {5 such that [v1 — €3,21 + €3] and [z — €3, 72 + €3] do not intersect o(Az). By
repeating the above process ad nauseum, we eventually obtain a self-adjoint operator A, € 2l such that

x; ¢ o(Ay) for all ¢ and
A—A,| < ; 9—i-1 A
| S (X <

Since x; ¢ o(Ay) for all ¢, the operator

€ i €
Bi=—Ea, (-1-5.-1] + i;miEAn(:ci,l,xi] +Ba, (1L1+5)

(where E4, (X)) represents the spectral projection of A,, onto X) is an element of 2. Clearly B is a self-adjoint
operator with finite spectrum such that
€

2

|A= Bl < A= Aul|+ |4y~ Bl < 5 + 5 =
as desired. Hence (1) implies (2).

Next suppose that (2) holds. Let B be a hereditary C*-subalgebra of 2. To show that B has an
approximate identity of projections, it suffices to show that for any finite set By,..., B, € % and any
0 < e < %, there exists a projection P € B such that ||[B; — B;P|| < € for all i (and a two-sided approximation
will be obtained by considering adjoints). To begin, fix By,..., B, € B and any 0 < € < % Then

2 *
|Bi = BiP||” = [[(I = P)BiBi(I = P)|| < [|( = P)B(I = P)| < [|B - BP|

where B = Z?:l B} B,. Therefore it suffices to consider the positive operator B. Moreover we may assume
that || B|| = 1.
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We will first construct a projection in 2 that has the desired property and then we will modify it slightly

2
to obtain a projection in B. Fix 0 < § < #(e — €?). Then fix n € N such that 6= > 1 — § (which is possible
since § < 1). Since 2l has property (2), there exists a positive operator C' € 2 such that C has finite spectrum

and HB% — C‘ < 2 and ||C|| € 1. Let A = C™. Therefore

< 4.

2

SnHC—B%

Since C has finite spectrum, A also has finite spectrum and therefore the projection @ := E4[d,1] € 2. Tt is
clear by the functional calculus that

IA—AQ| <6  and HA%QA%fAHgmax{lfé%,é}:é.

Let X := BwQBw (so X is positive with || X|| < 1). Moreover, since B is hereditary, we obtain that X € 8.
We claim that X is almost a projection. Since

IX = Qll = |[Br@B7 — A7QAT + 47 QAT - Q| <2||B% — A

+ HA%QA% - QH <30

we obtain that

1 = X2 = (T - @Q)(X — Q) — (X — Q)X|| <65 < e — ¢
Therefore, by the spectral theorem, o(X) C [0,e]U[1l —¢,1]. Let P := Ex[1 —¢,1] which is an element of B
by our choice of € < %. Clearly || X — P| < € and

|B — BP|| < ||B - A|+]|A - AQ||+]|AQ — BQ|+[BQ — BP| < 30+|Q — P|| < 30+(36+¢) < 2e—€* < 2¢

as desired.

Finally suppose (3) holds and let A € 2 be an arbitrary self-adjoint operator of norm 1 and let € > 0. Let
A=A, — A_ be the decomposition of A into its positive and negative parts (where A and A_ commute
with Ay A_ =0). Let B = A;AA, which is a hereditary C*-subalgebra of 2 by Lemma 2.9. Since 2 has
property (3), there exists a projection P € B such that [|[Ay — A4 P|| <e. Since P € B and Ay A_ =0, we
obtain that A_P=0= PA_.

Let

B.:= PAP + (2¢)P + (I — P)A(I — P) — (2¢)(I — P) € 2.
Then B, is self-adjoint and
IBe — A|| < |PA(I — P)+ (I — P)AP|| +2¢||P— (I — P)|| < e+ 2¢ = 3e.

Moreover, since B, commutes with P, B, is invertible if and only if PB.P and (I — P)B.(I — P) are invertible.
However

PB.P =PAP + (2¢)P > (2¢)P
which is invertible as 2¢ > 0 and

(I = P)B(I - P)

(I = P)A(I = P) = (2¢)(I - P)
(I —P)Ay(I—P)—(I—P)A_(I— P)— (2¢)(I — P)
(I — P) — (2)(I — P) = —€(I — P)

(where (I — P)A4y(I — P) <¢(I — P) as ||Ay — AL P|| < €) which is invertible as —e < 0. Hence 2 has real
rank zero. O

IA I

By the above theorem, we can see that the self-adjoint elements with finite spectrum are dense in the
set of all self-adjoint elements in a real rank zero C*-algebra (this is known as property (FS)). However, we
know that the spectrum of any unitary element of a C*-algebra has dimension one in C so it is natural to
ask whether any unitary operator can be approximated by a unitary operator with finite spectrum in a real
rank zero C*-algebra. We encapsulate this idea in the following definition.
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Definition 5.6. A unital C*-algebra 2 is said to have the finite unitary property (written property (FU))
if every unitary operator U € 2 is a limit of unitary operators with finite spectrum.

A unital C*-algebra 2 is said to have the weak finite unitary property (written weak (FU)) if every
unitary operator U € 2 in the connected component of the identity in the group of unitary operators of 2
(denoted Uy (L)) is a limit of unitary operators with finite spectrum.

A non-unital C*-algebra is said to have (weak) property (FU) if its unitization has (weak) property (FU).

We will mainly be interesting in weak property (FU). Our goal is to show that every unital, simple,
purely infinite C*-algebra has weak property (FU). The main idea of the proof is contained in the following
(although the details will take us a fair amount of time to fill in).

Remarks 5.7. Tt is well known that if 21 is a unital C*-algebra then Uy (2) is the closure of {4142 ... ¢i4n
A; € Ao} and is path-connected (see Lemma 4.9). However, if U € Uy() were a limit of elements of the
form e?An where A, € 2, and if A had property (FS), then, by approximating each A, by a self-adjoint
element with finite spectrum, it is easy to see that U is the limit of unitaries with finite spectrum. Therefore,
our goal is to show that in a unital, simple, purely infinite C*-algebra every unitary U € Up(2l) is a limit of
elements of the form e*4» where A, € A,,. One useful observation is that if U € 2 is a unitary operator
such that o(U) # T, then U = ¢4 for some self-adjoint operator A € 2 by Lemma 4.8. The proof that
unital, simple, purely infinite C*-algebras have weak property (FU) will involve a series of technical lemmas.

Lemma 5.8. Let 2 be a unital C*-algebra, let o : [0,1] — Up () be a piecewise C* path such that a(0) = I,
and let L be the length of a.. Then o(a(1)) C {e? | —L <6 < L}.

Proof. To begin, we first claim that if U,V € 2 are unitaries and A € o(V'), then there exists a pn € a(U)
such that |u — A| < ||U — V||. To see this, suppose to the contrary that A € o(V) yet |u— A| > ||U — V|| for
all p € o(U). Then

=M =V)[=||M-U)T""AN-U)—M=V)| <||M=-U)"HIIU-V|<1

as ||(M = U)7Y| < dist(A\,o(U))™! < ||U - V||™'. Hence AI — V is invertible which is a contradiction.
Hence the claim must be true.

Let 0 =xz¢p < 21 < -+ < x,, = 1 be any partition of [0, 1]. Suppose A € o(a(1)). By moving backwards
along «, the above claim implies there are scalars pp € o(a(zy)) such that p, = X and |ug — pr—1| <
[le(zr) — a(xg+1)|. Hence

n n
>l — il <3 llaan) = alare)|
k=1 k=1

By taking the infimum over all partitions of [0, 1], we see that the right hand side of the above equation must
converge to L as a is C. Since maxy{|pr — pr—1]} < maxg{||a(zx) — a(zg+1)]|}, the limit of the left hand
side of the above equation is at most the length of the path from 1 to A along the unit circle. Therefore the
result follows. O

The following is a result that is related to K-theory and is motivated by Lemma 4.10.

Lemma 5.9. Let A be a unital C*-algebra and let U € A be a unitary operator. Then for all € > 0 there
exists an A € Ma(A)sq such that HU oU* — eiAH <e.

Proof. The idea of the proof is to show that U & U* can be approximated by unitary operators with a gap
in their spectrum. Define the C* path o : [0, 3] — Up(A) by

[ U o } { cos(x) ) } { UO 0 ] [ cos(z) —sin(z)

_ sin(x
o(z) = 0 I —sin(x) cos(z) 1 sin(z)  cos(x)

It is clear that o is a C' path, a(0) = I, and « (3) = U @ U*. Moreover, if we take the derivative of «,
we see, by the product rule, that o/(z) is the sum of two unitary operators so [[o/(z)|| < 2 for all z € [0, T].
Therefore, for any 2 < 7, Lemma 5.8 implies that —1 ¢ o(a(x)). Hence U @ U* can be approximated by
unitary operators with a gap in their spectrum and thus the result follows by the functional calculus. O
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Now we are at our main technical lemma before attempting to prove our desired result.

Lemma 5.10. Let 2 be a unital, simple, purely infinite C*-algebra, let Ey, Fo, E3, and E4 be non-zero
orthogonal projections in A such that Z?Zl E; =1, and let A € A be a partial isometry with A*A = Ey and
AA* = FE3. Let U € U(ELAEL) be such that o(U) =T, and let V € U(E2AE>). Then for any € > 0 there
exists a unitary Z € U(A) and a unitary W € U(E4AEy4) with finite spectrum such that

125U +T—ENZ - (U+V+AVA + W) <e (%)

It is helpful to consider the matrix decomposition of 2 of the equation () with respect to the (i, j)*"
coordinate being in F;AFE; and identifying Ep2AE, and E3E3 via the partial isometry A:

U 00 0 U 0 0 0
o100 0OV 0 0
Zlo o1 0|% o o v o |||<€

000 I 00 0 W

Proof. Consider the *-isomorphism ¢ : Mo(Eo2Es) — (Eo + E3)A(E2 + E3) defined by

o (| A1 Az ) Za g 4,47+ Ay, 4 Ady A7
As1 Ao ’ ’ ’ ’

(which is clearly a *-isomorphism). Therefore V + AV*A* = p(V & V*). Therefore, by Lemma 5.9, we can
replace V + AV* A* by el where H € ((Ey+ FE3)A(Es+ F3))sq. Moreover, since 2 is purely infinite, Lemma
2.13 implies that (Fy + E3)A(FEs + E3) is purely infinite. Hence (Ey + FE3)2(Es 4+ E3) has real rank zero by
Proposition 5.3. Hence we can assume that V + AV*A* = Z?Zl A;jQ; where \; € T and @); are non-zero,
orthogonal projections which sum to E5 + E3. Finally, by allowing another small perturbation by applying
Lemma 4.16 to the unital, purely infinite C*-algebra F12FE7, we can assume that U = Uy + Z;’:l A; P; where
Py, ..., P, are infinite, orthogonal projections in F12(F; and, if P := E; — Z;‘L:1 P;, then Uy € U(PAP)
(this is possible since o(U) = T).
Now we will find Z and W with the appropriate properties such that

n
Z'U+T-ENZ=U+> NQ+W
j=1
(and thus the only approximations needed were the ones done above). Since E12FE; is a unital, simple,
purely infinite C*-algebra and every non-zero projection in E12(F; is infinite by Lemma 2.13, there exists
partial isometries C; € P12P; such that C7C; = Pj and C;C; < P;. Let C := P + Z;-Lzl C. Then, since
P, Py,..., P, are orthogonal projections with P + Z?Zl P; = Ey, we obtain that

C*C=P+) Pj=E, CC*=P+Y C;C;=E - (P —C;Cy),
j=1

j=1 j=1
and
CUC =P+ Ci| [Uo+d NP | [P+DCr | =00+ > NC505.
j j=1 j=1 j=1

Next, since each P; — C;C7 is infinite, Proposition 2.6 implies we can choose partial isometries D; € 2
such that D;D; = Q; and D;D; < P; — C;C}. Therefore, since Q1,...,Q, are orthogonal, if we let
D :=37"_, Dj, then D is a partial isometry with

D*Dzzn:Qj:EerEs, DD*ZZTL:DJ‘DJSZ%P i)

j=1
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and
D> XQ; | D*=> X\D;Dj.
j=1 j=1

Finally, by Theorem 2.14, there exists a partial isometry B € 2l such that

B*B<E,; and BB*=)Y (P;j—C;C;—D;D;).
j=1

Let .
Wo =Y _X;B*(P; — C;C; — D;D;)B

j=1
which clearly is a unitary in (B*B)2((B*B) C E,2FE, with finite spectrum. Thus

BW,B* =Y \;(P; — C;C; — D;D;).

j=1
Moreover, if Zy := B+ C + D, then
Z5Zy=(B*+C*"+D*)(B+C+D)=B"B+C*C+D*D=F,+FEy;+ FE;+ B*B
(where a little thought is needed to ensure cancellation),
ZyZ; =(B+C+D)(B*+C*+D*)=BB*+CC*+ DD* = E;

(where a little thought is needed to ensure cancellation), and

Zo (U+D XQj+Wo | 25 =CUC*+D | Y N\Q; | D+ BW,B*
Jj=1 j=1

Uo+ > NCiCi | + | DoNDiD; | + [ D APy = CC; = D;Dj)
j=1

Jj=1

Jj=1

=Uy+ Z A Pj
j=1

=U

Therefore, Zy implies that
[Eilo = [E1 + E2 + Es + B*B]

in Ko(2). Thus
[I — Ei]o+ [Er]Jo= o= — (E1+ Ez+ Es+ B*B)|o + [E1 + E2 + Es + B*Blg = [E4 — B*Blo + [E1]o-
Since Ko(2) is a group by Theorem 4.4, the above implies
[I — Er]o = [E4 — B*BJy
and thus [ — Fj is equivalent to E4; — B*B in 2. Hence there exists a partial isometry Y € 2 such that
YY*=I1—-F and Y'Y = E, — B*B.
Let Z:=2Zy+Y and W := Wy + E4, — B*B. Then

77 = (Z; + YN Zo+Y)=Z;Zo+Y*Y = (Ey + Ey+ Es + B*B) + (B4, — B*B) = I
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and similarly
77" =202 +YY " =(E\)+(I—-Ey) =1

so Z is a unitary operator in 2. Moreover W € E, 2 F, being the sum of elements of E4AF,. Moreover, since
Wy was a unitary in (B*B)A(B*B) with finite spectrum, W is a unitary in E,2FE,; with finite spectrum.
Finally
Z"U+I1-ENZ = (Z§+Y" ) U+1-FE)(Zy+Y)

=Z;UZy+Y"(I - E)Y

=Z5 | Zo U+ D XNQi+Wo | 25 | Zo+ (Es— B*B)
j=1

= (Ey+Ey+Es+B*B) U+ Y _X\Qj+Wo | (B1 + B2+ Es + B*'B) + (Es — B*B)
j=1

=U+Y _ X\Qj+Wo+ (Es— B'B)

j=1
=U+) NQi+W
j=1
as desired. O
Finally, we have the following.

Theorem 5.11. Let 2 be a unital, simple, purely infinite C*-algebra and let U € Uy(A). Then for all e > 0
there exists an A € A, such that ||U — eiAH < €. Hence A has weak property (FU).

Proof. Let U € Up(2A) and let € > 0. If o(U) # T, we are done by the Continuous Functional Calculus. Thus
we may assume o(U) = T.

Since 1 € o(U), by Lemma 4.16 there exists an infinite projection Py and a unitary Ugg € (I —Pp)20(1 —P)
such that ||U — (Upo + Po)|| < § and Ugg = (I — Po)U(I — Py). Since Uy(2A) is open, we can suppose without
loss of generality that Uy + Py € Up(RL). Since Py is an infinite (and thus properly infinite) projection, there
exists a partial isometry X € 2 such that X*X = Py and X X* < Py. Since Uy + Py € Up(2l), there exists
a continuous path « : [0,1] — Up(2A) such that «(0) = I and «(1) = Uyg + Fo. Let

ap 1 [0,1] = (I — Py + XX*)AI — Py + XX*)

be defined by
ao(x) = (I— PQ +X)()(($>(I—P0 +X)*

It is trivial to note that
I-P+X)I-FP+X)'=I-P+XX*

so agp does indeed map into (I — Py + X X*)A(I — Py + X X*). Moreover, we claim that «g(z) is invertible
for all z. To see this, we notice that

I-P+X)I-P+X)=I-P+X"'X=1I
so it is clear that since each «(z) is invertible, each ag(z) is invertible. Therefore, if we define
a0 < [0,1] = U((I — Py + X XA — Py + XX*))
by ago(z) = ag(x)|ao(z)| ™1, then agp is a continuous path. Moreover ago(0) = (I — Py + X X*) and since

ao(l) = (I—Po +X)(UOO+P0)(I—P0 +X)* = (I—Po)UOQ(I—Po) + XX = UOO+XX*
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which is a unitary element in (I — Py + X X*)A(] — Py + X X*), we obtain that
Uso + XX* € Up((I — Py + XXHA( — Py + XX)).

Therefore, if P := Py — XX* and Uy := Ugg + X X*, then Uy € Up((I — P)2A(I — P)) and ||[U — (Up + P)|| =
|U = (Uoo + Po)|l < §. Again, if o(Up) # T, we would be done by considering direct sums. Thus we may
assume that o(Up) = T.

Since Uy € Up((I — P)2A(I — P)), we can find unitaries Uy, Uy, ...,Un € Uy((I — P)A(I — P)) such that
|Uj = Ujqa| < §forall j=0,...,N —1,Uy=1—P,and Uy = I — P. Since 2 is a unital, simple, purely
infinite C*-algebra by Lemma 2.13, Lemma 2.3 implies there exists partial isometries {C;}1, U {D;},
such that C7C; = D;D; = I — P for all j and P; = C;C7 and Q; = D;D; are all mutually orthogonal

projections such that
N N
YPi+> Q<P
j=1 j=1

Let V = Y200 CyUSCY, A = 0L D;Cs, By =1 — P, By == Yo C;CF, By = Y., D; D%, and
E, := P — FEy; — FE3. By construction, F4, F», 3, B4 are non-zero orthogonal projections that sum to the
identity. Moreover, it is clear that

N N
A*A=>"C;C;=E, and AA*=> D;D;=E;.
j=1 j=1

By construction Uy € U(E12LE,) is such that o(Uy) = T. Lastly, it is clear that V' € Ex2E, and since

N N N N
VIV =Y CUCCURCE =Y CU(I = P)U;C =Y CUUSCr = Ci(I — P)C; = By
j=1

j=1 =1 =1

and similarly VV* = F5. Hence V € U(E2E;). Hence, by Lemma 5.10, there exists a unitary Z € U(2)
and a unitary W € E A FE, with finite spectrum such that

1Z*(Uo + P)Z — (Ug + V + AV A+ W)| < i

Let Dy :=1 — P and let B := zj.vzl D;_1C%. Then

N N n N-—-1
B*B=Y C;C;=> P, andBB*=Y» D; 1D} =(-P)+ > Q.
J=1 j=1

j=1 j=1

Moreover, we notice that

N N
AVTAT = Y7 D,CiCU,CiCL Dy =y DU D;
i,5,k=1 j=1
and
N N
BV*B*= Y Di1C;CU;CCkDsy =Y DiaU;Djy.

i5,k=1 Jj=1

Therefore

(U0 + (AV7A" = Qn) + V) = (BV'B* + V)]

N N
= || Dol D + > D;U; D} =Y " D; U D} — Qn

j=1 j=1
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Dj_l(Uj_1 - Uj)D;_l + DNUNDN - QN

Dj1(Uj—1 = U;)Dj

1 since Uy =1 — P so DyUnD;, = DyDy = Qn

>

j=1
= max{[|Uj—1 = Uj|| | 1 <j <N} since Dj1(Uj1 = Uj)Dj_y = Q1D 1 (Uj1 — Uj)Dj_1Q; 1

<6
4.

Let

N—-1 N
Ri=|I-P+> Q| +> P=I-E;—Qx

j=1 =1

Since R = BB* + B* B, by applying the same proof used at the beginning of the proof of Lemma 5.10, there
exists a self-adjoint element Hy € RAR such that HeiHO — (BV*B* + V)H < 7 where eto € RAR.

Since W has finite spectrum, there exists an Hy € E,AFE, such that W = 1 (the exponential in
E,FE,). Let H := Hy + Hy. By the construction of R, HyH; = 0 and HQx = 0 = QnH. Therefore
el = etHo 4 Qn + W (where we view e'flo € RAR). Therefore

e —Z*UZ|| < [|e> — (BV*B+ V)| + (BV*B+V) = (Uy + AV*A* — Qn + V)|
+|(Uo+V +AVFA+W) = Z*(Uy+ P)Z|| + ||(Uo + P) = U||
<e

Hence HeiZHZ* = U|| < € as desired.
Hence, by Remarks 5.7, 2 has weak property (FU). O

It should be noted that H. Lin has proven that all unital C*-algebra of real rank zero have the weak (FU)
property (see [Li]). However, to prove this would take us too far from our goal.
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6 *-Homomorphisms From O,

In this chapter we will study the unital *-homomorphisms from Os into a unital, simple, purely infinite
C*-algebra. The main goal of this chapter is to prove that all such *-homomorphisms are approximately
unitarily equivalent.

Most of the results for this chapter were developed from the book [Ro2] and the additional papers
referenced there. Lemma 6.4 is from the excellent book [Da]. The details of Lemma 6.7 are from [Rol].

We begin with a definition that will be interesting for C*-algebra with weak property (FU).

Definition 6.1. Let 2 be a unital C*-algebra. We say that % has finite exponential length L if each
unitary U € Up(2) can be written as U = ef1...etn where H; € 2 are self-adjoint elements such that

> IH;ll < L.
Lemma 6.2. Let A be a unital C*-algebra with weak property (FU). Then 2A has finite exponential length /.

Proof. Let U € Uy(2l) be arbitrary. Since 2 has weak property (FU), there exists a unitary V' € 2 such that
V has finite spectrum and ||U — V|| < 2(4 — ). Therefore UV* is a unitary in 2 such that [|[UV* — || <
2(4—m) < 1so that —1 ¢ o(UV*) by the Continuous Functional Calculus. Hence there exists a self-adjoint
element H; € 2 such that UV* = e¢H1. In fact, we can choose H; = In(UV*) for a suitable branch of In and
thus we can force o(Hy) = In(o(UV*)) for this choice of In. However, since [|[UV* — I|| < 2(4 — ), we see
that

2r —4
[Hy|| < arccos( T ) <4-7
™

by the Continuous Functional Calculus. Hence U = 1V with ||H;|| < 4 — 7. Since V has finite spectrum,
we can write V = e¢*H2 where Hj is self-adjoint and ||Hz|| < m. Therefore we have that U = e*f1etH2. Since
(4 — 7) + ™ = 4, the result is complete. O

Lemma 6.3. Let 2 be a unital C*-algebra with weak property (FU) and let k € N. Every unitary U € Uy ()
can be written as U = Vi -- - Vor where V; are unitaries in 2A such that ||V; —I|| < T.

Proof. From the proof of Lemma 6.2 each unitary U € Uy(A) can be written as U = e*1et2 where
| Hj|| < 7. Hence k =1 |[e’fi — I|| <2 < 7 which completes the proof when k = 1.
By the Continuous Functional Calculus it is easy to see that if W € 2 is a unitary with finite spectrum

then
"Wk_IH 1/2—2005( )<\f 1—cos <\[\/
CHy .Ho .Hgy
Therefore, for each k € N, U = ¢! = e P B L =L - Lo L 7 where ||e? % —IH <z O

Next we will need some specific properties of a ‘shift’ action that is similar to the one used to prove that
O3 was nuclear in Construction 1.18. To prove this, we will need to view the 2°° UHF C*-algebra in an
alternative manner.

Lemma 6.4. Let o : {2(N) — B(¢3(N)) be any continuous linear map such that

a(§an) +ama@) =0 and  a(§) a(n) +alna@)” = (1,51

for all &,m € £5(N) (these two equations are known as the Canonical Anticommutation Relations). If 2 is the
C*-algebra generated by {a (&) | £ € £2(N)} C B(l3(N)) then A is *-isomorphic to the 2°° UHF' C*-algebra.

Proof. Let (e;);>1 be the canonical orthonormal basis for £3(N). For each unit vector £ € ¢5(N) let E(£) :=
a(é)*a(€). Using the CARs, we see that a(£)? = 0 and a(&)* (&) +a(€)a(€)* = I. If we multiply the second
equation by a(&)*a(€), we see that (a(&)*a(€))? = a(é)*a(f) and thus E(€) is a projection. Moreover
a(é)a(&)* is a projection which will be orthogonal to E(§) and a(§)a(§)* + E(§) = I by the CARs. Hence
a(E)al€) = &)L (=1 - B()).
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Therefore a(e;) is a partial isometry with domain E(e;) and range E(e;)*. Therefore
C*(a(er)) = span{afer), aler)*, E(e1), E(e1)t} ~ Ms(C).

Let Eéll) = afe), E%lz) = afer)”, Egll) := F(e1), and Eglz) := E(e;)* (so that {El(lj)} are matrix units for

C*(afe1)))-

Next we notice that if £ and n are orthogonal unit vectors then

a(n)E(§) — E(§)a(n) = ama(§) a(§) + a(§) a(n)a(§) = (n,§)a(§) =0
(by the CARs) so that a(n) commutes with F(£). Hence it is easy to see that F(n) commutes with F(&).
Let Vi := I —2E(e;) = E(e;)t — E(e;). Then (by the CARs)
Via(ez)a(er) = —Via(er)a(ez) = —aler)aler) aler)ales) = aler)Via(es)

and
Via(ex)a(er)” = —Via(er)*a(ea) = —aler) aler)a(er) ales) = aler) Via(es)

so that Via(ez) commutes with C*(a(ey)).
Since V; = Vi*, V2 = I, and V; commutes with a(ez), we see that

C*(Via(es)) = span{Via(ez), Via(es)*, E(e2), E(e2)} ~ M3 (C)

and the matrix units of C*(Via(ez)) commute with the matrix units of C*(«(e1)). Let E§21) = Via(ea),
Eg) = Via(es)*, E{zl) := F(ez), and E§22) := FE(e3)*. Therefore we can see that C*(a(e;),ales)) =
C*(a(er), Via(es)) ~ M4(C) with a standard basis {El(lj)E,(fl)} for 1 <i4,j,k,1<2.

Therefore, if we define V,, := []}_, (I —2E(e;)) for all n > 2 and we define the matrix units Eﬁ) = E(en),
Eénl) = Votra(en), E%"Q) = Vopra(en)*, and Eéng := E(e,)* for all n > 1, we can repeat the above proof to

see that A, := C*({a(e;) | 1 < j < n}) are an increasing sequence of matrix algebras with 2, isomorphic

to Man (C) with the matrix units Ey . := []_; ngzl),w(@ for all functions ¢ and ¥ from {1,...,n} to {1,2}.

Since a is continuous, |J,,~; 2, is dense in A and thus 2 is isomorphic to the 2> UHF C*-algebra. O
Our next result is to show that such relations exists.

Lemma 6.5. There exists a continuous linear map o : {2(N) — B(¢2(N)) such that

a(§a(n) +ama(@) =0 and  a(§)*a(n) +a(n)a(€)" = (1,61

for all &, € £5(N).
Proof. Let H be a separable Hilbert space and consider the Fock space F(H) of H; that is

F(H) = PH"

n>0
For each n € N and {¢;}}_; C H define
1
gl/\"'/\fnzzi Sgn(o-)fal ®§o2 ®"'®§an
\/mggs:n (€] (2) (n)

where S, is the permutation group on n elements and sgn(co) is the signature (that is (—1) to the power of
the number of inversions) of a permutation o. Therefore, it is clear that if o € S, then

60(1) ARERNAN fa(n) = Sgn(a)gl ARERNAN gn
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Let

Hon = span{&r A+ A& | {&}7 S H} CHO™

= @Ho,n

n>0

as a Hilbert subspace of F(#). The Hilbert space F,(H) is called the anti-symmetric Fock space of H.
Notice that since H is separable, F,(#) is separable and thus isomorphic to ¢3(N).
Define o : H — B(Fo(H)) by

@) (EaN--NE)=ENEGN-- N,

for all & A--- A&, € Hon. A moments consideration shows that o is a well-defined, continuous, linear map
(as wedging with something is clearly well-defined, linear, and continuous). Moreover, we notice that

a@am) (LN AN&) =EANANEG NN =-—nNENG NN =—a(n)a(l) (LA NE)
so a(§)a(n) + a(§)(n) = 0.

Next we claim that

Therefore, we can view

n

(&) (E1 N A&) =D (DTG G A A& A NE)

k=1

where 5;6 represents that & is missing. To see this, we notice that

(Sro (1R M (E A AG A A& A ATy )
= X )k“<£k,nn><§m-w§2A~--A£mmA~~~Ann_1>

-1 1)' Dk (= 1)k+ <€k777n>ZU,TESn,U(k):k,T(k):n Sgn(a)((_l)n_kSgn(T))H?:l,j;ék<§a(j)a777—(j)>
(n— 1)| Zk (= )n71<§ka77n>ZJ,Tesn,g(k):k,T(k):n sgn(o)sgn(r) Hj:1,j¢k<fa(j),7lr(j)>

and
<a(77n)*(£1/\"'/\gn)7771/\"'/\7]n—1>
- <€1/\ /\fnvnn/\nl/\"'/\nn—1>
= (D"HEG A AGm A A)

(=113, res, s9n(0)sgn(T) [T5_1 (o iys 1r (7))

Z?k L=t Zg,resn,a(e):k,f(fz):n sgn(o)sgn(r) H?:1<§a(j)»77f(j)>

sz=1( D™ Nk, ) Za,fesn,a(e)zk,T(e)zn sgn(o)sgn(T) H?:l,j;éé (o(i)s Nr(5))
1) &k ) ZU,TGSnp'(k):k,‘r(k):n sgn(o)sgn(r) H;’L:Lj;ée (& (ys e i)
ot 2okt (S THE M) 2o s o ()b (k) =n 397(0)sg(T) TTT1 5 20(Eo i) 1))

[~3 ‘._._:_‘._.

=2

Il
2
S>3
a
Il
=
—

so a(n,)* has the desired form. Finally, we notice that

(@(§)"a(n) + a(n)a(§)™)(1) = a(§)"(n) + an)(0) = (n,§)1

and
a@ am(Q A AG) = al@) MAGQA---AC) R
= 09+ 1( D200, YA CLA - NG A A Gp)

whereas

ama(©) (G A AG) = alm) (Sry (=D (G A AG A AG))
= S (DM A G A AG A AG).
Thus we obtain that
() a(n) +a(mal§)” = 0,1
for all £&,n € H. O
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Now that the existence of maps satisfying the CARs are known to exists, we can use Lemma 6.4 to
describe the 2°° UHF algebra.

Proposition 6.6 (The Rokhlin Property of the Bernoulli Shift). Let o be the one-sided Bernoulli shift on
the 2°° UHF algebra A = @72, Mo (C); that is

(A1 A - )=TRA @A --.

For each k € N let 2y, := ®@F_; My (C) C 2 (which is a unital C*-subalgebra). Then for each € > 0 and for
each r € N there exists a k € N and projections Py, Py, ..., Por_1, Por = Py in Ay such that Z?:l P =1
and ||o(Pj) — Pjy1|| <€ for all j =0,1,...,2" — 1.

Proof. For those familiar with the Rokhlin Lemma for a free action on a probability space, the conclusion
of this result has a very similar flavour.

Let v : ¢3(N) — B(¢2(N)) be a continuous linear map satisfying the CARs (whose existence is guaranteed
by Lemma 6.5). Therefore 2 can be viewed as the C*-algebra generated by the image of a. Let S be the
unilateral forward shift on ¢2(N). Notice if o’ : £2(N) — B(¢2(N)) is defined by o/(§) = a(SE) then o’ also
a continuous linear map which satisfies the CARs. Hence there is a *-homomorphism p : 2l — 2( defined by
p(e(§)) = a(S¢) for all £ € £5(N).

We claim that o and p agree on the C*-algebra generated by all elements of the form «(£)a(n) and
a()a(n)* where n,& € £o(N). To see this, we notice that if k¥ < m then (with the notation as in the proof
of Lemma 6.4)

o(Vitraler)) = Viraa(ers1)  and  o(Vinpralen)) = Vinyoo(emy1)

by the description that o is a forward shift. Moreover, it is clear that o(E(e,)) = E(en1) for all n and thus
(as o is unital)

n n+1
o) =o | [T ~28(e)) | = [T - 2E(e,)

for all n > 1. Hence, as V,a(e;) = —a(e;)V, for all j <mn,

o(Vierra(en)Vnsialen)) = —o(VisiVisialer)alen))

= — (I —28(e,)) (II]5U = 2E(e)) ) olaler)alen)
where as
o(Viyra(er)Vimyra(em)) = Viraa(er 1) Vinpea(emt1) = —ViraVinroa(er 1) a(emr)

However, it is easy to see that

k+2 m+2
[T =28 | | [T -2E()) | = VisaVinta
=2 =2

is invertible and thus
o(aler)alem)) = alers1)alemsr) = plaler)alem)).
Similarly
o(aler)alen)) = alerr)alemss)” = plaler)alem)”)
by simply adding a * on every «a(e,,) in the above computation. Moreover, similar computations hold with
k > m (and trivially when k¥ = m). Then, by considering adjoints, linearity, continuity of maps, and the
CARs, the claim is complete.
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Let w; := e% for all je{1,2,...,r}. Then it is possible to choose an orthonormal set &y,&1,...,& €
¢5(N) such that

€ €
S — &oll < ———%—— and  [IS§ —w;§ll < —5——
A(llaf* +1) A(laf* +1)
for all j € {1,...,7} (ie. & = %Z;.L:l ej, &1 = Zj 1wl ej, etc. for some large choice of n). Let

Tj = a(&) (&) + a&o)*) for j € {1,2,...,r}. Then clearly p(T;) = o(T;) by the above results and thus
(as « is continuous)

lo(T5) —w; Ti|| = [e(S&;) (a(S&0) + a(SE0)") — wia(&;)((&o) + a(é
< Ja(5€;)((S€o) + a(S60)") — a(SE;) (a
+ [[a(5;) (o) + (o)) — wjal(E;)

2 €
2ol 7+2Hall T
A(llal* +1) (el +1)

(a

Next we notice that
T;T; = a(&)(aléo) + aléo)") (&))" = alé))a(§))”
by the CARs, and similarly
TiT; = a(&;) (&) = E(&;)
as E(§;) and a(§p) commute as &; and & are orthogonal. Hence C*(T}) ~ Mj3(C) where the isomorphism

takes T to Ey 1.
Moreover we notice that

(I = 2E(&)) 2Ty = (I = 2E(&))a(€2) (o) + aéo))a(ér)(a(o) + a(€o)”)
= (-1)’a(&)(I = 2B(&)) (&) (&) + aléo)*)?
= a(&)I —2E(&))(a(éo) + aéo)") (&) (a(éo) + aéo)™)
=T\ (I —2E(%))T>

and

(I —2E(&))ToTT = (I —2E(&))a(&) (&) + a(éo))?el&r)”
= —(a(éo) + a(&)" ) = 2B(&))a ( 2)(a(éo) + (&) )a(&1)”
= (=D (&) + (&) )u(&1)* (I — 2E(&1))a(€2) (a(éo) + a(é0)¥)
=T7(I —2E(&)T2

Therefore, by applying the same idea as in the proof of Lemma 6.4, we see that C*(T1, ..., T;) ~ ®}_; M»(C).
Moreover, using the fact that ||o(T;) — w;T}]| is small (and thus |o(I — 2E(§;)) — (I —2E(&;))|| is small),
we see that the restriction of o to C*(T1,...,T,) ~ ®7_; M3(C) is close to the inner automorphism Ad(U)
where U = U1 @ Us ® - - - ® U, where Uy = diag(1l,wy). Therefore the spectrum of U is precisely the 2"-th
roots of unity. Hence U is unitarily equivalent to a cyclic shift on Ma-(C).

Let PO,Pl, .oy Por_1, P5r = Py be the projections in May-(C) corresponding to the above cyclic shift.
Therefore E 1 Pj=Tand ||o(P;) — Pj41| issmall forall j =0,1,...,2"—1. Moreover, P; € C*(T1,...,T})
for all j. By the ch01ce of &;, we obtain that C*(T4,...,T;) C 2 for some k (i.e. we used {e1,...,ex} to
create all of the ;’s for some k). Hence the proof is complete. O

The key lemma for our main result is the following mess.

Lemma 6.7. Let 2 be a unital, simple, purely infinite C*-algebra and let Ty and Ty be isometries in A such
that ThVTY 4+ ToT5 = Iy. Let v : A — 2 be the *-homomorphism defined by v(A) := Ty ATy + To ATS. Then
for each U € U(A) and for each € > 0 there exists a unitary V € A such that ||[Vy(V)* = U| < e.
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Proof. For this proof, to easy notation and clarity, we will prove several lemma along the way. Fixa U € U(2)
and let € > 0. It is clear that «y is indeed a unital *~-homomorphism as 77 and T5 are isometries with orthogonal
ranges. Moreover, v must be isometric since if A € 2 was in the kernel of 7, then 0 = Ty'v(A)T) = A.

For the rest of this proof, we will use the notation developed in Chapter 1 for Os. Define A : O3 — O9
by A(A) := S1AST + S2AS5 where S; and Sy are the isometries that generate Oy. Clearly A is a unital
*-homomorphism. By the proof of Lemma 1.7, we can see that A|zz = ¢ where o is the Bernoulli shift in
Proposition 6.6. By the Universality of the Cuntz Algebras (Theorem 1.14), there exists *-homomorphism
@, : Oy — A such that ¢(S;) = T; and ¥(S;) = UT;. Note ¢ o A = as ¢(S;) =Tj.

Lemma 6.8. For all A €2 and for all k € N, 4*(A) = oiui=k P(Su)Ap(Sy) and, if
Ui = Z V(Su)e(Su)
lul=F
then Uy is a unitary with Uy = U and ¥(S,) = Urp(S,) for all words v such that |v| = k.

Proof. The proof that v*(A) = Doiul=rk P(Su)Ap(S)) for all A € 2 is trivial from the definition. Moreover,
since 1 and ¢ are unital *-homomorphisms, we obtain that

UUp = Y w(S)e(Si8)0(8]) = Y 0(SuS;) = In
k=|p|=|v| k=|u|
and similarly U;Uj, = Iy. Finally, it is clear that Uy = UT\T} + UT2Ty = U and
Unp(Sy) = > (S Su) =(Sy)
=k
as desired. O
Lemma 6.9. For each k € N, Im(y*) = o(F2) N 2.
Proof. Tt is easy to see that v¥(A)p(S,) = ¢(S,)A and ¢(S,)*v*(A) = Ap(S,)* for all A € 2 and words p
with |u| =k (as v*(A) = 2 ipj=k #(Su) Ap(S};) from above). Hence
P A)@(88)) = (S, Ap(S,)* = ¢(S,S))V* (A)

for all A € A and |u| = |v| = k. Hence Im(¥*) C p(F3)' NA

To prove the other inclusion, let B € ¢(§7)’ N2A. Then, for any two words p and v with |u| = |v| = k,
we have that v*(B)¢(S,5%) = ¢(S,5:)7"(B). Hence, as ¢ is unital, ¢(S,)*Bp(S,) = ¢(S,)*Bep(S,). Let
A :=¢(S,)*Byp(S,) for some fixed word v of length k. Then

YH(A) = D @(Su)e(S,)" Be(S = Y Be(S)e(8) 0(S)e(S;) = D Ba(Su)e(Sy) = B
lu|=k ll=k lul=k
as desired. O]
Lemma 6.10. For each k € N, U = Up~v*(U)v(Uy)*.

Proof. We will proceed by induction on k. When k = 1 we have that Uyy(U)y(Uy)* = U~r(U)y(U)* = U (as
7 is a unital *-homomorphism). Now suppose that U = Upy*(U)y(U)* so v¥(U) = U;U~(Uy). Notice that

2

Y(UR) = o(S;)Ukep(S U*Zw Ukp(S U*Z > w(s )o(Su)*@(S))* = U Uk

j=1 J=1\pl=k
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Therefore U = Ugy17(Ug)* (which gives us some hope we are on the right track to proving the theorem).
Hence

HHU) = 10U (Uk)) = 1(UUU Upr) = Uy Up11)
and thus
Uk 17" T (O (Uk1)* = Upay(UF) = U
as desired. O

Now, until otherwise stated, suppose that U € Uy(2A). Then we have the following.

Lemma 6.11. Let k,m € N be arbitrary and let ¢ := k + 2m — 1. Then there exists unitaries {W; }2m 1c
AN @(F2) such that

Woy(Wh)y (W2) e 1(W2m 1) = Iy
and Hvé( WH < I forall j €{0,1,...,2m — 1}.

Proof. Let
X =7 (U U) - AH(U)
for j € {0,1,...,2m — 1} and let
Vi=Uy(U)---*""1(U).

Clearly Xo,, 1 = 7*(V). Moreover, since 7 is a unital *-homomorphism, we obtain that V € Uy(A) as
U € Uy(A). Since A has weak property (FU) by Theorem 5.11, Lemma 6.3 implies that we can write
V = WVy--- Vs, for some unitaries V; € A such that ||V; — Iy|| < I for all j. By applying 7* to each
V;, we obtain unitaries Yo, Y1,...,Yam-1 € AN @(F7) such that ||Y; — Iy|| < I for all j and Xop,—1 =
Yom—1Yam—2---Y1Yy (we have reversed the indexing).

Since each X is in the image of v*, we obtain that XY X;eAn ©(§?)" by Lemma 6.9. Moreover, we
notice that

AN (F?) = Im(y") C Im(y" %) =7 (AN (7))

for all j € {0,1,...,2m — 1}. Hence, as 7* is injective, there are unitaries Zo, Z1, ..., Zam—1 € AN o(F2)’
such that 77 (Z;) = XY X; for all € {0,1,...,2m —1}.

Let Wj :=~4(U)Z; € AN o(F3)'. Since X7 1 X; = v*77(U) and each X; is a unitary, we obtain that

Woy(Wi)y? (Wa) - - 7> (Wapn—1)
= 7(U) 207" T (U)y (Zl) YN U ( Zym—1)
= XoZo(X5X1)v(Z1) (X7 Xz) - (Xam—2 X5 )V (Zam—1) (X5, 1 Xom—1)
= Xo(Xg Yy Xo)(Xg X1)(X7Y7" X1) (X7 X2) - (Xom—2X5 1) (X3 -1 Yo 1 Xom—1) (X3 -1 Xom—1)
=YYy Yo, 1 Xopo1 = Iy

as desired. Moreover, since 7y is isometric

VW) = Wil = 1Ta — Zill = |7 (I — Z))|| = || T = X3Y7 X | = B~ Y7 | < 2

which completes the proof. O

By the proof of Lemma 1.7 we can see that A|zz = ¢ where ¢ is the Bernoulli shift in Proposition 6.6.
Therefore Proposition 6.6 implies that there exists a k € N, an r € N with 237" < 5, and projections
Py, Py, ..., Py = Py in §2 C O3 such that ZQT ' Py = Ip, and ||A(P}) — Pj_4|| < st (where we simply
reversed the order of the projections in Proposmon 6.6).

Let Q; := ¢(P;) € ™ for all j € {1,...,2"}. Then Q; € »(F3) are orthogonal projections such that
Zirzol Q; = Iy and

€

17(@5) = @j—1ll = llpA(F))) — ¢(Py+1)ll = 557
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(since o X =y as ¢(S;) =Tj) for all j € {1,...,2"}.
Let ¢ := k+ 2" — 1. Hence, by Lemma 6.11, there exists unitaries {IV; }?;61 C AN (F2) such that

Woy(Wi)v2(Wa) -+ > ~H(War_y) = Iy

and ||’yZ(U) - W]H <5t <5
Let Vor := Iy and define ‘
Vi = Wiy (Wisa) - 777 (War_y)
for j € {1,...,2" — 1}. Therefore V; € AN p(F2)’ by Lemma 6.9 and clearly Var = Iy = V. Moreover, it is
clear that W; = V;(Vj41)* for all j € {0,1,...,2" — 1}.

Let
or

V=) VQ; e

j=1

Since 23;1 Q; = Iy and each Q; € ¢(§3), we obtain that each V; commutes with each @Q; (as V; € ANe(F3))
and thus

2" 2"
V=>VQ; =Y Q;ViQ;
j=1 j=1

is the direct sum of unitaries. Hence V € U(2).
We claim that ||[v*(U) — Vy(V)*|| < e. To see this, let

A= VZ(V(QJ‘) —Qj—1)y(Vy)".

Since [|[7(Q;) — Qj—1|| < 5%t for all j € {1,...,2"}, we see that ||Al| < §. Moreover

.
V() =Vy [ D> Qv

=1

27‘
=V Qi 1v(Vy)" +A
j=1

2" —1

= > ViQ(Vis) + A
j=0
2" -1

= Z Wij + A.

=0
Since
Y ¢ k\ _ 2\/
Y(U) € Im(7") € Im(7") = ¢(Fx) NA
and each Q; €€ p(F7),

2" —1

> (U = wye;| + 1Al

Jj=0

|V (U) = v (v)

IN

2" —1

= [ D0 Qi U) = WQ|[ + 1Al
j=0

= max{[|(v"(U) = Wy) [} + Al < e
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as claimed.

We have shown that ||[v*(U) — Vy(V)*|| < e. Note U = Ugy*(U)y(Up)* by Lemma 6.10. Therefore

IU = UV )Y UV )| < 2 (U) = VA(V)* || < e

which completes the proof in the case that U € Uy(2).
Finally let U € U(2l) be arbitrary. By Lemma 4.22 we know that

(U = [LUTY + TUT; ) = ([UL)?
in K1(2A). Therefore
[U*y(U) ] = (U ((O)]) ™ = (UI)*((U)*) ' =0

in K (). Hence Theorem 4.21 implies U%y(U)* € Up(2). Thus, by the first part of the proof, there exists
a unitary Vo € 2 such that ||Voy(Vo)* — U?y(U)*|| < e. Hence |[Vy(V)* — U|| < € where V := U*Vj. O

Theorem 6.12. Let 2 be a unital, simple, purely infinite C*-algebra. Then any two unital *-homomorphism
0, Oy — A are approzimately unitarily equivalent (that is, there exists a sequence (V,,)n>1 of unitaries

in A such that Vo,o(T)VE — (T) for all T € Os).

Proof. Let ¢,1 : O3 — A be unital *-homomorphism and let U := 9(S1)p(S1)* + ¢¥(S2)p(S2)* € 2.
Notice that the proof of Lemma 6.8 implies that U is a unitary operator in A. Let T; := ¢(S;) € 2 for
j € {1,2}. Therefore, since ¢ is unital, each T} is an isometry and T4 T} + ToT5 = Ig. Define y : 2 — A by
~v(A) := T1 AT} + To ATy . Thus, by Lemma 6.7, there exists a sequence of unitaries (V},),>1 in 2 such that
Voy(Vi)* — U. However

YVo)' T = (VTT + TRV, T5)T; = T;V,y

Vap(85)Viy = Va3V = Vy(Va) " Tj = UTj = ($(S1)(S1)" + 9 (S2)(52)")9(S;) = (S55)

for j € {1,2}. Hence, as Oy = C*(S1,S2), we see that ¢ and 1 are approximately unitarily equivalent as
desired. 0

To complete this chapter, we desire to use Theorem 6.12 to compute Ky(O2). Recall that O is a unital,
simple (Theorem 1.15), purely infinite (Corollary 2.12) C*-algebra so Theorem 6.12 implies that any two
unital *-homomorphisms from O, to itself are approximately unitarily equivalent. The following results
enables us to conclude that two unitarily equivalent projections are equivalent and two projections that are
‘close’ are equivalent.

Lemma 6.13. Let A be a unital C*-algebra and let P,Q € A be projections such that P = VQV™ for some
isometry V € A. Then P ~ Q.

Proof. Let W :=QV* € A. Then W*W =VQV*=Pand WIW*=QV*'VQ =QIxQ=Qso P~Q. O

Lemma 6.14. Let A be a unital C*-algebra and let P,Q € A be projections such that ||P — Q| < % Then
P~Q.

Proof. Let Z := PQ + (Iy — P)(Iy — Q) € A. Then it is clear that

[(PQ+ (Ia = P)(Ia — Q) — (@ + (Ia — Q)
(P = L) QI + [[((Tar = P) = o) (I — Q)|

(P = Q)Q + [[((Ta = P) — (I — Q))(Ja — Q)|
IP-Qll+llQ-Pl<1

12 = Il

IA A

so Z is invertible in 2. Therefore, if U is the partial isometry in the polar decomposition of Z, Z = U|Z]|
and U is a unitary element of 2.
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We claim that UQU* = P. To see this, we notice that U = Z|Z|~1, ZQ = PQ = PZ, and
Z°Z =QPQ+ (Ia — Q)(Ia — P)(Ix — Q).

Thus QZ*Z = QPQ = Z*ZQ so Q commutes with Z*Z. Hence @ commutes with C*(Z*Z) and thus Q
commutes with |Z|~!. Thus

vQUt = 7|2|7Qla" 7
— 7Q21 7
= PZ|Z|7%z*
= P|Z*|72ZZ*=P
as claimed.
Since P =UQU™* and U € 2 is a unitary, Lemma 6.13 implies P ~ Q. O

Theorem 6.15. The group Ky(Os2) is trivial.

Proof. Let P € O be an arbitrary non-zero projection. Define A : Oy — Oy by XN(T) := S1T'S} + S2T'S3
where S; and Sy are the canonical isometries generating Os. It is trivial to verify that A is an unital *-
homomorphism (that is also injective). Therefore, by Theorem 6.12, A is approximately unitarily equivalent
to the identity map on O,. Hence there exists a unitary U € Oy such that [P — UNP)U*|| < . Hence
Lemma 6.13, Lemma 6.14, and the fact that S;PST and S2 PSSy are non-zero orthogonal projections imply
that

[Plo = [UMP)U"]o = [M(P)]o = [S1PST + S2PS3]0 = [S1PST]o + [S2PS3]o = [Plo + [Plo.

Hence [P]y must be the trivial element of K(2(). Therefore, as P € Oy was an arbitrary non-zero projection,
Ko(OQ) is trivial. O
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7 On Oy @uin O

In this chapter we will study the C*-algebra Qs ®min O2 (as O is nuclear by Theorem 1.20, we need not
specify the tensor product). The main goal of this chapter is to prove that Oz ®mpin O2 =~ Oa.

Most of the results for this chapter were developed from the book [Ro2] and the additional papers
referenced there.

In order to prove that Oz ®in Oz ~ Os, we first recall that Os @i, Oo is a unital, simple, purely infinite
C*-algebra by Theorem 3.11 and the fact that Os is a unital, simple (Theorem 1.15), purely infinite (Corollary
2.12) C*-algebra. Therefore Theorem 6.12 implies that the two unital *-homomorphism T — T ® Ip, and
T = Io, ®T from Oz to Oz ®min Oz are unitarily equivalent. We will use this fact to construct an
isomorphism. Thus we begin by demonstrating one way of showing that two separable C*-algebras are
isomorphic.

Lemma 7.1. Let 2 and B be separable C*-algebras such that B is unital and let w : A — B be an injective
*-homomorphism. Suppose that there ezists a sequence of unitaries (Up)n>1 in B such that

lim |U,7(A) — w(A)U,| =0 and lim dist(U;BU,,n(2)) =0

n—oo n—oo

for all A € A and B € B. Then there exists a *-isomorphism o : A — B that is approximately unitarily
equivalent to .

Proof. Since 2 and B are separable we can find countable dense subsets {A,},>1 and {B,},>1 for 2 and
B respectively. By the assumptions given in the statement of the lemma, we can inductively find unitaries
Vi, € B and elements {A;,,}]_; € 2 such that

LoV Vi B Vi Vi)V — (A )| < L for j € {1,...,n}
2. ||Vam(Aj) — m(Aj)Vo| < 55 for j € {1,...,n}
3. [V (Ajm) — T(Ajm) Vol < 2% forme{l,...,n—1}and j € {1,...,m}.

By 2) we obtain that (V1 Va--- V,m(A4,)V, - V5'V*),>1 is a Cauchy sequence in B for all j € N. Therefore,
since {A;};>1 is dense in 2, it is easy to see that (ViVa---V,m(A)VY - V5V )n>1 is a Cauchy sequence in
B for all A € A. Hence we define 0 : A — B by 0(A) :=limy, 0o ViVa - - - Vum(A) V5 - - VSV

It is clear by the definition of ¢ and the fact that 7 is a *~-homomorphism that o is linear and self-adjoint.
Moreover, since each V,, is a unitary element of B, it is easy to see that ¢ is a *-homomorphism. Moreover,
since 7 is injective, ||[ViVa - Vom(A)VyE - VSV = || A for all A € 2 so o is injective.

To see that o is surjective, we notice from 3) that for any j < n

lo(Ajn) = ViVa - Vom(Ajn)Vy - VoV < Z om ~ on
m=n+1

Therefore, we obtain from 1) that

1 N S 1 1
1B; = (i)l < 5 + 1By = ViVe- - Var(Ain)Vie -+ VIV < 5o o
for all j € N. Hence, since the range of a *-homomorphism is closed, B; € o(2) for all j € N. Therefore,
since {By, }n>1 is dense in B, B = o(2) so o is surjective and thus a *-isomorphism. O

The above lemma gives us a way to show that Qs and Oz ®uin O2 are isomorphic as clearly there exists
an injective *-homomorphism from Oy into Oz @iy O2. Thus we need only a way to construct the unitaries
U, € O3®min O2 as described in the lemma. To show this, we will look at a particular property of a sequence
of *~homomorphism.
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Definition 7.2. Let 2 and B be C*-algebras. A sequence (B,,),>1 C B is said to be asymptotically central
if lim, o || BB, — B, B|| = 0 for all B € 8.

A sequence (7, ),>1 of *-homomorphisms from 2 to 9B is said to be asymptotically central if (7, (A))n>1
is an asymptotically central sequence in B for all A € 2.

Example 7.3. It is well-known that if J is an ideal in 2 then there exists a C*-bounded approximate identity
for J that is asymptotically central in .

The main result we need is the following.
Lemma 7.4. There exists an asymptotically central sequence of unital *-homomorphisms from Os to O,.

Proof. Let A : Oy — O3 be the injective, unital *-homomorphisms defined by
A(A) := S1AS] + S, ASS
for all A € Oz. We claim that a bounded sequence (A,,),>1 € O is asymptotically central if
To see this, suppose lim,, o ||A(45) — Ap|| = 0. Then
1 (184, — A8l = lim [[(A(A4) — 4,)S;] =0
and

lim |[S54, — A,S;

n—oo

= lim [|S; (A, — A(4,))]| =0

n—oQ

for all j € {1,2}. Therefore it is easy to see that

nIL}H;O ||p(S1752aST75;)An - Anp(Sla Sstika S;)” =0

for any polynomial p in four non-commuting variables. Therefore, since *-alg(Si,S2) is dense in O and
(An)n>1 is a bounded sequence, it is easy to see that (A,)n>1 is an asymptotically central sequence.
Let U= 7., SiS;S:S+. Then U is self-adjoint and

ij=1

2 2
U? = Z SzSJSZ*S;SkSZS]:SZ = Z SZSJSJ*SZ* = Ip,

4,7,k =1 i,5=1

so U is a unitary in Oy. Moreover, we notice that

2 2
USk=>_ SiS;8;S;Sk = SiSkS; = \(Sk)

i,j=1 i=1

for all k € {1,2}.

Since Qs is unital, simple, and purely infinite, Lemma 6.7 implies that there exists a sequence of unitaries
(Vi)n>1 € Og such that lim,,_, Vo, A(V,,)* = U. Since U is self-adjoint, this implies that lim,, oo A(V,,)V, =
U. Therefore, by replacing V,, with V¥, we obtain a sequence of unitaries (V,)p>1 € Oz such that
limy, 00 A(V)*V,, = U.

Since each Vi, is a unitary, by the Universal Property of the Cuntz algebras there exists unital *-
homomorphism Ay, : Oy — Oy such that Ay, (S;) = V,,5; for j € {1,2}. We claim that (Ay, ),>1 is
an asymptotically central sequence of *-homomorphisms. To see this, we will show that

Tim_ [AOw, (4)) = Av, (A)] =0
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for each A € O which will complete the proof from the above observation. To see this, we notice for
j € {1,2} that

AVeS;) = VaSil|
AVR)A(S;) = Vi Sil|
= [[A(S;) = A(Va) Va5l
= [[US; = A(Va) Va5
< U = A(Vo) Vol

which converges to zero as n — oco. Since A and each Ay, is a *-homomorphism, the above also implies that

lim [[A(Av, (S7)) — Av, (S7)|| =0

n—oo

for j € {1,2}. Therefore, by taking algebraic combinations, density, and the fact that *-homomorphisms are
contractive, we obtain that
Tim_ [IA(\y, (4)) ~ v, (4)] =0

for each A € *-alg(S1,S2) and thus

lim_{|A(Av,, (4)) = Av, (A)] = 0

n—oo
for each A € Oy. Hence (Ay, ),>1 is an asymptotically central sequence of *-homomorphisms. O
We are now ready to prove our main result.
Theorem 7.5. O3 Qmin O2 ~ Os.

Proof. Let m : Oy — O3 Qmuin O2 be defined by 7n(T) = T ® Ip,. Clearly 7 is a unital, injective *-
homomorphism between unital, separable C*-algebras. Therefore to show that Oy and Oy Ry O2 are
isomorphic it suffices to verify the conditions of Lemma 7.1.

We claim that it suffices to show that there exists a sequence of unitaries (Vj,)pn>1 € O2 ®@min O2 such
that

1 1
[Va(S; @ 1o,) — (S5 ® 1o,)Val| < -~ and  dist(V, (1o, ® S;)Vy, 02 ® lo,) < - (%)
for j € {1,2}. To see this, we notice
[Va(S} ® To,) = (S} @ Lo,)Va| = [|(S] @ 10,)V;; = V,I(S; @ To,)|| = [Va(S; © Io,) = (S; @ Lo,)Val

so (*) implies
nlgréo ||Vn(p(S1, SZ; Sika S;) & Ioz) - (p(Slv 523 ST» S;) ® IOQ)VTLH =0

for all polynomials p in four non-commuting variables. Therefore lim,, o ||Vom(A) — 7(A)V,]| = 0 for all
A € Oy by density. Moreover, since 7(A) asymptotically commutes with V,,, we obtain that

limsup dist(V, (A ® S;)Vy, 02 ® In,) < ||A] nhﬁn;o dist(V,y (Io, ® S;)Vn, 02 ® In,) =0

n— oo

for all A € Oy and j € {1,2}. Therefore, again by taking adjoints, algebraic combinations, and using density,
we obtain that

lim dist(V,TV,,,02® Ip,) =0

n—oo

for all T € O3 @min O2. Hence the conditions of Lemma, 7.1 will be satisfied for 7 if we can construct unitaries
(Vi)n>1 in O2 Qmin Oz such that (x) holds and thus we will obtain Oy Quin O2 ~ Oz from Lemma 7.1.
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To verify (), let € > 0. Since Oy ®min O2 is unital, simple, and purely infinite, Theorem 6.12 implies
that the unital *-homomorphisms 7 and o : Oy = O2 @pin O2 defined by o(T) := Ip, ® T are approximately
unitarily equivalent. Therefore there exists a unitary W € Oy ®pin O2 such that

[W(S; ® Lo, )W* — (lo, ® Sj)|| <€

for all j € {1,2}.

Let p,, : O3 — O3 be the asymptotically central sequence of unital *~-homomorphisms from Lemma 7.4
and let ¥, : O2 Quin Oz = Oz Qmin O2 be the *-homomorphisms ¢, := p, ® Id. Therefore each v, is a
unital *-homomorphism so W,, := 1, (W) € Oz @min O2 is a unitary.

Next we claim that

To see this, we notice that for all § > 0 we can select Ay, By € Oy such that |[W — )", Ay @ Bi|| < 4.
Hence |W,, — > 1t pn(Ak) @ Byl < & so

W (S; @ Io,) = (S; @ To,)Wall <26+ lon(Ar)S; — S;pn(Ax)|| | Bl -
k=1

Hence
limsup [|W,(S; ® lo,) — (S; @ Io, )W, || < 2§

n—oo

for all § > 0 and thus
Jim (S @ To,) — (8@ To,) Wa| =0.

However, we notice that

dist(Wy, (o, © S)Wn, 02 @ lo,) < [[W;(Io, © Sj)Wn — pn(S;) @ Lo, ||
= [¥n(W*(lo, @ S;))W = 5; @ lo,)|| <e.

Therefore, by selecting select € small enough and n large enough, W,, can be used to construct unitaries that
satisfy (%) thus completing the proof. O
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8 States on Purely Infinite C*-Algebras

In this chapter we will enhance the theory of the set of all states on a unital, simple, purely infinite C*-
algebra. Along the way, we will need to develop several general results about pure states and irreducible
representations of C*-algebras. Our goal is to show that every state on a unital, simple, purely infinite
C*-algebra 2 is close to a compression map on 2. To prove this, we desire to make use of the excision
results of Chapter 3 and thus we will first need to prove that every state on a unital, simple, purely infinite
C*-algebra is a weak*-limit of pure states.

Most of the results for this chapter were developed from the book [Di.

To begin, we desire to know when the weak*-closure of a set of states on a C*-algebra 2 contains all
pure states on 2. To prove the desired result, we need the following commonly used result from functional
analysis (which we provide for completeness).

Theorem 8.1 (Milman’s). Let K be a compact set in a locally convex topological vector space X such that
co(K) is compact. Then every extreme point of co(K) lies in K.

Proof. Suppose that there is an extreme point p of ¢o(K) that is not in K. Since {p} is a compact set and
K is closed, there exists an open neighbourhood U of Ox such that (p + U)NK = 0. As X is locally convex,
there exists a convex neighbourhood V' C U of 0x. Hence there exists a balanced, convex neighbourhood
V C V' of Ox that also satisfies (p + V)N K = (). Since K is compact, we may choose z1,...,x, € K such
that K C {J;_,(@; + V). Let A; :=co(K N (x; + V)). Thus each A; is convex and is also compact since it is
a closed subset of the compact set co(K). Moreover K C J;; A;. Therefore

co(K) C co <O Ai> =co (O Ai>

since co (i, A;) is compact (as the convex hull of two compact sets K1, K> is compact as it is the image of
[0,1] x K7 x K3 under a continuous map) and hence closed. However, since ¢o(K) is convex and A; C ¢o(K),

we have that
co(K) = co (U Ai> .
i=1

Hence, since p € ¢o(K), by rearranging the order of the A; there exists an N € {1,...,n}, y; € A;, t; > 0,
and t; > 0 such that Zfil ti=1and p= Zi\il t;y;. However, notice that

toyo + - +inyYN
to+ -+ ity

p=tiy1 + (1 —t1)

so p is a convex combination of two elements of ¢o(K). Since p is an extreme point of ¢o(K ), we must have
that y; = p. Thus, for some A;, we have that

peA;Ceo(w; +V)Ca; +VCK+V

since V' is convex. However, this contradicts the fact that (p + V)N K = () since if p =k + v where k € K,
v €V, then p—v =k and —v € V since V is balanced. Hence we have our contradiction. O

Corollary 8.2. Let 2 be a unital C*-algebra, let A, the self-adjoint elements of A, let S(A) the set of state
on A, let PS() the set of pure states on A, and let Q@ C S(A) be such that if A € Uy, satisfies p(A) >0

w

for all o € Q then A > 0. Then conv(Q) = S(A) and PS(A) C QY.

Proof. To see that conv(Q)w = S(2), suppose to the contrary that conv(Q)w # S(20). Therefore there
exists a state ¢ on 2 such that ¢ ¢ conv(Q)w . By the separation version of the Hahn-Banach Theorem,
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there exists a < 8 in R and a weak*-continuous linear functional on 2* (which is just an element A € )
such that
Re(p(A)) < a < B < Re(y(4))

*

for all ¢ € conv(Q)w . However, by considering B := Re(A) and the fact that ¢ and each ¢ under
consideration is positive and thus self-adjoint, we obtain that

o(B) <a<f<y(B)

for all ¢ € Q. Therefore ¢)(B — BIy) > 0 for all ¢ € Q. Therefore, as B is self-adjoint, we obtain that
B — Iy > 0 by our assumptions on Q. Hence, as ¢ is positive, ¢(B) > 8 which is a contradiction. Hence

conv(Q)w = S(2) as desired.

To see that PS(2A) C @w , we notice that since @w is a weak*-closed and thus weak*-compact subset

of §(2), Milman’s Theorem implies that every extreme point of S() = conv (Qw) is contained in @w*.
As PS(2) are the extreme points of S(2(), the result follows.

Next we desire to be able to use the kernels of representations to determine that certain states are
weak*-limits of convex combinations of states of vector states.

Lemma 8.3. Let 2 be a C*-algebra and let {my : A — B(Hao)}aer be a family of representations of A. Then

1. Each state on 2 that vanishes on [ \,c; ker(ma) is a weak™-limit of states of the form we, oTq, +- - -+we, 0
Ta, where o € I, &5 € Mo, are vectors such that Y, &> =1, and we,; 0Ta, (A) = (o, (A, §)na,
for all A € A and for all j.

2. Each pure state on A that vanishes on (,c; ker(na) is a weak™-limit of states of the form we o my
where av € I, € € He is a unit vector, and we o Ty (A) = (1o (A)E, ) n,, for all A € A.

Proof. Let ¢ be a (pure) state that vanishes on [, ; ker(m,). By common representation theory results, we
can assume that each 7, is non-degenerated. Moreover, by moding 4 out by (1, ker(m,), we may assume
that (,c; ker(ma) = {0} as we can view ¢ as a (pure) state on this quotient C*-algebra and ¢ will be a
weak*-limit of states on 2 that vanish on (., ker(7y) if and only if it is a weak*-limit of the same states
as viewed on the quotient algebra. Therefore we can assume that p = @,c77m, is a non-degenerate faithful
representation of 2 and thus we can view 2 as a non-degenerate C*-subalgebra of B(®,c1Ho). Thus we can
assume without loss of generality that 2 is unital by adding in the unit of B(®,c1H) if necessary (as we
will still get states on 2 as 2 is non-degenerate). Let @ be the set of all state on A of the form we o 7, for
some & € H,, of norm one. However, if A € ,, and ¢(A) > 0 for all ¢ € Q, then (7, (A4)&,&)3,, > 0 for all
& € H, and thus my,(A) > 0 for all « € I. As p is a faithful representation of 2, we obtain that A > 0 and
thus () satisfies the conditions of Lemma 8.2. Hence the result follows. O

Next we will need a common result known as Glimm’s Lemma. Note that this lemma is usually stated
for separable C*-algebras on a separable Hilbert space (where it is possible to use sequences of vector states).
However, we will need the full version of this lemma.

Lemma 8.4 (Glimm’s Lemma). Let H be a Hilbert space, let & be the compact operators on H, and let A
be a C*-subalgebra of B(H) with Iy, € A. If v is a state on A that vanishes on AN K then ¢ is a weak™-limit
of vector states on 2A. Moreover, if A is irreducible in H then ¢ is a weak*-limit of pure state of 2.

Proof. The result that “if 2 is irreducible in H then ¢ is a weak*-limit of pure state of 2” follows from
the first statement since if 2 is irreducible on H, every vector space defined on 2 by H is a pure state on
2. Thus we focus on proving the first statement. If & ¢ 2 we can define a state ¢’ on A + & (which is a
C*-algebra) by ¢'(A+ K) = p(A) for all A € 2 and K € K (which is a well-defined state on 2 + & as ¢
vanishes on 24N K). Thus, without loss of generality, & C 2.
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Let g : 2 — 2/ be the canonical quotient map. Since ¢ vanishes on K, ¢ defines a state ¢’ on A/K by
O (A+ R) = ¢p(A) for all A €. Thus ¢ is a weak*-limit (in 2/8) of states of the form Ay} + -+ )\ngo;l
where ¢ are pure states on /R and A; € (0, 1) are such that Z”_l Aj = 1. Each <p; defines a state p; = gojoq
on 2 and it is easy to see that ¢ is a Weak* limit of the states of the form A1+ -+ Appn where p; = (p] oq
where ', are pure states on /& and A; € (0,1) are such that Z]: Aj = 1. However, we claim that each ¢;
as listed above must be a pure state on 2. To see this, suppose ¢; = A1 + (1 — A)th2 where A € (0,1) and
P1,12 € S(RA). If K € R is positive then 1 (K) > 0, ¢9(K) > 0, and 0 = A1 (K) + (1 — A\)po(K). Hence
P1(K) = 2(K) =0 for all K € R positive and thus for all K € K. Hence 11 and 15 define states ¢} and ¢4
on /R by j(A+ R) = 1;(A) for all A € 2. It is easy to see that ¢} = A\py + (1 — A)1b5. However, as ¢’ was
assumed to be a pure state on /K, ¥ = ¢ for i € {1,2} and thus ¢ = 1) = ;. Hence ¢; is a pure state
on 2. Therefore ¢ is a weak*-limit of states of the form A1 + --- 4+ Ay, Where ¢; are pure states on 2
such that ¢;(®) = {0} and A; € (0,1) are such that >-7_, A; = 1. Therefore, to prove the lemma, it suffices
to consider states of the form A\j¢; + -+ + A\,¢, where p; are pure states on 2 such that ¢;(8) = {0} and
Aj € (0,1) are such that >37_; A; = 1.

To show that A1 + -+ + Ay is a weak™limit of vector states, we will show for any finite set
{A1,..., A} of self-adjoint elements of 2 such that A; = I there exists unit vectors &3,...,&, € H such
that (A4:€;,&) = 0 for j < k and such that |¢;(A4;) — (4:&;,€)] < 1 for all ¢ € {1,...,m} and for all
j€{l,...,n}. To begin, as A; = I, let & be any unit vector.

Suppose that £; have been constructed with the desired properties for j < £. Let

Ko := span{A;&; | 1 <i<m,j <}

so that ICp is a finite dimensional subspace of H. Let K := H & Ky. Since Ky is a finite dimensional subspace
of #, the projection onto Ky, denoted Px,, is an element of & C 2. Clearly Pc2Px is a C*-subalgebra of 2
(as I € ) and @y|peap. s a state on PR Py since it is clearly a positive linear functional and

0e(Pe) = pe(Prc) +0 = pu(Prc) +¢e(Pr,) = p(I) =1

as g vanishes on R.

We claim that ¢s|peap. is a pure state on Pc2APx. To see this, suppose ¢¢|peape = Mb1 + (1 — Ao
where A € (0,1) and %1 and ) are states on PxRAPx. Define o1, : % — C by ¢ (A) = ¢, (PxcAPx).
Clearly ] and 4 are state on 2 such that ¢, = A} + (1 — A\)¢h (as ¢y vanishes on K and thus lives on
PicPyc). Therefore, as ¢, was a pure state on 2, ] = ¥4 = @y and thus 1 = V2 = @y|peap.. Hence
0ol pepe is a pure state on Pe2APi.

Since PP contains all of the compact operators on K as 2 contains all of the compact operators
on H, PcAP is irreducible in . Thus, by Lemma 8.3, ¢¢|pcap. is a weak*-limit of states of the form
we, where (, are unit vectors in R Hence, for 1 < i < m, @o(A;) = @e(PcAiPx) is a weak™-limit of
(PicAiPcCoyCa) = (AiCa,Ca). Hence we can find an & € K such that |pp(4;) — (A;&, &) < 1 for all
1 < i < m. Moreover, as & € K = Kg, (4:&;,&) = 0 for all j < £. Hence the construction of the &;’s
proceeds by recursion.

Fix a set {41,..., A} of self-adjoint elements of 2 such that A; = I and let &;,...,&, € H be the unit
vectors constructed above such that (A;&;, &) = 0 for j < k and such that |p;(4;) — (4, &) < 1 for all
i€{1,...,m} and for all j € {1,...,n}. Let £:= 37, VAjE&. Since Ay =1, (§5,&) = 0 for all j # k and
thus ¢ is a unit vector. Moreover, as each A; is self-adjoint, (A4;£;,&x) = 0 for all j # k. Hence

Z)‘J‘PJ — (A&, 8)| = ZAJSQJ i <A \/>§J7\/75k>

7,k=1

= ZAJSQJ Z)‘] (Ai&5,&5)
j=1

Z)\j =1

j=1

IN
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for all ¢ > 1.

Therefore for any finite subset of self-adjoint elements of 2l we have found a vector state on 2 that differs
from E?Zl Ajp; by at most one on all of the self-adjoint elements in our finite subset. Therefore, by scaling
our self-adjoint elements and noting that the span of the self-adjoint elements of 2 is 2, Z?:l Ajp; is a
weak*-limit of vector states as desired.

Now we may begin to discuss states on unital, simple, purely infinite C*-algebras. First we desire to show
that every state on a unital, simple, purely infinite C*-algebra is a weak*-limit of pure states. We make the
following notation that will be used in the few remaining proofs.

Notation 8.5. Let 2 be a C*-algebra. We denote the set of all irreducible representations of 2 by Irr(2).
If 7 : 2A — B(H) is a representation of 2, we denote by C, the set of all A € 2 such that 7(A) is a
compact operator. Thus C is an ideal of 2.

Lemma 8.6. Let 2 be a unital, simple, purely infinite C*-algebra. Then mﬂ'EI’rT'(Ql) C, ={0}.

Proof. Suppose to the contrary that [ . Irr(20) C; is non-zero. Therefore, since 2 is simple, C; = 2 for all
m € Irr(A). By Lemma 2.3 there exists a non-zero isometry V € 2 such that P = VV* < Iy. Therefore
m(Iy) = 7(V*V) = o(V)*n(V) and «(P) = «n(V)w(V)* for all # € Irr(A). Hence n(Ily) and w(V) are
equivalent projections. However, since C; = 2, 7(Iy) and «(P) must be compact operators. Therefore,
as m(P) < m(Iy) and 7(Iy) and 7(P) are equivalent compact projections, m(Iy) = m(P) for all irreducible
representations . However, since the irreducible representations of 2 separate points in I, P = Iy which is
a contradiction. Hence (1, ¢r,..(a) Cr = {0} O

*

Theorem 8.7. Let A be a unital, simple, purely infinite C*-algebra. Then PS(Ql)w =S).

Proof. Clearly PS(Q[)w C S(A). Let ¢ € S(A) be arbitrary. Since (1 ¢y, Cr = {0} and 2 is simple,
there exists an irreducible representation m : 2 — B(#H) such that C = {0}. Therefore ¢(Cr) = {0}. Hence
¢ defines a state ¢’ on 7(2A) that vanishes on 7(A) N & = {0}. Therefore, by Glimm’s Lemma, ¢’ is a
weak*-limit of pure states on m(2() (which must define pure state on 2 as 7 is irreducible) and thus ¢ is a
weak*-limit of pure states on 2. [

With the above result in-hand, we are able to prove our final result for this chapter.

Theorem 8.8. Let A be a unital, simple, purely infinite C*-algebra and let ¢ be a state on A. Then for every
€ > 0 and every finite subset F C 2 there exists a non-zero projection P € 2 such that ||[PAP — (A)P|| < €
forall A e F.

Proof. Let ¢ be a state on 2. By Theorem 8.7, ¢ is a weak™*-limit of pure states. Therefore, by Proposition
3.8, ¢ can be excised. Hence there exists a net of positive elements (A,)a with ||A.]] = 1 such that
lima HAaAAa - @(A)AZH =0 forall A e

Let e > 0 and let F be a finite subset of 2. Choose a such that ||AqAA, — p(A)A2|| < § for all A € F.
Since A, > 0 and since 2 has real rank zero by Proposition 5.3, Theorem 5.5 plus some thought implies that
there exists a positive element X € 2 with finite spectrum such that | X| =1 and || XAX — ¢(A)X?|| <€
for all A € F. Since X has finite spectrum and || X| = 1, P := x413(X) is a non-zero projection in 2.
Moreover

|[PAP — o(A)P| = |[PXAXP — P(p(A)X*)P|| < || XAX — p(A)X?|| < ¢

for all A € F. Hence the result follows. O
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9 Non-Standard Results on Completely Positive Maps

In this chapter we will develop the necessary theory of completely positive maps needed in subsequent
chapters. We assume the reader is already familiar with the standard theory of completely positive and
completely bounded maps and we focus on some non-standard results.

Most of the results for this chapter were developed from the paper [EH] and from the books [Pa] and
[BO].

We begin with a brief study of completely bounded maps on finite dimensional operator systems. We
begin with a technical lemma from Banach spaces.

Lemma 9.1. Let X be a Banach space with dimension n. Then there exists a basis {e1,...,en} for X such
that |le;|| = 1 for all i € {1,...,n} and, if {f1,..., fn} is the corresponding dual basis, ||fi|| = 1 for all
ie{l,...,n}.

Proof. Let B = {y1,...,yn} be any basis for X. For any n vectors zi,...,2, in X with ||z;|| = 1 for all
i € {1,...,n}, define V(z1,...,2,) = det([a; ;];;) where (a;1,a;2,...,0;y) is the coordinates of z; with
respect to B. Therefore it is clear that |V] is a continuous function on a compact subset and thus obtains
its maximum at a set {e1,...,e,} with |le;|| = 1 for all j € {1,...,n}. Notice that V(yi1,...,yn) =1 so
[V(e1,...,en)| > 0 and thus {e,...,e,} must be a basis for X.

Let {f1,..., fn} be the dual basis of {e1,...,e,}. It is trivial to verify that

V(ela s €5 —1,T,€541, - '7671)

1) = Vie,...,en)

for all x € X with ||z|| = 1 and for all j € {1,...,n}. Therefore, due to the maximality of |V| at {e1,...,en},
|fij(z)] <1 for all z € X with ||z|| = 1. Hence the result follows. O

Lemma 9.2. Let §; and Sy be operator spaces and suppose Sy is finite dimensional. Then any linear map
0 : S — Sy is completely bounded with |||, < dim(Sy) ||

Proof. Note that ¢ must be bounded being a linear map with a finite dimensional domain and thus a finite
dimensional range. To see that [|¢|, < n|l¢|, let {z1,...,2,} be a basis for S; with dual basis {fi,..., fn}
such that ||z;|| =1 = ||f;]| for all j € {1,...,n} (whose existence is guaranteed by Lemma 9.1). Then for
allz € Sy @ =Y, fi(x)x; and thus p(x) = X7, fj(x)p(x;). However, it is easy to see that the linear
maps  — f;(x)e(z;) have completely bounded norm at most || f;|,, ll¢(z;)]| = [[f5] [|o(z;)]] < [l¢l|. Hence

n
el <D llz = fi(@)e(zs)ll,y < nllel
j=1

as desired. 0

Lemma 9.3. Let 2 be a unital C*-algebra, let Aq,..., A, € A be linearly independent, and suppose that
S = span(Ay, ..., Ay) is an operator system in . Let
< 1} |

Then for any Bi,...,By, € 2 the linear map ® : S — span(Bi, ..., By,) defined by ®(A;) := Bj for all
1 <7 <m is completely bounded with

Z OékAk

k=1

M := sup {1%zx<xm laj| |

1l < 14+ mM Y |lA; Byl
j=1
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IfmM YT || Aj — Byl <1 then @' exists and
-1
[, < | 1—mM ) _|l4; - By

j=1

Proof. Note that M < oo as S is an n-dimensional vector space and all norms (specifically || - ||y and || - || )
are equivalent. Consider C™ with the {,-norm. Define @ : S — C™ by Q(4,) := e; and define R: C" — A
by R(e;) := Bj — Aj. Due to the norm defined on C", ||Q[| = M and ||R|| < 3>°7", [|A; — Bj|. Therefore,
by Lemma 9.2,

m
IRoQll, <m|RoQ| <mlR| Q] =mMY)_|A; - Bjl.

j=1
Therefore, since ® = Id + R o (), we obtain that

m
19l < 14+mM Y ||A; — Byl

j=1

as desired. However, using the above norm estimate when mM »77" | [|A; — Bj|| < 1, we obtain that

1@ (A)| = |A] = [I(R 0 @u(A)| > |A] { 1 —mM Y [|A; - By

Jj=1

for all A € M,, (). Therefore ®,, is bounded below for all n and thus is invertible. Moreover, the above

norm estimate implies
-1

[@n) Tt < | 1=ma ) |14, - B
j=1
for all n € N and thus the result follows (as (®,,)"1 = (®71),, for all n € N). O
The above lemma will be essential for us to construct completely bounded maps with well-behaved norms.

Next we desire to show that a unital, self-adjoint, completely bounded map is ‘close’ to a completely positive
map.

Theorem 9.4. Let A be a unital C*-algebra, let S C A be an operator system, let H be a Hilbert space, and
let ®: S — B(H) be a unital, self-adjoint, completely bounded map. Then there exists a unital, completely
positive map ¥ : A — B(H) such that |¥]|s — @[, <2(||®||, — 1)-

Proof. Since ® is unital, ||®|., > 1. By Wittstock’s Extension Theorem there exists a completely bounded
map ¥ : A — B(H) such that Vy|s = ® and || Vy]|, = [|®],. By Wittstock’s Theorem there exists a
Hilbert space K, a unital *-homomorphism 7 : 2 — B(K), and isometries V; : H — K (for ¢ € {1,2})
Uo(A) = |||, Vi'm(A)V; for all A € A.

Since ® is self-adjoint, we obtain that

®(A) = Wo(A) = [l ViTm(A)Va = (@], Vo m(A)V

for all A € S. Define ¥ : A — B(H) by

W(A) 1= S (AW + V3 m(A)V)
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for all A € 2. Clearly V is a completely positive map with W(I) = 1(V;*V; + V5 V) = I. Moreover we notice
for all A € S that

212 (Vi = Vo) () (Vi = V) = 5 [l (Vim(AYVi + V3 (A — Vim(A)Vs — Vi m(A)VA)
@1l w(4) — ().

Therefore
1
s = @y < 1 =M1y Clly, + M 2llep Uls = Pl < UMy = 1) + 5 (1 @lley V2 — Va|*.
However, since ®(Iy) = Iy, Iy = ||®||, Vi*Va2 so

1 s 1
3 1l Ve = VoIl = 5 @My 3¢ — 250 + @]l Ll = @]l — 1

and thus
[¥|s — @[, < 2([®[l, — 1)

as desired. ]

Later we will need some of the theory of lifting completely positive maps. These following results are
based mainly on the work contained in [EH]. We begin by studying when contractive, completely positive
maps into a quotient can be lifted to completely positive maps.

Lemma 9.5. Let J be an ideal in a unital C*-algebra B and let S be a separable operator system. The set
of contractive, completely positive maps from S into B/J with a contractive, completely positive lifting to B
is closed in the point-norm topology on all bounded linear maps from S into B/J. Thus the set of unital,
completely positive maps from S into B/J with a unital, completely positive lifting to B is closed in the
point-norm topology on all bounded linear maps from S into B/J.

Proof. Let q : B — B/J be the canonical quotient map. Let ¢ : & — 9B/J be a bounded linear map
such that there exists contractive (unital), completely positive maps 9, : S — B such that (g o ¥} )n>1
converges to ¢ in the point-norm topology. Clearly this implies ¢ is completely positive and contractive
(unital). Let {Ag}r>1 be a dense subset of S. Therefore, by passing to a subsequence, we may assume that

g, (44)) — @(Ay)]| < & for all k < .

We claim that it suffices to construct a sequence 1, : S — B of contractive (unital), completely positive
maps such that [q(¥n(Ar)) — @(Ap)|| < 3= for all k < n and ||¢hn41(Ak) — Yn(Ap)|| < g7 forall k <n—1.
If such a sequence exists, then it is clear that (¢,(Ax))n>1 is a Cauchy sequence for all k € N and thus, as
{Ai}r>1 is a dense subset of S, ¥(A) := limg_,00 ¥ (A) exists for all A € S. Clearly ¥ will be a contractive
(unital), completely positive map (being the point-norm limit of contractive (unital), completely positive
maps) and, since [|q(¢, (Ax)) — @(Ar)|| < 5= for all k > 1, q(¥(Ax)) = @(Ay) for all k € N. Therefore, by
density, g o ¢ = ¢ as desired.

To construct such a sequence, we proceed by induction. Let v := 1]. Suppose we have constructed
VYn + S — B such that [|g(vn(Ar)) — p(Ar)| < 5= for all k < n and vy, (Ax) — Yp—1(Ar)| < 57 for all
k <n—1. Let (E)\)a be a quasicentral C*-bounded approximate identity for J in 8. Then

lim || (7 = Bx) 0 (A) (T — En)¥ + B 9u(A)E} — n(4)| =0
for all A € S, and, if By := 1, 1(Ax) — ¥n(Ag), then

) 1 1 2
lim | (1 — Bx)¥Bu(ln — B} = la(Bu)l < 5

if k < n. Hence there exists an F := E, € J so that

1

H(I% — B)apy(Ap)(Is — E)? + B3¢, (Ag)E? — wn(Ak)H < gort
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for all k <n + 1 and H(I% —E)!By(Is — E)}

< 2%1 for all kK < n. Define ¢,,11 : S — B by

Uni1(A) = (Is — E)2¢!, 1 (A)(Is — E)? + EZ¢,(A)E?

for all A € §. Clearly ¥,4+1 is a completely positive map. In the contractive case, to see that 1,41 is
contractive we note that 1], and 1, are contractive maps and (Is — E) + E = Iz 50 ||[{n41(Is)|| < 1. In
the unital case, to see that 1,4, is unital we note that ¢}, ; and ¢, are unital maps and (I —E)+E = Iy
$0 Ynt1(Is) = Is. To see that 1,41 has the desired properties, we notice that q o ¢,11 = q o d)’I/’L+1 SO
lg(tn(Ar)) — @(Ar)|| < 5= for all k < n+ 1. Moreover

W1 (A0) = wu(ADI| < g + [[(In = 301 (A)In — B = (I — E)} o (A) (I — E)'
zirr + 1Bl < 7.

for all £ < n as desired. O

The above is useful as to show that a unital, completely positive maps into a quotient is liftable, it suffices
to show that the map is a limit of liftable maps in the point-norm topology. One example of this is the
following (although the proof is annoying).

Lemma 9.6. Let J be an ideal in a unital C*-algebra B such that for every C*-algebra &€ the kernel of
q®Ide : B Qmin € = (B/T) Omin € is equal t0 J @min € (where q : B — B/J is the canonical quotient map).
If S is a finite dimensional operator system and ¢ : S — B/J is a unital, completely positive map then ¢
has a unital, completely positive lifting ¢ : S — B.

Proof. Since S is finite dimensional, there exists an algebraic lifting ) : S — B of ¢. By replacing ¢(A)
with 1(4(A) +¥(A)*) for all A € S we may assume that ¢ is a self-adjoint lifting of ¢. Of course, the idea
of the proof is to correct 1.

Let (Ey))a be a quasicentral C*-bounded approximate identity of J in B. If ¢ : 8 — B /J is the canonical

quotient map then ¢(Is — Ex) = I35 for all A\ € A. Hence ¢ ((IsB — E,\)%) is the positive square root of

Ig/3inB/Jsoq ((I% — E)\)%) = Iy 3 (alternatively, this can be obtained by taking limits of polynomials).
For each A € A define ¥y : § — B by

x(A) == (Iy — Ex)2(A)(Ip — B»)?

for all A € S. Since g ((I% — EA)%) = I 3 and 9 is a lifting of ¢, each 9y is a self-adjoint lifting of ¢.

We claim that if we can show lima [[1x]|, = 1 then the proof will be complete. To see this, let € > 0.
We will use our completely bounded norm estimates to correct 1. By our assumptions on the limit, we can
assume that [|¢||, < 1+ € by replacing ¥ with one of the self-adjoint liftings 15 of . Let ¢ : S — C be an
arbitrary state. For each A\ € A define ¢} : S — B by

YA(A) = (I — Ex) 39 (A) (I — E))* + ¢(A)Ey

for all A € S. Clearly each v} is a self-adjoint lifting of ¢. Since the map
Bi@aw (I — E\)2Bi (I — Ex)? + aF)

from B @ C to B is a unital linear map that is the sum of two completely positive maps, it is a unital,
completely positive map. Since each ¢ is the composition of the above map with the map Y& ¢ : S — BHB,
¥ is a self-adjoint, completely bounded map with |[¢/|| ., < [|¢[l, <1+ €.
Notice that
Iy —v4(Is) = Is—(Is — Ex)2¢(Is)(Is — Ex)% — By
(Is — Ex)? (I — ¥(Is))(Is — Ex)?.
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However, since v is a lifting of ¢ and ¢ is unital, Iy —¢(Is) € J. Hence, as (E))a is quasicentral, the above
implies
lim Iy — 93 (Is) = 0.

Choose \g € A such that HI% — w&O(Is)H < €. Define ¢ : S — B by
P (A) =Py, (A) + (Is — ¥, (Is))$(A)

for all A € §. Since ’(/J;\O is a lifting for ¢ and ||I% — @[Jﬁ\o (IS)H < € by the above computations, it is clear
that || — go9”|| < e. Note 9" is a unital, self-adjoint completely bounded map such that

")l < 14 €+ [[Is — v, (Ls)|| < 14 2e.

By Theorem 9.4 there exists a unital, completely positive map 6 : S — B such that ||6 — ||, < 4e. Thus
gof :S — B/J is a unital, completely positive map with a unital, completely positive lifting 6 : S — B such
that ||go 6 — ¢|| < 5e. Therefore, since € > 0 was arbitrary, Lemma 9.5 implies ¢ has a unital, completely
positive lifting to 8.

Therefore, to complete the proof, it suffices to show that lima [[¢x]|, = 1. Suppose otherwise that
limp [[9a]|, # 1. Then there exists an € > 0 such that limsup, [[¢x]|,, > 1 + 4e. By replacing ¢, with a
subnet, we may assume that |[15||, > 14 2€ for all A € A. Hence for each X € A there exists an ny € N and
an Ay € M, (S) such that [ Az]| = 1 and (@ )ny (A)]| > [all — € > 1 +e.

Now we will use this sequence of matrix algebras of S to construct an operator in a C*-algebra such that
we can use the exact sequence condition to obtain a contradiction. Consider Sy := [],(Mn,(S)). Therefore
Sy is an operator system on [ [ , (H®C™ ) ~ H®(]], C™*) (where S C B(#)). Under this unitary equivalence
of Hilbert spaces, we claim that Sy is S ©® € where € := [, M,,, (C). To see this, we notice that S ® € is
clearly a subspace of Sy under this unitary equivalence. To see the other direction, let {ey, ..., e} be a basis
of unit vectors for S and let {f1, ..., fi} be the dual basis. Therefore the maps (f;j)n, : Mn, (S) = My, (C)
are completely bounded and, if T' = >} | e, ® Ay € My, (S), then Ay = (fi)n, (T'). Therefore, if (yx)a € So
then

(ya)a = <Z ek ® (fi)na (w)) = e ® ((fi)na (1))
k=1 A k=1

which is an element of S ® € as each (fx)n, is completely bounded. Hence we will view Sy as S © €.
Let A:=>"7" (ex @ ((fx)ns(Ar))a) € So (so A corresponds to the operator (Ay)a which has norm at
most 1). Then for any v € A

(Vv ® Ide) (A) = 30, (Yulen) @ ((fi)ny (Ax))a)
= (=i ¥u(er) ® (fu)na (AN)) o
= ((zpu)m (AA )A
[(thy @ Ide) (A)|| = [[(¥hv)n, (Ap)[| 2 1 + €.

However (¥r @ Ide) (A) = ((¥)nr (AN)p ,
= ((U2=B)* @ L) v (A) (2 = B)* @ 1,)) |
= ((1% ~E)® IQ) (¢ @ Ide) (A) ((Ias ~B)i e k) '

However, it is clear that (E) ® I¢)a is a quasicentral C*-bounded approximate identity of J ®min € inside
B min € (that is, first check it on the span of the elementary tensors). Therefore

limsup, [|(, @ Ide) (A)| = [|(¥ @ Ide)(A) + T Qmin €|
= [g@le) (v @ Ide)(A))|

= |[(¢® Ide)(A)
< 1



(as ||A|| <1 and ¢ ® Idg is a unital, completely positive map) which is a contradiction. Hence the result is
complete. ]

Although the converse of the above result is true, we shall not present the proof as we do not require
it. Next we will look at a weak form of injectivity that will enable us to lift completely positive map into
quotients by ideals with this property.

Definition 9.7. Let 2 be a C*-algebra. We say that 2 is approximately injective if for every finite dimen-
sional operator systems &; € Sy C B(H), any completely positive map ¢1 : S — 2, and any € > 0 there
exists a completely positive map s : So — 2 such that ||pa|s, — ¢1|| <e.

Clearly every injective C*-algebra and every nuclear C*-algebra is approximately injective. Our goal is
to upgrade Lemma 9.6 from finite dimensional operator systems to separable operator systems provided that
our ideals J are approximately injective. We proceed with the following two results.

Lemma 9.8. Let J be an approximately injective ideal in a unital C*-algebra B such that for every unital
C*-algebra € the kernel of ¢ ® Ide : B Qmin € — (B/J) Qmin € is equal to J Qmin € (where q : B — B/J is
the canonical quotient map).

Let 8§ C Sy C B(H) be finite dimensional operator systems (with the same unit as B(H)) and p2 : So —
B/J be a unital, completely positive map. If the restriction 1 = pa|s, has a unital, completely positive
lifting 1 : S1 — B then for any € > 0 there exists a unital, completely positive lifting Vg : So — B of po
such that ||y2]s, — Y1) < e.

Proof. The idea of the proof is to use Lemma 9.6 to get a lifting of ¢ and then use the approximate
injectivity of J to correct this lifting. Let (E))a be a quasicentral C*-bounded approximate identity for J
inside 9. By Lemma 9.6 there exists a unital, completely positive lifting ¥ : So — B such that q o ¥ = 5.
If 41 : S — B is a unital, completely positive lifting of ¢1 = pa|s,, then 11 (A) —(A) € J for all A € S;.
Therefore, since (E) ), is a quasicentral C*-bounded approximate identity for J inside 9B,

lim (2 — Bx)¥ (u1(4) = w(4)) (I — B3| = 0

for all A € §; and

lig [ 1(4) = (T = Ex) 91 (A) (I — B} — B{un(A)E}

for all A € S;. Hence

lim [[91(4) — (T — Bx)6(A) (I — B)¥ — B (A) B}

for all A € S;.
Fix 0 < § < 1. Therefore, since S is finite dimensional, there exists a A € A such that if F := F) then

[91(4) = (I - B)Eg(A) (I — B)} — B (4) B

<d|lAl

for all A € S§;. However, since E € J and J is an ideal of B, the map A — E%wl (A)E% is a contractive,
completely positive map of S7 into J. Therefore, since J is approximately injective, there exists a completely
positive map 0 : So — J such that

o) = B3y (a) B

< a4
for all A € S;. Since vy is unital, ||§(Ix) — E|| < 6.

Define ¢’ : S — B by . )
V'(A) = (Iy — B)2¢(A)(Is — E)? +0(A)
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for all A € S,. Since §(A) € J for all A € Sy, it is clear that g oy’ = q o1 = 3. Moreover

ln(4) =¥/ ()] < [|0(4) - B3y (4) B}

+ ) = (12 = BYS () — B - A (4) B2

<20 A

for all A € §; and
[T — ' (In)| = s — ((Iss — E) + 0(I3))

Therefore, if B := ¢’(Ix), then B is invertible with HB*%
defined by

| <éd<1.

< 1175. Therefore, the map s : So — B

$a(A) ;= B3¢/ (A)B~ 3
for all A € Ss is clearly a unital, completely positive map. To see that 5 is a lifting of o, we notice that
4(B) = q(¥'(In)) = p2(In) = In

(as ¢’ was a lifting of 2) so q(B™2) = Iy. Hence it is clear that v is a lifting of ¢o. Moreover

lea(a) = /() < (|l = B4+ ||B | 1) | 7 = B2} 141
< (040 (1= ) +1+9) (1- 75) 7 ) 141

for all A € S; so, as ||¢1(A4) — ' (A)|| <25 ||A|l for all A € Sy,

[42(A) =1 (A)] <e
for all A € &1 by making J suitably small. O
With the above result in hand, the following is simply to apply Lemma 9.8 recursively.

Lemma 9.9. Let J be an approximately injective ideal in a unital C*-algebra B such that for every unital
C*-algebra € the kernel of ¢ ® Ide : B Qmin € — (B/J) Qmin € is equal to J Qmin € (where q : B — B/J is
the canonical quotient map). Then any unital, completely positive map ¢ from a separable operator system
S into B/J has a unital, completely positive lifting ¢ : S — B.

Proof. Let S be a separable operator system and let ¢ : § — B/J be a unital, completely positive map.
Choose a sequence (A,,),>1 of self-adjoint elements of S with A; := I and dense span in S. For each k € N
let Sy := span{Aj, Aa, ..., Ar}. Therefore, each Sy, is a finite dimensional operator system with Sy C Sgy1
for all k£ € N.

By Lemma 9.8 there exists a sequence 1, : S, — B of unital, completely positive maps such that
got, = ls, and ||[¥n41(A) — ¥, (A)| < QL A| for all A € S,,. Therefore, since | J,~, Sk is dense in S, the
inequalities [|¢0n41(A4) — ¥n(A)]| < 5= ||A| for all A € S,, imply that 1(A) := limy_, ¥ (A) exists for all
A € ;> Sk and extends to a linear map on S by continuity. Since each ¢y, is a unital, completely positive
map, 1 is a unital, completely positive map. Moreover, since q o v, = ¢|s, , it is clear that 1) is a lifting of
by density. O

Finally we verify that the conditions of the above lemma can be reduced to assuming € = B(H) for a
separable Hilbert space H provided ¢ is a *-homomorphism.

Theorem 9.10. Let 2 and B be unital C*-algebras with A separable, let J be an approximately injective
ideal of B, and let ¢ : A — B/J be an injective, unital *-homomorphism. Let H be a separable infinite
dimensional Hilbert space and suppose that the induced map of algebraic tensor products

B o B(H)

A0 B(H) — 73@6(7—[)
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extends continuously to a (necessarily injective) unital *-homomorphism

B Omin B('H)

A Qmin B(H — .

Then there exists a unital, completely positive map ® : A — B which lifts ¢.

Proof. Let ¢ : B — /3 be the canonical quotient map. We claim that we may assume 20 = B/J and
@ = idgy 3. Indeed let Bg := ¢~ (p(2A)) € B which is a C*-algebra (as ¢ is a *-homomorphism). Since the
minimal tensor product preserves inclusions,

3 ®min B(H) g sB0 ®min B(H) g % @min B(H)

so the hypotheses of the lemma still hold with 2, replacing B.

By our above assumptions, it suffices to prove that for every unital C*-algebra € the kernel of ¢ ® Id¢ :
B Omin€ — (B/F) @min € is equal t0 JRmin €. If € is separable, then we may view € as a unital C*-subalgebra
of B(H). Therefore, since the kernel of

is precisely (B Qmin €) N (T Bmin B(H)) = J Qmin € by considering the C*-bounded approximate identity
(Ex®1)p for J ®min B(H) (where (Ey ), is any C*-bounded approximate identity for J) the separable case
is complete.

For a general C*-algebra €, we need only show that ker(qo Ide) CJ Qmin € If T € ker(q ® Ide) then
there exists a separable C*-subalgebra €5 C € such that 7' € B Qmin €0 C B Qmin €. Hence T' € ker(q® Ide,)
S0 T € J min € C J Amin € by the separable case. Hence the proof is complete. O

To complete this chapter, we desire to show that every unital completely positive map from a unital,
separable, nuclear C*-algebra into a quotient C*-algebra has an unital completely positive lifting. The easiest
way to prove this is to use Lemma 9.5, nuclearity, and show that algebraic liftings of unital, completely
positive maps from matrix algebras can be taken to be positive. We begin with the following result.

Lemma 9.11. Let B be a unital C*-algebra, let ¢ : My, (C) — B be a linear map, and let {E; ;}7';_, denote
the standard matriz units for M, (C). Then the following are equivalent:

1. ¢ is completely positive.

2. ¢ is n-positive.

3. [@(E;;)) is positive in M, (B).
Proof. It is clear that 1) implies 2). To see that 2) implies 3), we notice that [E; ;] € M, (M, (C)) is self-
adjoint (as [E; ;]* = [Ej*z] = [E;;]) and [E; ;]2 = > ki EikEy ;] = n[E; ;]. Hence 22 —nz =0 on o([E;;])
and thus o([E; ;]) C {0,n}. Hence [E; ;] is positive. Therefore, since ¢ is n-positive, ¢([E; ;]) is positive in
M, (B).

Suppose 3) holds. Let k& € N be arbitrary. Without loss of generality we may assume B C B(H) for some
Hilbert space H. To show that ¢ is k-positive, let Ay,..., Ay € M, (C) be arbitrary. Since A, € M,,(C),

there exists a; ;s € C (s € {1,...k}, 4,5 € {1,...n}) such that A, = Z?jzl a; ;.sE; ;. Thus, a simple
computation shows that

n n n
* —_— —_—
Ai A] = § al,m,iEm,l E as,hjEs,t = § al,m,ial,t,jEm,t~

l,m=1 s,t=1 l,m,t=1
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Fix h = (h1,ha, ..., hy) € HOF and let x;,,, := Z?Zl aym,jh; € H for I,m = {1,...n}. Then

k k n
Z (Q(A7Aj)hj, hi) = Z Z (A(@,m it Em,e)hy, hi)
ij=1 ij=11,m,t=1

k n
S (6(Bmi)ais b, aimihi)

i,j=11,m,t=1
k n

Z Z (A(Em,t)T1e5 Q1m,ihi)

i=11l,m,t=1

= Z (D(Emt)T1t, T m)

However, [¢(E; ;)] is positive in M,,(B) and hence > . (A(Em )@ t, Tim) = (dn([Em,¢])z, ) > 0 where
= (z11,...,%,) € H". Hence, since the sum of positive numbers is positive, ij:1<¢(A;‘Aj)hj, h;y > 0.
Hence ¢ is k-positive and, as k was arbitrary, ¢ is completely positive as desired. O

Theorem 9.12. Let A be a unital, separable, nuclear C*-algebra, let B be a unital C*-algebra, let J be an
ideal of B, and let q : B — B/J be the canonical quotient map. Then for every unital, completely positive
map ¢ : A — B/J there exists a unital, completely positive map ® : A — B such that go & = .

Proof. Let ¢ : 24 — B/J be a unital, completely positive map. Since 2 is separable, Lemma 9.5 implies that
the set of unital, completely positive maps from 2 into B/J that have liftings is closed in the point-norm
topology. Thus it suffices to show that ¢ is a point-norm limit of unital, completely positive maps into B/J
with unital, completely positive liftings. Since 2 is nuclear, ¢ is a point-norm limit of unital completely
positive maps of the form 1 o¢ where ¢ : A — M,,(C) and ¢ : M,,(C) — B/J are unital, completely positive
maps. If we can show that ¢ has a lifting to a unital, completely positive map, then 1 o ¢ has a lifting to a
unital, completely positive map and thus we are done by Lemma 9.5.

To see that 1 has a completely positive lifting, let {Ei,j}?’j:l denote the standard matrix units for
M, (C). Note that [¢(E; ;)] € M, (B/J) ~ M, (B)/M,(J) is positive. Therefore, standard functional
calculus results imply that there exists a positive matrix [B; ;] € M, (B) such that ¢,([B; ;]) = [¢(E: ;)]
Define ¥ : M,,(C) — B by ¥([a;;]) := >}, aijBi; for all [a;;] € M,,(C). Clearly ¥ is a linear map.
Notice that ¥, ([E; ;]) = [Bi ;] > 0 so ¥ is a completely positive map by Lemma 9.11. Moreover

a(as)) = a | B | = 3 asielFig) = olloss)

so U is a lifting of 2.

However, ¥ need not be unital. To fix this, we notice that ¢(¥(I,)) = ¥(I,) = Ip/3. Since ¥(I,) is
self-adjoint, ¥([,) = I + A where A € J,,. Using the Continuous Functional Calculus, write A = Ay — A_
where A, A_ € J are such that AL A_ = 0. Let f : M,(C) — C be any state on M,,(C) and define
T : M, (C)) — B by

W(T) = (I + Ay) "2 (U(T) + f(T)A_)(Ins + Ay) 2

for all T € M,,(C)). Clearly

[N
Il
~
2

W (L) = (I + A) "2 ((L) + A_) (I + AL) 7% = (Ios + Ap) "3 (I + Ap) (I + Ay)™
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so ¥’ is a unital, completely positive map. Since ¢ ((I% + A+)*%) = Iy /3 and

q(U(T) + f(T)A-) = q(¥(T)) = ¢(T)

for all T € M,,(C), ¥ is the desired unital, completely positive lifting of ).
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10 Completely Positive Maps on Purely Infinite C*-Algebras

In this chapter we will develop some theory on completely positive maps between unital, simple, purely
infinite C*-algebra. In particular, we desire to prove the opposite of Theorem 6.12: any two injective *-
homomorphisms from a unital, separable, exact C*-algebra into Oy are approximately unitarily equivalent.
Most of the results for this chapter were developed from the paper [KP]
To begin, we need a slightly technical result relating to the polar decomposition of non-invertible operators

in a C*-algebra.

Lemma 10.1. Let A be a C*-algebra, let P € A be a projection, and let A € A be such that AP = A and
|A*A— P| < 1. Then T := (PA*AP)~% exists in PLP and V := AT is a partial isometry in 2 such that
V*V = P. Moreover

[V - Al <1-(1—[4"A=P|)* < A"A - P||.

Proof. Since AP = A, PA*AP = A*A. Therefore, since ||[A*A — P|| < 1, PA*AP is an invertible positive
operator in PP and thus T exists. Let V := AT. Then, as T' € P2IP,

V*V = TA*AT = TPA*APT = (PA*AP) 2 PA*AP(PA*AP)™% = P

as claimed. Hence V is a partial isometry in 2.
. . . 1
To obtain the norm estimates, we notice that 1—z < (1—x)= for all z € [0,1). Hence, as ||[A*A — P|| < 1,
the inequality 1 — (1 — ||A*A — P|)2 < ||A*A — P|| is trivial. To obtain the other inequality, we notice that

|AT — A|* = || AP(T - P)|?
= (T = P)(PA*AP)(T — P)|
- H(p_ (PA*AP)%)2H

- HP _(pa*AP)t|

so || AT — Al = HP _ (PA*AP)}

. However, |A*A — P|| = ||[PA*AP — PJ| so
P—||[A*A—-P| < PA*AP < P+ ||A*A-P|
and thus

IAT — All < sup{[1 = Vx| | z € [1 = [[A"A = P[|, 1+ [A"A - P[]}
= max{1 — (1 — |A*A - P|)%,(1 + [|[A*A — P|))? —1}.

A moment of consideration about the calculus of x — /1 + z show that the difference 1 — /1 — « is larger
1
than the difference of v/1 + a—1 for all @ € [0, 1) and thus || AT — A|| <1—(1—||A*A — P||)= as desired. O

The following lemma is fairly technical. The idea behind the proof is to consider M, (2() (which is a
unital, simple, purely infinite C*-algebra if 2l is a unital, simple, purely infinite C*-algebra by Theorem 3.11),
excise a certain state (via Theorem 8.8), use equivalent projections to create the correct partial isometries,
and then cut back down to 2.

Lemma 10.2. Let A be a unital, simple, purely infinite C*-algebra, let ¢ : A — M, (C) be a unital,
completely positive map, and let 1 : M,,(C) — 2 be a *-homomorphism. Then for every e > 0 and for every
finite subset F of A there exists a partial isometry V€ A such that V*V = (1) and [|[V*AV —(p(A4))]] < €
forall A e F.
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Proof. Let € > 0 be arbitrary and let F be an arbitrary finite subset of 2{. Without loss of generality, we
may suppose Iy € F and every element of F has norm at most one. Let 6 = min {,715, ﬁ} > 0.

Let {e1,...,en} be the standard orthonormal basis on C" and let {£; ;}7';_; be the canonical matrix
units. Since p(Ily) = I, it is a standard result that the formula

n 1 n
fo| D Eiy®Aiy | = - D (e(Aiej, e

4,j=1 ,5=1

gives rise to a well-defined state f, on M,,(C) ®min A such that p(A) = nZZj:l fo(Ei; ® A)E; ; for all
AecL

Since M, (2) is a unital, simple, purely infinite (by Theorem 3.11) C*-algebra, Theorem 8.8 implies that
there exists a projection Py € M,,(2) such that

[Po(Eij @ A)Py — fo(Ei; @ A)Po| <6

for all A € F and for all 1 < 4,5 < n. However, E1 1 ® ¥(E1 1) is a non-zero projection (as ¢(E11) # 0 or
else ¢(E; ;) would be equivalent in 2 to a zero projection for all j and thus ¥(I,) = 0 # Iy) and M, ()
is a unital, simple, purely infinite C*-algebra, there exists a non-zero projection P < Py in M, (2) such
that P is equivalent to Eq 1 ® ¥(F11). Let V1 € M,,(2) be the partial isometry such that V1V;* = P and
Vi'Vi = E11 @ Y(E11) and, for each j € {2,...,n}, let V; € M, () be defined by

Vi =Vi(Er1 @ ¢(En)).
Therefore, since
VitV = (Erg @ Y (B ))ViVi(Erg @ Y(EBr ) = (B @ Y(Ei )
for all 1 <1i,7 <mn as 1 is a *-homomorphism, each V; is a partial isometry in M,,(2). Moreover, we notice
that PV; = V; for all j as PV; = V;. Therefore, for all 1 <4,j,k,l <n and for all A € F,
Vi (kg © A)V; = fo(Erp @ A)(Era @ Y(Eip))|| = Vi (Eka © A)Vj — fo(Eri @ A)VV]|
= Vi’ P(Ek,y @ A)PVj — fo(Erg @ A)VI PV
S |P(Eri @ AP — fo(Exy © A)P|
<N Poy(Ery @ A)Po — fo(Ery ® A)Ry|| < 6.

We desire to remove the f,(Ej;®A)’s from the above expression. Let C :=>"/'_ (B x @)V}, € M, ().
Then for all A € F

C*" (B ®A)C = Z Vi(Eipn @ I)(E11 @ A)(E1; @ )V = Z Vi'(Ei; ® A)Vj.

i,j=1 i,j=1

Thus

nC*(E11 ® A)C — E1y®@¢ [ n Y fo(Ei; @ AE;;

ij=1

[nC™ (E1q © A)C — Ery @ ¢(p(A))]|

= |[nC*(E11 ® A)C —n Y fo(Ei;j ® A)(E11 @ P(Ei )

1,j=1

n Y Vi (Ei; @ AV = fo(Bi; ® A)(Br1 @ %(Ei )| < n’s

i,j=1

IN

for all A € F. Therefore, as Iy € F, we obtain that

HnC*(ELl & IQ()C - El,l 2y "/’(In)H < 7135
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as p(Iy) = I,.
Next we will use C' to construct our partial isometry with the aid of Lemma 10.1. Let

D= /n(E11 @ In)C(E1x @ ¢(1,)) € (Br @ Int) (M () (E11 @ Tn).

Therefore
D*D = ’I”L(ELl ® ”(/}(In))c*(ELl ® IQ[)C(ELl ® w([n))

and
D(E1 @ ¢(I,)) = D.

Moreover, as (E1,1 @ ¥(I,)) is a projection in M,,(2l), we obtain that

ID*D = (Brq @ ¢(I1n))|| < [[nC*(Erq @ I)C = E1q @ ¢(I,)[| <16 < 1.
Hence Lemma 10.1 implies (where the functional calculus is taken in (E1 1 ® ¥(1,)) (M, (20))(E11 @ ¥ (1,)))
that D(D*D)~% is a partial isometry in (Ey 1 ® Io)(M,())(Ey1 ® Iy) such that

(D(D*D)*%)* (D(D"D)~%) = By @ w(Ly)

and
|p(0*D)~2 =D < ID*D = (Bra w (L)) < 0¥,

Moreover, we notice for all A € F that

|D*(Br ® A)D = By @ 9(@(A)I| = [n(Era @ (1)) C* (Bry © AC(Era @ (1)) = Bra @ v(e(A))]
< InC*(Bry © A)C — By @ 9(p(A))|| < n?o.

Since D(D*D)~z is in (Ey1 ® Iy)(Mn(2))(E11 ® Iy) ~ 2, there exists an element V € 2 such that
D(D*D)"z = Ei1 ® V and since D(D*D)"z is a partial isometry, we obtain that V is also a partial
‘D(D*D)—% . DH <36 <1so ||D|| <2.

We claim that V is the desired partial isometry. To see this, we notice that

isometry. Moreover ||Ey 1 ®@ V — D| =

By @ V'V = (DD"D)"}) (D(D*D)) = Byy @ 6(1,)
and thus V*V = ¢ (I,,). Moreover, for all A € F we assumed that ||A|| <1 so

VAV — ¢(p(A)]| = [|[E11 @ VFAV — E1 1 @ d(p(A))]

[(E11 @ V)" (E11 @ A)(E11 @V) — B @ Y(e(A))|l
<033 +2n%6 + | D*(E11 ® A)D — E11 @ ¢(p(A))]
<n35+ 2036 +n36 = 4n35 < €

as desired. 0
Next we need the following technical lemma which has a simple, yet difficult to conceive proof.

Lemma 10.3. Let 2 be a unital C*-algebra and let ¢ : M, (C) — A be a unital, completely positive map.
Let {Em-}?’j:l be the canonical matriz units of M,,(C). There exists a partial isometry V € M, (C) ®min
M (C) @umin A such that

V'V = E171 (24 El,l ® Iy and V*(T ® I, ® IQ[)V = E171 X E171 (24 ’I/J(T)

for all T € M,,(C).
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Proof. Let X :=3>""._ | E; ; ® E; j; € M;;(C) @min M,,(C). Then X is a self-adjoint element such that

7,7=1

n

X?= Z (Eij ® Eij)(Eke ® Egp) = Z Eii®E;p=nX
1,7,k 4=1 2,7,4=1

so that o(X) C {0, v/n} by the Continuous Functional Calculus. Hence X is a positive element of M,,(C)®min
M, (C).

Thus, as ¥ is a completely positive map,

Y wn ZEZJ®’¢)( 2])€M(C)®mmﬂ

i,5=1
. . : 1 :
is also a positive element. Write Y2 = "

i1 Pij ® A j where A; j € . Since Y2 is positive and thus
self-adjoint, A7 ; = A;; for all 4,5 and

N B @uE)=Y=|> Eu@Ai| | Y Erj® Ak, Z Ei;® (ZAl kAkj>

ij=1 i0=1 k.j=1 ij=1

80 > p_q AipAyj = ¢( E; ;) for all 4, .
Let V.= ZU 1 Ein @ FEj1 @A € M3 (C) @min Mp(C) @min A. Then

VN (E,; @, @)V =Y Ei,0E @A, | (Ei;0LeI)| Y En®E,®Ay,
p,k=1 q,f=1

n
E E11® E1pEen @ Aj jAu
i jikt=1

Z Ei1QF11®A; Ak
i k=1
=FE11®E11 @9(E;;)

for all 4,7 so V(T @I, ® Iy)V = E11 ® E11 @¢(T) for all T € M,,(C) by linearity. Therefore
VV=V"1,01,1q)V=FE110E11¢I) =FE11Q E11 & Iy

as claimed. Moreover, as V*V = E;; ® F1; ® Iy is a projection, V*V must be a partial isometry as
desired. O

Next we can show that nuclear maps between unital, simple, purely infinite C*-algebras have a nice form.

Proposition 10.4. Let A be a unital, simple, purely infinite C*-algebra and let ® : A — A be a unital,
nuclear, completely positive map. For every € > 0 and for every finite subset F of A there exists a non-
unitary isometry V- € A such that |[V*AV — ®(A)|| < € for all A € F.

Proof. Since ® is nuclear, ® is the pointwise norm limit of maps 1 o ¢ : 2 — 2 where ¢ : A — M,,(C) and
¥ : Mp(C) — 2 are unital, completely positive maps. Thus it suffices to consider & = 1) o .

Let € > 0 be arbitrary and let F be an arbitrary finite subset of 2[. We desire to ‘correct’ ¥ to get a
*-homomorphism so we can apply Lemma 10.2. Let {E};}}';_; be the canonical matrix units of M, (C).
Let Wy € M, (C) ®min My (C) @min 2 be the partial isometry from Lemma 10.3 such that

WiWy = Ei1®FE 1 ® Iy and Wi (T @ I, @ In)Wy = Ei11® E1 ®¢(T)
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for all T € M,(C). Moreover, since M (C) @min Mn(C) Qmin A is a unital, simple (Proposition 3.4),
purely infinite (Theorem 3.11) C*-algebra, Proposition 2.6 implies that there exists an non-zero isometry
Wy e Mn(C) A min M,L(C) Qmin A such that 0 < W1W1* < El,l ® E171 ® Igy.

Notice that 2 is isomorphic to

SB = (El,l & El,l &® IQ[)(Mn((C) ®min Mn((c) <gmim Ql)(-El,l ® El,l ® IQ[)

Therefore, since 0 < W1W{ < E1 1 ® Eq 1 ® Iy, the map my defined by mo(T) := W1(T & I,, ® Iy) W5 maps
M, (C) into B ~ 2. Moreover, since W is an isometry, mg : M, (C) — 2 is a *-homomorphism.

Let W := W1Wg,. Then, as WE)FWO e E171 ® E1,1 ® Iy and WiW < E171 (%9 E1,1 ® Iy, W € B so we can
view W as an element of 2. Moreover

WW = WiWiWiWy = WiWo = E1 1 ® By @ Iy
so W (when viewed in 2) is an isometry. Moreover, we notice for all ' € M,,(C) that
W*T('()(T)W = Wo*Wl*Wl (T ® In ® IQ[)Wl*WlI/VO
=Wo(T@ L, @ Iy)Wy = E11 ®@E 1 @y(T)

in B so W*no(T)W = ¢(T') when viewed as elements of 2.

Let P := W1;W{ which is a projection that we can view as an element of 2 such that 0 < P < Igy.
Since 2 is purely infinite and simple, Lemma 2.3 implies that Iy — P is a properly infinite projection.
Hence there exists n partial isometries {V;}7_; such that V/'V; = Iy — P and >0 V;V/ < Iy — P.
Therefore E; j := V;V;* defines a system of matrix units inside (Iy — P)2A(Iy — P) and thus there exists an
injective *-homomorphism m : M,,(C) — (Iy — P)A(Iy — P). Therefore, if we defined 7 : M, (C) — A
by 7(T) := mo(T) + m1(T) for all T € M,,(C) then, since my and 7; are *-homomorphisms with orthogonal
ranges (as (I — P)Wy =0 =W/ (Iy — P)), 7 is a *-homomorphism. Moreover, since

Wrm(T)W € WgWi (I — P)2A(Ia — PYW1 W, = {0},

we obtain that W*n(T)W = ¢(T') when viewed as an element of 2.
By Lemma 10.2 there exists a partial isometry V; € 2 such that V'V = n(I,,) and |V AVy — w(p(A))]| <
eforall Ae F. Let V := VoW € 2. Then

VYV =W*VEVW = W*n (L)W =¢(I,) = Iy
as 1 is unital. Hence V is an isometry. Moreover, we notice that
IVFAV = p(o(A)[| = W VG AW — W (p(A))W|| < |[V5AVD — m(p(A))]| < e
for all A € F as desired. Finally, to see that V is not a unitary, we notice that
VoVo =7n(1) = mo(In) + m1 (L) > mo(L) = Wi WY

and
VV* = VoW W WiW{ Ve < VoW WiV .

If VV* = Iy, then
VoVo = ViVV*Vy < ViVoW Wi VeV = n(I,) WA W n(I,) = Wi W7
which is clearly a contradiction. O

With the above completed, we can begin to prove our next major technical result. This result enables us
to connect unital, completely positive maps from a unital, separable, exact C*-algebra into unital, separable,
nuclear C*-algebras on finite dimensional operator spaces. The idea is to construct the unital, completely
positive map © by going through two finite dimensional operator systems of matrix algebras.
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Lemma 10.5. Let A be a unital, separable, exact C*-algebra, let S C A be a finite dimensional operator
system, and let € > 0. For every 0 < § < § there ewists an integer n such that whenever By and By
are separable, unital C*-algebras with By nuclear and whenever ® : § — By and ¥ : § — Bo are unital,
completely positive maps such that ® is injective and ®~' : ®(S) — S satisfies ||<I)71||n <149, then there

is a unital, completely positive map O : By — By such that ||© o P — V|| < e.

Proof. Fix 0 <6 < 5 and let
€—20

= > 0.
P =3 +9)
Since 2 is exact, we can view 2 as a unital C*-subalgebra of some B(H) where H is separable and the
inclusion is nuclear. Let {A1,..., A} be a basis for S with A; = Iy and choose > 0 small enough so that

if Bi,...,Bp, € B(H) and ||A; — B;|| < p for all j € {1,...,m} then the map T : S — span{Bi,..., By}
defined by T'(A;) := Bj for all j € {1,...,m} satisfies ||T’1||Cb <1+ p by Lemma 9.3.

Since the inclusion of 2l into B(H) is nuclear, there exists an n € N and unital, completely positive maps
Sy :S — M, (C) and Sy : M,,(C) — B(H) such that the elements B; := Sy(S1(A;)) satisfy |A; — Bj|| < p
for all j € {1,...,m}. Let T be the map listed in the above paragraph for this choice of {Bj, ..., By} and
let Sp := S1(S) (which is an operator space in M,,(C)). Define Sy : Sy — S by Sy := T~ 0 S,. Hence S, is
unital, Sy 0 Sy = Ids, and ||S2||., < 1+ p. Moreover, notice for all j € {1,...,m} that if C; := S1(A;) then
So = span{Cy,...,Cy} and

S2(C5) = 52(51(47)) = Aj = (52(51(4;)))" = 52(C;)"

s0 So(X*) = So(X)* for all X € Sp. Thus Ss is a self-adjoint map on Sy. Since By = SQ(Sl(IQ[)) = Iy, Sy
is also unital.

Let ® : § — %7 and ¥ : § — By be unital, completely positive maps such that ® is injective and
&1 : B(S) — S satisfies [|(P71)n|| <1+,

Since B is nuclear, there exists an r € N and unital, completely positive maps W7 : § — M,.(C) and
Wy : M, (C) — B4 such that |[Wy0W; —¥| < p. Since Wi 083 : S — M, (C) is unital, self-adjoint
map with ||[W; 0S|, < 1+ p, Theorem 9.4 implies that there exists a unital, completely positive map
Q : M,,(C) = M, (C) such that |Qls, — W1 o Sa|| < 2p.

Consider S; 0o @1 : &(S) — Sy € M,,(C). Since @ is an injective, unital, completely positive map, ®~*
is a unital, self-adjoint map. Therefore S; o ®~! is a unital, self-adjoint map such that

[S1o@7 |, < 1Sl |7, <1+

Hence, as the completely bounded norm of a linear map into M,,(C) is determined by the n-norm, this
implies that HSl o <I>_1HCb < 14 0 and thus Theorem 9.4 implies that there exists a unital, completely
positive map R : 81 — M,,(C) such that HR|¢(5) —Sio <I>_1H < 24.
Let @ :=Ws0Q o R:B; — Bs. Then O is a unital, completely positive map such that
[#o@™! —Blas|

<[ wod™t —WooW 0@ |+ ||[WaoWio0S8:08 007! —Wso0Qo Rlae|

S ||\I/ - Wg o} Wl” ||¢)71H + HWQH HW1 O SQ O Sl o (I)il — Q o R|q>(,5)||

<p(l+4d)+ HWl 08,0803t —Qos; o<I>_1H + HQOSl o®~1 —Q0R|¢(5)H

< p(146)+ W10 8 = Qls, || [|[S1 0@ |+ |Ql [[S1 027" — Rlas) ||

<p(l+8)+2p(1+d8)+25<e

as desired. O]

The following is a simple application of the above result.
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Corollary 10.6. Let 2 be a unital, separable, exact C*-algebra. Let B1 and Bo be unital, separable C*-
algebras with By nuclear and let p; : A — B, be unital *-homomorphisms such that ¢, is injective. Then
there exists a sequence of unital, completely positive maps 1y, : By — Ba such that Py, (p1(A)) = p2(A) for
all A € 2.

Proof. As 2l is separable, there exists an increasing sequence of finite dimensional operator systems in 2 with
dense union in A. As ¢; is a unital, injective *-homomorphism, the inverse of ¢; has completely bounded
norm 1. Hence the result follows by applying Lemma 10.5. O

As the ,,’s are almost ‘conjugation by isometries’ when B, = B, is a unital, separable simple, purely
infinite, nuclear C*-algebra by Proposition 10.4, if we can change these isometries into unitaries, the proof
of Theorem 10.10 will be complete. This leads us to our last two technical lemmas. The later requires the
first which will be used to approximate the ‘off-diagonal’ components of a unitary.

Lemma 10.7. Let A be a unital C*-algebra, let U € A be a unitary, and let V € A be an isometry with
range projection P :=VV*. Then

IU = (PUP + (In — P)U(Ia — P))[| < inf{(2 | VUV — Up|)* | Up € UA)}.
Proof. Notice
U~ (PUP + (I — P)U(la — P))|| = |[PU(Ia — P) + (In — P)UP||
= ||PU*(Ig — P)UP + (Iy — P)U*PU (I — P)||?
1 « 1
= max{||PU*(Iy — P)UP||? ,||(Iy — P)U*PU(Iy — P)|?}.
However, if Uy € 2 is a unitary, then
|PU*(Iy — P)UP|| = |[PU*UP — PU*PUP||
= |P - (PUP)*PUP||
= |VU;V*VU\WV* — (PUP)*PUP|
< 2||VU,V* — PUP||
=2|VUV* = VV*UVV|
< 2||Uy = VUV

and since

1 .o L
(I = PYUPU(Iy — P)||* = |[PU(In — P)|| = |[PU(Is — P)U" P||?
we may repeat the above computations with U and Uy replaced with U* and U] to obtain that
(I = P)U"PU(Iy — P)|| < 2|Uo = V*UV||
which completes the proof. O

Lemma 10.8. Let A be a unital C*-algebra, let S and T be two isometries in A, and let © be a C*-subalgebra
of A such that Iy € ©, D ~ Oy, and every element of ® commutes with S and T. Then there exists a unitary
W e 2 such that whenever U,V € U() commute with every element of D, then

[W*VW = U|| < 15 (max{[[S*US — V|, |T*UT = V|[})* .

Proof. Let B be the relative commutant of ® in 2[. Since Oy is nuclear by Theorem 1.19, by the properties of
the maximal tensor norm there exists a unital *-homomorphism 7 : Oy ®in B — 2A such that 7 (lp,®B) = B
for all B € B and 7|p,e1, is an isomorphism of Oy and ©. Hence we can view S, T € B and it suffices to
prove that there exists a W € Oy Qmuin B such that

IW*(Io, ® V)W — (Io, ® U)|| < 15 (max{||[S*US — V||, |T*UT - V||})?
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for all U,V € 8.

The remainder of the proof is fairly technical. The idea is to create a bunch of orthogonal projections
and partial isometries to explicitly write down a unitary W that intertwines the sum of compressions of U
to a sum of compressions of V.

To begin, let

e :=S85* and f:=TT".

Let
€o = SflS* < €1, f2 = TelT* < fl, and fg = TegT* < fg.

Consider the two sets of mutually orthogonal projections summing to I
P :=1Ix —e, Py,:=e; —eo, and P3 = ey

and

Qri=1Is—f1, Qa:=fi—fo, Qz:=fa—f3, and Q4:= f.
Consider the operators
Cl = PQSQl, CQ = PlT*QQ, 03 = PQT*Qg, and C4 = PgT*Q4.
Then Cq,Cs, C3, and C4 are partial isometries with
CiC01 = Q1S"PoSQ1 = Q157(SS™ — Sf157)SQ1 = Q1(Is — f1)Q1 = Q1
Clcf - PQSQlS*PQ = PQS(I&B — fl)S*PQ = P2(€1 — 62)P2 = P2
C5Cy = QT PIT Qy = Q2T (Ip — e1)T"Q2 = Qa2(f2 — f3)Q2 = Q2
C3C3 = Q3TPT Q3 = Q3T (e1 — e2)T"Q3 = Q3(fs — f4)Q3 = Q3
CiCy = QuTPT Qs = QuTesT" Qs = Qaf3Qs = Q4
CQC; = PlT*QQTPI = PlT*(fl — fg)TPl = PlT*(TT* — TelT*)Tpl = P1<Is3 — el)Pl = Pl
0305): = PQT*QSTPQ = PQT*(fQ — fg)TPQ = PQT*(TelT* — T€2T*)TP2 = P2(61 — 62)P2 = P2
CiC = B3TQ4TPs = PsT™(f3)TP3 = P3T*(TexT*)T Py = Ps(ea) P3 = Ps.

Hence C;C} =0 for all j # k, C{Cy, = 0 for all k € {2,4}, and C5C), = 0 for all k € {2,4}.
Let S; and S be the standard generators of Os. Let

W:=8,0C,+Ipn, ®Cy+80Cs+ Io, ®Cy € Oy Dpmin B.
Then, since C;Cy, =0 for all k € {2,4} and C5C), =0 for all k € {2,4},
W*W = (5751 ®@ Q1+ 1o, ® Q2 + 5559 ® Qs + 1o, ® Qu) + (5752 @ C1Cs + 5351 ® C5C1) = Io, ® Ins
and, since C;C; = 0 for all j # k,
WW* =515 P+ Io, ® P+ 5255 @ Po + Io, ® Ps = Ip, ® Is.
Hence W is a unitary operator in Oy Qpin 8. Moreover

W(lo, ® QU)W* = 8157 © C1Q1Cf = 5157 @ (C1C})? = 5157 ® P,
W(lo, ® Q)W* = Ip, ® C2Q2C5 = Ip, ® (C2C5)* = Io, ® Py,
W(lp, ® Q3)W* = 5255 @ C3Q3C5 = 5255 @ (C3C3)? = 5255 @ Py, and
W(lo, ® Qu)W* = Io, ® C4Q4C} = o, ® (C4C})* = o, ® Ps.
Now fix unitaries U,V € B and let § := max{||S*US — V||, |T*VT — U||} < 2 (note that 6 may be zero
if S and T are unitaries). Notice that

PQS = P2(61 — 62)5 = PQ(SS* — SflS*)S = PQ(S — Sfl) = PQS(LB — fl) = PQSQl = CIQI
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and P, < e; = SS*. Hence
ICL @1V Q1)CF — PUP,| = ||[P,SVS* Py — PSS USS*Py| < ||V = S*US|| < 6.
Notice that
C2Q2 = PIT*Qo = PiIT*(f1 — f2) = PLT*(TT" —TeyT*) = P (T — ey T*) = Pi(Is —e1)T" = P, T*

SO
1C2(Q2V Q2)Cs — PLUUPy| = |P\T*VTP, — PLUP,|| < |T*VT = U|| < 6.

Similarly
CgQg = PQT*Qg = PQT*(fQ — fg) = PQT*(TelT* — TGQT*) = P2(€1T* — SlT*) = P2(€1 — GQ)T* = PQT*

SO
1C3(Q3VQ3)C5 — RUPR,|| = [|[RTVIP, — BRUP| < |T*VT - U|| < 6.

Finally
C4Q4 = PgT*Q4 = PgT*fg = P3T*T€2T* = P362T* = PgT*

SO
IC4(Q4VQ4)C) — PsUPs|| = | PsT*VT Py — PsUPs|| < | T*VT — Ul < 4.

Notice (by the same arguments used to compute W (lp, ® Q;)W* for all j) that

W(lp, @ (Q1VQ1+ Q2VQ2+ Q3VQs + QaVQy)) W™
= 5157 @ C1(@Q1VQ1)CT + Ip, ® C2(Q2VQ2)C5 + 5255 @ C3(Q3VQ3)C5 + 1o, @ Ca(Q4VQ4)Ch

and thus if
VO = Q1VQ1+Q2VQ2+Q3VQ3+Q4VQ4 and UO = PlUP1+P2UP2+P3UP3
then

IW(Ip, @ VW* — In, @ U]

< NU = Ul + IV = Vol + [W(Io, @ Vo)W — Lo, @ Uo|

SNU =Uoll+ [V = Vol + [[Ho, ® (C2(Q2VQ2)C5 — PLUR)|| + |[1o, ® (Ca(QsV Qa)Cy — P3UPs)|
+ (15157 ® C1(@1VQ1)CT + 5255 ® C3(Q3V Q3)C5 — (S751 + 5255) @ RUP,|

<|U=Uo| + [V = Vol + 46

Thus it suffices to approximate the norms of |U — Uy|| and ||V — V||
Recall that e; = SS5* so

|U — (exUes + PLUP)| < \/2[S*US -~ V| < V26

by Lemma 10.7. Since ST is also an isometry, STT*S* = e, and
[(STYUST)-U|| < ||T*S*UST —T*VT|| + | T*VT — U|| < 24,

Lemma 10.7 applied with the isometry ST gives

|U — (e2Ues + (Ig — e2)U (I — e2))|| < /2[[(ST)*U(ST) — U|| < V44.
By compression the above expression by e; > ey, we obtain that

lerUey — (PyUPy + PLUPY)|| < V46
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SO
|U = Us|| < |U = (erUey + PLUP)|| + |lerUes — (PaUPy + PLUP)| < (V2 4 2)V6.

Similarly recall that f; = TT* so
IV = (AV A+ QVQ)| < V2TVT - Ul < V25
by Lemma 10.7. Since T'S is also an isometry, T'SS*T™* = f5, and
TSy V(TS)=V| < ||IS*T*VTS — S*US| + ||S*US — V|| < 24,

Lemma 10.7 applied with the isometry T'S gives

IV = (foV 2+ (Is = f2)V(Is — f2))| < V2I[(TS)V(TS) = V] < V.

By compression the above expression by f; > f2, we obtain that

1AV 1= (f2V f2 + Q2VQ2)|| < V46.
Since T'ST is also an isometry, T'STT*S*T* = f3, and

W(TSTY*V(TST) - Ul < ||T*S*T*VTST —T*S*UST|| + | T*S*UST —T*VT| + |T*VT - U|| < 30,
Lemma 10.7 applied with the isometry T'ST gives
IV = (fsV fs + (I — f3)V(Iz — f3))]| < V0.

By compression the above expression by fo > f3, we obtain that

1£2V f2 = (QaV Q4 + QsVQs)|| < V6.

Hence

|V =Wl = |V = (fiVi+QiVQ)|| + [[/iV i = (f2V o + Q2VQ2)| + || f2V f2 — (QaV Qs + Q3VQ3)||
< (V24+2+V6)V5

Thus, as § < 2 s0 § < /24,
IW(IeV)W* - Ul <4vV2V5 + (V2 + 2+ V6)V5 + (V2 + 2)V5 < 155
as desired. O

Combining Proposition 10.4, Corollary 10.6, and Lemma 10.8, we obtain the following lemma that will
easily enable us to prove our main result.

Lemma 10.9. Let 2 be a unital, separable, exact C*-algebra and let B be a unital, separable, nuclear,
simple, purely infinite C*-algebra. Let p,v : A — B be two injective, unital *-homomorphisms. Then the
unital *-homomorphism ®, U : A — O3 Qmin B defined by P(A) := Ip, ® p(A) and V(A) := Io, @ P (A) for
all A € A are approzimately unitarily equivalent.

Proof. Let n € N be arbitrary, let Uy, ..., U, € 2 be unitaries, and let ¢ > 0. Since 2 is a unital, separable
C*-algebra and thus the span of the set of unitaries is dense in 2, it suffices to show that there exists a
unitary W € Oy Quin B such that

W (lo, ©@ e(U;))W* = lo, @ $(Uj)|| <€
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for all j € {1,...,n}. By Corollary 10.6 there exists completely positive maps S,T : B — B such that

1/ €e\2 1/ €e\2
IS - v <5 (55)  and  IT@U) - v <5 (55)
forall j € {1,...,n}. Since B is a unital, simple, purely infinite, nuclear C*-algebra, Proposition 10.4 implies
that there exists isometries Sy, Ty € B such that

I\Sa‘(cp(Uj>)So—S(<p(Uj))||<%(%)2 and HT;(QZJ(UJ-))TOfT(w(Uj))H<%(%)2

for all j € {1,...,n}. Hence

€\2 €2
IS UNSe — vl < () and  ITEEUNT - 2] < (35)

for all j € {1,...,n}. Thus Lemma 10.8 gives the desired unitary W. O

Theorem 10.10. Let 2 be a unital, separable, exact C*-algebra. Any two injective, unital *-homomorphisms
from A to Oy are approximately unitarily equivalent.

Proof. Let m,0 : A — O be two injective, unital *-homomorphisms. Let ¥ : Os Quin O2 — O2 be an
isomorphism from Theorem 7.5. Let ¢ : Oy — Oz @uin O2 be the injective, unital *-homomorphism defined
by ¢(A) = In, @ A for all A € Os. Since ¥ o ¢ : Oy — Oy is a unital, injective *~homomorphism and Oy
is a unital, simple, purely infinite C*-algebra, Theorem 6.12 implies that ¢ o ¢ is approximately unitarily
equivalent to Ido,.

Let @, 0 : A = Oz @min Oz be defined by ®(A) := Ip, @ 7(A) = ¢(w(A)) and ¥(A) := Ip, ® 0(A) =
¢(c(A)) for all A € 2. Since 7 and o are unital, injective *-homomorphisms, 2 is a unital, separable, exact
C*-algebra, and O is a unital, separable, nuclear, simple, purely infinite C*-algebra, Lemma 10.9 implies
that ® and ¥ are approximately unitarily equivalent. Hence ¢ o m and ¢ o o are approximately unitarily
equivalent.

Hence m = Idp, o7 is approximately unitarily equivalent to (¢po¢)om = 1o (¢om) which is approximately
unitarily equivalent to ¢ o(¢poc) = (1o ¢) oo which is approximately unitarily equivalent to o as desired. [

86



11 Embedding into O,

In this chapter we will finally prove our main result(Theorem 11.11) that every unital, separable, exact
C*-algebra has a unital embedding into Q5. The idea of the proof is to first prove that if 2 is a unital,
separable, exact C*-algebra that embeds into the ultraproduct of the Cuntz algebra then 2 embeds into
Os. This easily enables us to show that separable, exact, quasidiagonal C*-algebras embed into the Cuntz
algebra. The remainder of the proof is to upgrade this result to separable, exact C*-algebras by showing
that every separable, exact C*-algebra embeds into the reduced cross product of a separable, quasidiagonal,
exact C*-algebra by Z and by showing such algebras embed into Os.

Most of the results for this chapter were developed from the paper [KP].

We begin with some simple notation for the chapter.

Notation 11.1. Let 2 be a C*-algebra. We define

n>1

and
o) 1= {(Au)uz1 | Ay €2, lim |4, =0},

Let Aoo 1= Loo(A)/co() and let g : Loo(A) = Aoo be the canonical quotient map.
Our first major step in the proof is the following lemma.

Lemma 11.2. Let 2 be a unital, separable, exact C*-algebra such that there exists an injective, unital *-
homomorphism ¢ : A — (O2) e with a lifting to a unital, completely positive map from A to Lo (Osz). Then
there is an injective, unital *-homomorphism from A to Os.

Proof. Since 2 is unital and separable, there exists a sequence (U, )n>1 € U(RA) with dense span in 2. For
each n > 1 let
Sy := span{Ily, Uy, Uy, Uz, Uy, ... . Uy, Ur}

which is a finite dimensional operator system in 2. Clearly Cly C S € S; C --- and the union of the S,,’s
is dense in 2.

We claim that there exists a unital, injective *~homomorphism 9 : 2 — (O2) with a unital completely
positive lifting V' : 2 — £ (O3) defined by

V(A) = (Vi(4), V2(4),...)

where V; : % — O, are unital, completely positive maps such that for each fixed n € N there exists an
N,, € N such that if m > N, then the restriction Vi, |s, is injective and limp, o0 ||(Vinls, ) 71|, = 1 for all
k € N. Once 9 is constructed, we will be able to apply Lemma 10.5 to intertwine the V,,,’s on the unitaries U;
where 1 < j < m by unital, completely positive maps between Q2. We will then be able to apply Proposition
10.4 and Lemma 10.8 to construct unitaries that intertwine the Ip, ® V,,,(U;)’s. Then it will be a simple
matter to construct an injective *-homomorphism into Qs ®yin O ~ Os.

By the assumptions on ¢ there exists a unital, completely positive lifting @ : 2 — £, (O2) of . Therefore
there exists unital, completely positive maps @; : & — Oy such that

Q(A) = (Ql(A)7 QQ(A)7 i )

for all A € 2.
First we remark that even though ¢ is injective, it need not be the case that

Jim [[(@m) k(A = 1| 4]

for all A € M (1) as the limit on the left need not exists. However, by grouping the @,,’s into blocks, we
will be close.
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For each N € N define the map o) : A — (03) by

<P(N) (4) == ¢ (QN+1(A), Qny2(4), .. )

for all A € 2. Since @ is a lifting of ¢ and ¢ is a unital, injective *-homomorphism, it is trivial to verify that
©W™) is a unital, injective *-homomorphism. Moreover, it is trivial to see for every N,k € N and A € M, ()
that

lim_[[((@n+1)(A), (Qu+2)k(A), -, @um)i(AN] = [l ()] = 4]

m—r o0

Since each &, is finite dimensional, we can construct recursively a sequence
O:N1<N2<~~‘<Nm<Nm+1<"'
of natural numbers such that

| ((QNp+1)k(A), QN 42)k(A), - (@, k(A = (1 =277 ||A]|

for all kK < m and A € My(S,,) (that is, choose a suitable approximation on a basis for each space and
extend it to the entire space by using the fact that norms are equivalent).
By Theorem 1.23, for each m € N there exists a unital, injective *~homomorphism o, : (9;9 N1 =Nem

Mn,. 1 -N,, (O2) ~ O3 by embedding along the diagonal. Define V;,, : 20 — O3 by

Vin(A) := om(Qn,,+1(A4), QN,,+2(A), ..., QN,.,, (A)))

—

for all A € 2. Clearly V;, is a unital, completely positive map as oy, is a *~-homomorphism and each Q; is a
unital, completely positive map. Finally we define V' : 2 — ¢, (O2) by

V(A) = (Vi(4), Va(4),...)

for each A € 2. Clearly V is a unital, completely positive map. Moreover, for each k,n € N we notice that
for sufficiently large m that V,,|s. is injective and

n

Jim | (Vils, )7, =

by the choice of the N,,’s. By letting k = 1, we see that the contractive linear map ¢ := goo 0oV : A — (O2) o
has the property that [|(A)| > ||A|| for all A € |J,,~; S». Hence, as | J,,~; S» is dense in 2, ¢ is an isometric
linear map and thus is injective. Moreover, since B

Jim (Q;(AB) — Q;(4)Q;(B)) =
for all A, B € 2 as @ is a lifting of the *~-homomorphism ¢,

m—o0
for all A,B € 2. Hence ) = ¢, o V is a unital *~homomorphism and its lifting V' satisfies the desired
conditions.

Select a decreasing sequence of strictly positive scalars (0, )m>1 such that do < 1, 25,, + 15¢/5d,, < 27™.
Since 2 is unital, separable, and exact and O is unital, separable, and nuclear, by Lemma 10.5 there exists
an increasing sequence of positive natural numbers (k(m)),,>1 such that whenever &,V : S,, — Oy are
unital, completely positive maps such that ® is injective and

[0 <1400
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then there exists a unital, completely positive map © : Oy — O3 such that ||[© o ® — U|| < 2§,,. The
conditions on V clearly imply that we may pass to a subsequence in the variable m in such a way that V,,|s,
is injective for all n < m, and we have the norm estimates

||(Vm|$n)_1||k¢(m) S 1 +5ma
”Vm(Un)*VM(Un) - IOzH < 6m, and
”Vm(Un)Vm(Un)* _I(92H < Om

for all m and for all n < m.
By the above estimates, Lemma 10.5 implies that there exists unital, completely positive maps ¥,,, ®,,
Oy — O4 such that

||(I)m o Vm|8m - Vtrn—&-1|5m ” < 20y, and ||(I>m o m+1‘$m - Vm‘Sm ” < 25m+1 < 20,
as Viuls,, and Vi,11]s,, are injective. Moreover, since 6, < 1 for all m, the above norm estimates imply that
for all 1 < j < m the operator X = Vi (Uj) [V (U;)| 71 exists and is a unitary operator in Oy. Moreover,

Lemma 9.2 implies that
| XD = VW) | < V(0 Vi (U) = T, | < b
for all 1 < 5 < m. Hence
|@m(X) = X2, < 260 + 19 (Vin U5)) = Vini2 (U] < 460

and
[0 (X0) = XD|| < 28 + 19 Vins1(U) = Vin )| < 46

for all 1 < j < m by the above norm estimates. However, since O, is a unital, simple, nuclear, purely infinite
C*-algebra and ®,,, V,, : Oy — O, are unital, completely positive maps, Proposition 10.4 implies that there
exists isometries S,,, T,, € Oy such that

HT;;Xﬁ,@Tm - cI>m(X,<,{>)H <6m and ’

Se XU 8, — W, (XY)) H < 6

m<*m-+1

for all 1 < j < m. Hence we obtain that

HT*XU)T — XU H<55 and ’

st x) g~ x H <56,

m<*m+41

for all 1 < j < m. Since each Xr(,.{) is a unitary for all 1 < j < m, by applying Lemma 10.8 with the
C*-algebra Og Qmin O2, © := O3 ® (Clp,) C Oz Qmin O2, and the isometries Ip, ® Ty, and Io, ® Sy, there
exists unitaries Z,,, € O3 ® Oy such that

1
|2t © X125, — To, © X3 S X1 5m - x9||})°

ma1 15<maX{HT* j)T —X(J

m+1
154/50m, -

<
<

Therefore, since HXff;) — Vi (Uj)|| < 0, foralll <j<m,

1Zim (I0y ® Vi (UN)ZE, — Toy @ Vi1 (U)|| < 26, + 151/56,, < 27

forall 1 <j <m.
For each n € N define Y;, := Z7Z5 --- Z* which is a unitary element of Qs ®,in O2. Moreover, by the
above computation, (Y;,(Ip, ® V;,(U;))Y,¥)n>1 is a Cauchy sequence for all j € N. By linearity and as each

89



map is contractive, (Y;,(lo, ® Vi (A))Y,¥),>1 is a Cauchy sequence for all A € |J, -, S,,. Therefore the map
o : Un21 Sn = Oy ® Oy defined by =

Yo(A) = lim Y (lo, © Va(A)Y;
extends to a unital (as each V,, is unital), completely positive map ¢ : 2 — Oy ®@uin O2. Since

lim Ucn@4B)_'Vﬁ(A)Vﬁ(B))::O

m—r o0

for all A, B € 2, it is trivial to see that ¢ is a *-homomorphism on (J,,~; S, and thus is a *-homomorphism
by continuity. Finally, for all A € |J,,~; S, we notice B

(A = lim [Va(A)] = 4]

(where the last equality follows since ||V, (A)|| < ||A] for all A € J,,~; Sp and limy, o0 || (Vinls, ) 7| = 1 for
all n € N). Hence 1 is isometric on a dense subset of 2 so ¢ is isometric and thus injective.
Since Os @min O2 ~ Oy by Theorem 7.5, the proof is complete. O

As mentioned in the introduction, the above lemma is directly suited to prove that every unital, sep-
arable, quasidiagonal, exact C*-algebra has a unital embedding into Oy. The following is a definition of
a quasidiagonal C*-algebra (although it is not the definition from the paper and probably not the original
definition).

Definition 11.3. A unital, separable C*-algebra 2l is said to be quasidiagonal if there exists a sequence of
unital completely positive maps ¢, : A — My, (C) such that lim,_, [[¢n(A)| = ||A|| for all A € A and
limy, 00 ||on(A)pn(B) — wn(AB)|| = 0 for all A, B € 2L

Remarks 11.4. It is easy to see that the above definition is equivalent to the statement that there exists
a unital *-isomorphism 7 : A — (Hn21 My, ((C)) / (@n21 My, ((C)) that has a unital, completely positive
lifting @ : A — [[,~; My, (C). As a corollary of this, we have the following.

Corollary 11.5. Let 2 be a unital, separable, quasidiagonal, exact C*-algebra. Then there exists a unital,
injective *-homomorphism from A to Os.

Proof. Since 2 is unital, quasidiagonal C*-algebra there exists a unital *-isomorphism

A HM/(;”((C) / @Mkn((c)

n>1 n>1

that has a unital, completely positive lifting & : 2 — Hn21 My (C). Since there exists a unital copy of
M, (C) inside Oy for all n € N (by Theorem 1.23 as M, (Os) ~ Oy), (anl My, ((C)) / (EB@ M, (C))

has a unital isometric embedding inside (O2)o.. Hence the conditions of Lemma 10.2 are satisfied so there

exists a unital, injective *-homomorphism from 2 to Os. O

With the above case completed, we begin our preparations to prove the general case. To prove the general
case, we will show that certain reduced cross products of separable, quasidiagonal, exact C*-algebras by Z
embed into Os. In order to prove this, we will demonstrate the existence of certain injective *-homomorphisms
and unital, completely positive liftings of maps from such reduced cross products.

Definition 11.6. Let 24 be a C*-algebra, let G be a discrete group, and let « : G — Aut(2) be a *-
homomorphism. A covariant representation (U, ) of the system (2, G, «) on a unital C*-algebra 9B is a
group homomorphism U : G — U(B) together with a *-homomorphism ¢ : 2 — B such that

U(g9)p(A)U(g)" = p(ay(A))
forall A€ and g € G.
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We will prove the following result for any amenable, discrete group G although we will only apply this
result when G = Z.

Lemma 11.7. Let G be a discrete amenable group and let o : G — Aut() be an action of G on a unital
C*-algebra A. Let (U, p) be a covariant representation of the system (A, G, «) on a unital C*-algebra B with
¢ injective. Then there exists an injective unital *-homomorphism @ : A X r G = C5(G) Qmin B such that
Y(A) = Icyc) @ p(A) and ¢(g9) = g U(g) for all A€ A and g € G.

Proof. Since G is a discrete amenable group, & X4, G = A X4 G. Therefore, to show that there exists a
*-homomorphism ¢ : A X » G — C}(G) @min B such that Y(A) = Ior(e) ® ¢(A4) and ¥(g) = g @ U(g) for
all A € A and g € G, it suffices to show that the pair A — Icr(g) ® p(A) and g = g ® U(g) is a covariant
representation of (A, G, «). However, it is clear that

(9@U(9)Ucr e @ e(A)(g@U(9)" = Ios ) @ U(g)p(A)U(9)" = p(ay(A))

for all A € 2 and g € G. Hence the *~homomorphism ) exists.

To show that 1 is injective, it suffices to show that 1) is unitarily equivalent to the canonical representation
of Ax, »G. Let mo : B — B(Ho) be an injective unital representation of B and let X : C§(G) — B(¢2(G)) be
the left regular representation. Let 0 := (A®mg) ot : Ay, G — B(l2(G) @ Ho) which is a *-homomorphism
and let m := mp 0 ¢ : A — B(Ho) (which is a injective *-homomorphism as 7y and ¢ are injective). If o is
unitarily equivalent to the canonical representation of 2 X4, G on ¢2(G) ® Ho given by m, then o will be
injective and thus ¢ will be injective.

Notice for all A € A, g € G, and £ € H that A € A x, . G acts as

A0y ® &) = g ®m(ag-1(A))§ = 6y ® mo(p(arg-1(A)))¢
whereas
0(A)(0y ® §) = b5 @ mo(p(A))E.
Similarly, if g € G, g € A x4, G acts on £2(G) ® Ho by A(g) ® Iy, whereas
o(g) = (A@m)(¥(g)) = AMg) @ mo(U(g))-

Define V € B({2(G) @ Ho) by V(dy ® &) = dg @ mo(U(g))€ for all g € G and § € Hp and by extending by
linearity and density. Since 7 is unital, it is clear that V is a unitary operator. Moreover

V*a(A)V (8, ® &) = by @ mo(U(9)™")mo(0(A))mo(U (9))€ = by @ mo(p(0g-1(A)))E = A(dy ® €)

whereas
Via(g)V(n ® &) = V*a(g)(dn @ mo(U(R))§) = V*(6gn @ mo(U(gh))§) = dgn ® £ = (Mg) @ I)(6p ® )

for all A € 2, and all g,h € G. Hence o is unitarily equivalent to the canonical representation of A x4, G
on {2(G) @ Hg so 1 is injective. O

Lemma 11.8. Let B be a unital C*-algebra, let A be a C*-subalgebra of B such that Iy € A, and let
o € Aut(2). Suppose that o is approzimately inner in B; that is, there exists a sequence (Vy,)n>1 € U(DB)
such that limy, oo Vo, AV,S = o(A) for all A € A. Let z be the standard generator of C(T) and let U be the
canonical unitary in A X, Z which implements o on A. Then the maps

A’—)I([j('ﬂ*)@qoo(A,A,A,...) and Ul—>z®qoc(V1,V2,V3,...)

(where qoo : oo (B) = B is the canonical quotient map) define an injective, unital *-homomorphism ¢ :
Ax57Z — C(T)@min Boo. Moreover, for any unital C*-algebra €, this *-homomorphism extends continuously
to an injective, unital *-homomorphism from (A Xy Z) Qmin € t0 C(T) @min ((Coo (B) Rmin €)/(co(B) Rmin €)).
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Proof. To show that these two maps define an injective, unital *~homomorphism ¢ : Ax;Z — C(T) @min Boo,
it suffices by Lemma 11.7 to show that these two maps are a covariant representation of the system (2, Z, o)
on B, as the map for A is clearly injective. However, by the assumptions of this lemma, it is clear that

(Vi, Vo, Vi) (A AL A, L) - (Vi Vi, Vs, ) — (0(A), 0(A), 0(A),....) € co(B)

for all A € 2 and thus the two maps define a covariant representation of the system (2[,Z, o) on B.
For the second part of the lemma, we desire to apply the first part of the lemma to (2 X, Z) Qumin €. By
considering the definition of the reduced cross product C*-algebra, it is clear that

(Ql Ao Z) Qmin ¢~ (Ql Qmin Q:) No®lId 7

and it is clear that
(Vo ®Ie)T(V, @ Ie)* = (0 ® Id)(T)

lim

n—oo
for all T € A @min € (as it clearly holds on the elementary tensors and thus extends to the span and then
closure of the span of the elementary tensors). Hence 2 ®ui, € is a C*-subalgebra of B @i, € that contains
the identity and c®Id € Aut(AQumin€) is approximately inner in B ®,in € through the unitaries (V,,®@I¢)p>1.
Therefore the first part of the lemma implies that there exists an injective *-homomorphism

w . (Ql A& Z) ®min Q: — C(T) ®min ((goo(% ®min ¢))/(CO(sB ®min C)))
where, if ¢/ : oo (B Omin € = (loo (B @min €))/(co(B @min €)) is the canonical quotient map
Y(A) =Icr) @ @o(A® Ie, A® Ie, A® Ie,...)  and  Y(U) @ g (Vi ® e, V2@ Ie, V3 @ I, .. ).

However, a moments consideration of the minimal tensor product of C*-algebras implies that the canonical
*~homomorphism

U : (loo(B) @min €)/(c0(B) @min €) = (loo (B Omin €))/(co(B Gmin €))

is injective. Therefore, since the range of ¥ (on the elementary tensors) is contained in the image of ¥, the
result follows. O

Lemma 11.9. Let B be a unital, separable, nuclear C*-algebra, let A be a C*-subalgebra of B such that
I € A, and let 0 € Aut() be approximately inner in B. Then the injective, unital *-homomorphism
0 AN Z — C(T) Qmin Boo from Lemma 11.8 has a lifting to a unital, completely positive map 1 :
A X, Z — C(T) @min Loo(B).

Proof. The proof of this result follows from Lemma 11.8 and Theorem 9.10 where, in Theorem 9.10, 2 is
A Xy Z, B is C(T) ®min loo (B), J is C(T) @min ¢o(B), and ¢ is ¢. To see this, notice that C(T) is nuclear and
co(B) is nuclear as B is nuclear. Therefore C(T) @min co(B) is nuclear and thus an approximately injective
ideal in C(T) ®min £oo(B). By Lemma 11.8 ¢ extends to an injective *-homomorphism

Lo (*B) @min B(H))
co(B) @min B(H)

p: (52[ N o Z) Omin B(H) — C(T) Qmin <
Since C(T) is nuclear,

~

C(T) Gnin <gw(%) Omin B(H))

<(C(T) @min Loo(B)) Omin B(H))
¢0(B) @min B(H)

(C(T) ®min CO(%)) ®min B(H)
so Theorem 9.10 implies that ¢ has a unital, completely positive lifting ¥ : A X, Z — C(T) Qumin oo (B). O

Finally we have the following lemma that will enable us to create a copy of a C*-algebra 2l inside a certain
cross product.
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Lemma 11.10. Define 11 € Aut(Co(R)) by 11 (f)(x) = f(x + 1) for all x € R and for all f € Co(R). Then
Co(R) X, Z contains a non-zero projection.

Proof. We will explicitly write down a non-zero projection. To begin, we define two elements f,g € Cyp(R)
by
142 ifxe[-1,0]
flxy=< 1—=z ifz€]|0,1]
0 otherwise
and

(@) = { ) fz) = f(x)? ifze[-1,0]

otherwise

Clearly f and g are well-defined, positive elements of Cy(R). Let U be the unitary in (the multiplier algebra
of) Co(R) X, Z such that UhU* = 71 (h) for all h € Cy(R) (to avoid using multiplier algebras, we can extend
71 to an automorphism of the unitization Cy(R) of Cy(R) and view Cy(R) %, Z C Co(R) %, Z).

Let P := gU + f + U*g which is an element of Cy(R) x,, Z. We claim that P is a non-zero projection.
Indeed if € : CH(R) %, Z — Cy(R) is the canonical conditional expectation then £(P) = f # 0 so P # 0.
To see that P is a projection, we note that P is clearly self-adjoint so it suffices to show that P2 = P.

To show that P2 = P, we will show several small facts that will enable us to show that P? = P. First
notice that since g lives on [—1,0] and 71(g) lives on [0, 1], g7(g) = 0. Moreover it is clear that

24 ifxe|-2,—1]
n(f)x)=¢4 —x ifxel[-1,0]
0 otherwise

and thus (71(f) + f)|(=1,00 = 1. Next we notice that if = € [0, 1] then

fla=1)~fla-1)?=2-2"=(1-2)-(1-2)° = fx) - f(z)?

(%) (@) :{ g(x—l)—f(x—1)2 if z € [0,1] :{ f(z) = f(x)? ifze€]0,1]

otherwise 0 otherwise

Finally, since

10 otherwise

g2(x) _ { f(‘T) - f(x)z ifze [_1?0]

it is clear that
A =

Hence
P? = (gU+f+U*g)(gU+ f+U*g)
= gUgU +gUf+g*> + fgU + f2 + fU*g+U*g?U + U*gf + U*gU*g
= gri(g)U? +gUf +g*+ fgU + f2+ fU*g+ 7 " (6*) + U*gf + U*U*T1(9)g
= gUf+g>+ fgU + f2 + fU g+ 77 ' (¢%) + U*gf
= f+9Uf+ foU+ fUg+Ugf
= [+7n(gU+ fgU+U*n(f)g+U*gf
= f+(n(f)+ gU+ U g(n(f)+ f)
= [f4+9U+U"g
as g lives on [—1,0] and (71(f) + f)|(—1,00 = 1. O

Now, onto the star attraction.

Theorem 11.11. Let 2 be a unital, separable, exact C*-algebra. Then there exists an injective, unital
*-homomorphism from A to Os.
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Proof. The idea of the proof is to embed 2l into the cross product of a Oz-embeddable C*-algebra against Z
(in a not necessarily unital way) and to construct a unital embedding of this cross product into Os.

First we remark that the cone Cy(]0, 1)) ®min 2 is separable, quasidiagonal, and exact (see Corollary 7.3.7
[BO] for the quasidiagonal claim). Let B be the unitization of Cy(R) @min 2. Since By is the unitization of
a subalgebra of Cy([0, 1)) ®min A (namely Co((0,1)) @min A), Bo is a unital, quasidiagonal, separable, exact
C*-algebra. Hence Corollary 11.5 implies that there exists a unital, injective *~-homomorphism ¢q : B¢ — Os.

Define 71 € Aut(Co(R)) by 71(f)(z) = f(z+ 1) for all z € R and for all f € Cy(R). Define 7 € Aut(By)
by 7(Is,) = Iz, and 7(f @ A) = 11 (f) ® A for all f € Cy(R) and A € A. Finally let B := By x, Z which is
a unital, separable, exact C*-algebra. We desire to construct an injective, unital *-homomorphism of B into
(O2) that has a unital, completely positive lifting to £, (O2) so that we can apply Lemma 11.2 to get an
injective, unital *~homomorphism of % into Os.

To begin let 1y := g o 71 : By — Oy which is an injective, unital *-homomorphism and let p : Oy Qmin
Oy — O3 be an isomorphism (that exists by Theorem 7.5). Therefore the unital *-homomorphisms ¢, :
By — O3 defined by ¢(B) = u(po(B)®10,) and (B) = u(io(B)®10,) are injective. Therefore, by Theorem
10.10, ¢ and ¢ are approximately unitarily equivalent. Hence, if we view B as a unital C*-subalgebra of O,
via ¢, then the automorphism 7 € Aut(By) is approximately inner inside Q2 and thus Lemma 11.8 implies
that there exists an injective, unital *-homomorphism from B into C(T) ®mpin (O2)cc. Moreover Lemma 11.9
implies that there exists a unital, completely positive lifting of this *-homomorphism into C(T) @min (O2)co-

It is clear to see that C(T) has a canonical inclusion inside Oy (that is, just exhibit a unitary element
with spectrum T which can easily be obtained by a positive element with spectrum [0, 1]). Therefore, using
the above maps, there exists a composition of injective *-homomorphisms

% — C(T) ®min (02)00 — 02 ®min (02)00 — (02 ®min 02)00 ﬁ;t (02)00
with a unital, completely positive lifting
B — C(T) Qmin 600(02) — 02 Qmin 600(02) — Eoo(OQ ®min 02) ’:# 600(02)

Hence there exists an injective, unital *-homomorphism v : 8 — Oy by Lemma 11.2.
Notice that B contains the C*-algebra

(CO(R) ©min QL) ks L~ (CO(R) ><]‘f'1 Z) Qmin A

However Cy(R) X, Z contains a non-zero projection by Lemma 11.10. Hence (Co(R) ®min ) X, Z contains
an isomorphic copy 2o of A. Let P € B be the identity of 2. Therefore the map 7lg, : Ao — 7(P)O2v(P)
is an injective, unital *-homomorphism from 2 into v(P)Oav(P).

Since v(P) # 0, we can consider the Ky-element of v(P). However, by Theorem 6.15, [v(P)]o = 0 = [1o,]o
and thus v(P) is equivalent to the identity of Oy by K-Theory. Therefore there exists an isometry V € Oq
such that VV* = ~(P). Therefore, if S; and Sy are the generators of Os, it is easy to see that V.S;V*
and V.S2V* are isometries in y(P)Oq2y(P) that generate v(P)O27y(P) so y(P)Oay(P) ~ O completing the
proof. O
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12 Oy @pin A >~ Oy

In this chapter we will classify all C*-algebras 2 such that Os ®pin A ~ O3. We will easily be able to give
necessary conditions on 2l in order for Os ®uin A >~ Os. To establish the converse, the idea is to show
that if 2 has the above properties (which are preserved under taking tensor products and direct limits) and
2l has an asymptotically central inclusion of Os, then 2l ~ O5. This later result will be proven by using
approximate unitary equivalence of injective *-homomorphism along with examining the relative commutant
of 2 in its natural embedding into an ultraproduct of .

Most of the results for this chapter were developed from the paper [KP]. Definition 12.6 and Proposition
12.7 are from the book [Ro2].

We begin by establishing the necessary conditions.

Remarks 12.1. If 2 is a C*-algebra such that ARy, O2 >~ Os, then A must be unital. To see this, represent
2 and Os faithful and non-degenerately on separable Hilbert spaces H and K. Since A Qupin Oz ~ O,
A Qmin O2 is unital. Let Iy € A Qmin O2 be the unit and let (E))x be a C*-bounded approximate identity
of A. Then limy(E) ® Ipn,)({ ®n) = £®@n for all £ ®n € H ® K. Hence, by linearity and density,
limp (B ® Io,)(¢) = ¢ for all € H ® K. Thus

Io¢ = lim Io(Ex @ lo,)¢ = Im(Ex ® lo,)¢ = ¢

for all ( € H® K. Hence Iy = Iy ® Ixc. Therefore for all € > 0 there exists A; € 2 and B; € Oy such that
1o — Y7, A; @ By|| < e. Therefore, as Iy = I @ I, by taking the inner product against all vectors of the
form & ® n where 7 is a fixed unit vector in K, we obtain that ||y — > i~ N\;A;|| < € where \; are scalars.
Hence Iy € 2 so 2 is unital as desired.

Moreover, if 2 is a C*-algebra such that A ®uin O2 >~ O, then it is clear that 2 is separable and simple
(as Oy is simple by Theorem 1.15 80 2 @pin Oz is simple if and only if 2 is simple by Proposition 3.4). We
also claim that 2 must be nuclear. To see this, we notice that if B is any C*-algebra and the canonical
*~homomorphism 7 : B Rupax A — B @min A has non-trivial kernel, then the canonical *-homomorphism
7®@1do, : (BOmax ) OmaxO2 = (B@min2A) @max O2 = (B RminA) @min O2 has non-trivial kernel. Therefore,

since the maximal and minimal tensor products of C*-algebras are associative, the canonical inclusion
B ®max (2L ®min 02) =B ®max (Q[ ®max 02) — ‘B ®min (Ql ®min 02)
has non-trivial kernel which contradicts the fact that A ®,in O2 ~ Os is nuclear.

To see that the above conditions are sufficient for A ®in Oz ~ O, we begin by examining the relative
commutant of a C*-algebra 2 inside its ultraproduct. We will show that, under the necessary conditions on
2A, there exists non-unitary isometries in relative commutant of 2l inside its ultraproduct and this will enable
us to show that the relative commutant is a unital, simple, purely infinite C*-algebra.

Notation 12.2. Let 2 be a C*-algebra and let w be an ultrafilter. We define
cw(W) = {(An)n>1 | An € U, lim || A, ]| = 0}.

Let 2, 1= £oo(A)/c,(A) and let g, : €oo(A) — A, be the canonical quotient map. Thus ||g,((Arn)n>1)|| =
limy, . || An |-

Remarks 12.3. Consider the *-homomorphism 7 : 2 — £ (%) defined by m(A) = (A)p>1. It is easy to
see that q, o7 : A — A, is a unital, injective *-homomorphism for all ultrafilters w. Thus there exists a
canonical inclusion of 2 inside 2,,. Hence we will view 2 C 2l via this canonical inclusion.

Moreover, we will use 2’ N2, to denote the set of all T' € A, such that T commutes with g, (7(A)) for
all A €2l

Our first goal is to prove Proposition 12.5 which states 21 N 2, is unital, simple, and purely infinite
provided 2l is a unital, separable, simple, nuclear, purely infinite C*-algebra. The main technical requirement
is the following lemma.
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Lemma 12.4. Let A be a unital, separable, simple, nuclear, purely infinite C*-algebra and let w be an
ultrafilter. Suppose A, B € A' N A, are self-adjoint operators such that o(B) C o(A). Then there exists a
non-unitary isometry S € A’ N A, such that SS* commutes with A and S*AS = B.

Proof. The idea of the proof is to modify A and B into unitaries with certain spectra. Then we will
use certain *-homomorphisms into 2, from nuclear C*-algebras to obtain liftings to sequence of unital,
completely positive maps into 2. We will then use the fact that 2 is unital, simple, and purely infinite along
with Lemma 10.5 to intertwine these completely positive maps and then an application of Proposition 10.4
will enable us to construct our non-unitary partial isometry.

First, by scaling A and B by the same non-zero positive scalar, we may assume that that ||A],||B[| < 7.
Let W := €' which is a unitary element of 2’ N, such that X := o (W) is contained in the intersection of
the right half plane with the unit circle. Let z € C(X) be the standard generating unitary. Since C'(X) is
nuclear and the *-homomorphisms on 2 and C(X) defined by

T q,(T,T,T,...) and  f(z) — f(W)

have commuting ranges (as W € 2’ N 2,), these *-homomorphisms define a unital *-homomorphism ¢ :
C(X) ®@min A — 2A,,. Similarly, C(X) is nuclear and the *-homomorphisms on 2 and C(X) defined by

T q,T,T,T,...) and fz)— f(eiB)

have commuting ranges (as B € ' N 2A,), these *-homomorphisms define a unital *-homomorphism ¢ :
C(X) Rmin A — Ay,

We claim that ¢ is an injective *-homomorphism. To see this, suppose to the contrary that ¢ is not
injective. Note that all of the ideals of C'(X) ®uin 2 are of the form Cy(U) ®pmin 2 where U is an open subset
of X. Thus, if ¢ is not injective, ker(¢) = Co(U) @min A for some non-empty open subset U of X. Since U
is non-empty, there exists a non-zero element f € Cy(U). However, this implies that 0 = o(f ® Iy) = f(W)
which implies f =0 on (W) = X D U which is a contradiction. Hence ¢ is injective. We note that ¢ need
not be injective when o(B) C o(A).

Since C(X) ®min A is nuclear (being the tensor product of nuclear C*-algebras), Theorem 9.12 implies
that there exists unital, completely positive map ®, ¥ : C(X) Quin A — o () that lift ¢ and 1. Therefore
there exists unital, completely positive maps ®,,, Uy, : C(X) ®min A — A such that

O(T) = (D1(T), Do (T), .. .) and U(T) = (V(T),Vo(T),...)

for all T € C(X) ®min 2.

In order to apply Lemma 10.5, we need to choose an increasing sequence of finite dimensional operator
systems and choose suitable ®,, and ¥,, to satisfy the conditions of the lemma. Then we can apply
Proposition 10.4 to obtain our sequence of non-unitary isometries.

Since 2 is a unital, separable C*-algebra, there exists a sequence of unitaries (U,,),>1 with dense span
in 2. Consider the increasing sequence of operator systems of C(X) Quin 2 defined by

S, = span{[c(x) Q Iy, z @ Iy, 2" @ Iy, IC(X) ® Uy, IC(X) & []1*7 e IC(X) & U’mIC(X) & U,:;}
For each n,k € N and T' € M(S,,) it is clear that

Tim [[(@,)4(7)]] = [[(@)e(D)] = 7]
since ¢ was an injective *-homomorphism. Therefore, since each S, was finite dimensional, if follows that
there exists a neighbourhood V of w in SN such that for all m € VNN the map ®,,|s, is invertible. Moreover
we obtain that limy, . ||(®ms,) ||, = 1 for all n,k € N.
With the above construction in hand, we are in a perfect position to apply Lemma 10.5. Since 2 is a
unital, separable, nuclear C*-algebra, Lemma 10.5 implies there exists an increasing sequence of positive
integers (k(m))m>1 such that whenever 61,602 : S, — 2 are unital, completely positive maps with 6;
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injective and HH{ 1||k(m) <1+ % then there exists a unital completely positive map © : 2 — 2 such that

[©06; — ;]| < 2. Choose a decreasing sequence of neighbourhoods V; 2 V5 2 -+ of w in AN such that

H(<I>g Sm)_luk(m) <1+ 2L forall £ € V,,, NN. By replacing V,,, with V;,, \ {1,2,...,m}, we may assume that

N (N Vin) = 0.

Note by the structure of the topology on AN, V,, NN # () for all m € N. For each m € N and
€ (Vi \ Vint1) NN, Lemma 10.5 implies there exists a unital, completely positive map 0O, : 2 — 2 such
that [|©¢ 0 ®y|s, — Vyls,. || < Z. Therefore, by applying Proposition 10.4 to ©, (as 2 is unital, nuclear,
simple, and purely infinite) and by applying the fact that S,, is finite dimensional, there exists non-unitary
isometries Sy € 2 such that ||S;®.(T)S, — ¥ (T)|| < % for all T € S,,. Since the S,,’s are increasing and

the V,,,’s are decreasing, we obtain that ||S;®,(T)S, — U, (T)|| < w forall T € S,,, and for all £ € V,,, NN.
For each ¢ € N\ V1, let Sy be a arbitrary, non-unitary isometry in 20 (which clearly exists as 2 is a unital,
simple, purely infinite C*-algebra). Since NN ((>_; V;,,) = 0, we have constructed an S, for each ¢ € N.

Let S := q,(S1,S52,55,...) € A,. Clearly S is an isometry in 2, as S*S = q,,(Ig, I, ...). Moreover, S is
not a unitary since

155" ~ I, || = lim (5,85, — Fal| = 1

as each S, is not a unitary.
Next we claim for each fixed n € N that limy,, [|S;UpS; — U, || = 0. To see this, fix n € N. We notice
that if m > n and ¢ € V,,, "N then

3
157 UnSe — Un|| < e ®c(Icx) @ Un) = Unl| + || Te(Iox) @ Un) — Unl|-

Let € > 0. Fix an integer m > max{n,2}. Since ¢,(®(Ic(x) ® Uy)) = ¢(Un) = U, € AN A, and
1(Y(lox)®Un)) = ¢(U,) = U, € AN, we can find a neighbourhood V' of w such that if £ € V NN then

|20 ®Ua) = Ual | ¥elom) ® Ua) = Ual| < 5

Therefore V,,, NV is a neighbourhood of w such that if £ € V,, NV NN then ||S;U,S; — U,|| < e. Hence
limg_,, |S;U,Se — Uyl = 0 as desired.

Therefore, when we view U,, € AN, the limit lim,_,,, ||S;U,S, — U, || = 0 implies S*U,,S = U, for all
n € N. Since each U, is a unitary, Lemma 10.7 implies that U,, commutes with SS*. Hence

SU, = S(S*U,S) = (S5)U,S = Un(S5*)S = U,.S

for all n € N. Therefore, since the span of {U,,},>1 is dense in A, S € A’ N A,
Next we claim that limg_,,, ||S;®e(z @ I)Se — ¥e(2 @ Iy)|| = 0. To see this, we notice that if £ € V;;,, NN
then

3
187 ®e(2 ® Ta)Se = Wl © Ta)l| < —.

Thus, by choosing m suitably large, we obtain that lim_,., ||S;®¢(z @ Ia)Se — ¥e(z ® Iy)|| = 0 as desired.
Hence S*W S = e*B. Therefore, again by Lemma 10.7, SS* commutes with W.

Since SS* commutes with W, SS* commutes with W*. Therefore, if € := C*(W) C A, (note A €
¢), then SS* commutes with € so the map T +— S*T'S from € to 2, is a *-homomorphism. Therefore
S*f(V)S = f(S*VS) for all f € C(X). By letting f(z) := —iln(z) for all z € X (where we choose the
principle branch), we obtain that S*AS = B as desired. O

Proposition 12.5. Let 2 be a unital, separable, simple, nuclear, purely infinite C*-algebra and let w be an
ultrafilter. Then A’ NA,, is unital, simple, and purely infinite.

Proof. Clearly 21’ N 2, is unital. To show that 21’ N A, is simple and purely infinite, we will show that
every hereditary C*-subalgebra 9B of 2’ N2, has a non-zero projection that is equivalent to the identity.
This implies 2’ N2, is simple since every ideal of 2’ N2, is hereditary and if an ideal of 2’ N %A, contains
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a projection equivalent to the identity then it contains the identity. This also implies 21’ N 2, is purely
infinite as if V€ A’ N2, is an isometry such that P := VV* € B and P # Iy ng, (as if P = Iyny, then
B =A'NA,) then W := VP is a partial isometry with W*W = P and WW* = VPV* < VV* = P and
W =VP =PVP € B (as B is hereditary).

Let B be a hereditary C*-subalgebra of 2('N%,,. Let C' € B be an arbitrary non-zero self-adjoint operator
with 1 € ¢(C) (which clearly exists). By the previous lemma with A = C and B = Iy/ng,, there exists a
non-unitary isometry S in 2’ N2, such that S*CS = Iy/ng, and the projection P = SS* commutes with
C'. Therefore P is a non-zero projection that is equivalent to Iy ng, in A’ NQA,. Since P commutes with C
and since PCP = S(5*CS)S* = S5* = P, we obtain that P = P? = (PCP)? = PCPCP = CPC € B as
B is hereditary. O

The next step in our proof is a slight detour. We need the ability to show that two C*-algebras are
isomorphic if there exists certain unital *~-homomorphisms between them. Unfortunately Lemma 7.1 is not
enough. As it is simpler and clearer to prove the result in the most general setting, we have the following
definition.

Definition 12.6. Let (2,),>1 and (%B,),>1 be sequences of unital C*-algebras with injective unital *-
homomorphisms ay, : A, — Apqq and By, : B, = By For each m > n let apyp = 10 00y :
Ap = Ay, and By := Bp—10---0 By : B, — B, which are injective unital *~homomorphisms. For each
n € Nlet ¢, : A, = B,+1 and let ¢, : B,, — A, be *~-homomorphisms. We say that the these sequences
of *-homomorphisms are approximately intertwining if there exists a sequence (d,,),>1 of positive numbers
and finite subsets F,, C 2,, and G,, C B,, such that

L |[tns1(on(A)) — an(A)|| < 8, for all A € F,,
2. |ln(¥n(B)) = Bu(B)|| < 6, for all B € G,
3. an(Fpn) € Fuy1, n(Fn) C Gugt, B(Gr) € Gy, and ¢, (G) C F, for all n € N,

4. Un_, ant, (Fr) is dense in 2, and (Jy,_, 8,5, (G) is dense in B, for all n, and

n Mm,n
5. 300 1 0, < 00.

The point of the above definition is that, if we take the direct limits of our sequences of C*-algebras, this
approximate intertwining property enables us to conclude that the direct limits are isomorphic.

Proposition 12.7. With the notation of Definition 12.6, if A :=lim_, A, and B :=lim_, B,,, then A and
B are isomorphic. Specifically there exists unital *-isomorphisms ¢ : A — B and ¢ : B — A such that
Yp=p"

QD(OZOO,TL(A)) = lim (ﬂoo,m—l—l O Pm © am,n)(A)

m—r oo

for all A e, and
w(BOO,n(B)) =1

im
m—00

(Qoo,m © Ym © Bin.n)(B)
for all B € B,, (where 0o n : Ap, = A and Poon : B — B are the canonical inclusions).

Proof. First we will show that the two limits illustrated in the proposition exist and define *~homomorphisms
on 2A. To see this, we will only demonstrate the first. By density, it suffices to check that ¢ is a *-
homomorphism on J,~; 2. Fix A € A,. By the third and fourth assumptions from Definition 12.6, it
suffices to consider A € 2,, where there exists an mg € N such that oy, ,(4) € F,, for all m > my > n.

However, notice by the first three assumptions of Definition 12.6 that for all T' € F;,, C A,

[m+1(am(T)) = (Bm+1(om(T)))||

lemt1(@m(T)) = (Pm+1 © Ym+1)(@m (TN + [[(Em+1 © Ymt1) (@m(T)) = (Bmt1(em (1))l
|5|04m(€) = Vmt1 (@m (TN 1 (Pma1 0 Vma1) (@m(T)) = Bt (em (1))l

m + m+1

INININ
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as T € F,, and ¢, (T) € Gpp1. Hence for all m > my

H(Boo,m-‘rQ O Pm+41© O‘m+1,n)(A) - (ﬁoo,m—kl ©¥m O O‘m,n)(A)H
= Hﬂoo,m—&-Q((‘Pm—H ° am)(am,n(A))) - 5oo,m+2((5m+l © ‘Pm)((amn)(A)))” < Om + Omi1

for all m > my. Therefore, the fifth assumption of Definition 12.6 implies that the sequence under consider-
ation is Cauchy and thus converges. Hence ¢ is a well-defined map. Since ¢ is a limit of *-homomorphisms
on a dense set,  is a *~homomorphism. Clearly ¢ is unital.

By similar arguments, it is clear that 1 is also a well-defined unital *-homomorphism. To verify that
¥ = @71, it suffices to verify ¢(¢(qoon(A4))) = Qoo n(A) for all A € 2, and all n € N and p(¢(B)) = B for
all B € B, and all n € N. We will only verify the first as the other will follow by symmetry. To see the first,
fix A € 2,,. Again, by the third and fourth assumptions from Definition 12.6, it suffices to consider A € 2,
where there exists an mg € N such that oy, ,(A) € F,, for all m > mgy > n. By continuity, we obtain that

(p(acon(A))) = T P (Boo,mt1(Pm(am,n(A))))-

m—o0

Restricting to m > my, and since @ (m.n(4)) € Gt € By,
U Boeim 1P (@mn(4)))) = Jim (@0e 0 B0 B ) (P mn(A)):
Thus, by choosing m large enough and then by choosing k large, we can obtain that

[¥(p(aoo,n(A))) = (Qook © Pk © Brm+1)(Pm(amn(A)))]l

is small. However, by the above computations, we notice that
(1/% o Bk,erl)((pm(am,n(A))) = (1/% o ﬁkfl o---0 Berl)(SDﬂ”L(am,n(A)))

is within 2357 4, of
(ag—10ap_g0---0 am)(am,n(A)) = ag,n(4).

Hence (0oo,k © Yk © Biem+1)(©m(amn(A))) is within 225:71,1 0 of aoo n(A). Hence the result follows from
the fifth condition of Definition 12.6. O

With the above technical result out of the way, we can prove the following result which is what we are
after. The proof comes down to constructing the desired objects in Definition 12.6.

Lemma 12.8. Let A and B be unital, separable C*-algebras. Suppose there exists unital *-homomorphisms
m: A — B and o : B — A such that m o o is approximately unitarily equivalent to Idy and o o 7 1is
approzimately unitarily equivalent to Idy. Then 2 and B are isomorphic C*-algebras.

Proof. To prove this result, we will verify that the conditions of Definition 12.6 hold where 2,, := 2 for all
n €N, B, :=B for all n € N, a,, is an isomorphism for all n, 3, is an isomorphism for all n, ¢; := 7 for
all j €N, ;=0 forall j € N, and §, ::% for all n € N.

To complete the proof, we will define a,, Bn, F, C 2, and G,, C B recursively. Since 2 and B are
separable, let (A,,)n,>1 and (By,)n>1 be dense subsets of 2 and B respectively. We will construct sequences
of unitaries (U, ),>1 in A and (V},)n>1 in B such that «, is conjugation by U,, and S, is conjugation by V,
for all n € N. Let G := {B;}. Then since 7 o ¢ is approximately unitarily equivalent to Iday, there exists a
unitary V; € 9B such that

1
Iw(o(B1)) = ViBiVY|| < 5.

Thus let 81(B) := V4BV for all B € B. Then let F} := {A1} U {c(B1)}. Since o o 7 is approximately
unitarily equivalent to Idy, there exists a unitary U; € 2 such that

b 1
lo(m(4)) = U1AUT || < 5
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for all A € Fy. Thus let a1(A) := U1 AU for all A € 2.
Having defined G,,, Vy,, Bn, Frn, Un, oy, recursively in this order, we define

Gn+1 = Bn(Gn) U {Bk}Zill U {ﬁnJrl,k(BnJrl) | 1<k<n+ 1} U W(Fn)

Then, since 7 o ¢ is approximately unitarily equivalent to Idsy, there exists a unitary V11 € B such that

N 1
|7(o(B)) = Var1 BV,i4 || < TS
for all B € Gy,41. Thus let 5, 41(B) := V41 BV, for all B € B. Then we define
Foy1 = an(F,)U {Ak}Zi% Ufant1u(Ang1) [ 1<k <n+1tUo(Grt).

Then, since o o 7 is approximately unitarily equivalent to Idg, there exists a unitary U, 4; € 2 such that

N 1
|o(7(A)) = Unt1 AU 4 || < ont1
for all A € F,y1. Thus let a41(A) := Up11 AU, for all A € 2L

By continuing this construction, it is clear that properties 1), 2), 3), and 5) of Definition 12.6 are satisfied.
By construction, {By}}_; € Gy for all n € N and if m > n, 8.}, (Gn) contains B,,. Hence U,._,, 8,,},(Gm)

m,n

is dense in B for all n € N. Similarly, |J>-_ L (F,,) is dense in 2 for all n € N. Therefore, 2l and B are

m=n —m,n

isomorphic by Proposition 12.7. O

With the above technical result out of the way, we continue with the proof of the desired result. In
Definition 7.2 we examined sequences of *~-homomorphisms with certain central properties. However we now
desired to examine a stronger property.

Definition 12.9. Let 2( and 8 be unital, separable C*-algebras. An asymptotically central inclusion of 2A
into B is a sequence of unital, injective *-homomorphisms (7,),>1 from 2 to B that are asymptotically

central (that is, for all A € 2 and B € B, lim,,_, |7 (4) B — B, (A)|| = 0).

Our goal is the following is to use approximately central inclusions of the Cuntz algebra to obtain C*-
algebras that are isomorphic to Os. The first step is to show the following.

Lemma 12.10. Let 2 be a unital, separable, simple C*-algebra and let ® be a unital, separable, simple,
purely infinite C*-algebra. If there exists an asymptotically central inclusion of © into A, then A is purely
infinite.

Proof. Let 2 be a unital, separable, simple C*-algebra and let © be a unital, separable, simple, purely infinite
C*-algebra. By assumption there exists an asymptotically central inclusion of ® into 2 so there is a unital,
isometric inclusion of ® into 2[. Since @ is purely infinite it is clear that Iy is an infinite projection in 2I.

To show that 2l is purely infinite it suffices by Lemma 2.9 to show that for every non-zero positive
element A € 2 there exists a projection in AAA that is equivalent to Iy (as if V' € 2l is an isometry such
that P:=VV* € AAA and P # Iy (as if P = Iy then A%AA = ), then W := VP is a partial isometry with
WW =P, WW*=VPV*<VV*=P and W = VP = PVP c AAA (as AAA is hereditary)).

Fix A € 2 to be a non-zero positive operator. Since 2l is simple and unital, the closure of the ideal
generated by A € 2 is dense in 2. Hence there exists elements By, By, ..., B,,C1,Cs,...,C, € 2 such that

Iy — zn: BkACk

k=1

<1

Hence X := >°;_, BLAC) is an invertible element of 2. By replacing B; with X !B, for all j, we can
assume that ZZ:1 By ACy, = Iy. We desire that n =1 and B; = Cf.
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Let
M = max{||Bi[l, | Bz, ..., [ Bnll, [IC1][ ;- -, [|Cnll}-

Since D is simple and purely infinite, Lemma 2.3 implies we can find a collection of n isometries {.S; };-‘:1 c®

with orthogonal ranges. Since there exists an asymptotically central inclusion of ® into 2, there exists an

injective, unital *-homomorphism 7 : © — 2 such that ||7(S;)A — An(S;)|| < 4z forall 1 < j < n.
Define

B := ZBk’/T(Sk)* and C:= ZW(Sk)Ck"
k=1

k=1

Hence, as the Si’s have orthogonal ranges,
] S By () An(S,)Ci — Yo, Bym(S;) (S AC
Zgjzl | Bjm(S;)* Am(S;)C; — Bym(S;)*m(S:)ACi||

> i =1 1B AT (S:) — m(So) Al I Ci

i g1 1B Gl < 1

Hence BAC is an invertible element of 2.
Let X := BAz and let Y := A2C(BAC)~" which are elements of 2. Clearly XY = Iy so

|BAC — Iy||

ININIA

Iy =Y*X*XY < |X|?Y*Y.
Hence Y*Y is an invertible element of 2. If we let V := Y|Y|™!, then
VYV = (YY) EYY) (YY) TE = Iy

whereas ) ) ) )
VV* =YY |7V = A2C(BAC) YY" ((BAC) 1 )*C* Az € A2AA2 C AAA

(as A € AAA by Lemma 2.3 so A2A> C AAA as AAA is hereditary). Hence the result follows. O

With the above result, we can show that C*-algebras with the same properties as Oy that contain an
asymptotically central inclusion of Oy must be Os.

Lemma 12.11. Let A be a unital, separable, simple, nuclear C*-algebra. If Oy has an asymptotically central
inclusion into A then A =~ O,.

Proof. By assumption there exists an injective, unital *-homomorphism 7 : Oy — 2. Moreover, there
exists an injective, unital *-homomorphism o : 2 — Oy by Theorem 11.11. However c o : Oy — O is
approximately unitarily equivalent to the identity on Oy by Theorem 6.12 (or Theorem 10.10). If roo : A — 2A
is approximately unitarily equivalent to the identity on 2 then Lemma 12.8 implies that 2 and Oy are
isomorphic. Therefore we desire to use the asymptotically central inclusion of Oy into 2 to show that any
two unital *~homomorphisms from 2 to 2l are approximately unitarily equivalent.

To begin, we note that Lemma 12.10 implies 2 is purely infinite. Fix a unital *-homomorphism ~y : 2 — 2I.
To see that ~ is approximately unitarily equivalent to the identity on 2, we notice that since v is a unital,
completely positive map and since 2 is unital, separable, simple, nuclear, and purely infinite, Proposition
10.4 implies that there exists a sequence of isometries (V,),>1 C 2 such that lim,_,., V, AV,, = v(A) for all
A € 2L, Our goal is to upgrade these partial isometries to unitaries.

Fix an ultrafilter w and let V := ¢,(V1,Va,...) € A,. Clearly V is an isometry in 2,. We claim
Vv* e &' NA,. Indeed, viewing A C A, we obtain that V*AV = ~(A) for all A € A. Therefore, if
U e U) then V*UV = ~(U) is a unitary in 2 so Lemma 10.7 implies that VV* commutes with U. Hence
VV* commutes with every unitary in 2 so VV* € ' N 2A,,.

Recall that 2" N2, is a unital, simple, purely infinite C*-algebra by Proposition 12.5 (as 2( is unital,
separable, simple, nuclear, and purely infinite). We will use K-theory to show that VV* and Iy ng , are
equivalent projections in 2’ N2,. Thus will enable us to upgrade V to a unitary.
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Fix an increasing sequence (F),),>1 of finite, self-adjoint subsets of 20 with dense union in 2 such that
VoV,y € F,. Let S1 and Sy be the standard generating isometries of Os. Since Oy has an asymptotically
central inclusion into 2, for each n € N there exists a unital, injective *-homomorphism o, : Oy — A
such that [|o,(T)A — Aoy, (T)|| < + for all A € F,, and T € {51, 57,552,535} C Oa. Therefore, if we define
0:02 = A, by o(T) := qu(01(T),02(T),...) for all T € Os, then o is a well-defined, unital, injective *-
homomorphism. Moreover, by construction, o(7") commutes with | J,, -, F, for all T' € {S1, 57,52, S5} C Os.
Therefore, since |J,,»; Fy, is dense in 2, it is easy to see that o(T') € A’ N2, for all T € Oy. Moreover, since
V, V¥ € F, for all n, it is easy to see that o(T") commutes with VV* for all T' € {S1, S}, 52,55} C Os.

However, in Ko(2' N2A,),

[VV*]o = [VV*(o(S1)o(S1)" + 0(S2)a(S2)")]o = [0(S1)VV* 0 (S1)" + a(S2)VV*a(S2) o = 2[VV™]o

by 6.13. Hence [VV*]o = 0. Similarly, since Iy = Iyvna,, [Ia]o = 0. Therefore, since 2/ N2, is a unital,
simple, purely infinite C*-algebra, VV* and I are equivalent projections in 2'N2A,, (see Chapter 4). Therefore
there exists an isometry W € 21’ N2, such that WW* = VV™*,

Let U :=W*V € %,. Clearly

U'U=VWW'V=V*VV*V=Iy and UU*=WVVW=WWW*W = Iy
so U is an unitary operator. Moreover, since W € ' N2,
U*AU = V*WAW*V = V*AV = v(A)

for all A € 2.

Finally, we will use U to obtain that + is approximately unitarily equivalent to the identity on 2. To
begin, let F be a finite subset of the unit ball of 2 and let ¢ > 0. Clearly we can choose an element
(B1,Ba,...) € () such that ¢oo (B, Be,...) = U. Since U is a unitary,

Jim [|B, By — Ia|| = 0= lim [|By By, — I -

Hence, since U*AU = ~(A) for all A € 2, there exists a neighbourhood U’ of w in SN such that for
alln € U NN ||BEAB, —v(A)|| < § for all A € F and the unitaries U,, = B,|B,|™" exist and satisfy
|Un — Byl < 5. By selecting any n € U’ NN, we obtain ||Uj; AU,, —y(A)|| < € for all A € F and thus the
result follows. O

Our final step in the proof is to show that ®:2 ; Oz is isomorphic to Oy and has an approximately central
inclusion of Os.

Theorem 12.12. Let A be a unital, separable, simple, nuclear C*-algebra. Then A @upin Oz ~ Os.

Proof. Let B := ®°°,0y; that is, B is the direct limit of OF™*™ with the canonical inclusions ay, : OF™»" —
(95@‘“‘"" ®min O2 defined by o(T) =T ® Ip,. Clearly B is a unital. Moreover B is separable and nuclear
being the direct limit of separable, nuclear C*-algebras. To see that 9 is simple, let J be an ideal of 8.
Then J N OF™" is an ideal of O™ ~ 0y and thus J N OF™*" is either {0} or OF™"" as Oy is simple.
Since J N OF=»" C 3N OF»" 1 for all n € N, either J N OF™»™ = {0} for all m € N or there exists an
n € N such that JN O?I“i“m = O?I“i“m for all m > n. In the first case we obtain that J = {0} and in the
second we obtain that J = B. Hence B is simple.

To see that B is purely infinite, we notice that the inclusions m, : Oy — O?‘“‘“"_l Rmin O2 C B defined
by 7, (T) = O@minn—1 Bmin T are an asymptotically central inclusion of O, into B. Hence B is purely
infinite by Lemma 12.10. Clearly there then exists an asymptotically central inclusion of Oy into B ®ui, A
(by embedding into B ®uin Ig). Since 2 be a unital, separable, simple, nuclear C*-algebra, B Qmi, A is a
unital, simple and therefore purely infinite C*-algebra by Lemma 12.10. Moreover 8 ®p;, 2 is separable
and nuclear as 20 and ‘B are separable and nuclear.

By Lemma 12.11, 8 ~ O3 and B Ry A >~ Os. Hence Oz @upin A >~ B Ruin A >~ Oy as desired. O
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13 O Qpin A ~2A

In this chapter we will prove that if [ is a unital, separable, simple, nuclear, purely infinite C*-algebra then
O Omin A ~ A. The idea of the result is to show that if B is a unital C*-subalgebra contained in 21’ N 2A,,
such that certain inclusions of B into B ®ui, B are approximately unitarily equivalent then 8 @, A ~ 2.
The majority of this result is proved in Lemma 13.3. We will the use the fact that 2’ N2, is a unital, simple,
purely infinite C*-algebra to embed O inside by Proposition 12.5. Knowledge of approximate unitary
equivalence of *-homomorphisms from O, will complete the proof (although this will be our only complete
omission in this document as the proof requires a significant amount of K-Theory).

Most of the results for this chapter were developed from the paper [KP].

We begin with the following lemma. Note that we do not actually need the following lemma to prove the
result (as we will alway take B = O,) but we record the proof as it is simple.

Lemma 13.1. Let B be a unital, separable C*-algebra. Suppose that the two unital *-homomorphisms
7,0 B = B Quin B given by m(B) = BRIy and 0(B) = Is ® B for all B € B are approxzimately unitarily
equivalent. Then B is simple and nuclear.

Proof. To see that 8 is simple, suppose to the contrary that there exists a non-trivial ideal J of 8. Hence
B Qmin J and J @min B are non-trivial ideals of B @myin B. Moreover, if B € J then B ® Iy € J Qmin B yet
Iy ® B ¢ 3 Qmin B (or else Iy € J; see the end of the first argument in Remarks 12.1). However, since 7
and o are approximately unitarily equivalent, there exists a sequence (Uy,),>1 of unitaries in B @i, B such
that
Is ® B=0(B) = lim U,(n(B))U; = lim U,(B® Ip)U,; € J @min B
n—oo n—oo

which is a contradiction. Hence B is simple.

To see that B is nuclear, since ¢ and w are approximately unitarily equivalent and B is separable,
there exists a sequence (Up)n>1 of unitaries in B Qmin B such that lim, . U, (B ® Ip)U = Iy @ B for
all B € 8. Fix C, € B ® B such that ||Cy,]| < 1 and lim,_,« ||Cy, — Uy|| = 0. Clearly we obtain that
lim,, 00 Cpn(B® Ig)C = Iy ® B for all B € 8.

Let ¢ be any state on B. For each n € N define ¥, : 6 — B by

Since the tensor product of contractive, completely positive maps on the minimal tensor product are con-
tractive, completely positive maps, each v, is a completely positive map that is contractive as ||C, || < 1.
For each n € N write C,, = >/ | X; @ Y; with X;,Y; € B. Then

m

Un(B) = (p@Idws) | > XiBX;@YiY] | = > 6(X;BX;)Y;Y]

i,j=1 ,5=1
for all B € 8. Hence 1, is a finite rank map. Moreover
[¥n(B) = B|| = ||[(¢ ® Ids)(Cn(B ® I5)Cy) — (¢ @ Idy ) (I @ B)|| < |Cn(B ® I)C, — I @ B|

for all B € 9B and thus converges to zero as n — co. Hence Idg is a pointwise norm limit of completely
positive contractions of finite rank. It follows from the papers [CE] and [La] that %8 is nuclear. O

Next we have the following trivial lemma that we record for convenience in the proof of the subsequent
lemma.

Lemma 13.2. Let A, B, and € be unital, separable C*-algebras and let w be an ultrafilter. Let ® : B —
Lo () and U : € — Lo () be unital completely positive maps given by

(B) = (p1(B), 2(B),...)  and  W(B) = (41(C), 92(C),...)
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where @ : B = A and ; : € = A are unital, completely positive maps. Suppose that g, 0 ® and g, 0V
are unital *-homomorphism with range inside A’ N A,,. Then for any finite subsets F C A, G C B, and
H C¢, any k € N, and any € > 0 there exists a neighbourhood U of w such that

[0 (C)or(B) — ee(B)n(C)|| <€, [[vn(C)A = Apn(C)|| <€, and  |[¢pn(C1C2) — ¢hn(C1)hn(Ca)|| <€
for everyn e UNN, A€ F, BeG, and C,C1,Cy € H.

Proof. Fix finite subsets F C A, G C B, and H C ¢, fix k € N, and fix € > 0. Then F U {¢(G)} is a finite
subset of 2. Since ¢, o o ¥ is a unital *-homomorphism with range inside 2’ N2, and since H is a finite
subset, the result clearly follows. O

With the above trivial lemma out of the way, we have the following technical result.

Lemma 13.3. Let 2 be a unital, separable, C*-algebra, let w be an ultrafilter, and let B be a separable C*-
algebra of A’ N A, such that Iy, € B and such that the two unital *-homomorphisms w,0 : B — B Qumin B
given by 7(B) = B® I and 0(B) = Iy ® B for all B € B are approzimately unitarily equivalent (in
B Qmin B). Then there exists a unital *-homomorphism ¢ : B Quin A — A such that the map 1 : A — A
defined by Y(A) = p(Is @ A) for all A € A is approzimately unitarily equivalent to Idy.

Proof. The idea of the proof is to use the nuclearity of 8 given by Lemma 13.1 to construct a sequence
of asymptotically multiplicative, unital, completely positive maps from % into 2. Using the unitaries that
make the *~homomorphisms ¢ and 7 approximately unitarily equivalent, we will be able to construct unitary
elements of 2 that asymptotically commute with each fixed element of 2l and intertwine the above sequence
of unital, completely positive maps. Conjugation by these unitaries will define *-homomorphisms from 2
and B into /A whose ranges commute which will enable us to obtain the desired *-homomorphism.

By Lemma 13.1 B is a unital, separable, simple, nuclear C*-algebra. Hence Theorem 9.12 implies the
inclusion of 9B inside A’ N 2L, lifts to a sequence of unital, completely positive maps ¢; : B — 2 such that

QW,QL(SDI(B)7SD2(B)7 .- ) =B

for all B € 9B. Thus the ¢;’s are asymptotically multiplicative.

Since 2l and B are separable, we can choose increasing sequences (Fy,),>1 and (Gp)n>1 of finite, self-
adjoint subsets of 2 and B respectively whose unions are dense in 21 and B respectively. Finally, by the
hypotheses on B, there exists a sequence of unitaries (Ux)r>1 C B Qmin B such that

1
[Uk(B @ Is)Uy; — Is @ B|| < ok

for all B € Gy.
We claim for each k& > 1 there exists a finite set G;C C B containing G and an €, € (O7 %) such that
whenever ® U : 98 — 2 are unital, completely positive maps such that

[2(BC) — @(B)2(C)|| < e, [¥(BC) — ¥(B)¥(C)|| < e, [[¥(B)2(C) — 2(C)¥(B)| < e,
|®(B)A — AB(B)| < ex, and ||[¥(B)A — AV(B)|| < e

for all B,C € G}, and A € F}, then there exists a unitary V' € 2 such that

1

IVeBV” - (B < 5

. 1
and  |[VAV* — 4| < oF
for all A € I}, and B € G,.
To prove the claim, we will proceed by contradiction. Fix & > 1. Clearly, if the result fails, it fails
without the assumption that Gy, C Gj.. Therefore, if {T},}72, is a dense subsets of B, then for every n € N
there exists unital, completely positive maps ®,,, ¥,, : 6 — 2 such that

|®,(B)A— A®,(B)|| <%, and ||V, (B)A — AV, (B)|| <1

n?
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for all A € Fy, and B,C € {T1,...,T,} and yet there does not exists a unitary V' € 2 such that

* 1 . 1
for all A € F}, and B € G,.
Since each @, and ¥, is a unital, completely positive map and therefore contractive, we may define the
maps ¢, ¥ : B — A, by

q)(B)ZQOo,Ql((I)l(B)v(I)Q(B)7) and \I’(B)ZQOO,Ql(\III(B)a\II2(B)7)

for all B € B. Since

2(BO) = 2, (B)B,(O) < - and [, (BC) ~ Uu(B)UL(C)] <

for all B,C € {Ti,...,T,}, we obtain by the density of {7,,}32, in B that ® and ¥ are unital *-
homomorphisms. Since ||¥,,(B)®,(C) — ®,(C)V,(B)| < % for all B,C € {T1,...,T,}, we again obtain by
the density of {T},}22 ; in B that ® and ¥ have commuting ranges. Finally, since

[20(B)A ~ AD(B)| <+ and  |Wa(B)A -~ AVL(B)] <

for all A € Fy, and B,C € {T1,...,T,}, we again obtain by the density of {T},}>%; in B that & and ¥
commute with
Fi= {QOO791(A7A5A7"') | AEFk}

Since B is nuclear, by the universal property of the maximal tensor product and by the facts illustrated
above, there exists a unital *~homomorphism 0 := ® @ ¥ : B ®,,;, B — A, whose range commutes with F.

Using the unitaries (Uy)n>1 defined earlier, we can write 8(Ux) = ¢oo,2(S1,52,...) where {S,}n>1 C
2 are such that sup,,~; ||Sn| < oco. Since 6 is a unital *-homomorphism, §(Uy) is a unitary and thus
limy, 00 S;SH = lim,, s 0o SnS) = Iy. For each n € N define

Sn|Sn|~t  whenever S¥S,, and S, S} are invertible
V, = .
Iy otherwise

Therefore, as lim,,—, S}S, = lim, 0 S, S, = Ig, we obtain that g o (V1,V2,...) = 0(Uy). However, this
implies for all B € G}, that

limsup,, o [Va®n(B)V,) — Vi (B)|| [0(Ur)0(B © Is)0(Ux)" — 0(Is ® B

<
< |Un(B@In)U; - In © B| < %
and for all A € F}, that

limsup [V, AV,S — Al < [|0(Uk)qoo,2 (A, A, A, )0(Uk)™ = oo (A, A, A, )| =0

n—oo

as the range of § commutes with F. Therefore, since Gy, and F}, are finite, by choosing n large enough, we
clearly get a contradiction to the fact that there does not exists a unitary V € 2 such that

. 1 . 1

for all A € F), and B € ;. Hence we have obtained our contradiction so the claim has be proven.
By constructing the sets G, and €, recursively, we may assume that G}, C G, for all k, ¢, > €11 for
all k, and limy_,~ €, = 0. By the fact that

Qw,m(@l(B), @2(3)7 .. ) =B
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for all B € 8 and by the trivial Lemma 13.2, we can selected n; < ny < ... recursively such that

[n, (BC) = @n, (B)en, (C)| <er and [, (B)A = Apn, (B)| < &1

for all A € F} and B,C € G}, and

||<Pnk+1 (BC) — Prgsq (B)@nk+1 (C)H < €kt1, H‘pnk+1 (B)A — A@nkﬂ (B)H < €k41,
and ngnkJrl(B)SOnk (C) = Pny, (C)gonk+1 (B)H < €41 < €k

for all A € Fy, and B,C € Gj,;. Therefore, the claim implies there exists unitaries {V}x>1 C 2 such that

1
HngonkH(B — ¢n, (B H and Ve AV — Al < o8

for all A € F}, and B € G.

For each n € N, let W,, := V1V2 Vo1 € A (so Wi = Iy). Clearly each W, is a unitary. Since
Yooy 2% < oo, |[VEAV) — AH < gr for all A € F},, and the union of the F}’s is dense in 2, lim,, o Wi AW}
exists for all A € A. Define « : Q( — A by a(A) = lim, 0o Wi AW} for all A € A. Clearly « is a unital
*-homomorphism that is approximately unitarily equivalent to the identity map on 2l. Moreover notice that

’|Wk+1@nk+1 (B)Wl;kJrl - Wk(pnk (B)WI: H = |‘Vk@nk+1 (B (pnk H

for all k € N and B € G}. Hence, since the union of the Gi’s is dense in B, limg_,o0 Wiipn, (B)W} exists
for all B € B. Therefore we can define 5 : B — A by 8(B) := im0 Win, (B)W} for all B € B. Since
|@nss (BC) = @npy (B)n, (O] < €t for all B,C € Gry1, limp—so0 € = 0, and the union of the Gy’s is
dense in B, 3 is a unital *~-homomorphism. Finally, since

(Wi AWE) (Wron, (B)W) = (Wrpn, (B)WE)(We AWE) || = [|@n, (B)A = Apn, (B <

forall A € Fy, B € G, and k > 0, and since limy_, o, € = 0, the ranges of a and 8 commute. Therefore, since
B is nuclear, by the universal property of the maximal tensor product there exists a unital *-homomorphism
=L@ a:DB Qmin A — A. Therefore, if ¢ : A — A is defined by ¥(A) = p(Is ® A) = a(A) for all A € A,
then v is approximately unitarily equivalent to the identity map on 2 as desired. O

The above result allows us to prove, with the conditions of the above result, that 8 Qp, A ~ A. The
result will be proved using Lemma 12.8.

Proposition 13.4. Let 2 be a unital, separable, C*-algebra, let w be an ultrafilter, and let B be a separable
C*-algebra of A' N, such that Iy, € B and such that the two unital *-homomorphisms w, 0 : B — B @min B
given by m(B) = B® I and o(B) = Iy ® B for all B € B are approzimately unitarily equivalent. Then
B Qpin A =~ 2A.

Proof. This result follows from Lemma 13.3 and Lemma 12.8. Let ¢ : B Qupi, A — A be the unital *-
homomorphism from Lemma 13.3 and let § : A — B @iy A by the unital *-homomorphism defined by
0(A) =Ip @ Afor all A€ 2. Then forall A e

(pob)(A) = (s © A).

Therefore, by Lemma 13.3, ¢ o § is approximately unitarily equivalent to the identity map on 2. Therefore,
if 6 o  is approximately unitarily equivalent to the identity map on B ®unin A, B Qmin A =~ A by Lemma
12.8.

Since o 6 is approximately unitarily equivalent to the identity on 2, there exists a sequence of unitaries
(Wyn)n>1 of 2 such that lim, o ||[Wop(0(A))W;: — Al| =0 for all A € . Moreover, by the assumptions on
B, there exists a sequence of unitaries (V,,)p>1 in B@minB such that lim, o |V (B ® I)V, — Is @ B|| =0
for all B € B. However, for all By, By € B, we notice that B1 ® Iy and 0(p(Ba®Iy)) = Iy @p(Bs2) commute.
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Hence, since B is nuclear by Lemma 13.1, the universal property of the maximal tensor product implies that
there exists a unital *-homomorphism ¥ : B ®pin B — B Qmin A such that U(B® Iy) = 0(p(B ® Iy)) and
U(Iy ® B) = B® Iy for all B € 8. In addition, notice

V(B ® B)0 (oI @A) = V(B @In)¥(Ip @ B2)(In @ (I @ A))
(B2 @ I)) (B2 @ I ) (Is @ o(Is ® A))
(B2 ® In)) (I @ p(Is ® A))(B2 @ I3)
EB2 ® Iy) 9(( el ® A)) (B2 @ I)

)
( )

)
Iy ® A))0(p(Bs ® 1)) (B2 ® Ip)
Ip ® A))¥(B; ® Bs)

(¢

0(¢
(¢
0(p
(¢

for all By, By € B and for all A € 2. Hence, by linearity and density, ¥(V,,)8(¢(Is @ A)) = 6(p(Is ®
A))¥(V,) for all A € A and all n € N.

For each n € N define U,, = (I @ W,,)¥(V,,) € B Qpin A. Therefore each U, is the product of two
unitary elements of B ®pi, A and thus is a unitary element. Moreover, for all B € B and A € 2

limy, 00 UnB(p(B®@ AU} = limy_00 UnB(0(B ® Ig())ﬂ( I ® A))U
limy, 0 (Ip © W, ) (Is ® B)¥(V, ) ( (Iz ® A))
litm o0 (I @ W) (B @ I ) U(V,)0(p (I © A))U(V,
limy, 00 (B ® Is) (I @ W)W (V)0(p(Is ® A))¥(V,
= limy, 0o (B® Ig)(Ip @ W,,)0(0(Is @ A))(Iz @ W)
limHOOEB ® I%ggf% R Wn)(Is @ (p(Is @ A)))(Is @ W)
) ) =

|
EHG

(Vo)*(Is @ W)
(Vo)*(Is @ W)
) (Is @ W)

W) (Is @ W)

lim e (B @ L) (I ® W (9(0(A)) W)
= (B®Ip)(Ip ®A)=B® A.

Hence, by linearity and density, lim, oo Upn@(@p(T))Us = T for all T € B @min A. Therefore 6 o ¢ is
approximately unitarily equivalent to the identity on B ®ni, /A as desired. O

Our last technical result is the following.

Proposition 13.5. Let 2 be a unital, simple, purely infinite C*-algebra. Any two unital *-homomorphisms
from O into A are approximately unitarily equivalent.

Proof. The proof of this result takes a significant amount of K-theory and therefore is omitted. An interested
reader many consult [LP]. O

Now that we have the above, we are finally able to prove the main result of this chapter. The following
proof is not the original proof from [KP], but is much simpler.

Theorem 13.6. Let 2 be a unital, separable, simple, nuclear, purely infinite C*-algebra. Then Oso @min A ~
2.

Proof. Let 2 be a unital, separable, simple, nuclear, purely infinite C*-algebra and let w be any ultrafilter.
Recall that ' N2A,, is a unital, simple, purely infinite C*-algebra by Proposition 12.5. Therefore Lemma 2.3
implies that the identity of 2’ N, is a properly infinite projection. Therefore, by the universal property of
O, there exists a unital *-homomorphism @ : Oy, — A’ NA,. Since O is simple by Theorem 1.13, @ is
injective.

Recall that O is unital, separable, simple (Theorem 1.13), nuclear (Theorem 1.20), and purely infinite
(Corollary 2.12). Hence O ®@min O is unital, separable, simple, nuclear, and purely infinite (Theorem 3.11).
Hence Proposition 13.5 implies that the two *~homomorphisms 7,0 : Oy — Qs ®min O are approximately
unitarily equivalent. Hence Proposition 13.4 implies that Oy ®min A ~ A as desired. O
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