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Abstract

The purpose of these notes is to develop (without mention of the Hilbert-Schmidt operators) the ideal
of trace class operators in B(H) where H is an infinite dimensional Hilbert space. In addition, we will
develop the facts that the trace class operators are the dual of the compact operators and the predual of
B(H). We will proceed to develop the theory in the way that we feel it most intuitive and direct.

In these notes, H will alway be an infinite (but not necessarily separable) Hilbert space and K(H)
will denote the set of compact operators. These notes will assume that the reader has a basic knowledge
of the Continuous Functional Calculus for Normal Operators, compact operators, the spectral theorem
for positive compact operators, and the polar decomposition of an operator. All inner products will be
linear in the first component.

This document is for educational purposes and should not be referenced. Please contact the author
of this document if you need aid in finding the correct reference. Comments, corrections, and recom-
mendations on these notes are always appreciated and may be e-mailed to the author (see his website
for contact info).

The set of trace class operators on a Hilbert space H, denoted C1(H), have many several interesting
and important properties. To begin to understand the importance of the trace class operators, recall that
B(H) can be viewed as a non-commutative version of `∞(I) where I is an infinite set and K(H) can be
viewed as a non-commutative version of c0(I). Carrying forth this analogy, we will see that C1(H) is really
a non-commutative analog of `1(I). Moreover, it is well-known that c0(I)∗ ' `1(I) and `1(I)∗ ' `∞(I). As
such, it will be show that K(H)∗ ' C1(H) (Theorem 25) and C1(H)∗ ' B(H) (Theorem 23). Moreover, the
fact that C1(H)∗ ' B(H) allows us to construct a weak∗-topology on B(H) that is very important to the
study of von Neumann algebras (although this will not be developed here).

In these notes there are several times that we want to take rather a m-tuple (finite sum, finite set) or a
sequence (countable sum, countable set). As such the notation (an)n≥1 will denote either a finite m-tuple
(for some m ∈ N) or a countable sequence. Similarly the notation

∑
n≥1 an will denote a countable sum that

is possibly a finite sum. Moreover, if multiple similar objects are considered together, they are all ’finite’ or
all ’countable’. This convenience is made to accommodate finite rank operators simultaneously with compact
operators that are not of finite rank.

To begin a study of the trace class operators it is necessary to develop the theory of compact operators at
least up to the spectral theorem of compact normal operators. We begin with the statement of the afore men-
tioned theorem although we will only need the case that compact operator under consideration is self-adjoint.

Theorem 1. Let H be a Hilbert space and let N ∈ B(H) be a compact, normal operator. Suppose
(λk)k≥1 are the distinct non-zero eigenvalues of N (recall λk → 0 if there are infinitely many eigenvalues)
and that PMk

is the orthonormal projection of H onto Mk = ker(N − λkI). Then each Mk is a finite
dimensional Hilbert space, PMk

PMj
= 0 = PMj

PMk
if j 6= k, and

N =
∑
k≥1

λkPMk

where the series converges in the norm topology on B(H).



Using the above theorem and the polar decomposition of an element of B(H) it is possible to write every
compact operator as a norm convergent sum of rank one operators. Before we show this, we will make some
useful notation.

Notation 2. Let ξ, η ∈ H. We denote the rank one operator in B(H) that takes η to ξ by ξη∗ (that
is, ξη∗(ζ) = 〈ζ, η〉ξ for all ζ ∈ H).

Note that it is easy to verify that if T ∈ B(H), α ∈ C, and ξ, ξ′, η, η′ ∈ H then T ◦ (ξη∗) = (Tξ)η∗,
(ξη∗)∗ = ηξ∗, (ξ + αξ′)η∗ = (ξη∗) + α(ξ′η∗), and ξ(η + αη′)∗ = (ξη∗) + α(ξ(η′)∗) as operator in B(H).

Corollary 3. Let K ∈ K(H) be such that K = K∗. Then

K =
∑
n≥1

λnηnη
∗
n

where the sum converging in norm, (λn)n≥1 are the real non-zero eigenvalues counting multiplicity, and
{ηn}n≥1 ⊆ H is an orthonormal set.

Proof: Fix K ∈ K(H) such that K = K∗. Thus Theorem 1 implies that we may write K =
∑
k≥1 λ

′
kPMk

(the sum converging in norm) where (λ′k)k≥1 is a sequence of non-zero eigenvalues of K that converges to
zero, each Mk is a finite dimensional Hilbert space, and PMk

PMj = 0 = PMjPMk
if j 6= k.

Let {ηα}α∈∆k
be an orthonormal basis forMk. Since eachMk is a finite dimensional Hilbert space, ∆k

is a finite indexing set and PMk
=
∑
α∈∆k

ηαη
∗
α is norm convergent. Thus

⋃
k≥1{ηα}α∈∆k

is a countable
orthonormal set of vectors asMk andMj are orthogonal if j 6= k. By ordering

⋃
k≥1{ηλ}λ∈Λk

we obtain an
orthonormal set of vectors {ηn}n≥1 such that K =

∑
n≥1 λnηnη

∗
n is a norm convergent sum where λn = λ′k

for the specific k such that ηn ∈ Mk. Since K is self-adjoint, the eigenvalues of K are real so each λn is a
real number. �

Corollary 4. Let K ∈ K(H). Then

K =
∑
n≥1

snξnη
∗
n

where the sum converging in norm, (sn)n≥1 is a non-increasing sequence of strictly positive real numbers
converging to 0, and {ξn}n≥1 ⊆ H and {ηn}n≥1 ⊆ H are orthonormal sets (not necessarily orthogonal to
each other).

Proof: Fix K ∈ K(H). By the polar decomposition of operators there exists a partial isometry V ∈ B(H)

such that K = V |K| where |K| = (K∗K)
1
2 . Since |K| ∈ C∗(K) and C∗(K) ⊆ K(H), |K| is a posi-

tive compact operator. Thus Corollary 3 implies that there exists an orthonormal set {ηn}n≥1 such that
|K| =

∑
n≥1 snηnη

∗
n is a norm convergent sum where (sn)n≥1 are the non-zero eigenvalues of |K| (counting

multiplicity). Since |K| is a positive operator, sn ≥ 0 for all n. Since limn→∞ sn = 0 as |K| is compact, we
may rearrange the order of the ηns such that limn→∞ sn = 0 and sn ≥ sn+1 for all n.

To obtain the final expression for K, recall that V is an isometry on Ran(|K|) and let ξn = V ηn. Since
ηn ∈ Ran(|K|) for all n, each ξn is a unit vector and ξk is orthogonal to ξj whenever j 6= k. Whence

K = V |K| = V

∑
n≥1

snηnη
∗
n

 =
∑
n≥1

snV (ηnη
∗
n) =

∑
n≥1

sn(V ηn)η∗n =
∑
n≥1

snξnη
∗
n

is such a desired decomposition. �

Notice, given a compact operator K, that the above representation is not unique since we could have
chosen different orthonormal bases for eachMk. However the sns are unique as they were simply the eigen-
values of |K| (including multiplicity) arranged in decreasing order. To capture this information, we make
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the following definition.

Definition 5. Let K ∈ K(H). The singular values of K, denoted (sn(K))n≥1, are the non-zero eigen-
values of |K| (including multiplicity) arranged in decreasing order (with sn(K) = 0 for all n > k0 if |K| only
has k0 non-zero eigenvalues counting multiplicity). Let ‖K‖1 :=

∑
n≥1 sn(K).

We have seen in Corollary 4 that the singular values appear in a specific decomposition of a compact
operator. It turns out that the singular values appear in any such decomposition.

Lemma 6. Let K ∈ K(H) and suppose

K =
∑
n≥1

tnξnη
∗
n

where the sum converging in norm, (tn)n≥1 is a non-increasing sequence of strictly positive real numbers
converging to 0, and {ξn}n≥1 ⊆ H and {ηn}n≥1 ⊆ H are orthonormal sets (not necessarily orthogonal to
each other). Then tn = sn(K). Moreover ‖K‖ = supn≥1 tn = t1.

Proof: To determine the singular values of K, we need to compute |K|. However we notice for all ζ ∈ H
that

K∗Kζ =

∑
m≥1

tmηmξ
∗
m

∑
n≥1

tnξnη
∗
n

 ζ

=

∑
m≥1

tmηmξ
∗
m

∑
n≥1

tn〈ζ, ηn〉ξn


=
∑
m≥1

∑
n≥1

tmtn〈ζ, ηn〉〈ξn, ξm〉ηm

=
∑
m≥1

t2m〈ζ, ηm〉ηm

=

∑
m≥1

t2mηmη
∗
m

 ζ

Therefore K∗K =
∑
m≥1 t

2
mηmη

∗
m as this sum clearly converges in norm as {ηn}n≥1 ⊆ H is an orthonormal

set and thus K∗K can be viewed as a diagonal operator by extending {ηn}n≥1 ⊆ H to an orthonormal
basis of H. Similarly T =

∑
m≥1 tmηmη

∗
m defines an element of B(H) as the sum converges in norm. Since

tn ≥ 0 for all n, T is a positive operator (as it can be viewed as a diagonal operator with positive diagonal
entries). Moreover, as {ηn}n≥1 ⊆ H is an orthonormal set, it is clear that T 2 = K∗K so that T = |K| by the
uniqueness of the square root of a positive operator. Whence the eigenvalues of |K| counting multiplicity are
(tn)n≥1. Since (tn)n≥1 is a non-increasing sequence and by the definition of the singular values, sn(K) = tn
as desired.

Lastly, to see that ‖K‖ = supn≥1 tn, we notice that

‖K‖ = ‖K∗K‖
1
2 = ‖|K|‖

by the Continuous Functional Calculus. Since |K| =
∑
m≥1 tmηmη

∗
m, |K| can be viewed as a diagonal oper-

ator in B(H) with diagonal entries contained in the set {tm}m≥1 ∪ {0}, the result trivially follows. �

Corollary 7. Let K ∈ K(H). Then ‖K‖ ≤ ‖K‖1.
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Proof: Let K =
∑
n≥1 sn(K)ξnη

∗
n be a decomposition from Corollary 4. Then ‖K‖ = s1(K) ≤ ‖K‖1

by Lemma 6. �

Now that we have developed the singular values of a compact operator, we can finally define what it
means for a compact operator to be a trace class operator.

Definition 8. A compact operator K is said to be a trace class operator if ‖K‖1 =
∑
n≥1 sn(K) <∞. We

shall denote the collection of trace class operators by C1(H) and ‖ · ‖1 : C1(H) → [0,∞) is called the trace
norm.

Now we shall proceed with proving a series of lemmas and theorems in order to show that C1(H) is a
Banach space, B(H) ' (C1(H))∗, and obtain more information about trace class operators. We begin by
showing certain series essential to the theory of trace class operators are absolutely summable.

Lemma 9. Let {ζα}α∈∆ and {ωα}α∈∆ be orthonormal sets in H indexed by the same set ∆ and let
K ∈ K(H). Then

∑
α∈∆ |〈Kζα, ωα〉| ≤ ‖K‖1.

Proof: Let K =
∑
n≥1 sn(K)ξnη

∗
n be a decomposition from Corollary 4. Then

∑
α∈∆

|〈Kζα, ωα〉| =
∑
α∈∆

∣∣∣∣∣∣
〈∑
n≥1

sn(K)〈ζα, ηn〉ξn, ωα

〉∣∣∣∣∣∣
=
∑
α∈∆

∣∣∣∣∣∣
∑
n≥1

sn(K)〈ζα, ηn〉 〈ξn, ωα〉

∣∣∣∣∣∣
≤
∑
n≥1

sn(K)
∑
α∈∆

|〈ζα, ηn〉||〈ξn, ωα〉|

≤
∑
n≥1

sn(K)

(∑
α∈∆

|〈ζα, ηn〉|2
) 1

2
(∑
α∈∆

〈en, yα〉|2
) 1

2

≤
∑
n≥1

sn(K) ‖ηn‖ ‖ξn‖ =
∑
n≥1

sn(K) = ‖K‖1

Therefore the inequality holds as desired. �

Combining Corollary 4 and Lemma 9 allows us to develop another expression for the trace class norm of
a compact operator.

Lemma 10. If K ∈ K(H) then

‖K‖1 = sup

{∑
α∈∆

|〈Kζα, ωα〉| | {ζα}α∈∆, {ωα}α∈∆ orthonormal subsets of H

}

Moreover there exists countable orthonormal subsets {ζn}n≥1 and {ωn}n≥1 of H such that 〈Kζn, ωn〉 ≥ 0
for all n and

∑
n≥1〈Kζn, ωn〉 = ‖K‖1.

Proof: By Lemma 9

sup

{∑
α∈∆

|〈Kζα, ωα〉| | {ζα}α∈∆, {ωα}α∈∆ orthonormal subsets of H

}
≤ ‖K‖1

4



To prove the other inequality and the fact that the supremum is obtained, let K =
∑
n≥1 sn(K)ξnη

∗
n be

a decomposition from Corollary 4. Choose θm ∈ [0, 2π) such that 〈Kηm, eiθmξm〉 = |〈Kηm, ξm〉| ≥ 0. Let
ζm = eiθmξm. Then {ζm}m≥1 and {ηm}m≥1 are orthonormal subsets of H and∑

m≥1

〈Kηm, ζm〉 =
∑
m≥1

|〈Kηm, ξm〉|

=
∑
m≥1

∣∣∣∣∣∣
∑
n≥1

sn(K)〈(ξnη∗n)ηm, ξm〉

∣∣∣∣∣∣
=
∑
m≥1

∣∣∣∣∣∣
∑
n≥1

sn(K)〈〈ηm, ηn〉ξn, ξm〉

∣∣∣∣∣∣
=
∑
m≥1

sm(K) = ‖K‖1

as desired. �

Proposition 11. C1(H) is a vector space and the trace norm ‖ · ‖1 is a norm on C1(H).

Proof: First we notice that 0 ∈ C1(H) since 0 is a compact operator with ‖0‖1 = 0. Next notice

that if K ∈ C1(H) and λ ∈ C \ {0} then λK ∈ K(H). Moreover, since |λK| = (|λ|2K∗K)
1
2 = |λ||K|,

sn(λK) = |λ|sn(K) for all n ∈ N. Whence ‖λK‖1 = |λ| ‖K‖1 <∞ so λK ∈ C1(H) when λ 6= 0 (and clearly
when λ = 0).

Notice that if K1,K2 ∈ C1(H) then K1 +K2 ∈ K(H) and, by Lemma 10,

‖K1 +K2‖1 = sup

{∑
α∈∆

|〈(K1 +K2)ζα, ωα〉| | {ζα}α∈∆, {ωα}α∈∆ orthonormal subsets of H

}

≤ sup

{∑
α∈∆

|〈K1ζα, ωα〉|+
∑
α∈∆

|〈K2ζα, ωα〉| | {ζα}α∈∆, {ωα}α∈∆ orthonormal subsets of H

}
≤ ‖K1‖1 + ‖K2‖1 <∞

Thus K1 +K2 ∈ C1(H). Whence C1(H) is a vector space.
To complete the proof that ‖ · ‖1 is a norm on C1(H), we notice that if K ∈ C1(H) is such that ‖K‖1 = 0

then sn(K) = 0 for all n. Thus all eigenvalues of |K| are zero. Whence |K| = 0 so K = 0 (as K = V |K| for
some partial isometry V ). �

Our next goal is to show that C1(H) is complete with respect to the trace norm and thus a Banach space.
To prove this, we first will develop more information about the singular values of a compact operator and
develop some important consequences. Our first result enables us a way to compute the nth singular value
of a compact operator.

Lemma 12. Let K be a compact operator. Then sn(K) = inf{‖K − F‖ | rank(F ) ≤ n− 1}.

Proof: Fix n ∈ N. LetK =
∑
k≥1 sk(K)ξkη

∗
k be a decomposition from Corollary 4. Let F =

∑n−1
k=1 sk(K)ξkη

∗
k.

Then F is a rank n− 1 operator and

‖K − F‖ =

∥∥∥∥∥∥
∑
k≥n

sk(K)ξkη
∗
k

∥∥∥∥∥∥ = sn(K)

by Lemma 6. Hence sn(K) ≥ inf{‖K − F‖ | rank(F ) ≤ n− 1}.
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Let F be an arbitrary finite rank operator with rank at most n − 1. Then codim(ker(F )) ≤ n − 1 and
thus ker(F ) ∩ span(η1, . . . , ηn) 6= {0}. Let ζ ∈ ker(F ) ∩ span(η1, . . . , ηn) \ {0} be such that ‖ζ‖ = 1. Since
ζ ∈ span(η1, . . . , ηn), ζ is orthogonal to ηk for all k ≥ n. Therefore

‖K − F‖2 ≥ ‖(K − F )(ζ)‖2 = ‖Kζ‖2 =

∥∥∥∥∥
n∑
k=1

sk(K)〈ζ, ηk〉ξk

∥∥∥∥∥
2

=

n∑
k=1

sk(K)2|〈ζ, ηk〉|2 ≥ sn(K)2
n∑
k=1

|〈ζ, ηk〉|2 = sn(K)2

Thus the result follows. �

Lemma 13. Let K ∈ K(H) and let T ∈ B(H). Then sn(TK) ≤ ‖T‖ sn(K) and sn(KT ) ≤ sn(K) ‖T‖.

Proof: First recall that TK,KT ∈ K(H) as the compact operators form an ideal. By Lemma 12
we have for all operators F of rank at most n − 1 that sn(TK) ≤ ‖TK − TF‖ ≤ ‖T‖ ‖K − F‖ and
sn(KT ) ≤ ‖KT − FT‖ ≤ ‖K − F‖ ‖T‖ as TF and FT will also be finite rank operators with rank at most
n− 1. Thus, as this holds for all such finite rank operators, sn(TK) ≤ ‖T‖ sn(K) and sn(KT ) ≤ sn(K) ‖T‖
by Lemma 12. �

With the above result in hand, we can prove the following important result relating the algebraic struc-
tures of C1(H) and B(H).

Proposition 14. Let A,B ∈ B(H) and let K ∈ C1(H). Then ‖AKB‖1 ≤ ‖A‖ ‖K‖1 ‖B‖. Moreover
C1(H) is a self-adjoint algebraic ideal of B(H).

Proof: Clearly AKB is compact. Moreover sn(AKB) ≤ ‖A‖ sn(K) ‖B‖ for all n by Corollary 13. Therefore

∑
n≥1

sn(AKB) ≤ ‖A‖

∑
n≥1

sn(K)

 ‖B‖ = ‖A‖ ‖K‖1 ‖B‖ <∞

Therefore, since C1(H) is a vector subspace of B(H), this implies that C1(H) is an algebraic ideal of B(H).
To see that C1(H) is self-adjoint we notice that if K =

∑
n≥1 sn(K)ξnη

∗
n then K∗ =

∑
n≥1 sn(K)ηnξ

∗
n

and thus sn(K∗) = sn(K) for all n by Lemma 6. Therefore ‖K∗‖1 = ‖K‖1 and thus C1(H) is self-adjoint. �

Using the fact that C1(H) is self-adjoint allows us to decompose each element of C1(H) into a linear
combination of positive elements of C1(H) as we would in a C∗-algebra.

Lemma 15. Every element of C1(H) is a linear combination of four positive elements of C1(H).

Proof: First suppose that K ∈ C1(H) is self-adjoint. Let K =
∑
n≥1 λnηnη

∗
n be a decomposition of K

as given by Corollary 3 (where λn ∈ R). Since |K| = (K∗K)
1
2 = (K2)

1
2 and it is easy to verify that

K2 =
∑
n≥1

λ2
nηnη

∗
n

we obtain that |K| =
∑
n≥1 |λn|ηnη∗n. Therefore, as K ∈ C1(H),

∑
n≥1 |λn| <∞. Define

K+ =
∑
n≥1

max{0, λn}hnh∗n and K− =
∑
n≥1

(−min{λn, 0})hnh∗n

It is easy to check that K+ and K− are well-defined compact operators such that K = K+ − K− and
K+,K− ≥ 0. Since

∑
n≥1 |λn| < ∞, we obtain that K+,K− ∈ C1(H). Therefore every self-adjoint element

of C1(H) is a difference of two positive elements of C1(H).
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Next suppose K ∈ C1(H) was arbitrary. Then K∗ ∈ C1(H) by Proposition 14. Since C1(H) is a vector
space, Re(K), Im(K) ∈ C1(H) and K = Re(K)+iIm(K). Since Re(K) and Im(K) are self-adjoint elements
of C1(H), each is the difference of two positive elements of C1(H). Whence K is a linear combination of four
positive elements of C1(H). �

The following lemma is the last result we need in order to prove that C1(H) is a Banach space.

Lemma 16. Let K be a compact operator. If {ζk}nk=1 and {ωk}nk=1 are orthonormal families, then∑n
k=1 |〈Kζk, ωk〉| ≤

∑n
k=1 sk(K).

Proof: Let U be the rank n partial isometry such that Uωk = ζk for 1 ≤ k ≤ n. By Lemma 13
sk(KU) ≤ ‖U‖ sk(K) = sk(K) for 1 ≤ k ≤ n. Moreover and sk(KU) = 0 if k > n as rank(KU) ≤ n
so that rank(|KU |) ≤ n so KU can have at most n non-zero singular values. Thus, as KU is compact, we
obtain by Lemma 10 that

n∑
k=1

|〈Kζk, ωk〉| =
n∑
k=1

|〈KUωk, ωk〉| ≤ ‖KU‖1 =

n∑
k=1

sk(KU) ≤
n∑
k=1

sk(K)

as desired. �

Theorem 17. C1(H) is complete in the trace norm and the ideal of finite rank operators is dense in
C1(H).

Proof: To see that C1(H) is complete, let (Kn)n≥1 be any Cauchy sequence in C1(H). Then we notice
that ‖Kn −Km‖ ≤ ‖Kn −Km‖1 by Corollary 7. Therefore (Kn)n≥1 is a Cauchy sequence in K(H). Hence,
since the compact operators are complete, Kn → K ∈ K(H) in the operator norm. Thus we need now show
only two things: that ‖K‖1 <∞ and ‖K −Kn‖1 → 0.

Since ‖Kn −K‖ → 0, 〈Kζ, ω〉 = limn→∞〈Knζ, ω〉 for all ζ, ω ∈ H. Let K =
∑
n≥1 sn(K)ξnη

∗
n be a

decomposition of K given by Corollary 4. It is a trivial computation to verify that sn(K) = 〈Kηn, ξn〉 for
all n ∈ N as {ξn}n≥1 and {ηn}n≥1 are orthogonal sets. Therefore for all N ∈ N

N∑
n=1

sn(K) =

N∑
n=1

|〈Kηn, ξn〉|

= lim
j→∞

N∑
n=1

|〈Kjηn, ξn〉|

≤ lim sup
j→∞

N∑
n=1

sn(Kj) by Lemma 16

≤ lim sup
j→∞

‖Kj‖1 <∞

since (‖Kj‖1)j≥1 forms a Cauchy sequence in R by the reverse triangle inequality. Consequently
∑N
n=1 sn(K) ≤

lim supj→∞ ‖Kj‖1 for all N ∈ N and thus ‖K‖1 <∞. Hence K ∈ C1(H).
Using the same proof as above, it can be shown that ‖K −K`‖1 ≤ lim supj→∞ ‖Kj −K`‖1 for all ` ∈ N.

Since lim supj→∞ ‖Kj −K`‖1 → 0 as ` → ∞, lim`→∞ ‖K −K`‖1 = 0. Whence Kn → K in C1(H) so that
C1(H) is complete.

To see that the ideal of finite rank operators is dense in C1(H) we first need to show that each finite
rank operator is in C1(H). However, if F is a finite rank operator, F is clearly compact and |F | is a positive
finite rank operator. Since |F | is a positive finite rank operator, |F | only has a finite number of non-zero
eigenvalues counting multiplicity. Therefore only a finite number of singular values of F are non-zero so
F ∈ C1(H).
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To see that the finite rank operators are dense in C1(H), let K ∈ C1(H) and let K =
∑
n≥1 sn(K)ξnη

∗
n

be a decomposition of K from Corollary 4. Then FN =
∑N
n=1 sn(K)ξnη

∗
n is a finite rank operator and

‖K − FN‖1 =
∑
n≥N+1 sn(K) by Lemma 6 as K − Fn =

∑
n≥N+1 sn(K)ξnη

∗
n. Since

∑
n≥N+1 sn(K) → 0

as N →∞, (FN )N≥1 converges to K in C1(H). Therefore the finite rank operators are dense in C1(H). �

The next important development in the theory of trace class operator is the trace (hence the name!).
The above results allow us to make the following definition.

Definition 18. Let {ξλ}λ∈Λ be an orthonormal basis for H. We define a trace Tr : C1(H) → C by
Tr(K) =

∑
λ∈Λ〈Kξλ, ξλ〉. Note that the sum converges, Tr is linear, and ‖Tr‖ ≤ 1 by Lemma 9.

Based on the above definition, it is possible that we get a different trace for each orthonormal basis of
H. We will show below that this is not true; that is, every orthonormal basis defines the same trace. This
trace will be essential in our proofs that K(H)∗ ' C1(H) and (C1(H))∗ ' B(H).

Traditional, a trace τ on a C∗-algebra A has the property that τ(A1A2) = τ(A2A1) for all A1, A2 ∈ A.
We will now show that Tr satisfies this property.

Proposition 19. Each trace Tr given in Definition 18 is independent of the choice of basis (and thus
they are all the same linear functional). Moreover Tr(KT ) = Tr(TK) for all K ∈ C1(H) and T ∈ B(H).

Proof: Fix an orthonormal basis {ξλ}λ∈Λ and define the trace by Tr(K) =
∑
λ∈Λ〈Kξλ, ξλ〉 for all

K ∈ C1(H). Fix K ∈ C1(H) and T ∈ B(H). We would like that the following computation is valid:

Tr(TK) =
∑
λ∈Λ

〈TKξλ, ξλ〉

=
∑
λ∈Λ

〈Kξλ, T ∗ξλ〉

=
∑
λ∈Λ

∑
α∈Λ

〈Kξλ, ξα〉〈ξα, T ∗ξλ〉

=
∑
α∈Λ

∑
λ∈Λ

〈Kξλ, ξα〉〈ξα, T ∗ξλ〉

=
∑
α∈Λ

∑
λ∈Λ

〈ξλ,K∗ξα〉〈Tξα, ξλ〉

=
∑
α∈Λ

〈Tξα,K∗ξα〉

=
∑
α∈Λ

〈KTξα, ξα〉 = Tr(KT )

but it is difficult to see why we can interchange the sums (i.e. we would need absolute convergence of the
double sums which is not apparent). We will be clever to get around this.

First suppose that T = U is a unitary and K is a positive operator in C1(H). For each λ ∈ Λ let fλ = Ueλ
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so that {fλ}λ∈Λ is an orthonormal basis for H. Then U∗KU ∈ C1(H) by Proposition 14 and

Tr(U∗KU) =
∑
λ∈Λ

〈U∗KUeλ, eλ〉 =
∑
λ∈Λ

|〈Kfλ, fλ〉|

=
∑
λ∈Λ

∥∥∥K 1
2 fλ

∥∥∥2

=
∑
λ∈Λ

∑
α∈Λ

|〈K 1
2 fλ, eα〉|2

=
∑
α∈Λ

∑
λ∈Λ

|〈fλ,K
1
2 eα〉|2

=
∑
α∈Λ

∥∥∥K 1
2 eα

∥∥∥2

=
∑
α∈Λ

〈Keα, eα〉 = Tr(K)

where the interchanging of sums is valid as all terms in the sum are positive.
Next suppose K ∈ C1(H) and U ∈ B(H) is a unitary. By Lemma 15 we may write K =

∑4
i=1 aiPi where

Pi ∈ C1(H) are positive and ai ∈ C. Since U∗KU,U∗PiU,Pi,K ∈ C1(H) by Proposition 14 and since the
trace is linear on C1(H),

Tr(U∗KU) = Tr

(
U∗

(
4∑
i=1

aiPi

)
U

)

=

4∑
i=1

aiTr(U
∗PiU)

=

4∑
i=1

aiTr(Pi)

= Tr(K)

Therefore Tr(U∗KU) = Tr(K) for all K ∈ C1(H) and U ∈ B(H) unitary. Moreover if K ∈ C1(H) and U
is unitary then UK ∈ C1(H) so Tr(KU) = Tr(U∗(UK)U) = Tr(UK). Whence Tr(KU) = Tr(UK) for all
K ∈ C1(H) and U ∈ B(H) unitary.

Next suppose T ∈ B(H) and K ∈ C1(H) are arbitrary. Then we may write T =
∑4
i=1 biUi where Ui are

unitaries and bi ∈ C. Since Tr is linear and KUi, UiK ∈ C1(H) for all i,

Tr(TK) = Tr

(
4∑
i=1

βiUiK

)
=

4∑
i=1

biTr(UiK) =

4∑
i=1

biTr(KUi) = Tr(KT )

as desired. Hence Tr(TK) = Tr(KT ) for all K ∈ C1(H) and T ∈ B(H).
Now suppose {fλ}λ∈Λ is another orthonormal basis for H. Define U ∈ B(H) by Ueλ = fλ and extend by

linearity. It is clear that U is a unitary operator. Moreover, for all K ∈ C1(H), Tr(U∗KU) = Tr(U∗(KU)) =
Tr((KU)U∗) = Tr(K). Therefore

Tr(K) = Tr(U∗KU) =
∑
λ∈Λ

〈U∗KUeλ, eλ〉 =
∑
λ∈Λ

〈Kfλ, fλ〉

Thus Tr is independent of the choice of basis. �

It turns out that the trace class operators can be defined via the above trace as the next lemma will
demonstrate. In addition, the next lemma will prove a useful fact about the trace of finite rank operators.
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Lemma 20. If K ∈ C1(H) is positive then Tr(K) = ‖K‖1. Moreover Tr(ξη∗) = 〈ξ, η〉 for all ξ, η ∈ H.

Proof: Suppose K ∈ C1(H) is positive. Let K =
∑
n≥1 tnηnη

∗
n be a decomposition from Corollary 3.

Since K is a positive operator, tn ≥ 0 for all n and thus we may rearrange this decomposition so that
tn ≥ tn+1 for all n ∈ N. Therefore tn = sn(K) by Lemma 6 so that ‖K‖1 =

∑
n≥1 tn. Extend {ηn}n≥1 to an

orthonormal basis {ηn}n≥1 ∪ {ξλ}λ∈Λ for H. Since the trace is independent of the basis selected, we obtain
that

Tr(K) =
∑
n≥1

〈Tηn, ηn〉+
∑
λ∈Λ

〈Tξλ, ξλ〉

=
∑
n≥1

tn〈ηn, ηn〉 ηn⊥ξλ, ηm⊥ηn for all λ ∈ Λ, n 6= m

= ‖K‖1

as claimed.
Fix ξ, η ∈ H. If η = 0 then ξη∗ = 0 so Tr(ξη∗) = 0 = 〈ξ, η〉. If η 6= 0 extend

{
η
‖η‖

}
to an orthonormal

basis
{

η
‖η‖

}
∪ {ξλ}λ∈Λ for H. Since the trace is independent of the basis selected, we obtain that

Tr(ξη∗) =

〈
(ξη∗)

η

‖η‖
,
η

‖η‖

〉
+
∑
λ∈Λ

〈(ξη∗)ξλ, ξλ〉

=

〈
‖η‖2

‖η‖
ξ,

η

‖η‖

〉
η⊥ξλ for all λ ∈ Λ

= 〈ξ, η〉

as claimed. �

Now we are finally ready to begin the proof that (C1(H))∗ ' B(H). First we will use the trace to show
that every trace class operator defines a linear functional on B(H).

Lemma 21. Let T ∈ B(H) and define ϕT : C1(H) → C by ϕT (K) = Tr(TK). Then ϕT is linear and
‖ϕT ‖ = ‖T‖.

Proof: First ϕT is well-defined as TK ∈ C1(H) whenever T ∈ B(H) and K ∈ C1(H) by Proposition
14. Moreover, since Tr is a linear functional, ϕT is also a linear functional. Moreover, since ‖Tr‖ ≤ 1, we
obtain for all K ∈ C1(H) that

|ϕT (K)| = |Tr(TK)| ≤ ‖TK‖1 ≤ ‖T‖ ‖K‖1

where the last inequality is by Proposition 14. Therefore ‖ϕT ‖ ≤ ‖T‖.
To see that ‖ϕT ‖ = ‖T‖, let ε > 0. If T = 0, the result follows immediately since ϕ0 = 0. Thus we may

assume that ‖T‖ > 0 and ε < ‖T‖. Choose a ζ ∈ H with ‖ζ‖ ≤ 1 such that ‖Tζ‖ > ‖T‖ − ε > 0. Consider
ζ ′ = Tζ

‖Tζ‖ . Then ‖ζ ′‖ = 1. Define F = ζ(ζ ′)∗ ∈ B(H). Therefore ‖F‖ = ‖F (ζ ′)‖ = ‖ζ‖ ≤ 1, and F is a rank

one operator. Therefore F ∈ C1(H). However, by Lemma 20,

|ϕT (F )| = |Tr(T (ζ(ζ ′)∗))| = |Tr((Tζ)(ζ ′)∗)| = |〈Tζ, ζ ′〉| =
∣∣∣∣〈Tζ, Tζ

‖Tζ‖

〉∣∣∣∣ = ‖Tζ‖ > ‖T‖ − ε

Therefore, since ‖F‖ ≤ 1, we have that ‖ϕT ‖ ≥ ‖T‖ − ε. However, as this holds for all ‖T‖ > ε > 0,
‖ϕT ‖ = ‖T‖ as desired. �
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Lemma 22. Let ϕ ∈ (C1(H))∗. Then there exists a A ∈ B(H) such that ϕ = ϕA and ‖A‖ = ‖ϕ‖.

Proof: Recall for all ξ, η ∈ H that ξη∗ is of finite rank and thus in C1(H). Whence we may define a
sesquilinear form on H by [ξ, η] = ϕ(ξη∗). It is clear that [ξ, η] is linear in the first component and conjugate
linear in the second component so this is indeed a sesquilinear form.

We claim that this sesquilinear form is ’bounded’. To see this, we claim that ‖ξη∗‖1 = ‖ξ‖ ‖η‖ for all
ξ, η ∈ H. To see this, we notice that the result is trivial if ξ = 0 or η = 0. Otherwise

ξη∗ = (‖ξ‖ ‖η‖)
(

ξ

‖ξ‖

)(
η

‖η‖

)∗
and thus Lemma 6 implies that ‖ξ‖ ‖η‖ is the only non-zero singular value of ξη∗.

To see that the sesquilinear form is ’bounded’, we notice for all ξ, η ∈ H that

|[ξ, η]| = |ϕ(ξη∗)| ≤ ‖ϕ‖ ‖ξη∗‖1 = ‖ϕ‖ ‖ξ‖ ‖η‖

(the above statement is what is means for a sesquilinear form to be bounded).
Now we will use this bounded sesquilinear form to create our operator A. To begin we notice that, since

the sesquilinear form is bounded, the linear functional φη : H → C defined by φη(ξ) = [ξ, η] is bounded for
each fixed η ∈ H. Hence, by the Riesz Representation Theorem, there exists a vector A∗η ∈ H so that

ϕ(ξη∗) = (ξ, η) = φη(ξ) = 〈ξ, A∗η〉

for all ξ ∈ H. Define a map A∗ : H → H by A∗η = A∗η. Since [ξ, η] is conjugate linear in the second
component, A∗ is a linear map. Moreover

|〈ξ, A∗η〉| = |[ξ, η]| ≤ ‖ϕ‖ ‖ξ‖ ‖η‖

for all ξ, η ∈ H so that A∗ is bounded with norm at most ‖ϕ‖. Therefore there exists an A ∈ B(H) with
norm at most ‖ϕ‖ such that (by applying Lemma 20)

ϕ(ξη∗) = [ξ, η] = 〈Aξ, η〉 = Tr((Aξ)η∗) = Tr(A(ξη∗))

Therefore, by the linearity of the trace and ϕ, we obtain that ϕ(F ) = Tr(AF ) = ϕA(F ) for all F of finite
rank. However, since ϕA and ϕ are continuous and the finite rank operators are dense in C1(H) by Theorem
17, we obtain that ϕA = ϕ. Thus ‖A‖ = ‖ϕA‖ = ‖ϕ‖ by Lemma 21. �

Theorem 23. B(H) is the dual space of C1(H).

Proof: Lemmas 20 and 21 together show that the map Φ : B(H) → (C1(H))∗ given by Φ(T ) = ϕT
is isometric and onto. Moreover, due to the linearity of the trace, ϕλT+S(K) = Tr((λT + S)(K)) =
λTr(TK) + Tr(SK) = (λϕT +ϕS)(K) for all K ∈ C1(H), λ ∈ C, and T, S ∈ B(H). Hence Φ is an isometric
isomorphism and therefore the result follows. �

Our next goal is to show that (K(H))∗ ' C1(H). Before we can show this, we need to know another
fact about the trace class operators. Recall in Lemma 10 that we developed another definition of the trace
class norm ‖ · ‖1 for compact operators by considering supremums over all pairs of orthonormal sets. The
following lemma shows that if this supremum is finite for a T ∈ B(H) then T is automatically compact and
thus a trace class operator.

Lemma 24. Let T ∈ B(H). Suppose

sup

∑
n≥1

|〈Tζn, ωn〉| | {ζn}n≥1, {ωn}n≥1 orthonormal subsets of H

 <∞
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Then T is a trace class operator.

Proof: Let M0 = sup
{∑

n≥1 |〈Tζn, ωn〉| | {ζn}n≥1, {ωn}n≥1 orthonormal subsets of H
}
< ∞. If T ∈

K(H) then T ∈ C1(H) by the expression for the trace class norm from Lemma 10. Thus it suffices to show
that T is compact.

To begin, we claim that
∑
n≥1 ‖Tξn‖

2 ≤ αM0 for any orthonormal sequence {ξn}n≥1 where α is some

finite constant independent of the sequence selected. To see this, we recall that T =
∑4
j=1 αjUj where Uj

are unitaries. Whence ∑
n≥1

‖Tξn‖2 =
∑
n≥1

|〈Tξn, T ξn〉|

≤
∑
n≥1

4∑
j=1

|αj ||〈Tξn, Ujξn〉|

=

4∑
j=1

|αj |

∑
n≥1

|〈Tξn, Uiξn〉|


≤

 4∑
j=1

|αj |

M0

for every orthonormal sequence {ξn}n≥1 (since if Uj is a unitary, {Ujξn}n≥1 is an orthonormal sequence).

Let M =
(∑4

i=1 |αi|
)
M0. Let {ηλ}λ∈Λ be an orthonormal basis for (ker(T ))⊥. Then ‖Tηλ‖ > 0 for

all λ. Since
∑
n≥1 ‖Tξn‖

2 ≤ M for any orthonormal set {ξn}n≥1, for all k ∈ N {λ | ‖Tηλ‖ > 1
k} must be

countable. Whence {ηλ}λ∈Λ is a countable orthonormal basis for (ker(T ))⊥.

Let {ηn}n≥1 be an orthonormal basis for (ker(T ))⊥ and let M ′ =
∑
n≥1 ‖Tηn‖

2 ≤ M . Suppose that

{ζn}n≥1 is another basis for (ker(T ))⊥. By restricting our focus to (ker(T ))⊥ = ker(|T |)⊥ = ker(|T | 12 )⊥ =

ran(|T | 12 ), we see that

M ′ =
∑
n≥1

‖Tηn‖2

=
∑
n≥1

|〈T ∗Tηn, ηn〉|

=
∑
n≥1

∥∥∥|T | 12 ηn∥∥∥2

=
∑
n≥1

∑
k≥1

|〈|T | 12 ηn, ζk〉|2 {ζk}k≥1 is an orthonormal basis for (ker(T ))⊥ = ran(|T | 12 )

=
∑
k≥1

∑
n≥1

|〈ηn, |T |
1
2 ζk〉|2

=
∑
k≥1

∥∥∥|T | 12 ζk∥∥∥2

{ηn}n≥1 is an orthonormal basis for (ker(T ))⊥

=
∑
k≥1

|〈T ∗Tζk, ζk〉|

=
∑
k≥1

‖Tζk‖2

(where we can interchange the sums as every term is positive).
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We claim that Fm :=
∑m
n=1(Tηn)η∗n → T in norm as m→∞. Since each Fm is a finite rank operator, this

will force T to be compact as desired. To see that Fm → T , let ε > 0. We notice since
∑
n≥1 ‖Tηn‖

2
= M ′

there exists an N ∈ N such that M ′−
∑N
n=1 ‖Tηn‖

2
< ε2. If ζ ∈ (ker(T ))⊥\{0} is orthogonal to {η1, . . . , ηN},

then by extending
{
η1, . . . , ηN ,

ζ
‖ζ‖

}
to an orthonormal basis for (ker(T ))⊥ and using the above we obtain

‖Tζ‖2 ≤ ‖ζ‖2
(
M ′ −

∑N
n=1 ‖Tηn‖

2
)
< ε2 ‖ζ‖2. Let ξ ∈ H be such that ‖ξ‖ ≤ 1 and write ξ =

∑
n≥1 αnηn+ω

where ω ∈ ker(T ). Since ω ∈ ker(T ), ω⊥ηn for all n so Fmη = 0 for all m. Then if k ≥ N

‖(T − Fk)ξ‖ =

∥∥∥∥∥∥
∑
n≥1

αn(Tηn − Fkηn)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
k∑

n≥1

αn(Tηn − Fkηn) +
∑

n≥k+1

αn(Tηn − Fkηn)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
k∑

n≥1

αn(Tηn − Tηn) +
∑

n≥k+1

αn(Tηn − 0)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

n≥k+1

αnTηn

∥∥∥∥∥∥
=

∥∥∥∥∥∥T
 ∑
n≥k+1

αnηn

∥∥∥∥∥∥
Since

∑
n≥k+1 αnηn ∈ (ker(T ))⊥ converges and is orthogonal to {η1, . . . , ηN} as k ≥ N ,

‖(T − Fk)ξ‖ =

∥∥∥∥∥∥T
 ∑
n≥k+1

αnηn

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
∑

n≥k+1

αnηn

∥∥∥∥∥∥ ε ≤ ‖ξ‖ ε ≤ ε
As ξ ∈ H with ‖ξ‖ ≤ 1 was arbitrary, ‖T − Fk‖ ≤ ε for all k ≥ N . Hence Fm → T as desired. �

Theorem 25. The dual of the compact operators is C1(H).

Solution: For each T ∈ C1(H) define ϕT ∈ K∗ by ϕT (K) = Tr(TK) (which makes sense as T a trace
class operator). Since |ϕT (K)| ≤ ‖TK‖1 ≤ ‖K‖ ‖T‖1, each ϕT is continuous with ‖ϕT ‖ ≤ ‖T‖1. Since T is
a trace class operator, there exists orthonormal sets {ξn}n≥1 and {ηn}n≥1 such that ‖T‖1 =

∑
n≥1〈Tξn, ηn〉

by Lemma 10. For each m ∈ N let Fm =
∑m
n=1 ξnη

∗
n. Then Fm is a finite rank operator with ‖Fm‖ = 1 (as

F ∗mFm =
∑m
n=1 ηnη

∗
n is a projection). However

‖ϕT ‖ ≥ |ϕT (Fm)| =

∣∣∣∣∣
m∑
n=1

Tr(T (ξnη
∗
n))

∣∣∣∣∣ =

∣∣∣∣∣
m∑
n=1

〈Tξn, ηn〉

∣∣∣∣∣
where the last inequality is by Lemma 20. Since

∑m
n=1〈Tξn, ηn〉 → ‖T‖1 as m→∞, ‖ϕT ‖ = ‖T‖1.

Define Φ : C1(H) → K(H)∗ by Φ(T ) = ϕT . Since Tr is linear, ϕλT1+T2
= λϕT1

+ ϕT2
so Φ is linear.

Moreover Φ is isometric from above. To show that the dual of the compact operators is C1(H), we simply
need to show that Φ is surjective.

Let ψ ∈ K(H)∗. Since C1(H) ⊆ K(H) (as sets) and ‖K‖ ≤ ‖K‖1 for all K ∈ C1(H) by Corollary 7,
|ψ(K)| ≤ ‖ψ‖ ‖K‖ ≤ ‖ψ‖ ‖K‖1. Whence ψ ∈ C1(H)∗. By Theorem 23 there exists a T ∈ B(H) such that
ψ(K) = ϕT (K) for all K ∈ C1(H). Moreover |ϕT (K)| ≤ ‖ψ‖ ‖K‖ for all K ∈ C1(H). We desire to show that
T ∈ C1(H) by applying Lemma 24.
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Suppose {ξn}n≥1 and {ηn}n≥1 are arbitrary orthonormal set. For each n choose θ ∈ [0, 2π) such that
|〈Tξn, ηn〉| = eiθn〈Tξn, ηn〉. For each m ∈ N define Fm =

∑m
n=1 e

iθnξnξ
∗
n ∈ N. Then Fm is a finite rank

operator, ‖Fm‖ = 1, and

m∑
n=1

|〈Tξn, ηn〉| =

∣∣∣∣∣
m∑
n=1

eiθn〈Tξn, ηn〉

∣∣∣∣∣ = |ϕT (Fm)| ≤ ‖ψ‖

By letting m→∞ we obtain that
∑
n≥1 |〈Tξn, ηn〉| ≤ ‖ψ‖ for every pair of orthonormal sequences {ξn}n≥1

and {fn}n≥1. Thus T ∈ C1(H) by Lemma 24.
Since T is of trace class, ψ = ϕT on C1(H). Since C1(H) contains the finite rank operators and the finite

rank operators are dense in K(H), ψ = Φ(T ) on K(H). Whence Φ is surjective as desired. �
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