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Abstract

The purpose of this document is to develop some of the basic theory of the multiplier algebra of a
C∗-algebra. Three characterizations of the multiplier algebra will be given. Several examples and results
pertaining to the multiplier algebra will be developed based on these descriptions. The final section will
be devoted to developing additional results and applications of the multiplier algebra.

Most of these notes are developed from the three references contained in the bibliography along with
the author’s personal knowledge.

A reader of these notes should be familiar with the basics of C∗-algebra theory. In particular, a reader
should be familiar with unitizations of C∗-algebras, the Continuous Functional Calculus for Normal
Operators, states, representations of C∗-algebra, C∗-bounded approximate identities, and ideals.

For these notes, H will denote a Hilbert space, HB will denote a right B-Hilbert module, Ã will
denote the unitization of a C∗-algebra A, and B(X) will denote the space of bounded linear maps on a
Banach space X. An ideal of a C∗-algebra will mean a closed two-sided ideal (which is then automatically
self-adjoint), all inner products will be linear in the first co-ordinate, and all C∗-valued inner products
will be linear in the second co-ordinate.

This document is for educational purposes and should not be referenced. Please contact the author
of this document if you need aid in finding the correct reference. Comments, corrections, and recom-
mendations on these notes are always appreciated and may be e-mailed to the author (see his website
for contact info).
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1 Definitions

In the theory of C∗-algebras it is very useful that a C∗-algebra has a unit. However many canonical and
interesting examples of C∗-algebras are unitless. There are several techniques and ideas in order to deal with
this technicality. One technique is to consider the unitization Ã of the C∗-algebra A. This is a canonical way
of adding a unit to A such that A sits as an ideal in Ã and such that Ã/A ' C. Another useful technique is
to consider C∗-bounded approximate identities. Such bounded approximate identities behave as asymptotic
units and thus enable many of the analytic properties of a unit.

There is an additional notation of unitization known as the multiplier algebra of a C∗-algebra. The
multiplier algebra of a C∗-algebra A is a universal unital C∗-algebra that contains A as an ideal and has
the property that for every other C∗-algebra that contains A as an ideal there is a ∗-homomorphism from
the C∗-algebra into the multiplier algebra that is the identity on A. As such, the multiplier algebra of a
C∗-algebra can be viewed as the largest unital C∗-algebra containing A as an ideal.

To begin our study of multiplier algebras, it is useful to describe certain special ideals of C∗-algebras.

Definition 1.1. Let A be a C∗-algebra. An ideal I of A is said to be essential if I ∩ J 6= {0} for every
non-zero ideal J of A.

It is trivial that every C∗-algebra is an essential ideal of itself. There are several more interesting canonical
examples of essential ideals.

Example 1.2. Let H be a separable, infinite dimensional, complex Hilbert space, let B(H) be the bounded
linear maps on H, and let K be the set of compact operators on H. Then it is well-known that K is the only
non-trivial ideal of B(H) and thus K is an essential ideal in B(H).

Example 1.3. Let A := C[0, 1] (the set of continuous functions on [0, 1]). It is well-known that every ideal
of A is of the form IX := {f ∈ A | f |X = 0} for some closed subsets X of [0, 1]. Therefore IX is not an
essential ideal if and only if there exists a closed subset Y ⊆ [0, 1] with Y 6= [0, 1] such that IX ∩ IY = {0}.
Since IX ∩IY = {0} if and only if f |X = 0 and f |Y = 0 implies f = 0 for all f ∈ A, it is clear that this later
condition occurs if and only if X ∪ Y = [0, 1].

Since Y must be a proper closed subset of [0, 1], the condition that X ∪Y = [0, 1] occurs if and only if X
has interior. Indeed if X has empty interior then X ∪ Y = [0, 1] implies that Y contains the complement of
X in [0, 1]. Since Y is closed, this implies that Y must be all of [0, 1] and which is a contradiction. However,
if X has interior and Y is the closure of the complement in [0, 1] of the interior of X then it is clear that
Y 6= [0, 1] and X∪Y = [0, 1]. Thus IX is an essential ideal of A if and only if X has no interior. In particular,
every maximal ideal of A is essential.

In the above example, an ‘essential’ idea was used to determine whether or not an ideal was essential.
This idea is encapsulated in Proposition 1.5. For convenience to the reader, we note the following lemma.

Lemma 1.4. Let A be a C∗-algebra and let I and J be ideals of A. Then I ∩ J = {0} if and only if
I · J := {AB | A ∈ I, B ∈ J } = {0}.

Proof. Suppose I ∩J = {0}. Then for all A ∈ I and B ∈ J we note that AB ∈ I and AB ∈ J as I and J
are ideals. Therefore AB ∈ I ∩ J = {0} so AB = 0. Hence I · J = {0}.

For the other direction, suppose I · J = {0} and let T ∈ I ∩ J be non-zero. Then T ∈ I and T ∈ J .
Since I is closed under adjoints, T ∗ ∈ I. Hence T ∗T ∈ I · J = {0}. Thus T ∗T = 0 so T = 0. Thus
I ∩ J = {0} as desired.

Proposition 1.5. Let A be a C∗-algebra and let I be an ideal of A. Then the following are equivalent:

1. I is an essential ideal of A.

2. The only element A ∈ A such that AB = 0 for all B ∈ I is the zero operator.

3. The only element A ∈ A such that BA = 0 for all B ∈ I is the zero operator.
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Proof. It is clear that (2) and (3) are equivalent by taking adjoints as every ideal of A is closed under adjoints.
To prove that (1) and (2) are equivalent, first let us assume that I is an essential ideal of A. Suppose

that A ∈ A is such that AB = 0 for all B ∈ I. Let J be the closed ideal of A generated by A; that is

J := {C1AC2 | C1, C2 ∈ Ã}

(it is clear that the expression on the right is a closed ideal). Note A ∈ J . However, for all C1, C2 ∈ A and
for all B0 ∈ I

(C1AC2)B0 = C1A(C2B0) = C10 = 0

as C2B ∈ I and AD = 0 for all D ∈ I. Hence TB = 0 for all T ∈ J and B ∈ I. Hence J · I = {0} so
Lemma 1.4 implies that I ∩ J = {0}. Therefore J = {0} as I was assumed to be an essential ideal of A.
Therefore, since A ∈ J , A = 0. Hence (1) implies (2).

To see that (2) implies (1), suppose I is not an essential ideal of A. Then there exists a non-zero ideal J
of A such that I ∩J = {0}. Let A ∈ J be any non-zero operator (which exists as J is non-zero). However,
for all B ∈ I, AB ∈ I and AB ∈ J as B ∈ I, A ∈ J , and I and J are ideals. Hence AB ∈ I ∩ J = {0} so
AB = 0 for all B ∈ I.

For those familiar with Hilbert C∗-bimodules, the above says that if we consider the right Hilbert A-
module A with C∗-valued inner product 〈A,B〉 = A∗B for all A,B ∈ A, then I is an essential ideal of A
if and only if I⊥ := {A ∈ A | 〈A,B〉 = 0 for all B ∈ I} = {0}. Thus it is common to say that I is an
essential ideal of A if and only if its orthogonal complement (or annihilator) is zero. For an exposition of
Hilbert C∗-bimodules, see http://www.math.ucla.edu/∼pskoufra/OANotes-HilbertC-Bimodules.pdf.

As a simple corollary, we obtain the following.

Corollary 1.6. Let A be a non-unital C∗-algebra and let Ã be the unitization of A. Then A is an essential
ideal of Ã.

Proof. It is clear that A is an ideal in Ã. Suppose λIA + A ∈ Ã is such that (λIA + A)B = 0 for all B ∈ A.
If λ = 0, then by selecting B = A∗, we obtain that AA∗ = 0 and thus A = 0 by the C∗-identity. Otherwise
Then λB+AB = 0 for all B ∈ A so (−λ−1A)B = B for all B ∈ A. As −λ−1A ∈ A, −λ−1A is a left identity
of A. By taking adjoints of the above equation, we obtain that (−λ−1A)∗ is a right identity of A. Since any
left and right identities in an algebra must be equal by elementary algebra, we obtain that −λ−1A is a two
sided identity in A and thus A is unital. As this contradicts the assumptions on A, A is an essential ideal of
Ã by Proposition 1.5.

Another interesting corollary of Proposition 1.5 is the following.

Corollary 1.7. Let A be a unital C∗-algebra and let B be a unital C∗-algebra containing A as an essential
ideal. Then B = A.

Proof. Let IA and IB be the identities of A and B respectively. Then for all A ∈ A

(IB − IA)A = IBA−A = 0

as IB is an identity for B which contains A. Therefore, since A is an essential ideal of B, Proposition 1.5
implies that IB = IA ∈ A. However, as A is an ideal of B, we obtain that B ⊆ A as desired.

With the above examples as motivation, we shall finally define the multiplier algebra of a C∗-algebra.

Definition 1.8. Let A be a C∗-algebra. The multiplier algebra of A, denoted M(A), is the universal C∗-
algebra with the property that M(A) contains A as an essential ideal and for any C∗-algebra B containing
A as an essential ideal there exists a unique ∗-homomorphism π : B→M(A) that is the identity on A.
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It is a priori not apparent that the multiplier algebra of a C∗-algebra exists. However, it is clear that
if such an object exists, it is unique up to isomorphisms by the universal properties. Indeed suppose C is
a C∗-algebra containing A as an essential ideal with the property that for any C∗-algebra B containing A
as an essential ideal there exists a unique ∗-homomorphism π : B → C that is the identity on A. Since C
and M(A) contain A as an essential ideal, the universal property implies that the only ∗-automorphism on
each of C and M(A) that is the identity on A is the identity ∗-homomorphism. Furthermore the universal
property implies that there are unique ∗-homomorphisms π1 : C → M(A) and π2 : M(A) → C that are
the identity on A. Hence π1 ◦ π2 : M(A) → M(A) and π2 ◦ π1 : C → C are ∗-homomorphisms that are
the identity on A and thus must be the identity ∗-homomorphisms. Hence π1 is a ∗-isomorphism from C to
M(A).

Assuming the existence of the multiplier algebra of a C∗-algebra, Corollary 1.7 immediately provides
information about the multiplier algebra of a unital C∗-algebra.

Lemma 1.9. Let A be a unital C∗-algebra. If M(A) is unital then M(A) = A.

Proof. By the definition of the multiplier algebra, A is an essential ideal of M(A). If M(A) is unital then
Corollary 1.7 implies that M(A) = A.

In the next three sections, we shall demonstrate various proofs and constructions that demonstrate the
multiplier algebra of a C∗-algebra exists. Using these three constructions, we shall demonstrate multiple
properties of the multiplier algebra and most properties of the multiplier algebra can usually be deduced
by using one of these constructions and elementary arguments. For example, we will see that the multiplier
algebra is always unital and thus M(A) = A for any unital C∗-algebra A.
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2 Construction of Multiplier Algebra by Multipliers

In this section we will demonstrate the existence of the multiplier algebra of an arbitrary C∗-algebra via
multipliers. As in the construction of the unitization of a non-unital C∗-algebra A, we can let an element
A ∈ A act on A by left multiplication, LA, or by right multiplication, RA. These operators are called the
multiplier operators. It is clear that for all A,B,C ∈ A that ALC(B) = RC(A)B. It is pairs of bounded
linear operators on A with this interconnecting property that will enable the construction of the multiplier
algebra. This construction relies only on elementary C∗-algebra results and no sophisticated results on
representations of C∗-algebras (that will be necessary in Section 3).

We begin with the definition of the set of all ‘nice’ pairs of bounded linear maps on a C∗-algebra A.

Definition 2.1. Let A be a C∗-algebra. A pair (L,R) where L,R ∈ B(A) is said to be a double centralizer
of A if AL(B) = R(A)B for all A,B ∈ A. We will denote the set of all double centralizers by DC(A).

Our first goal is to equip DC(A) with a ∗-algebra structure. For the involution we must place an additional
structure on B(A).

Lemma 2.2. Let A be a C∗-algebra. For an operator T ∈ B(A) we define T ] ∈ B(A) by T ](A) = T (A∗)∗

for all A ∈ A. Then ] is an isometric, multiplicative, conjugate linear, idempotent on B(A).

Proof. It is clear under this definition that T ] is linear with
∥∥T ]∥∥ = ‖T‖ as ‖A∗‖ = ‖A‖ for all A ∈ A. Thus

] is a well-defined isometric operation on B(A). For S, T ∈ B(A) and λ ∈ C we notice that

(λT + S)](A) = (λT + S)(A∗)∗ = λT (A∗)∗ + S(A∗)∗ =
(
λT ] + S]

)
(A)

and (
T ]
)]

(A) =
(
T ]
)

(A∗)∗ = (T ((A∗)∗)∗)∗ = T (A)

and
(T ◦ S)](A) = T (S(A∗))∗ = T ((S(A∗)∗)∗)∗ = T (S](A)∗)∗ = T ](S](A)) = (T ] ◦ S])(A)

for all A ∈ A. Hence (λT + S)] = λT ] + S], (T ])] = T , and (T ◦ S)] = T ] ◦ S] for all T, S ∈ B(A). Hence
the result is complete

With the above operation, it is easy to turn DC(A) into a unital ∗-algebra.

Lemma 2.3. Let A be a C∗-algebra. For λ ∈ C, (L,R), (L1, R1), (L2, R2) ∈ DC(A), the operations

λ(L,R) := (λL, λR) (L1, R1) + (L2, R2) := (L1 + L2, R1 +R2)
(L1, R1)(L2, R2) := (L1 ◦ L2, R2 ◦R1) (L,R)∗ := (R], L])

are well-defined and turn DC(A) into a unital ∗-algebra where the zero vector is (0, 0) where 0 ∈ B(A) and
the unit is (Id, Id) where Id ∈ B(A) is the identity map.

Proof. Let λ ∈ C and (L,R), (L1, R1), (L2, R2) ∈ DC(A). It is then elementary to verify that λL, λR,L1 +
L2, R1+R2, L1◦L2, R2◦R1 ∈ B(A). Furthermore it is elementary to verify that (λL, λR), (L1+L2, R1+R2) ∈
DC(A). To see that (L1 ◦ L2, R2 ◦R1) ∈ DC(A), we note for all A,B ∈ A that

A(L1(L2(B))) = R1(A)L2(B) = R2(R1(A))B

by the definition of a double centralizer. Hence (L1 ◦ L2, R2 ◦R1) ∈ DC(A). Thus addition, scalar multipli-
cation, and multiplication are well-defined on DC(A). Furthermore it is elementary to verify that (0, 0) is a
zero vector and these operations turn DC(A) into an algebra. Notice if Id ∈ B(A) is the identity operator
then

A(Id)(B) = AB = (Id)(A)B

for all A,B ∈ A so (Id, Id) ∈ DC(A). It is clear that (Id, Id) is the multiplicative unit in DC(A).
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Thus to show that DC(A) is a unital ∗-algebra, it suffices to check that we have a well-defined involution.
To see this, we notice if (L,R) ∈ DC(A) then

AR](B) = A(R(B∗))∗ = (R(B∗)A∗)∗ = (B∗L(A∗))∗ = L(A∗)∗B = L](A)B

for all A,B ∈ A. Hence (L,R) ∈ DC(A) implies that (R], L]) ∈ DC(A). Hence (L,R)∗ := (R], L]) is a
well-defined operation.

It remains to verify that the operation (L,R)∗ := (R], L]) is an involution. It is trivial to verify that this
operation is conjugate linear by Lemma 2.2. Moreover it is clear that

((L,R)∗)∗ = (R], L])∗ = ((L])], (R])]) = (L,R)

by Lemma 2.2. Finally we notice that

((L1, R1)(L2, R2))∗ = (L1 ◦ L2, R2 ◦R1)∗

= ((R2 ◦R1)], (L1 ◦ L2)])

= (R]2 ◦R
]
1, L

]
1 ◦ L

]
2)

= (R]2, L
]
2)(R]1, L

]
1) = (L2, R2)∗(L1, R1)∗

by Lemma 2.2. Hence (L,R)∗ := (R], L]) is an involution and thus DC(A) is a ∗-algebra.

With the above ∗-algebra structure, it is easy to turn DC(A) into a C∗-algebra.

Lemma 2.4. Let A be a C∗-algebra. If (L,R) ∈ DC(A) then ‖L‖ = ‖R‖. Moreover if we equip DC(A) with
the norm ‖(L,R)‖ := ‖L‖ for all (L,R) ∈ DC(A) then DC(A) is a unital C∗-algebra.

Proof. Let (L,R) ∈ DC(A). To see that ‖L‖ = ‖R‖ we recall that if A ∈ A and A1 is the unit ball of A then

‖A‖ = sup
B∈A1

‖AB‖ = sup
B∈A1

‖BA‖

(these equalities come from the C∗-equation and we omit the proof as these equations are used in the proof
that the unitization of a C∗-algebra is in fact a C∗-algebra). Therefore

‖L‖ = supB∈A1
‖L(B)‖

= supA,B∈A1
‖AL(B)‖

= supA,B∈A1
‖R(A)B‖

= supA∈A1
‖R(A)‖

= ‖R‖

as desired.
The fact that ‖(L,R)‖ := ‖L‖ is a norm on DC(A) follows trivially as L 7→ ‖L‖ is a norm on B(A) and

by the operations on DC(A) given in Lemma 2.3. To see that this norm is submultiplicative we notice that

‖(L1, R1)(L2, R2)‖ = ‖(L1 ◦ L2, R2 ◦R1)‖ = ‖L1 ◦ L2‖ ≤ ‖L1‖ ‖L2‖ = ‖(L1, R1)‖ ‖(L2, R2)‖

for all (L1, R1), (L2, R2) ∈ DC(A). Thus the norm is submultiplicative. To verify that the norm satisfies the
C∗-equation we notice that

‖(L,R)∗(L,R)‖ =
∥∥(R], L])(L,R)

∥∥ =
∥∥(R] ◦ L,R ◦ L])

∥∥ =
∥∥R] ◦ L∥∥

= supA,B∈A1

∥∥AR](L(B))
∥∥

= supA,B∈A1
‖A(R(L(B)∗)∗)‖

= supA,B∈A1
‖(R(L(B)∗)A∗)∗‖

= supA,B∈A1
‖R(L(B)∗)A∗‖

= supA,B∈A1
‖L(B)∗L(A∗)‖ .
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However

sup
A,B∈A1

‖L(B)∗L(A∗)‖ ≤ sup
A,B∈A1

‖L(B)∗‖ ‖L(A∗)‖ = sup
A,B∈A1

‖L(B)‖ ‖L(A)‖ = ‖L‖2

and

sup
A,B∈A1

‖L(B)∗L(A∗)‖ ≥ sup
A∈A1

‖L(A∗)∗L(A∗)‖ = sup
A∈A1

‖L(A)∗L(A)‖ = sup
A∈A1

‖L(A)‖2 = ‖L‖2 .

Therefore ‖(L,R)∗(L,R)‖ = ‖L‖2 = ‖(L,R)‖2. Therefore ‖(L,R)‖ := ‖L‖ is a C∗-norm.
To complete the proof that DC(A) is a C∗-algebra, it suffices to demonstrate that DC(A) is complete

with respect to this norm. Let ((Ln, Rn))n≥1 be a Cauchy sequence in DC(A). Then (Ln)n≥1 and (Rn)n≥1

are Cauchy sequences in B(A) as ‖(Ln, Rn)− (Lm, Rm)‖ = ‖Ln − Lm‖ = ‖Rn −Rm‖ and by the addition
on DC(A). Therefore, as B(A) is complete, there exists L,R ∈ B(A) such that limn→∞ Ln = L and
limn→∞Rn = R. However for all A,B ∈ A

AL(B) = lim
n→∞

ALn(B) = lim
n→∞

Rn(A)B = lim
n→∞

R(A)B

as norm convergence implies pointwise convergence and since multiplication by a fixed operator in A is a
continuous operation as A is a C∗-algebra. Hence (L,R) ∈ DC(A). Since limn→∞ ‖(Ln, Rn)− (L,R)‖ =
limn→∞ ‖Ln − L‖ = 0, ((Ln, Rn))n≥1 converges to (L,R) ∈ DC(A). Hence DC(A) is complete and thus a
unital C∗-algebra.

For DC(A) to be the multiplier algebra of A, it is necessary to demonstrate that A sits as an essential
ideal in DC(A). The injective of A into DC(A) is easy to describe but to show that A is an ideal in DC(A) we
will need some additional knowledge about double centralizers. This knowledge gives some additional light
to why we call these operators multipliers.

Lemma 2.5. Let A be a C∗-algebra and let (L,R) ∈ DC(A). Then L(AB) = L(A)B and R(AB) = AR(B)
for all A,B ∈ A.

Proof. Fix A,B ∈ A. Then for all C ∈ A

CL(AB) = R(C)(AB) = (R(C)A)B = (CL(A))B = CL(A)B

and
R(AB)C = (AB)L(C) = A(BL(C)) = AR(B)C.

In particular, if we choose C = L(AB)∗ − (L(A)B)∗ the first equation gives CC∗ = 0 so C∗ = L(AB) −
L(A)B = 0 by the C∗-identity. Similarly if we choose C = R(AB)∗ − (AR(B))∗ the second equation gives
C∗C = 0 so C∗ = R(AB)−AR(B) = 0 by the C∗-identity. Thus the result is complete.

With the above lemma showing that A embeds as an essential ideal in DC(A) is simple. For later use,
we prove a more general result.

Lemma 2.6. Let A and B be C∗-algebras with A an ideal in B. For each B ∈ B define LB , RB ∈ B(A)
by LB(A) = BA and RB(A) = AB for all A ∈ A. Then (LB , RB) ∈ DC(A). Moreover the map πB : B →
DC(A) defined by πB(B) = (LB , RB) is a ∗-homomorphism. Furthermore πA is injective and πA(A) is an
essential ideal in DC(A).

Proof. Since A is an ideal of B, it is clear that AB,BA ∈ A for all A ∈ A and B ∈ B. Thus it is clear that
LB , RB ∈ B(A) for all B ∈ B. To see that (LB , RB) ∈ DC(A) we notice that

ALB(C) = A(BC) = (AB)C = RB(A)C

for all A,C ∈ A. Hence (LB , RB) ∈ DC(A).
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It is clear that the map πB is well-defined. To see that πB is a ∗-homomorphism, we notice that

LλA1+A2
= λLA1

+ LA2
RλA1+A2

= λRA1
+RA2

LA1A2
= LA1

◦ LA2
RA1A2

= RA2
◦RA1

for all B1, B2 ∈ B and λ ∈ C. Therefore, by the definition of the operations of DC(A) given in Lemma 2.3,
it is clear that πB is a homomorphism. To see that πB preserves adjoints, we notice that

L]B(A) = LB(A∗)∗ = (BA∗)∗ = AB∗ = RB∗(A)

and
R]B(A) = RB(A∗)∗ = (A∗B)∗ = B∗A = LB∗(A)

for all A ∈ A and B ∈ B. Hence L]B = RB∗ and R]B = LB∗ so

πB(B∗) = (LB∗ , RB∗) = (R]B , L
]
B) = (LB , RB)∗ = πB(B)∗

for all B ∈ B. Hence πB is a ∗-homomorphism.
To see that πA is injective, we notice if πA(A) is zero then RA = 0. Therefore A∗A = RA(A∗) = 0 so

A = 0 by the C∗-identity. Hence πA is injective.
To see that πA(A) is an ideal in DC(A), it suffices to show that (L,R)(LA, RA), (LA, RA)(L,R) ∈ πA(A)

for all A ∈ A and (L,R) ∈ DC(A) as πA(A) is already closed in DC(A) being the image of a ∗-homomorphism
of a C∗-algebra. Moreover, since πA(A) is closed under adjoints, it suffices to check that (LA, RA)(L,R) =
(LA ◦ L,R ◦ RA) ∈ πA(A) for all A ∈ A and (L,R) ∈ DC(A) (i.e. it suffices to check that πA(A) is a right
ideal). However we notice

(LA ◦ L)(B) = LA(L(B)) = AL(B) = R(A)B = LR(A)(B)

and
(R ◦RA)(B) = R(RA(B)) = R(BA) = BR(A) = RR(A)(B)

(by Lemma 2.5) for all A,B ∈ A. Hence (LA, RA)(L,R) = (LR(A), RR(A)) ∈ πA(A) as desired. Hence πA(A)
is an ideal in DC(A).

To show that πA(A) is an essential ideal in A, it suffices by Proposition 1.5 to show that if (L,R) ∈ DC(A)
is such that (LA, RA)(L,R) = 0 for all A ∈ A then (L,R) = 0. However, by the above computation,
(LA, RA)(L,R) = (LR(A), RR(A)) = πA(R(A)). Therefore, if (LA, RA)(L,R) = 0 for all A ∈ A then R(A) = 0
for all A ∈ A as πA is injective. Therefore R = 0 so ‖L‖ = ‖(L,R)‖ = ‖R‖ = 0 by Lemma 2.4. Hence
(L,R) = 0 and thus πA(A) is an essential ideal in A.

With the above technical lemma complete, the proof that DC(A) is the multiplier algebra reduces to
verifying that DC(A) has the universal property.

Theorem 2.7. Let A be a C∗-algebra. The double centralizer of A, DC(A), is the multiplier algebra of A
when we view A ⊆ DC(A) via πA from Lemma 2.6.

Proof. By Lemma 2.4 and Lemma 2.6 DC(A) is a unital C∗-algebra that contains A as an essential ideal via
πA. To verify that DC(A) has the universal property of the multiplier algebra, let B be a C∗-algebra that
contains A as an essential ideal. By Lemma 2.6, there exists a ∗-homomorphism πB : B → DC(A). It is
clear that πB|A = πA by construction. Thus, to complete the proof, it suffices to show that πB is the unique
∗-homomorphism that gives πA when restricted to A.

Suppose σ : B→ DC(A) is such that σ|A = πA. Since A is an ideal of B, we notice that

πB(B)πA(A) = πB(B)πB(A) = πB(BA) = πA(BA) = σ(BA) = σ(B)σ(A) = σ(B)πA(A)

for all B ∈ B and A ∈ A. Hence
(πB(B)− σ(B))πA(A) = 0

for all B ∈ B and A ∈ A. Since πA(A) is an essential ideal in DC(A), Proposition 1.5 implies that
πB(B)− σ(B) = 0 for all B ∈ B. Hence πB = σ as desired.
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The proof given above of the existence of the multiplier algebra has many corollaries which provide more
information about the structure of the multiplier algebra.

Corollary 2.8. Let A be a C∗-algebra. Then M(A) is unital.

Proof. Lemma 2.4 showed that DC(A) is unital.

Corollary 2.9. Let A and B be C∗-algebras such that A is an ideal in B. Then there exists a unique
∗-homomorphism π : B →M(A) that is the identity on A. If B is unital then π is unital. Furthermore if
A⊥ := {B ∈ B | BA = 0 for all A ∈ A} then ker(π) = A⊥. Finally π is injective if and only if A is an
essential ideal of B.

Proof. Let A and B be C∗-algebras such that A is an ideal in B. The assumption that A was an essential
ideal in B was not used in the proof of the universal property of M(A) in Theorem 2.7. Therefore there
exists a unique ∗-homomorphism π : B → M(A) that is the identity on A where π = π|B is from Lemma
2.6. If IB is a unit of B, it is clear that LIB = IdA = RIB so πB is unital.

If B ∈ A⊥ then LB = 0. Hence πB(B) = (LB , RB) must be zero as ‖LB‖ = ‖RB‖ = 0 by Lemma 2.4.
Thus A⊥ ⊆ ker(π). For the other inclusion, suppose that B ∈ ker(π). Hence (LB , RB) = πB(B) = (0, 0).
Thus LB = 0 so BA = LB(A) = 0 for all A ∈ A. Hence B ∈ A⊥. Thus ker(π) = A⊥.

Proposition 1.5 implies that A is an essential ideal of B if and only if A⊥ = {0} which is equivalent to
the fact that π|B is injective by the previous paragraph.

Corollary 2.10. If A is unital then M(A) = A.

Proof. We shall provide two proofs of this fact. For the first, we note from Corollary 2.8 thatM(A) is unital.
Hence M(A) = A by Lemma 1.9.

For the second proof, suppose (L,R) ∈ DC(A). Let A := L(IA) ∈ A. Then for all B ∈ A

L(B) = L(IAB) = L(IA)B = AB = LA(B)

by Lemma 2.5. Moreover
R(B) = R(B)IA = BL(IA) = BA = RA(B)

by the definition of a double centralizer. Hence (L,R) = (LA, RA) ∈ πA(A). Therefore, since (L,R) ∈ DC(A),
M(A) = A.

With the above important corollaries complete, we turn our attention to a method of concretely realizing
the double centralizer of a C∗-algebra. As seen in Section 1, there seems to be a connection between multiplier
algebras and right Hilbert C∗-modules. We will investigate this connection in greater detail in Section 4. To
begin this discussion and obtain a preliminary result, we note the following.

Remarks 2.11. Let A be a C∗-algebra. Then A can be viewed as a right Hilbert A-module with inner
product 〈A1, A2〉 = A∗1A2 for all A1, A2 ∈ A and right action ρ : A → B(A) by ρ(A)A′ = A′A for all
A,A′ ∈ A. Recall that Ba(A) is the set of all bounded linear maps T on A such that there exists a bounded
linear map T ∗ such that 〈A1, T (A2)〉 = 〈T ∗(A1), A2〉 for all A1, A2 ∈ A. It is not difficult to verify that Ba(A)
is a unital C∗-algebra. Furthermore, due to the structure of the inner product selected on A, a bounded
linear map T1 on A is in Ba(A) if and only if there exists a T2 ∈ B(A) such that A∗1T1(A2) = (T2(A1))∗A2

for all A1, A2 ∈ A if and only if A1T1(A2) = (T2)](A1)A2 for all A1, A2 ∈ A if and only if (T1, T
]
2) ∈ DC(A).

Hence there exists a bijective map Ψ : Ba(A)→ DC(A) defined by Ψ(T ) = (T, (T ∗)]) for all T ∈ Ba(A).

Thus, using the above remarks, the following theorem gives a concrete description of the multiplier algebra
via the adjointable linear maps on a right Hilbert C∗-module.

Corollary 2.12. Let A be a C∗-algebra and equip A with the right Hilbert A-module structure as in Remarks
2.11. Then the map Ψ from Remarks 2.11 is a ∗-isomorphism so M(A) = Ba(A).
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Proof. Since Ψ is bijective by Remarks 2.11, it suffices to show that Ψ is a ∗-isomorphism by Theorem
2.7. Since both ∗ and ] are conjugate linear, clearly Ψ is linear. Since ∗ is antimultiplicative, since ]

is multiplicative, and since the multiplication in the double centralizer is antimultiplicative in the second
component, clearly Ψ is multiplicative. To see that Ψ is ∗-preserving, we notice that

Ψ(T ∗) = (T ∗, ((T ∗)∗)]) = (T ∗, T ]) = ((T ])], (T ∗)])∗ = (T, (T ∗)])∗ = Ψ(T )∗

for all T ∈ Ba(A). Hence Ψ is a ∗-isomorphism.

Although there are many other technical details and interesting results that may be obtained from the
double centralizer version of the multiplier algebra, we will complete this section with the following result.
We remind the reader that there are many other results and properties of multiplier algebras that may
be obtained using one of the three descriptions of the multiplier algebra that we will develop. We shall
investigate some of these properties in Section 5.

Proposition 2.13. Let {Ai}i∈I be a set of C∗-algebras. If
⊕

i∈I Ai denotes the direct sum of Ai (the closure
with respect to the supremum norm of all functions indexed by I with values at i in Ai with finite support)
then

M

(⊕
i∈I

Ai

)
'
∏
i∈I
M(Ai).

where
∏
i∈IM(Ai) is the product of M(Ai) (all bounded functions indexed by I with values at i in M(Ai)).

Proof. Consider the map Ψ :
∏
i∈I DC(Ai)→ DC(

⊕
i∈I Ai) defined by

Ψ(((Li, Ri))i∈I) = (ψ(Li)i∈I , ψ(Ri)i∈I )

where
ψ(Ti)i∈I ((Ai)i∈I) = (Ti(Ai))i∈I

for any bounded set {Ti}i∈I ⊆ B(A). It is clear that if ((Li, Ri))i∈I ∈
∏
i∈I DC(Ai) then ψ(Li)i∈I , ψ(Ri)i∈I ∈

B(
⊕

i∈I Ai). Moreover, if (Ai)i∈I , (Bi)i∈I ∈
⊕

i∈I Ai then

(Ai)i∈Iψ(Li)i∈I ((Bi)i∈I) = (Ai)i∈I(Li(Bi))i∈I
= (AiLi(Bi))i∈I
= (Ri(Ai)Bi)i∈I
= (Ri(Ai))i∈I(Bi)i∈I
= ψ(Ri)i∈I ((Ai)i∈I)(Bi)i∈I .

Hence Ψ is a well-defined map from
∏
i∈I DC(Ai) to DC(

⊕
i∈I Ai). Since ψ· is linear and multiplicative in

its subscript, it is clear that Ψ is a homomorphism. Furthermore, since ψ•∗ = ψ∗• , it is clear that Ψ is a
∗-homomorphism.

To see that Ψ is injective, suppose that Ψ(((Li, Ri))i∈I) = 0. Therefore ψ(Li)i∈I = 0 so Li(A) = 0 for all
A ∈ Ai and all i ∈ I. Hence Li = 0 for all i ∈ I. Since ‖Ri‖ = ‖Li‖ for all i ∈ I, we clearly obtain that Ψ is
injective.

To see that Ψ is surjective, let (L,R) ∈ DC(
⊕

i∈I Ai). Therefore L,R ∈ B(
⊕

i∈I Ai). We claim that L
and R must map each Ai to itself; that is, if (Ai)i∈I ∈

⊕
i∈I Ai is such that Aj = 0 unless j = i0 for some

i0 ∈ I and L((Ai)i∈I) = (Di)i∈I then Dj = 0 unless j = i0. To see this, suppose (Ai)i∈I ∈
⊕

i∈I Ai is such
that Aj = 0 unless j = i0 for some i0 ∈ I. Let (Di)i∈I := L((Ai)i∈I). Let (Bi)i∈I ∈

⊕
i∈I Ai be arbitrary

and define Cj := 0Aj if j 6= i0 and Ci0 := Bi0 . Then, by Lemma 2.5,

L((Ai)i∈I)(Bi)i∈I = L((AiBi)i∈I) = L((AiCi)i∈I) = L((Ai)i∈I)(Ci)i∈I .

Hence DjBj = DjCj = 0 for all j 6= i0. Since (Bi)i∈I ∈
⊕

i∈I Ai was arbitrary, Dj = 0 if j 6= i0. Hence the
result is complete for L. The proof of the result for R is identical.
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For each k ∈ I we define Lk ∈ B(Ak) such that if (Ai)i∈I ∈
⊕

i∈I Ai is a sequence where Ai = 0 unless
i = k and L((Ai)i∈I) = (Bi)i∈I where Bi = 0 if i 6= k then L(Ak) = Bk. Since L is linear, it is trivial to verify
that Lk is well-defined and linear. Similarly we define Rk ∈ B(Ak). It is clear that Lk, Rk are well-defined
elements of B(Ak) and uniformly bounded over k ∈ I by ‖L‖ and ‖R‖ respectively. Moreover, since functions
with finite support are dense in

⊕
i∈I Ai, it is easy to see that L = ψ(Li)i∈I and R = ψ(Ri)i∈I . Thus it suffices

to verify that (Li, Ri) ∈ DC(Ai) for all i ∈ I; that is ALi(B) = Ri(A)B for all A,B ∈ Ai and for all i ∈ I.
However this follows trivially from the definition of Li and Ri and the fact that (L,R) ∈ DC(

⊕
i∈I Ai).

Hence Ψ is surjective and thus a ∗-isomorphism.
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3 Construction of Multiplier Algebra by Representations

In this section we will demonstrate the existence of the multiplier algebra of an arbitrary C∗-algebra by an
application of the representation theory of C∗-algebras. In particular we will demonstrate that given a ‘nice’
representation of a given C∗-algebra we can construct a set with a certain algebraic property that will be the
multiplier algebra. Although Section 2 required slightly less machinery and had a more explicit description
of the multiplier algebra, the results of this section are, in general, easier to deal with.

We begin with the definition of the ‘nice’ representations of a given C∗-algebra that we will deal with.

Definition 3.1. Let A be a C∗-algebra. A representation π : A → B(H) is said to be non-degenerate if
π(A)H := {π(A)ξ | A ∈ A, ξ ∈ H} is dense in H.

A representation π : A → B(H) is said to have trivial null-space if π(A)ξ = 0 for all ξ ∈ H implies that
A = 0.

If A is a C∗-subalgebra of B(H), we say that A is non-degenerate (has trivial null-space) if and only if
the identity representation is non-degenerate (has trivial null-space).

It is clear from the GNS construction that every GNS representation is non-degenerate. Moreover it is
clear that the direct sum of representations with trivial null-spaces have trivially null-space. It turns out that
the concepts of non-degenerate representations and representations with trivial null-spaces coincide and thus
every C∗-algebra has a faithful non-degenerate representation. It is this later fact that will be necessary for the
rest of the section. As it is not clear from the definition that the direct sum of non-degenerate representations
is non-degenerate, we will prove the following results which the author feels should be explicitly stated in
more textbooks on C∗-algebras.

Proposition 3.2. Let A be a C∗-algebra, let π : A → B(H) be a representation of A, and let K := π(A)H.
Then K is a closed subspace of H.

Furthermore (Eλ)Λ is a C∗-bounded approximate identity of A then π(Eλ) converges in the SOT to PK
(the orthogonal projection of H onto K).

Let π′ : A→ B(K) be defined by π′(A) = π(A)|K for all A ∈ A. Then π′ is a non-degenerate representation
of A. In fact, π(A)ξ = 0 for all ξ ∈ K⊥. Hence ‖π′(A)‖ = ‖π(A)‖ for all A ∈ A. Moreover π′ is faithful
whenever π is faithful. Lastly π is non-degenerate if and only if π(A) has trivial null-space.

Proof. First we will demonstrate that if ξ ∈ K and (Eλ)Λ is a C∗-bounded approximate identity of A (note
that at least one exists) then limΛ π(Eλ)ξ = ξ. Let ξ ∈ K = π(A)H and let (Eλ)Λ be a C∗-bounded
approximate identity of A. By the definition of π(A)H there exists An ∈ A and ηn ∈ H such that ξ =
limn π(An)ηn. Let ε > 0. Since ξ = limn π(An)ηn, there exists an N ∈ N such that ‖ξ − π(AN )ηN‖ ≤ ε

3 .
Moreover, since (Eλ)Λ is a bounded approximate identity for A, there exists a λ′ ∈ Λ such that for all λ ≥ λ′,
‖EλAN −AN‖ ≤ ε

3(‖ηN‖+1) . Hence, since π is a contraction, ‖π(EλAN )− π(AN )‖ ≤ ε
3(‖ηN‖+1) . Hence for

all λ ≥ λ′

‖ξ − π(Eλ)ξ‖ ≤ ‖ξ − π(AN )ηN‖+ ‖π(AN )ηN − π(EλAN )ηN‖+ ‖π(EλAN )ηN − π(Eλ)ξ‖

≤ ε

3
+ ‖π(AN )− π(EλAN )‖ ‖ηN‖+ ‖π(Eλ)‖ ‖π(AN )ηN − ξ‖

<
ε

3
+

ε

3(‖ηN‖+ 1)
‖hN‖+ 1

ε

3
≤ ε

Hence limΛ π(Eλ)ξ = ξ as claimed.
To see that K is a Hilbert space, it suffices to verify that K is a linear subspace of H. If ξ1, ξ2 ∈ K and

α ∈ C then limΛ π(Eλ)(αξ1 + ξ2) = αξ1 + ξ2 so that αξ1 + ξ2 ∈ K by the definition of K. Hence K is a
Hilbert space.

It is clear that π′ is a well-defined representation of A as K is π(A)-invariant (and thus reducing) subspace.
Moreover, since limΛ π

′(Eλ)ξ = limΛ π(Eλ)ξ = ξ for all ξ ∈ K, ξ ∈ π′(A)K for all ξ ∈ K. Hence π′ is a
non-degenerate representation of A.
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Next suppose η ∈ K⊥. Then for all ξ ∈ K

〈π(A)η, ξ〉 = 〈η, π(A∗)ξ〉 = 0

since η ∈ K⊥ and π(A∗)ξ ∈ K. Similarly, if ξ ∈ K⊥ then 〈π(A)η, ξ〉 = 0. Hence π(A)η = 0 as desired.
Consequently ‖π(A)‖ = ‖π′(A)‖ as π′(A) = π(A)|K. Furthermore if π is faithful and π′(A1) = π′(A2) then
π(A1)|K = π(A2)|K and, since π(A1)|K⊥ = π(A2)|K⊥ = 0, π(A1) = π(A2) so A1 = A2. Hence π′ is faithful.

To see that (π(Eλ))Λ converges in the SOT to PK, let ξ ∈ H be arbitrary and write ξ = ξK + η where
ξ ∈ K and η ∈ K⊥. Then

lim
Λ
π(Eλ)ξ = lim

Λ
π(Eλ)ξK + 0 = ξK = PKξ

as π(A)η = 0 for all A ∈ A. As ξ ∈ H was arbitrary, the claim is complete
Lastly suppose π is non-degenerate so that H = K = π(A)H. Suppose π(A)ξ = {0}. Then if (Eλ)λ is

any C∗-bounded approximate identity of A, (π(Eλ))Λ converges in the SOT to IH and thus

ξ = lim
Λ
π(Eλ)ξ = lim

Λ
0 = 0.

Hence π(A) has trivial null-space. Now suppose π(A) has trivial null-space. If H 6= π(A)H then there exists

a ξ ∈ H such that ξ ∈ π(A)H
⊥

. However, from earlier work, this implies that π(A)ξ = 0 for all A ∈ A which
contradicts the fact that π(A) had trivial null-space.

The relation between non-degenerate representations and the multiplier algebra is any non-degenerate
representation of a ideal can be extended to a representation on the entire C∗-algebra. Thus, if the ideal is
essential and the representation is faithful, the extension will also be faithful. This is very close to what is
necessary in the multiplier algebra. There is an additional property of the extension that will be desirable
and thus we make the following definition and postpone the desired result.

Definition 3.3. Let H be a Hilbert space and A ⊆ B(H). The idealizer of A, denoted ID(A), is the set

ID(A) := {T ∈ B(H) | TA ⊆ A,AT ⊆ A}

(where TA := {S ∈ B(H) | S = TA for some A ∈ A}).

It is fairly clear that if A is a ∗-algebra then ID(A) is also a ∗-algebra that contains A as an ideal (see
the proof below). In particular, ID(A) is the largest algebra that contains A as an ideal. The idealizer of a
C∗-algebra is a nice subset of B(H).

Lemma 3.4. Let A be a C∗-subalgebra of B(H). Then ID(A) is a unital C∗-subalgebra of B(H) that contains
A as an ideal. If A is non-degenerate then A is an essential ideal of ID(A).

Proof. Since A is closed under addition, scalar multiplication, multiplication, and adjoints, it is clear that
ID(A) is a ∗-subalgebra of B(H). Moreover, since A is closed, it is trivial to verify that ID(A) is closed.
Hence ID(A) is a C∗-subalgebra of B(H). Furthermore it is clear by the definition of the idealizer that A is
an ideal in ID(A) and IH ∈ ID(A).

Suppose A is non-degenerate. To show that A is an essential ideal of ID(A), suppose that T ∈ ID(A) is
such that TA = 0 for all A ∈ A. Therefore TAξ = 0 for all A ∈ A and ξ ∈ H. Since A is a non-degenerate
subalgebra of B(H), the set {Aξ | A ∈ A, ξ ∈ H} is dense in H. Hence Tη = 0 for all η ∈ H so T = 0.
Therefore Proposition 1.5 implies that A is an essential ideal of ID(A).

The above shows how when given a C∗-algebra A we can construct a C∗-algebra containing A as an
essential ideal. In particular, the above is how we will construct the multiplier algebra of A. In order to
prove that the construction is the multiplier algebra, we will need to be able to extend representations from
ideals. In particular, the following result looks very similar to the conditions necessary and conclusions
obtained in Section 2 for the multiplier algebra.
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Lemma 3.5. Let I be an ideal of a C∗-algebra A and let π : I → B(H) be a non-degenerate representation.
Then there exists a unique ∗-homomorphism π̃ : A→ B(H) extending π (that must then be non-degenerate).
If A is unital then π̃ is unital. Furthermore π̃(A) ⊆ ID(π(I)). Finally, if in addition π is faithful and
I⊥ := {A ∈ A | AB = 0 for all B ∈ I}, then ker(π̃) = I⊥. Thus if π is faithful then I is an essential ideal
of A if and only if π̃ is faithful.

Proof. Let I be an ideal of a C∗-algebra A and let π : I → B(H) be a non-degenerate representation. Fix a
C∗-bounded approximate identity (Eλ)Λ for I. For each A ∈ A, we claim that the operator π̃0(A) defined
on π(I)H by

π̃0(A)(π(B)ξ) = π(AB)ξ

for all B ∈ I and ξ ∈ H is well-defined. To see this, we notice that AB ∈ I for all B ∈ I as I is an ideal
so π(AB) makes sense. To see that π̃0(A) is well-defined, suppose B1, B2 ∈ I and ξ1, ξ2 ∈ H are such that
π(B1)ξ1 = π(B2)ξ2. Then

π(AB1)ξ1 = limΛ π(AEλB1)ξ1
= limΛ π(AEλ)π(B1)ξ1
= limΛ π(AEλ)π(B2)ξ2
= limΛ π(AEλB2)ξ2
= π(AB2)ξ2.

Hence π̃0(A) is well-defined. Moreover we notice that

‖π̃0(A)(π(B1)ξ)− π̃0(A)(π(B2)ξ)‖ = ‖π(AB1 −AB2)ξ‖
= limΛ ‖π(AEλ(B1 −B2))ξ‖
= limΛ ‖π(AEλ)π(B1 −B2)ξ‖
≤ limΛ ‖π(AEλ)‖ ‖π(B1 −B2)ξ‖
≤ lim supΛ ‖AEλ‖ ‖π(B1 −B2)ξ‖
≤ ‖A‖ ‖π(B1 −B2)ξ‖ .

Therefore, since limΛ π(Eλ)ξ = ξ for all ξ ∈ H by Proposition 3.2, the above inequalities implies that
(π̃0(A)π(Eλ)ξ)Λ is a Cauchy sequence. Hence we define π̃(A) to be the function on H defined by

π̃(A)ξ := lim
Λ
π̃0(A)π(Eλ)ξ = lim

Λ
π(AEλ)ξ

for all ξ ∈ H. It is then clear that π̃(A) is a linear map and is bounded since ‖π(AEλ)ξ‖ ≤ ‖π(AEλ)‖ ‖ξ‖ ≤
‖A‖ ‖ξ‖ for all ξ ∈ H and λ ∈ Λ. Hence π̃(A) ∈ B(H). Furthermore it is clear A 7→ π̃(A) is linear as π is
linear. Hence π̃ : A→ B(H) is a linear map. In addition, if A ∈ I then

π̃(A)ξ = lim
Λ
π(AEλ)ξ = π(A)ξ

for all ξ ∈ H so π̃ extends π.
To show that π̃ is multiplicative and preserves adjoints, we first notice that if A ∈ A, B ∈ I, and ξ ∈ H

then
π̃(A)(π(B)ξ) = lim

Λ
π(AEλ)π(B)ξ = lim

Λ
π(AEλB)ξ = π(AB)ξ.

Thus π̃(A) extends π̃0(A) for all A ∈ A. Therefore, if A,B ∈ A

π̃(AB)ξ = lim
Λ
π(ABEλ)ξ = lim

Λ
π̃(A)(π(BEλ)ξ) = π̃(A)π̃(B)ξ

for all ξ ∈ H. Hence π̃ is multiplicative.
To see that π̃ preserves adjoints, we notice for all A ∈ A and ξ, η ∈ H that

〈π̃(A∗)ξ, η〉 = limΛ〈π(A∗Eλ)ξ, π(Eλ)η〉
= limΛ〈ξ, π(EλA)π(Eλ)η〉
= limΛ〈ξ, π(EλAEλ)η〉
= limΛ〈ξ, π(Eλ)π(AEλ)η〉
= limΛ〈π(Eλ)ξ, π(AEλ)η〉
= 〈ξ, π̃(A)η〉.
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Hence π̃(A∗) = π̃(A)∗ for all A ∈ A. Hence π̃ is a ∗-homomorphism.
Suppose σ : A→ B(H) was an extension of π. Then

σ(A)π(B)ξ = σ(A)σ(B)ξ = σ(AB)ξ = π(AB)ξ

for all A ∈ A, B ∈ I, and ξ ∈ H. Since π(I)H is dense in H as π is non-degenerate, we obtain that
σ(A) = π̃(A) for all A ∈ A. Hence π̃ is the unique extension of π.

Suppose A is unital. Then

π̃(IA)ξ = lim
Λ
π(IAEλ)ξ = lim

Λ
π(Eλ)ξ = ξ

for all ξ ∈ H. Hence π̃ is unital if A is unital.
To see that π̃(A) ⊆ ID(π(I)), we notice that if A ∈ A and B ∈ I then

π̃(A)π(B) = π̃(A)π̃(B) = π̃(AB) = π(AB) ∈ π(I)

and
π(B)π̃(A) = π̃(B)π̃(A) = π̃(BA) = π(BA) ∈ π(I).

Hence π̃(A) ⊆ ID(π(I)) by the definition of the idealizer.
Finally, suppose in addition that π is faithful. If A ∈ I⊥ then AB = 0 for all B ∈ I. Therefore

π̃(A)ξ = lim
Λ
π(AEλ)ξ = 0

for all ξ ∈ H. Hence B ∈ ker(π̃) so ker(π̃) ⊆ I. To see the other inclusion, suppose that π̃(A) = 0 for some
A ∈ A. Then for all B ∈ I and ξ ∈ H

0 = π̃(A)(π(B)ξ) = π(AB)ξ.

Therefore π(AB) = 0 for all B ∈ I. Since π is faithful, this implies that AB = 0 for all B ∈ I and thus
A ∈ I⊥ by definition. Hence ker(π̃) = I⊥. Finally Proposition 1.5 implies that I is an essential ideal if and
only if I⊥ = {0} which, by the above proof, occurs if and only if π̃ is faithful.

With the above results in hand, it is simple to construct the multiplier algebra of a C∗-algebra

Theorem 3.6. Let A be a C∗-algebra and let π : A→ B(H) be a faithful, non-degenerate representation of
A (which exists by the GNS construction and Proposition 3.2). Then ID(π(A)) is the multiplier algebra of
A where we view A ⊆ ID(π(A)) via π.

Proof. By Lemma 3.4 ID(π(A)) is a C∗-algebra that contains π(A) as an essential ideal. Since π is faithful
π(A) ' A so ID(π(A)) contains A as an essential ideal via π.

Suppose that B is another C∗-algebra that contains A as an essential ideal. By Lemma 3.5 there exists
a unique representation π̃ : B → ID(π(A)) that extends π. Hence ID(π(A)) is the multiplier algebra of A
by definition.

The proof given above of the existence of the multiplier algebra has the same corollaries as shown in
Section 2 with different proofs.

Corollary 3.7. Let A be a C∗-algebra. Then M(A) is unital.

Proof. Lemma 3.4 showed that ID(π(A)) is unital for any faithful, non-degenerate representation π of A.

Corollary 3.8. Let A and B be C∗-algebras such that A is an ideal in B. Then there exists a unique
∗-homomorphism π : B →M(A) that is the identity on A. If B is unital then π is unital. Furthermore if
A⊥ := {B ∈ B | BA = 0 for all A ∈ A} then ker(π) = A⊥. Finally π is injective if and only if A is an
essential ideal of B.
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Proof. The result follows trivial from Lemma 3.5 (where we did all of the additional work to obtain this
result).

Corollary 3.9. If A is unital then M(A) = A.

Proof. We shall provide two proofs of this fact. For the first, we note from Corollary 3.7 thatM(A) is unital.
Hence M(A) = A by Lemma 1.9.

For the second proof, suppose π : A → B(H) is a faithful, non-degenerate representation. Since IA is
a C∗-bounded approximate identity of A, we obtain from Proposition 3.2 that π(IA)ξ = ξ for all ξ ∈ H
so IH ∈ π(A). However, from the definition of the idealizer, it is clear that IH ∈ π(A) implies that
ID(π(A)) ⊆ A. Hence ID(π(A)) = A as desired.

To complete this section we will note one useful result of Theorem 3.6 that Theorem 2.7 did not give and
another whose proof is significantly simplified.

Corollary 3.10. Let H be an infinite dimensional Hilbert space and let K be the set of compact operators
on H. Then M(K) = B(H).

Proof. It is clear that the identity representation of K is a non-degenerate, faithful representation of K. Since
K is an ideal of B(H), it is clear that ID(K) = B(H). Hence the result follows from Theorem 3.6.

Proposition 3.11. Let {Ai}i∈I be a set of C∗-algebras. If
⊕

i∈I Ai denotes the direct sum of Ai (the closure
with respect to the supremum norm of all functions indexed by I with values at i in Ai with finite support)
then

M

(⊕
i∈I

Ai

)
'
∏
i∈I
M(Ai) and M

(∏
i∈I

Ai

)
'
∏
i∈I
M(Ai)

where
∏
i∈IM(Ai) is the product of M(Ai) (all bounded functions indexed by I with values at i in M(Ai)).

Proof. We shall only prove the first result as the second follows verbatim by replacing
⊕

i∈I Ai with
∏
i∈I Ai.

For each i ∈ I let πi : Ai → B(Hi) be a faithful, non-degenerate representation. Then
⊕

i∈I πi is a faithful,
non-degenerate representation of

⊕
i∈I Ai. Therefore

M

(⊕
i∈I

Ai

)
= ID

(⊕
i∈I

πi(Ai)

)
⊆ B

(⊕
i∈I
Hi

)
.

Consider the map Ψ :
∏
i∈I ID(πi(Ai))→ B

(⊕
i∈I Hi

)
defined by

Ψ((Ti)i∈I) =
⊕
i∈I

Ti

for all (Ti)i∈I ∈
∏
i∈I ID(πi(Ai)). It is clear that Ψ((Ti)i∈I) is indeed a bounded linear operator and it is

clear that Ψ is injective. To verify that Ψ((Ti)i∈I) ∈ ID
(⊕

i∈I πi(Ai)
)
, we notice for all (Ai)i∈I ∈

⊕
i∈I Ai

that Tiπi(Ai) ∈ πi(Ai) and πi(Ai)Ti ∈ πi(Ai) for all i ∈ I. Moreover, since for every ε > 0 there are
only finitely many Ai with ‖Ai‖ > ε, there are only finitely many i such that ‖Tiπi(Ai)‖ > ‖(Ti)i∈I‖ ε and
‖πi(Ai)Ti‖ > ‖(Ti)i∈I‖ ε. Hence

(⊕
i∈I Ti

) (⊕
i∈I πi(Ai)

)
∈
⊕

i∈I πi(Ai) and
(⊕

i∈I πi(Ai)
) (⊕

i∈I Ti
)
∈⊕

i∈I πi(Ai). Hence Ψ((Ti)i∈I) ∈ ID
(⊕

i∈I πi(Ai)
)

as desired.

To see that Ψ is surjective, let T ∈ ID
(⊕

i∈I πi(Ai)
)
. For each pair i, j ∈ I let Ti,j : Hj → Hi be

the bounded operator defined by restricting the domain of T to Hj and the range of T to Hi. We claim
that Ti,j = 0 unless i = j. To see this, for each k ∈ I consider all operators (Ai)i∈I ∈

⊕
i∈I Ai such that

Ai = 0 unless i = k. Since T ∈ ID
(⊕

i∈I πi(Ai)
)
, we obtain that T

(⊕
i∈I πi(Ai)

)
∈
⊕

i∈I πi(Ai). Thus

Ti,kπk(Ak) = 0 whenever i 6= k and Ak ∈ Ak. Since πk is non-degenerate, πk(Ak)Hk = Hk by Proposition
3.2 so the equation Ti,kπk(Ak) = 0 for all Ak ∈ Ak implies that Ti,k = 0 whenever i 6= k. Thus the claim is
complete.
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Next we claim that Ti,i ∈ ID(πi(Ai)) for all i ∈ I. To see this, for each k ∈ I consider all oper-
ators (Ai)i∈I ∈

⊕
i∈I Ai such that Ai = 0 unless i = k. Since T ∈ ID

(⊕
i∈I πi(Ai)

)
, we obtain that

T
(⊕

i∈I πi(Ai)
)
∈
⊕

i∈I πi(Ai) and
(⊕

i∈I πi(Ai)
)
T ∈

⊕
i∈I πi(Ai). These equations clearly imply that

Tk,kπk(Ak) ∈ πk(Ak) and πk(Ak)Tk,k ∈ πk(Ak) for all Ak ∈ Ak. Hence Tk,k ∈ ID(πk(Ak)) for all k ∈ I as
desired. Since ‖Ti,i‖ ≤ ‖T‖ for all i ∈ I, it is clear that (Ti)i∈I ∈

∏
i∈I ID(πi(Ai)) and Ψ((Ti)i∈I) = T .

Hence Ψ is surjective.
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4 Construction of Multiplier Algebra by Bimodules

In this section we will demonstrate the existence of the multiplier algebra of an arbitrary C∗-algebra through
the existence of faithful, non-degenerate representations on right Hilbert C∗-modules. Although the repre-
sentation theory and C∗-theory used in Section 3 is simpler for the average reader, the results of this section
follow along the same lines and the realization of the multiplier algebra in this section has many theoretical
applications. In particular, this section is a generalization of Section 3 (that is, the results of this section
include those of Section 3) and draws an important connection between multiplier algebras and right Hilbert
C∗-modules. Those that do not desire to discuss the representation theory of C∗-algebras on right Hilbert
C∗-modules may simply read the examples, read the proof of Theorem 4.24, and then derive the main ad-
ditional results of this section from Examples 4.18, 4.19, and 4.20. A reader that is unfamiliar with right
Hilbert C∗-modules is referred to http://www.math.ucla.edu/∼pskoufra/OANotes-HilbertC-Bimodules.pdf.

The results of this section will follow those of Section 3 by replacing Hilbert spaces with right Hilbert
C∗-modules. Thus we begin with the analogue of a non-degenerate representation.

Definition 4.1. Let A and B be C∗-algebras. A representation π : A→ Ba(HB) is said to be non-degenerate
if π(A)HB := {π(A)ξ | A ∈ A, ξ ∈ HB} is dense in HB.

If A is a C∗-subalgebra of Ba(HB), we say that A is non-degenerate if and only if the identity represen-
tation is non-degenerate.

The theory of representations of C∗-algebras on right Hilbert C∗-modules is more complex than the
theory of representations on Hilbert spaces. We do have the following analogue of Proposition 3.2.

Proposition 4.2. Let A and B be C∗-algebras, let π : A → Ba(HB) be a representation of A, and let
K := π(A)HB. Then K is a closed subspace of HB.

Furthermore (Eλ)Λ is a C∗-bounded approximate identity of A then limΛ π(Eλ)ξ = ξ for all ξ ∈ K. In
particular, if K = HB then (π(Eλ))Λ converges to IHB

in the SOT.

Proof. First we prove the second claim. Let ξ ∈ K = π(A)HB and let (Eλ)Λ be a C∗-bounded approximate
identity of A. By the definition of π(A)HB there exists An ∈ A and ηn ∈ HB such that ξ = limn π(An)ηn.
Let ε > 0. Since ξ = limn π(An)ηn, there exists an N ∈ N such that ‖ξ − π(AN )ηN‖ ≤ ε

3 . Moreover,
since (Eλ)Λ is a bounded approximate identity for A, there exists a λ′ ∈ Λ such that for all λ ≥ λ′,
‖EλAN −AN‖ ≤ ε

3(‖ηN‖+1) . Hence, since π is a contraction, ‖π(EλAN )− π(AN )‖ ≤ ε
3(‖ηN‖+1) . Hence for

all λ ≥ λ′

‖ξ − π(Eλ)ξ‖ ≤ ‖ξ − π(AN )ηN‖+ ‖π(AN )ηN − π(EλAN )ηN‖+ ‖π(EλAN )ηN − π(Eλ)ξ‖

≤ ε

3
+ ‖π(AN )− π(EλAN )‖ ‖ηN‖+ ‖π(Eλ)‖ ‖π(AN )ηN − ξ‖

<
ε

3
+

ε

3(‖ηN‖+ 1)
‖hN‖+ 1

ε

3
≤ ε

Hence limΛ π(Eλ)ξ = ξ as claimed.
To see that K is a closed subspace, it suffices to verify that K is a linear subspace of HB. If ξ1, ξ2 ∈ K

and α ∈ C then limΛ π(Eλ)(αξ1 + ξ2) = αξ1 + ξ2 so that αξ1 + ξ2 ∈ K by the definition of K. Hence K is a
closed subspace.

Although the GNS representations along with Proposition 3.2 provide a plethora of non-degenerate
representations, the most important non-degenerate representations of a C∗-algebra on a right Hilbert C∗-
module for this section are the following.

Example 4.3. Let A be a C∗-algebra. Recall from Remarks 2.11 that A can be viewed as a right Hilbert
A-module. Define π : A → Ba(A) by π(A)A′ = AA′ for all A,A′ ∈ A. It is trivial to verify that π is a
well-defined map that maps into Ba(A) and is a ∗-homomorphism. This C∗-valued inner product, this right
action, and this adjointable action gives A a canonical Hilbert A-A-bimodule structure.
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We claim that π is faithful. Indeed if A ∈ A is such that π(A)B = 0 for all B ∈ A then AA∗ = 0 so
A = 0. Hence π is faithful.

We claim that π is a non-degenerate representation. To see this, we notice if A ∈ A is positive then
A = π(A

1
2 )A

1
2 ∈ π(A)A. Since π(A)A contains every positive elements of A, the span of the positive

elements of A is A, and π(A)A is a subspace of A by Proposition 4.2, π(A)A = A. Hence π is a non-
degenerate representation.

There are many more canonical examples of non-degenerate representations. We shall postpone these
examples until we have demonstrated the relation between the multiplier algebra of a C∗-algebra and non-
degenerate representations of C∗-algebras on right Hilbert C∗-modules.

Following the ideas of Section 3, the idealizer of a faithful, non-degenerate representation is the correct
construct for the multiplier algebra.

Definition 4.4. Let HB be a right Hilbert B-module and let A ⊆ Ba(HB). The idealizer of A, denoted
ID(A), is the set

ID(A) := {T ∈ Ba(HB) | TA ⊆ A,AT ⊆ A}

(where TA := {S ∈ Ba(HB) | S = TA for some A ∈ A}).

The following is the generalization of Lemma 3.4.

Lemma 4.5. Let B be a C∗-algebra and let A be a C∗-subalgebra of Ba(HB). Then ID(A) is a unital
C∗-subalgebra of Ba(HB) that contains A as an ideal. If A is non-degenerate then A is an essential ideal of
ID(A).

Proof. Since A is closed under addition, scalar multiplication, multiplication, and adjoints, it is clear that
ID(A) is a ∗-subalgebra of Ba(HB). Moreover, since A is closed, it is trivial to verify that ID(A) is closed.
Hence ID(A) is a C∗-subalgebra of Ba(HB). Furthermore it is clear by the definition of the idealizer that A
is an ideal in ID(A) and IHB

∈ ID(A).
Suppose A is non-degenerate. To show that A is an essential ideal of ID(A) suppose that T ∈ ID(A) is

such that TA = 0 for all A ∈ A. Therefore TAξ = 0 for all A ∈ A and ξ ∈ HB. Since A is a non-degenerate
subalgebra of Ba(HB), the set {Aξ | A ∈ A, ξ ∈ HB} is dense in HB. Hence Tη = 0 for all η ∈ HB so
T = 0. Therefore Proposition 1.5 implies that A is an essential ideal of ID(A).

As in Section 3 it is necessary to be able to extend representations of ideals of C∗-algebras on right
Hilbert C∗-modules to the entire C∗-algebra in ‘nice’ ways.

Lemma 4.6. Let B be a C∗-algebra, let I be an ideal of a C∗-algebra A, and let π : I → Ba(HB) be a
non-degenerate representation. Then there exists a unique ∗-homomorphism π̃ : A → Ba(HB) extending π
(that must then be non-degenerate). If A is unital then π̃ is unital. Furthermore π̃(A) ⊆ ID(π(I)). If in
addition π is faithful and I⊥ := {A ∈ A | AB = 0 for all B ∈ I}, then ker(π̃) = I⊥. Therefore if π is
faithful the I is an essential ideal of A if and only if π̃ is faithful.

Proof. Let I be an ideal of a C∗-algebra A and let π : I → Ba(HB) be a non-degenerate representation. Fix
a C∗-bounded approximate identity (Eλ)Λ for I. For each A ∈ A, we claim that the operator π̃0(A) defined
on π(I)HB by

π̃0(A)(π(B)ξ) = π(AB)ξ

for all B ∈ I and ξ ∈ HB is well-defined. To see this, we notice that AB ∈ I for all B ∈ I as I is an ideal
so π(AB) makes sense. To see that π̃0(A) is well-defined, suppose B1, B2 ∈ I and ξ1, ξ2 ∈ HB are such that
π(B1)ξ1 = π(B2)ξ2. Then

π(AB1)ξ1 = limΛ π(AEλB1)ξ1
= limΛ π(AEλ)π(B1)ξ1
= limΛ π(AEλ)π(B2)ξ2
= limΛ π(AEλB2)ξ2
= π(AB2)ξ2.
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Hence π̃0(A) is well-defined. Moreover we notice that

‖π̃0(A)(π(B1)ξ)− π̃0(A)(π(B2)ξ)‖ = ‖π(AB1 −AB2)ξ‖
= limΛ ‖π(AEλ(B1 −B2))ξ‖
= limΛ ‖π(AEλ)π(B1 −B2)ξ‖
≤ limΛ ‖π(AEλ)‖ ‖π(B1 −B2)ξ‖
≤ lim supΛ ‖AEλ‖ ‖π(B1 −B2)ξ‖
≤ ‖A‖ ‖π(B1 −B2)ξ‖ .

Therefore, since limΛ π(Eλ)ξ = ξ for all ξ ∈ HB by Proposition 4.2, the above inequalities implies that
(π̃0(A)π(Eλ)ξ)Λ is a Cauchy sequence. Hence we define π̃(A) to be the function on HB defined by

π̃(A)ξ := lim
Λ
π̃0(A)π(Eλ)ξ = lim

Λ
π(AEλ)ξ

for all ξ ∈ HB. It is then clear that π̃(A) is a linear map and is bounded since ‖π(AEλ)ξ‖ ≤ ‖π(AEλ)‖ ‖ξ‖ ≤
‖A‖ ‖ξ‖ for all ξ ∈ HB and λ ∈ Λ. Hence π̃(A) ∈ B(HB). Furthermore it is clear that A 7→ π̃(A) is linear
as π is linear. Hence π̃ : A→ B(HB) is a linear map. In addition if A ∈ I then

π̃(A)ξ = lim
Λ
π(AEλ)ξ = π(A)ξ

for all ξ ∈ HB so π̃ extends π.
To show that π̃ is multiplicative and preserves adjoints we first notice that if A ∈ A, B ∈ I, and ξ ∈ HB

then
π̃(A)(π(B)ξ) = lim

Λ
π(AEλ)π(B)ξ = lim

Λ
π(AEλB)ξ = π(AB)ξ.

Thus π̃(A) extending π̃0(A) for all A ∈ A. Therefore, if A,B ∈ A

π̃(AB)ξ = lim
Λ
π(ABEλ)ξ = lim

Λ
π̃(A)(π(BEλ)ξ) = π̃(A)π̃(B)ξ

for all ξ ∈ HB. Hence π̃ is multiplicative.
To see that π̃(A) ∈ Ba(HB) for all A ∈ A and that π̃ preserves adjoints we notice for all A ∈ A and

ξ, η ∈ HB that
〈π̃(A∗)ξ, η〉 = limΛ〈π(A∗Eλ)ξ, π(Eλ)η〉

= limΛ〈ξ, π(EλA)π(Eλ)η〉
= limΛ〈ξ, π(EλAEλ)η〉
= limΛ〈ξ, π(Eλ)π(AEλ)η〉
= limΛ〈π(Eλ)ξ, π(AEλ)η〉
= 〈ξ, π̃(A)η〉.

Hence π̃(A∗) = π̃(A)∗ for all A ∈ A. Hence π̃ : A→ Ba(HB) is a ∗-homomorphism.
Suppose σ : A→ Ba(HB) was an extension of π. Then

σ(A)π(B)ξ = σ(A)σ(B)ξ = σ(AB)ξ = π(AB)ξ

for all A ∈ A, B ∈ I, and ξ ∈ HB. Since π(I)HB is dense in HB as π is non-degenerate, we obtain that
σ(A) = π̃(A) for all A ∈ A. Hence π̃ is the unique extension of π.

Suppose A is unital. Then

π̃(IA)ξ = lim
Λ
π(IAEλ)ξ = lim

Λ
π(Eλ)ξ = ξ

for all ξ ∈ HB. Hence π̃ is unital if A is unital.
To see that π̃(A) ⊆ ID(π(I)), we notice that if A ∈ A and B ∈ I then

π̃(A)π(B) = π̃(A)π̃(B) = π̃(AB) = π(AB) ∈ π(I)
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and
π(B)π̃(A) = π̃(B)π̃(A) = π̃(BA) = π(BA) ∈ π(I).

Hence π̃(A) ⊆ ID(π(I)) by the definition of the idealizer.
Finally, suppose in addition that π is faithful. If A ∈ I⊥ then AB = 0 for all B ∈ I. Therefore

π̃(A)ξ = lim
Λ
π(AEλ)ξ = 0

for all ξ ∈ HB. Hence B ∈ ker(π̃) so ker(π̃) ⊆ I. To see the other inclusion, suppose that π̃(A) = 0 for
some A ∈ A. Then for all B ∈ I and ξ ∈ HB

0 = π̃(A)(π(B)ξ) = π(AB)ξ.

Therefore π(AB) = 0 for all B ∈ I. Since π is faithful, this implies that AB = 0 for all B ∈ I and thus
A ∈ I⊥ by definition. Hence ker(π̃) = I⊥. Furthermore I is an essential ideal if and onyl if I⊥ = {0} by
Proposition 1.5 which is equivalent to π̃ being faithful by the above proof.

With the above results in hand it is simple to construct the multiplier algebra of a C∗-algebra as we did
in Section 3.

Theorem 4.7. Let A and B be C∗-algebras and let π : A → Ba(HB) be a faithful, non-degenerate repre-
sentation of A (which exists by Example 4.3). Then ID(π(A)) is the multiplier algebra of A where we view
A ⊆ ID(π(A)) via π.

Proof. By Lemma 4.5 ID(π(A)) is a C∗-algebra that contains π(A) as an essential ideal. Since π is faithful
π(A) ' A so ID(π(A)) contains A as an essential ideal via π.

Suppose that C is another C∗-algebra that contains A as an essential ideal. By Lemma 4.6 there exists a
unique representation π̃ : C→ ID(π(A)) that extends π. Hence ID(π(A)) is the multiplier algebra of A by
definition.

The proof given above of the existence of the multiplier algebra has the same corollaries as shown in
Section 3 with identical proofs.

Corollary 4.8. Let A be a C∗-algebra. Then M(A) is unital.

Proof. Lemma 4.5 showed that ID(π(A)) is unital for any faithful, non-degenerate representation π of A.

Corollary 4.9. Let A and B be C∗-algebras such that A is an ideal in B. Then there exists a unique
∗-homomorphism π : B →M(A) that is the identity on A. If B is unital then π is unital. Furthermore if
A⊥ := {B ∈ B | BA = 0 for all A ∈ A} then ker(π) = A⊥. Finally π is injective if and only if A is an
essential ideal of B.

Proof. The result follows trivial from Lemma 4.6 (where we did all of the additional work to obtain this
result).

Corollary 4.10. If A is unital then M(A) = A.

Proof. We shall provide two proofs of this fact. For the first, we note from Corollary 4.8 thatM(A) is unital.
Hence M(A) = A by Lemma 1.9.

For the second proof, suppose π : A → Ba(HB) is a faithful, non-degenerate representation on a right
Hilbert B-module. Since IA is a C∗-bounded approximate identity of A, we obtain from Proposition 4.2
that π(IA)ξ = ξ for all ξ ∈ HB so IHB

∈ π(A). However, from the definition of the idealizer, it is clear that
IHB

∈ π(A) implies that ID(π(A)) ⊆ A. Hence ID(π(A)) = A as desired.

The benefit of Theorem 4.7 is that the multiplier algebra of a C∗-algebra can be realized as ‘nice’ operators
on a right Hilbert C∗-module. Using these ideas, we obtain a third proof of the above result and an alternate
proof of Corollary 2.12.
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Corollary 4.11. Let A be a C∗-algebra and equip A with the Hilbert A-A-bimodule structure from Example
4.3. Then Ba(A) =M(A).

Proof. By Theorem 4.7 it suffices to show that Ba(A) = ID(π(A)). Clearly ID(π(A)) ⊆ Ba(A). Let
T ∈ Ba(A) be arbitrary and fix A ∈ A. Then T (A) ∈ A. Furthermore for all B ∈ A

(Tπ(A))B = T (AB) = T (ρ(B)A) = ρ(B)(T (A)) = T (A)B = π(T (A))B

as adjointable maps commute with the right action. Hence Tπ(A) = π(T (A)) ∈ π(A) for all T ∈ Ba(A) and
A ∈ A. Furthermore

π(A)T = (T ∗π(A∗))∗ = (π(T ∗(A∗)))∗ = π((T ∗(A∗))∗) ∈ π(A)

for all T ∈ Ba(A) and A ∈ A. Hence T ∈ ID(π(A)) so Ba(A) = ID(π(A)) as desired.

Thus Example 4.3 provides a concrete realization of the multiplier algebra of a C∗-algebra. Through
other additional canonical right Hilbert C∗-modules, the multiplier algebras of other C∗-algebras (such as
matrix algebras of a C∗-algebra) may be realized.

Example 4.12. Let A be a C∗-algebra and let n ∈ N. Then An := {(A1, . . . , An) | Aj ∈ A} can be
viewed as a right Hilbert A-module with inner product 〈(A1, . . . , An), (B1, . . . , Bn)〉 =

∑n
j=1A

∗
jBj for all

Aj , Bj ∈ A and right action ρ : A→ B(An) by ρ(A)(A1, . . . , An) = (A1A, . . . , AnA) for all A,Aj ∈ A. Define
π :Mn(A)→ Ba(An) by

π([Ai,j ])(A1, . . . , An) =

 n∑
j=1

A1,jAj , . . . ,

n∑
j=1

An,jAj


for all [Ai,j ] ∈ Mn(A) and (A1, . . . , An) ∈ An. It is trivial to verify that π is a well-defined map that maps
into Ba(An) and is a ∗-homomorphism. This C∗-valued inner product, this right action, and this adjointable
action gives An a canonical Hilbert Mn(A)-A-bimodule structure.

We claim that π is faithful. Indeed suppose [Ai,j ] ∈Mn(A) is such that π([Ai,j ]) = 0. Fix k ∈ {1, . . . , n}
and consider all elements (A1, . . . , An) ∈ An such that Aj = 0 unless j = k. The above definition of π implies
that Ai,kAk = 0 for all Ak ∈ A and i ∈ {1, . . . , n} and thus Ai,k = 0 for all i ∈ {1, . . . , n}. Thus [Ai,j ] = 0
as k was arbitrary. Thus π is faithful.

We claim that π is a non-degenerate representation. To see this, we notice if (A1, . . . , An) ∈ An is such
that Aj ≥ 0 for all j ∈ {1, . . . , n} then

(A1, . . . , An) = π(diag(A
1
2
1 , . . . , A

1
2
n ))(A

1
2
1 , . . . , A

1
2
n ) ∈ π(Mn(A))An.

Since π(Mn(A))An contains n-tuple with a positive element in each entry, the span of the positive elements
of A is A, and π(Mn(A))An is a subspace of An by Proposition 4.2, π(Mn(A))An = An. Hence π is a
non-degenerate representation.

Corollary 4.13. Let A be a C∗-algebra, let n ∈ N, and equip An with the Hilbert Mn(A)-A-bimodule
structure from Example 4.12. Then Ba(An) =M(Mn(A)).

Proof. By Theorem 4.7 it suffices to show that Ba(An) = ID(π(Mn(A))). Clearly ID(π(Mn(A))) ⊆
Ba(An). Let T ∈ Ba(An) be arbitrary and fix [Ai,j ] ∈ Mn(A). Let (C1,j , . . . , Cn,j) := T (A1,j , . . . , An,j) ∈
An. Then for all (B1, . . . , Bn) ∈ An

(Tπ([Ai,j ]))(B1, . . . , Bn) = T
(∑n

j=1A1,jBj , . . . ,
∑n
j=1An,jBj

)
=

∑n
j=1 T (A1,jBj , . . . , An,jBj)

=
∑n
j=1 T (ρ(Bj) (A1,j , . . . , An,j))

=
∑n
j=1 ρ(Bj)T (A1,j , . . . , An,j)

=
∑n
j=1 ρ(Bj)(C1,j , . . . , Cn,j)

=
∑n
j=1(C1,jBj , . . . , Cn,jBj)

= π([Ci,j ])(B1, . . . , Bn)
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(as adjointable maps commute with the right action). Hence Tπ([Ai,j ]) = π([Ci,j ]) ∈ π(Mn(A)) for all
T ∈ Ba(An) and [Ai,j ] ∈ An. Furthermore

π([Ai,j ])T = (T ∗π([Ai,j ]
∗))∗ = (π(T ∗([Ai,j ]

∗)))∗ = π((T ∗([Ai,j ]
∗))∗) ∈ π(Mn(A))

for all T ∈ Ba(An) and [Ai,j ] ∈ Mn(A). Hence T ∈ ID(π(Mn(A))) so Ba(An) = ID(π(Mn(A))) as
desired.

It is not difficult to extend the above to infinite tuples.

Example 4.14. Let A be a C∗-algebra. Then

A∞ :=

(An)n≥1 | An ∈ A,
∑
n≥1

A∗nAn converges in A


can be viewed as a right Hilbert A-module with inner product 〈(An)n≥1, (Bn)n≥1〉 =

∑
n≥1A

∗
nBn for all

(An)n≥1, (Bn)n≥1 ∈ A∞ and right action ρ : A → B(A∞) by ρ(A)(An)n≥1 = (AnA)n≥1 for all A ∈ A and
(An)n≥1 ∈ A∞. Notice for each k ∈ N that Ak (as in Example 4.12) can be embedded as a right Hilbert
A-module into A∞ by embedding into the first k-coordinates. Notice that

⋃
k≥1 A

k is then dense in A∞.

Notice for each k ∈ N theMk(A)-left-action on Ak from Example 4.12 can be extended to a left-Mk(A)-
action on A∞ by letting Mk(A) act on the first k-coordinates as it does on Ak and letting it act as zero
on the other coordinates. Furthermore, these actions are contractive and are preserved under the canonical
embeddings ofMk(A) intoMk+1(A). Therefore, if K is the C∗-algebra of compact operators on a separable,
infinite dimensional Hilbert space and A ⊗min K is the inductive limit of Mk(A) then there exists a ∗-
homomorphism π : A⊗minK→ Ba(A∞) obtained by extending theMk(A)-left-action on Ak. Since

⋃
k≥1 A

k

is then dense in A∞ and theMk(A)-left-action on Ak is non-degenerate, it follows that π is non-degenerate.
To see that π is faithful, we note that if (Eλ)Λ and (Pn)n≥1 are C∗-bounded approximate identities of A

and K respectively (where Pn is the rank n projection onto the first n-co-ordinates) then (Eλ ⊗ Pn)Λ×N is
a C∗-bounded approximate identity of A ⊗min K such that (Eλ ⊗ Pn)T (Eλ ⊗ Pn) ∈ A ⊗minMn(C) for all
T ∈ A⊗min K. Suppose T ∈ A⊗min K is such that π(T ) = 0. Then

T = lim
Λ×N

(Eλ ⊗ Pn)T (Eλ ⊗ Pn).

Furthermore
π((Eλ ⊗ Pn)T (Eλ ⊗ Pn)) = π(Eλ ⊗ Pn)π(T )π(Eλ ⊗ Pn) = 0

for all λ ∈ Λ and n ∈ N. However, since π is faithful on A ⊗min Mn(C) (being an extension of the left-
Mn(A)-action), π((Eλ ⊗ Pn)T (Eλ ⊗ Pn)) = 0 implies (Eλ ⊗ Pn)T (Eλ ⊗ Pn) = 0 for all λ ∈ Λ and n ∈ N.
Hence T = 0. Thus π is faithful as desired.

Corollary 4.15. Let A be a C∗-algebra, let K denote the C∗-algebra of compact operators on a complex,
infinite dimensional, separable Hilbert space, and equip A∞ with the Hilbert A⊗min K-A-bimodule structure
from Example 4.14. Then Ba(A∞) =M(A⊗min K).

Proof. By Theorem 4.7 it suffices to show that Ba(A∞) = ID(π(A ⊗min K)). Clearly ID(π(A ⊗min K)) ⊆
Ba(A∞). Let T ∈ Ba(A∞). To show that Tπ(A⊗min K) ⊆ π(A⊗min K) it suffices to show if {Ei,j}i,j≥1 are
the canonical matrix units for K and A ∈ A then Tπ(A⊗ Ei,j) ∈ π(A⊗min K). Fix A ∈ A and let D ∈ A∞

be the sequence with A in the ith spot and zero elsewhere. Then T (D) ∈ A∞. Let (Cn)n≥1 := T (D). We
claim that

∑
n≥1 Cn ⊗ En,j converges in A⊗min K. To see this, we notice for any finite subset I ⊆ N that∥∥∥∥∥∑

n∈I
Cn ⊗ En,j

∥∥∥∥∥
2

=

∥∥∥∥∥
(∑
m∈I

Cm ⊗ Em,j

)∗(∑
n∈I

Cn ⊗ En,j

)∥∥∥∥∥ =

∥∥∥∥∥∑
n∈I

C∗nCn ⊗ Ej,j

∥∥∥∥∥ =

∥∥∥∥∥∑
n∈I

C∗nCn

∥∥∥∥∥ .
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Therefore, since
∑
n≥1 C

∗
nCn converges in A as (Cn)n≥1 ∈ A∞,

∑
n≥1 Cn ⊗ En,j converges in A ⊗min K.

Hence for all (Bn)n≥1 ∈ A∞

(Tπ(A⊗ Ei,j))(Bn)n≥1 = T (ρ(Bj)D)
= ρ(Bj)T (D)
= ρ(Bj)(Cn)n≥1

= (CnBj)n≥1

= π(
∑
n≥1 Cn ⊗ En,j)(Bn)n≥1

(as adjointable maps commute with the right action). Hence Tπ(A⊗minK) ⊆ π(A⊗minK) for all T ∈ Ba(A∞).
Since the adjoint operation is a bijection on Ba(A∞) and π(A ⊗min K), we obtain that π(A ⊗min K)T ⊆
π(A⊗min K) for all T ∈ Ba(A∞). Hence Ba(A∞) = ID(π(A⊗min K)) as desired.

All of the above examples give concrete realization of the multiplier algebra as the bounded adjointable
maps on a right Hilbert C∗-module. These examples are a specific subscase of a result we now desire to
demonstrate. This result is motivated by the fact that the compact operators on a Hilbert space are a
non-degenerated subset of the bounded linear maps on the same Hilbert space and thus the bounded linear
maps are the multiplier algebra of the compact operators as in Corollary 3.10. Thus we desire the analogue
of the compact operators on a right Hilbert C∗-module.

Definition 4.16. Let B be a C∗-algebra and let HB be a right Hilbert B-module. For each ξ, η ∈ HB we
define the operator θξ,η ∈ B(HB) by

θξ,η(ζ) = ρ(〈η, ζ〉)ξ

(or ξ〈η, ζ〉 if the reader is comfortable with omitting notation for the right action) for all ζ ∈ HB (clearly
these are the analogues of the rank one operators for right Hilbert C∗-modules). It is trivial to verify that
θξ,η is linear and bounded with norm at most ‖ξ‖ ‖η‖. Furthermore for all ζ, ω ∈ HB

〈ζ, θη,ξ(ω)〉 = 〈ζ, ρ(〈ξ, ω〉)η〉
= 〈ζ, η〉〈ξ, ω〉
= 〈ρ(〈ζ, η〉∗)ξ, ω〉
= 〈ρ(〈η, ζ〉)ξ, ω〉
= 〈θξ,η(ζ), ω〉

so that θξ,η ∈ Ba(HB) with θ∗ξ,η = θη,ξ. Furthermore it is clear that

θλξ1+ξ2,η = λθξ1,η + θξ2,η

and
θξ,λη1+η2 = λθξ,η1 + θξ,η2

for all λ ∈ C and ξ, ξ1, ξ2, η, η1, η2 ∈ HB. Moreover

θξ1,η1(θξ2,η2(ζ)) = θξ1,η1(ρ(〈η2, ζ〉ξ2)
= ρ(〈η1, ρ(〈η2, ζ〉)ξ2〉)ξ1
= ρ(〈η1, ξ2〉〈η2, ζ〉)ξ1
= ρ(〈η2, ζ〉)ρ(〈η1, ξ2〉)ξ1
= θρ(〈η1,ξ2〉)ξ1,η2(ζ)

for all ζ, ξj , ηj ∈ HB. Hence θξ1,η1 ◦ θξ2,η2 = θρ(〈η1,ξ2〉)ξ1,η2 .
Let K(HB) be the closure in Ba(HB) of the linear span of all θξ,η where ξ, η ∈ HB. By the above

computations, K(HB) is a C∗-subalgebra of Ba(HB) known as the compact operators on HB.

To obtain some intuition behind K(HB) we note the following examples. Our first example shows why
K(HB) is indeed a generalization of the compact operators on a Hilbert space.
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Example 4.17. Let HC be a right Hilbert C-module (that is, HC is a Hilbert space). For each ξ, η ∈ HC
notice θξ,η is the rank one operator sending η to ξ. Hence K(HC) is the closure of the span of the rank one
operators in Ba(HC) = B(HC) and thus K(HC) is precisely the compact operators on HC.

Example 4.18. Let A be a C∗-algebra and view A as a Hilbert A-A-bimodule as in Example 4.3. If A,B ∈ A
then

θA,B(C) = AB∗C = π(AB∗)C

for all C ∈ A. Therefore, since A is the span of its positive elements (which are of the form A∗A for some
A ∈ A), the above shows that K(A) = π(A).

Suppose further that A is a unital C∗-algebra. If T ∈ Ba(A) let A := T (IA) ∈ A. Then for all B ∈ A

T (B) = T (ρ(B)IA) = ρ(B)T (IA) = ρ(B)A = AB = π(A)B.

Hence T = π(A) so T ∈ π(A). Hence Ba(A) = K(A) = π(A) whenever A is unital.

Example 4.19. Let A be a C∗-algebra and view An as a Hilbert Mn(A)-A-bimodule as in Example 4.12.
If (A1, . . . , An), (B1, . . . , Bn) ∈ An then

θ(A1,...,An),(B1,...,Bn)(C1, . . . , Cn) = ρ(〈(B1, . . . , Bn), (C1, . . . , Cn)〉)(A1, . . . , An)

=
(
A1

∑n
j=1B

∗
jCj , . . . , An

∑n
j=1B

∗
jCj

)
=

(∑n
j=1(A1B

∗
j )Cj , . . . ,

∑n
j=1(AnB

∗
j )Cj

)
= π([AiB

∗
j ])(C1, . . . , Cn)

for all (C1, . . . , Cn) ∈ An. Therefore, since Mn(A) is the span of its positive elements (all of which can be
written as sums of elements of the form [AiA

∗
j ]), the above shows that K(An) = π(Mn(A)).

Suppose further that A is a unital C∗-algebra. If T ∈ Ba(An) let Ej ∈ An be the element with IA in the
jth component and zeros elsewhere and let (A1,j , . . . , An,j) := T (Ej) ∈ An. Then for all (B1, . . . , Bn) ∈ An

T (B1, . . . , Bn) =
∑n
j=1 T (ρ(Bj)Ej)

=
∑n
j=1 ρ(Bj)T (Ej)

=
∑n
j=1 ρ(Bj)(A1,j , . . . , An,j)

=
∑n
j=1(A1,jBj , . . . , An,jBj)

= π([Ai,j ])(B1, . . . , Bn).

Hence T = π([Ai,j ]) so T ∈ π(Mn(A)). Hence Ba(An) = K(An) = π(Mn(A)) whenever A is unital.

Example 4.20. Let A be a C∗-algebra and view A∞ as a Hilbert A⊗min K-A-bimodule as in Example 4.14.
If (An)n≥1, (Bn)n≥1 ∈ A∞ are such that An, Bn = 0 if n ≥ m for some m ∈ N then it is easy to verify that
θ(An)n≥1,(Bn)n≥1

is the operator on A∞ obtained by using the left-action of Mm(A) on A∞ (as in Example
4.14) with the operator [AiB

∗
j ]mi,j=1. Therefore, since θξ,η is continuous in ξ and η, since

⋃
n≥1 A

n is dense
in A∞, since

⋃
n≥1Mn(A) is dense in A⊗min K, and since the span of elements of the form [AiB

∗
j ]mi,j=1 is all

of Mm(A), we obtain that K(A∞) = A⊗min K.
If A is unital it need not be the case that K(A∞) = Ba(A∞). Indeed if A = C, A∞ = `2(N), K(A∞) is the

usual C∗-algebra of compact operators, and Ba(A∞) is the usual C∗-algebra of all bounded linear operators
on `2(N).

One important lemma before discussing the multiplier algebra of K(HB) is that K(HB) is an ideal in
Ba(HB) just as the compact operators are an ideal of the bounded linear maps on a Hilbert space.

Lemma 4.21. Let HB be a right Hilbert B-module. Then K(HB) is a closed ideal of Ba(HB).

Proof. It is clear by Definition 4.16 that K(HB) is a C∗-subalgebra of Ba(HB). Thus, to show that K(HB)
is an ideal, it suffices to show that TK(HB) ⊆ K(HB) and K(HB)T ⊆ K(HB) for all T ∈ Ba(HB). However
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it suffices by linearity and density to show that Tθξ,η and θξ,ηT are compact for all ξ, η ∈ HB. To see this
we notice that if ζ ∈ HB then

Tθξ,η(ζ) = T (ρ(〈η, ζ〉)ξ) = ρ(〈η, ζ〉)T (ξ) = θT (ξ),η(ζ)

and
θξ,ηT (ζ) = ρ(〈η, Tζ〉)ξ = ρ(〈T ∗η, ζ〉)ξ = θξ,T∗η(ζ)

so Tθξ,η = θTξ,η and θξ,ηT = θξ,T∗η. Hence the result is complete.

To begin our discussion of the multiplier algebra of K(HB) we note the following technical lemma.

Lemma 4.22. Let HB be a right Hilbert B-module. If ξ ∈ HB then

ξ = lim
ε→0+

ρ(〈ξ, ξ〉(〈ξ, ξ〉+ εIB)−1)ξ.

Proof. First note for all ε > 0 that 〈ξ, ξ〉+ εIB is invertible in the unitization of B (as 〈ξ, ξ〉 is positive) and
thus 〈ξ, ξ〉(〈ξ, ξ〉+ εIB)−1 is a well-defined element of B. Furthermore∥∥ξ − ρ(〈ξ, ξ〉(〈ξ, ξ〉+ εIB)−1)ξ

∥∥2

= 〈ξ, ξ〉 − 〈ξ, ρ(〈ξ, ξ〉(〈ξ, ξ〉+ εIB)−1)ξ〉 − 〈ρ(〈ξ, ξ〉(〈ξ, ξ〉+ εIB)−1)ξ, ξ〉
+〈ρ(〈ξ, ξ〉(〈ξ, ξ〉+ εIB)−1)ξ, ρ(〈ξ, ξ〉(〈ξ, ξ〉+ εIB)−1)ξ〉

= 〈ξ, ξ〉 − 〈ξ, ξ〉2(〈ξ, ξ〉+ εIB)−1)− (〈ξ, ξ〉+ εIB)−1)〈ξ, ξ〉2
−(〈ξ, ξ〉+ εIB)−1)〈ξ, ξ〉3(〈ξ, ξ〉+ εIB)−1)

which by the Continuous Functional Calculus for Normal Operators converges to zero as ε converges to zero
from above. Thus the result follows.

Using Theorem 4.7 and Lemma 4.21 we will prove the following result. This result along with the above
examples generalizes the results of Corollary 4.11, Corollary 4.13, and Corollary 4.15.

Corollary 4.23. If HB a right Hilbert B-module then M(K(HB)) = Ba(HB).

Proof. To conclude using Theorem 4.7 that M(K(HB)) = Ba(HB) it suffices to show that K(HB) is non-
degenerate and ID(K(HB)) = Ba(HB). For the first, we recall that the right action of B on HB clearly
extends to the unitization of B. Hence we may assume that B is unital. Thus we notice if ξ ∈ HB and
ε > 0 then

θρ((〈ξ,ξ〉+εIB)−1)ξ,ξ(ξ) = ρ(〈ξ, ξ〉(〈ξ, ξ〉+ εIB)−1)ξ.

Hence ξ ∈ K(HB)HB by Lemma 4.22. Since ξ ∈ HB was arbitrary, K(HB) is non-degenerate.
To see that ID(K(HB)) = Ba(HB), we note clearly that ID(K(HB)) ⊆ Ba(HB) and K(HB) is an ideal

of Ba(HB) by Lemma 4.21. Therefore ID(K(HB)) = Ba(HB) follows from the definition of the idealizer so
the result is complete.

To complete this section we desire to provide another proof of Corollary 4.23 directly from Theorem
2.7. This proof then provides a short-cut to obtain the main results and examples of this section directly
from those in Section 2 thereby avoiding the discussion of representation theory on right Hilbert C∗-modules.
However, although the theory of representations of right Hilbert C∗-modules was difficult, the following proof
is quite technical.

Theorem 4.24. Let HB be a right Hilbert B-module. Then the map ψ : Ba(HB) → DC(K(HB)) (where
the C∗-algebra of double centralizers is as described in Definition 2.1) defined by Ψ(T ) = (LT , RT ) where
LT (K) = TK and RT (K) = KT for all K ∈ K(HB) is a isomorphism of C∗-algebras.
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Proof. Recall we may assume B is unital as we may extend the definition of ρ. Since K(HB) is an ideal of
Ba(HB) by Lemma 4.21, the map Ψ exists and is ∗-homomorphism by Lemma 2.6. Thus it suffices to show
that Ψ is bijective. Recall from Corollary 2.9 that

ker(Ψ) = {T ∈ Ba(HB) | TK = 0 for all K ∈ K(HB)}.

Thus to see that ker(Ψ) = {0}, suppose T ∈ Ba(HB) is such that TK = 0 for all K ∈ K(HB). Let ξ ∈ HB

be arbitrary. Then, by Lemma 4.22 and the proof of Corollary 4.23,

Tξ = lim
ε→0+

T (ρ(〈ξ, ξ〉(〈ξ, ξ〉+ εIB)−1)ξ) = lim
ε→0+

T (θρ((〈ξ,ξ〉+εIB)−1)ξ,ξ(ξ)) = 0

as Tθρ((〈ξ,ξ〉+εIB)−1)ξ,ξ = 0. Hence T = 0 so Ψ is injective.
To see that Ψ is surjective, let (L,R) ∈ DC(K(HB)) be arbitrary. We claim that for each ξ ∈ HB the

limit limε→0+ ρ((〈ξ, ξ〉+ εIB)
−1

)(L(θξ,ξ)(ξ)) exists. To see this, we first note that

L(θξ,ξ)
∗L(θξ,ξ) = 〈θξ,ξ, (L∗L)(θξ,ξ)〉K(HB) ≤ ‖L‖

2 〈θξ,ξ, θξ,ξ〉K(HB) = ‖L‖2 θρ(〈ξ,ξ〉)ξ,ξ
where the C∗-valued inner product is the canonical C∗-valued inner product on K(HB) from Remarks 2.11
(and L ∈ Ba(K(HB)) with L∗ = R]). Therefore if ε1 > ε2 > 0 then∥∥∥ρ((〈ξ, ξ〉+ ε1IB)

−1
)(L(θξ,ξ)(ξ))− ρ((〈ξ, ξ〉+ ε2IB)

−1
)(L(θξ,ξ)(ξ))

∥∥∥2

=
∥∥((〈ξ, ξ〉+ ε1IB)−1 − (〈ξ, ξ〉+ ε2IB)−1

)
〈L(θξ,ξ)(ξ), L(θξ,ξ)(ξ)〉

(
(〈ξ, ξ〉+ ε1IB)−1 − (〈ξ, ξ〉+ ε2IB)−1

)∥∥
= (ε2 − ε1)2

∥∥(〈ξ, ξ〉+ ε1IB)−1(〈ξ, ξ〉+ ε2IB)−1〈ξ, L(θξ,ξ)
∗L(θξ,ξ)(ξ)〉(〈ξ, ξ〉+ ε1IB)−1(〈ξ, ξ〉+ ε2IB)−1

∥∥
≤ ‖L‖2 (ε2 − ε1)2

∥∥(〈ξ, ξ〉+ ε1IB)−1(〈ξ, ξ〉+ ε2IB)−1〈ξ, θρ(〈ξ,ξ〉)ξ,ξ(ξ)〉(〈ξ, ξ〉+ ε1IB)−1(〈ξ, ξ〉+ ε2IB)−1
∥∥

= ‖L‖2 (ε2 − ε1)2
∥∥(〈ξ, ξ〉+ ε1IB)−1(〈ξ, ξ〉+ ε2IB)−1〈ξ, ρ(〈ξ, ξ〉)ρ(〈ξ, ξ〉)ξ〉(〈ξ, ξ〉+ ε1IB)−1(〈ξ, ξ〉+ ε2IB)−1

∥∥
= ‖L‖2 (ε2 − ε1)2

∥∥(〈ξ, ξ〉+ ε1IB)−1(〈ξ, ξ〉+ ε2IB)−1〈ξ, ξ〉3(〈ξ, ξ〉+ ε1IB)−1(〈ξ, ξ〉+ ε2IB)−1
∥∥ .

Thus if fε1,ε2(x) := ‖L‖2 (ε2−ε1)2x3

(x+ε1)2(x+ε2)2 then∥∥∥ρ((〈ξ, ξ〉+ ε1IB)
−1

)(L(θξ,ξ)(ξ))− ρ((〈ξ, ξ〉+ ε2IB)
−1

)(L(θξ,ξ)(ξ))
∥∥∥2

≤ ‖fε1,ε2(〈ξ, ξ〉)‖ .

However, since ε1 > ε2 > 0, it is easy to see that if gε1,ε2(x) = ‖L‖2 (ε2−ε1)2x
(x+ε1)2 then fε1,ε2 ≤ gε1,ε2 on [0,∞).

Since the supremum of gε1,ε2 is easily seen to be at x = ε1, gε1,ε2(ε1) = ‖L‖2 (ε2−ε1)2ε1
4ε21

, we easily obtain that∥∥∥ρ((〈ξ, ξ〉+ ε1IB)
−1

)(L(θξ,ξ)(ξ))− ρ((〈ξ, ξ〉+ ε2IB)
−1

)(L(θξ,ξ)(ξ))
∥∥∥2

≤ ‖L‖2 (ε2 − ε1)2ε1
4ε21

≤ 1

2
‖L‖2 ε1.

Hence the limit exists as desired.
A similar computation shows that limε→0+ ρ((〈ξ, ξ〉+ εIB)

−1
)((R(θξ,ξ))

∗(ξ)) exists. Therefore, for each
ξ ∈ HB we define

T (ξ) := lim
ε→0+

ρ((〈ξ, ξ〉+ εIB)
−1

)(L(θξ,ξ)(ξ))

and
S(ξ) := lim

ε→0+
ρ((〈ξ, ξ〉+ εIB)

−1
)((R(θξ,ξ))

∗(ξ)).

We claim that T, S ∈ Ba(HB). To show this, it suffices to show that

〈η, T (ξ)〉 = 〈S(η), ξ〉

for all ξ, η ∈ HB (as this will clearly enable us to show that T and S are linear; the rest of the claim
follows from results in http://www.math.ucla.edu/∼pskoufra/OANotes-HilbertC-Bimodules.pdf). Thus, if
ξ, η ∈ HB, we note that

(L(θξ,ξ))
∗θη,η = 〈L(θξ,ξ), θη,η〉K(HB)

= 〈θξ,ξ, R](θη,η)〉K(HB)

= θ∗ξ,ξ(R
](θη,η))
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(recall that L∗ = R] by Remarks 2.11) so by Lemma 4.22 we have that

〈η, T (ξ)〉 = limε→0+〈ρ(〈η, η〉(〈η, η〉+ εIB)−1)η, ρ((〈ξ, ξ〉+ εIB)
−1

)(L(θξ,ξ)(ξ))〉
= limε→0+(〈η, η〉+ εIB)−1〈η, η〉〈η, L(θξ,ξ)(ξ)〉 (〈ξ, ξ〉+ εIB)

−1

= limε→0+(〈η, η〉+ εIB)−1〈ρ(〈η, η〉)η, L(θξ,ξ)(ξ)〉 (〈ξ, ξ〉+ εIB)
−1

= limε→0+(〈η, η〉+ εIB)−1〈θη,η(η), L(θξ,ξ)(ξ)〉 (〈ξ, ξ〉+ εIB)
−1

= limε→0+(〈η, η〉+ εIB)−1〈((L(θξ,ξ))
∗)θη,η)η, ξ〉 (〈ξ, ξ〉+ εIB)

−1

= limε→0+(〈η, η〉+ εIB)−1〈(θξ,ξ)∗(R](θη,η))η, ξ〉 (〈ξ, ξ〉+ εIB)
−1

= limε→0+(〈η, η〉+ εIB)−1〈(R(θ∗η,η)∗)(η), θξ,ξ(ξ)〉 (〈ξ, ξ〉+ εIB)
−1

= limε→0+〈ρ
(
(〈η, η〉+ εIB)−1

)
((R(θη,η)∗)(η)), ρ((〈ξ, ξ〉+ εIB)

−1
)(θξ,ξ))(ξ))〉

= 〈S(η), ξ〉

as desired. Hence T, S ∈ Ba(HB) and S = T ∗.
To complete the proof it suffices to show that Ψ(T ) = (L,R). To see that LT = L, we notice for all

ξ, η, ζ ∈ HB

LT (θξ,η)(ζ) = T (θξ,η(ζ))
= T (ρ(〈η, ζ〉)ξ)
= ρ(〈η, ζ〉)T (ξ) as T ∈ Ba(HB)

= limε→0+ ρ(〈η, ζ〉)ρ((〈ξ, ξ〉+ εIB)
−1

)(L(θξ,ξ)(ξ)) definition of T (ξ)

= limε→0+ L(θξ,ξ)ρ(〈η, ζ〉)ρ((〈ξ, ξ〉+ εIB)
−1

)(ξ) as L(θξ,ξ) ∈ Ba(HB)
= limε→0+ L(θξ,ξ)θρ((〈ξ,ξ〉+εIB)−1)ξ,η(ζ)

= limε→0+ L(θξ,ξ ◦ θρ((〈ξ,ξ〉+εIB)−1)ξ,η)(ζ) by Lemma 2.5

= limε→0+ L(θρ(〈ρ((〈ξ,ξ〉+εIB)−1)ξ,ξ〉)ξ,η)(ζ)

= limε→0+ L(θρ((〈ξ,ξ〉+εIB)−1〈ξ,ξ〉)ξ,η)(ζ)

= L(θξ,η)(ζ)

where the last line follows by Lemma 4.22 and the fact that θ is continuous in each subscript. Therefore
LT = L. Furthermore, since R]T = LT∗ by (the proof of) Lemma 2.6, since T ∗ = S, and since

LT∗(θξ,η)(ζ) = S(θξ,η(ζ))
= S(ρ(〈η, ζ〉)ξ) as S ∈ Ba(HB)
= ρ(〈η, ζ〉)S(ξ)

= limε→0+ ρ(〈η, ζ〉)ρ((〈ξ, ξ〉+ εIB)
−1

)(R(θξ,ξ)
∗(ξ)) definition of S(ξ)

= limε→0+(R(θξ,ξ))
∗ρ(〈η, ζ〉)ρ((〈ξ, ξ〉+ εIB)

−1
)(ξ) as R(θξ,ξ) ∈ Ba(HB)

= limε→0+(R(θξ,ξ))
∗θρ((〈ξ,ξ〉+εIB)−1)ξ,η(ζ)

= limε→0+(θη,ρ((〈ξ,ξ〉+εIB)−1)ξR(θξ,ξ))
∗(ζ)

= limε→0+(R(θη,ρ((〈ξ,ξ〉+εIB)−1)ξ ◦ θξ,ξ))∗(ζ) by Lemma 2.5

= limε→0+ R]((θη,ρ((〈ξ,ξ〉+εIB)−1)ξ ◦ θξ,ξ)∗)(ζ)

= limε→0+ R](θξ,ξ ◦ θρ((〈ξ,ξ〉+εIB)−1)ξ,η)(ζ)

= limε→0+ R](θρ(〈ξ,ρ((〈ξ,ξ〉+εIB)−1)ξ〉)ξ,η)(ζ)

= limε→0+ R](θρ(〈ξ,ξ〉(〈ξ,ξ〉+εIB)−1ξ,η)(ζ)

= R](θξ,η)(ζ)

(where the last line follows by Lemma 4.22 and the fact that θ is continuous in each subscript) for all

ξ, η, ω ∈ HB, we obtain that R]T = R] so RT = R. Hence Ψ(T ) = (R,L) as desired.
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5 Applications and Other Interesting Results

In this section we will develop some interesting and important results pertaining to multiplier algebras of
C∗-algebras. These proofs will be developed from the descriptions of the multiplier algebra demonstrated in
the previous three sections. As such, due to the different possible techniques, we may (or may not) present
multiple proofs of each fact.

The first results we desire to discuss is the minimal tensor product of multiplier algebras. As the minimal
tensor product of two C∗-algebras can be derived from the images of faithful representations, we are in a
prime position to apply Section 3.

Proposition 5.1. Let A and B be C∗-algebras. Then there exists a faithful, unital ∗-homomorphism Ψ :
M(A)⊗minM(B)→M(A⊗min B).

Proof. By Theorem 3.6 there exists faithful, non-degenerate representations πA : A → B(H) and πB :
B → B(K) such that M(A) = ID(πA(A)) and M(B) = ID(πB(B)). Therefore, by properties of the
minimal tensor product, there exists a faithful ∗-homomorphism π : A ⊗min B → B(H ⊗ K) such that
π(A⊗B) = πA(A)⊗πB(B) for all A ∈ A and B ∈ B. Therefore, since πA(A)H = H and πB(B)K = K, it is
easy to see that π(A⊗min B)(H⊗K) contains all tensor of the form ξ⊗η where ξ ∈ H and η ∈ K. Therefore,
since π(A⊗min B)(H⊗K) is a subspace of H⊗K by Proposition 3.2, π is a non-degenerate representation
of A⊗min B. Hence M(A⊗min B) = ID(π(A⊗min B)).

Since M(A) and M(B) are C∗-subalgebras of B(H) and B(K) respectively, we easily obtain that
M(A) ⊗min M(B) is the C∗-subalgebra of B(H ⊗ K) obtained by taking the closure of the span of all
operators of the form T ⊗ S where T ∈ ID(πA(A)) and S ∈ ID(πB(B)). Since for any T ∈ ID(πA(A)) and
S ∈ ID(πB(B)) we have that

(T ⊗ S)π(A⊗B) = Tπ(A)⊗ Sπ(B) ∈ πA(A)� πB(B) ⊆ π(A⊗min B)

and
π(A⊗B)(T ⊗ S) = π(A)T ⊗ π(B)S ∈ πA(A)� πB(B) ⊆ π(A⊗min B)

for all A ∈ A and B ∈ B and since the closed linear span of elements of the form A⊗B (where A ∈ A and
B ∈ B) is dense in A⊗min B, we obtain that T ⊗ S ∈ ID(πB(B)). Thus the result follows.

We note that the map in the above theorem need not be surjective. Indeed if A = B = K then Ψ is the
canonical inclusion of B(H)⊗min B(H) into B(H⊗H) which is not surjective when H is infinite dimensional.
The following is an important corollary of a case where Ψ is surjective.

Proposition 5.2. Let A be a C∗-algebra. Then Mn(M(A)) 'M(Mn(A)).

Proof. In the proof of Proposition 5.1, if we let B :=Mn(C) then we can take πB to be the identity map.
To see that Ψ is surjective, suppose T ∈ ID(π(A⊗min B)) = ID((πA)n(Mn(A))) where (πA)n :Mn(A)→
B(H⊕n) ' Mn(B(H)) is the map defined by (πA)n([Ai,j ]) = [πA(Ai,j)]. Therefore we can write T = [Ti,j ]
where Ti,j ∈ B(H). To complete the proof it suffices to show that Ti,j ∈ ID(πA(A)) for all i, j ∈ {1, . . . , n}.
To see this, we notice for each k, ` ∈ {1, . . . , n} that if Ei,j ∈Mn(C) are the canonical matrix units then

n∑
i=1

Ti,kπ(A)⊗ Ei,` = T (πA)n(A⊗ Ek,`) ∈ (πA)n(Mn(A))

and
n∑
j=1

π(A)T`,j ⊗ Ek,j = (πA)n(A⊗ Ek,`)T ∈ (πA)n(Mn(A))

for all A ∈ A. Therefore we easily conclude that π(A)Ti,j , Ti,jπ(A) ∈ πA(A) for all A ∈ A and i, j ∈ {1, . . . , n}
so that Ti,j ∈ ID(πA(A)) =M(A) as desired.
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With the above example complete we turn our attention to placing a new topology on our multiplier
algebras. This topology generalizes several common topologies on C∗-algebras.

Definition 5.3. Let A be a C∗-algebra. For each A ∈ A define the seminorms lA and rA on M(A) by

lA(T ) = ‖AT‖A and rA(T ) = ‖TA‖A

for all T ∈M(A). The strict topology on M(A) is the locally convex topology generated by the seminorms
{lA, rA}A∈A.

Remarks 5.4. Note that the strict topology on M(A) is indeed a locally convex topology since A is
an essential ideal in M(A) so Lemma 1.5 implies that {lA, rA}A∈A is a separating family of seminorms.
Moreover the strict topology on M(A) is the topology on M(A) such that a net (Tλ)Λ converges to an
element T ∈ M(A) if and only if limΛ TλA = TA and limΛATλ = AT for all A ∈ A. If A is separable it is
clear that we may consider sequences instead of nets as the strict topology can easily be seen to be generated
by a countable family of seminorms and thus is metrizable.

Example 5.5. Let A be a unital C∗-algebra. Then, by Corollary 2.10 or Corollary 3.9, M(A) = A and it
is easy to see that the strict topology on M(A) is the norm topology on A.

Example 5.6. Recall thatM(K) = B(H) by Corollary 3.10. It is easy to see for T, (Tλ)Λ ⊆ B(H) uniformly
bounded that limΛ TλA = TA for all A ∈ K if and only if (Tλ)Λ converges to T in the σ-strong topology.
Similarly limΛATλ = AT for all A ∈ K if and only if limΛ T

∗
λA = T ∗A for all A ∈ K if and only if (T ∗λ )Λ

converges to T ∗ in the σ-strong topology. Thus the strict topology on B(H) induced by K is the σ-strong∗

topology on bounded subsets of B(H).

With the above definition of the strict topology, we note the following two important results.

Proposition 5.7. Let A be a C∗-algebra. Then every bounded net in M(A) that is Cauchy in the strict
topology converges in the strict topology. Furthermore if A is separable then M(A) is complete.

Proof. By Theorem 2.7 the double centralizer, DC(A) is equal to the multiplier algebra of A. Suppose (Tλ)Λ

is a bounded net that is Cauchy in the strict topology on M(A). By viewing M(A) as DC(A) we can write
Tλ = (Lλ, Rλ) ∈ DC(A). Recall that we view A ⊆ DC(A) via A 7→ (LA, RA) where LA(B) = AB and
RA(B) = BA for all B ∈ A.

Notice that (Lλ, Rλ)(LA, RA) = (Lλ ◦LA, RA ◦Rλ) and (LA, RA)(Lλ, Rλ) = (LA ◦Lλ, Rλ ◦RA). However

(Lλ ◦ LA)(B) = Lλ(AB) = Lλ(A)B = LLλ(A)(B)

for all B ∈ A by Lemma 2.5 and similarly

(Rλ ◦RA)(B) = Rλ(BA) = BRλ(A) = RRλ(A)(B).

Hence Lλ ◦ LA = LLλ(A) and Rλ ◦RA = RRλ(A).
Since (Tλ)Λ is a Cauchy net in the strict topology on M(A) we obtain that ((Lλ, Rλ)(LA, RA))Λ and

((LA, RA)(Lλ, Rλ) = (LA ◦ Lλ, Rλ ◦ RA))Λ are Cauchy nets in A ⊆ DC(A) for all A ∈ A. By the above
description this implies that (Lλ(A))Λ and (Rλ(A))Λ are Cauchy nets in A for all A ∈ A. Therefore, since
A is complete, we define

L(A) := lim
Λ
Lλ(A) and R(A) := lim

Λ
Rλ(A)

for each A ∈ A. It is then clear that L and R are bounded linear operators as (Lλ)Λ and (Rλ)Λ are bounded
nets. Moreover we notice for all A,B ∈ A that

AL(B) = lim
Λ
ALλ(B) = lim

Λ
Rλ(A)B = BR(A)
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so (L,R) ∈ DC(A). Therefore, to complete the proof, it suffices to show that ((Lλ, Rλ))Λ converges to (L,R)
in the strict topology. However Lemma 2.4 implies

limΛ ‖((Lλ, Rλ)− (L,R))(LA, RA)‖ = limΛ ‖(Lλ − L) ◦ LA‖
= limΛ

∥∥LLλ(A)−L(A)

∥∥
= limΛ ‖Lλ(A)− L(A)‖ = 0

and
limΛ ‖(LA, RA)((Lλ, Rλ)− (L,R))‖ = limΛ ‖RA ◦ (Rλ −R)‖

= limΛ

∥∥RRλ(A)−R(A)

∥∥
= limΛ ‖Rλ(A)−R(A)‖ = 0

for all A ∈ A. Hence the proof of the first claim is complete.
To see the second claim, we recall that since A is separable it suffices to consider sequence in the strict

topology onM(A). Moreover, if (Tn := (Ln, Rn))n≥1 is a Cauchy sequence inM(A) with regards to the strict
topology then it is easy to see that (Ln)n≥1 and (Rn)n≥1 are pointwise bounded as (Ln ◦ LA = LLn(A))n≥1

and (Rn ◦ RA = RRn(A))n≥1 are Cauchy sequence in A for all A ∈ A. Hence the Uniform Boundedness
Principle implies that (Tn)n≥1 is uniformly bounded and thus the proof is proceeds as above.

Proposition 5.8. Let A be a separable C∗-algebra, let (Tn)n≥1 be a bounded sequence of self-adjoint elements

in M(A), and let S be a total subset of A (that is, span(S) = A). Then (Tn)n≥1 converge strictly in M(A)
if and only if (TnA)n≥1 is a norm Cauchy sequence in A for all A ∈ S.

Proof. It is clear that if (Tn)n≥1 converge strictly in M(A) then (TnA)n≥1 is a norm Cauchy sequence in A
for all A ∈ S.

Suppose that (TnA)n≥1 is a norm Cauchy sequence in A for all A ∈ S where S is a total subset of A.
Since the span of S is dense in A and (Tn)n≥1 is bounded, it is elementary to see that (TnA)n≥1 is Cauchy
in A for all A ∈ A. Furthermore, since each Tn is self-adjoint, we easily obtain that (ATn)n≥1 is Cauchy in
A for all A ∈ A. Hence (Tn)n≥1 is a Cauchy sequence in the strict topology onM(A) and thus converges by
Proposition 5.7.

One use of strict convergence is the ability to sum an infinite number of elements in the multiplier algebra.
Proposition 5.8 implies that if we can check that a sum of self-adjoint elements in the multiplier algebra
converges when tested against an total subset of the C∗-algebra, then the sum converges in the multiplier
algebra.

To complete this section, we desire to discuss σ-unital C∗-algebras and relations to multiplier algebras.
One of the reasons for this is that multiplier algebras occur canonically in KK-Theory for C∗-algebras and
adding the condition that the C∗-algebra under investigation is σ-unital aids in the theory. We begin with
the following definition that is essential to developing the idea of a σ-unital C∗-algebra.

Definition 5.9. Let A be a C∗-algebra. A positive element A ∈ A is said to be strictly positive if ϕ(A) > 0
for every state ϕ on A.

Example 5.10. If A is a unital C∗-algebra the identity in A is clearly a strictly positive element.

Example 5.11. Let f ∈ C0(0, 1) be a strictly positive function; that is f(x) > 0 for all x ∈ (0, 1). Then,
by the Riesz Representation Theorem characterizing the states on C0(0, 1), f is a strictly positive element
of C0(0, 1). This is the reason for Definition 5.9.

We first desire to develop a proposition that easily enables us to determine when a C∗-algebra has a
strictly positive element in some cases. In addition, if we know a C∗-algebra has a strictly positive element
the proposition will say something nice about C∗-bounded approximate identities. We begin with a technical
lemma.

Lemma 5.12. Let A be a C∗-algebra, let A ∈ A be a strictly positive element, and let π : A → B(H) be a
non-degenerate representation. Then π(A)H = H.
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Proof. This lemma can be obtained as a result of Proposition 5.17 but as the proof of said proposition is
more complicated than needed for this result, we shall prove this result directly.

Suppose π(A)H 6= H. Let ξ ∈
(
π(A)H

)⊥
be any unit vector and consider the state ϕ on A defined by

ϕ(T ) = 〈π(T )ξ, ξ〉 for all T ∈ A (ϕ is indeed a state as π is non-degenerate; see Proposition 3.2). Then, as
A is strictly positive

0 < ϕ(A) = 〈π(A)ξ, ξ〉 = 0

as ξ ∈
(
π(A)H

)⊥
. Hence we have a contradiction so the result is complete.

Proposition 5.13. Let A be a C∗-algebra. Then A has a strictly positive element if and only if A has a
countable C∗-bounded approximate identity. In particular, if A ∈ A is a strictly positive element of norm
one then (A

1
n )n≥1 is a C∗-bounded approximate identity of A.

Proof. The following proof is based on [AK]. Suppose A has a countable C∗-bounded approximate identity.
Let {En}n≥1 be the elements in the C∗-bounded approximate identity (the C∗-bounded approximate identity
need not be a sequence). Let A :=

∑
n≥1

1
2nEn which is clearly a well-defined positive element of A. We

claim A is strictly positive. To see this, suppose ϕ is a state on A. As the norm of ϕ is the limit of ϕ applied
to any C∗-bounded approximate identity there exists some m ∈ N such that ϕ(Em) > 0. Hence

ϕ(A) ≥ 1

2m
ϕ(Em) > 0.

Hence A is strictly positive.
Suppose A is a strictly positive element of A of norm one. For each n ∈ N define En := A

1
n . By the

Continuous Functional Calculus for Normal Operators it is clear that (En)n≥1 is bounded by one and is
an increasing sequence of element of A. To show that (En)n≥1 is a C∗-bounded approximate identity it
suffices to show that limn→∞ ‖T − TEn‖ = 0 for all positive elements T ∈ A (by taking adjoints and linear
combinations of positive elements). Thus fix a positive element T ∈ A. Notice that

‖T − TEn‖2 =
∥∥T (IÃ − En)

∥∥2 ≤
∥∥∥T 1

2

∥∥∥2 ∥∥∥T 1
2 (IÃ − En)

1
2

∥∥∥2 ∥∥∥(IÃ − En)
1
2

∥∥∥2

≤ ‖T‖
∥∥∥T 1

2 (IÃ − En)T
1
2

∥∥∥
= ‖T‖

∥∥∥T − T 1
2EnT

1
2

∥∥∥ .
Hence it suffices to show that limn→∞

∥∥∥T − T 1
2EnT

1
2

∥∥∥ = 0.

For each n ∈ N let Sn := T − T 1
2EnT

1
2 ≥ 0. Since (T

1
2EnT

1
2 )n≥1 is clearly an increasing sequence of

positive operators, it is clear that (Sn)n≥1 is a decreasing sequence of positive operators. We claim that
limn→∞ ‖Sn‖ = 0. To begin, let ϕ be any positive linear functional on A. By the GNS construction there
exists a Hilbert space Hϕ, a non-degenerate representation πϕ : A→ B(Hϕ), and a vector ξ ∈ Hϕ such that
ϕ(B) = 〈π(B)ξ, ξ〉 for all B ∈ A. It is clear by the Borel Functional Calculus for Normal Operators that

π(En) = π(A)
1
n converges in the weak operator topology to the range projection of A as n tends to infinity.

Therefore Lemma 5.12 implies that (π(En))n≥1 converges to IHϕ in the strong operator topology. Hence

lim
n→∞

ϕ(Sn) = lim
n→∞

〈π(T )ξ, ξ〉 − 〈π(En)π(T
1
2 )ξ, π(T

1
2 )ξ〉 = 〈π(T )ξ, ξ〉 − 〈π(T

1
2 )ξ, π(T

1
2 )ξ〉 = 0.

Hence limn→∞ ϕ(Sn) = 0 for all positive linear functional ϕ on A. However, (Sn)n≥1 defines a sequence of
decreasing weak∗-continuous linear functionals on the weak∗-compact set of all positive linear functionals of
norm at most one on A. Hence Dini’s Theorem implies that (ϕ(Sn))n≥1 converges uniformly to zero on all
positive linear functionals on A with norm at most one. Hence it trivially follows that (Sn)n≥1 converges to
zero on A as desired.

With the above proof complete we easily obtain that certain C∗-algebras have strictly positive operators.
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Example 5.14. As the compact operators on a separable Hilbert space clearly have a countable C∗-bounded
approximate identity, the compact operators have a strictly positive operator.

Example 5.15. It is well-known that every separable C∗-algebra has a countable C∗-bounded approximate
identity. Hence every separable C∗-algebra has a strictly positive element.

We desire a term to classify when a C∗-algebra has a strictly positive operator.

Definition 5.16. A C∗-algebra A is said to be σ-unital if A contains at least one strictly positive element.

The reason for the term σ-unital is that Proposition 5.13 implies a C∗-algebra having a strictly positive
element is the same as the C∗-algebra having a countable approximate unit. By the above results, it is clear
that unital C∗-algebras and separable C∗-algebras are σ-unital.

To complete these notes, we desire to show that the multiplier algebra is well-behaved with respect to
inclusion for C∗-subalgebras that contain strictly positive elements. To see this, we require the following
proposition.

Proposition 5.17. Let A be a C∗-algebra and let A ∈ A be positive. Then A is a strictly positive operator
if and only if AA (or AA) is dense in A.

Proof. It is clear that by taking adjoints the statements AA is dense in A and AA is dense in A are equivalent.
Suppose A ∈ A is a positive element that is not strictly positive. Therefore there exists a state ϕ on A such
that ϕ(A) = 0. Therefore if C ∈ A then

|ϕ(AC)| 12 = |ϕ(A
1
2 (A

1
2C))| 12 ≤ ϕ(A)ϕ(C∗AC) = 0

by the Cauchy Schwarz Inequality for positive linear functionals. Hence ϕ(AA) = {0}. If AA were dense in
A, the previous equation would imply that ϕ = 0 which contradicts the fact that ϕ was a state. Hence if
A ∈ A is a positive element that is not strictly positive then AA is not dense in A.

The remainder of the proof is based on [Di] and [AK]. Suppose AA is not dense in A. Then it is easy to
see that there exists a positive element B ∈ A that is not in AA (as every element in A is a linear combination
of four positive elements). Let ε > 0 be arbitrary and let Sε be the set of all positive linear functionals on A
with norm at most one such that f(B) ≥ ε. Clearly Sε is compact in the weak∗-topology.

Suppose there exists a ϕ ∈ Sε such that ϕ(AA) = {0}. Since ϕ(B) ≥ ε, ϕ 6= 0 so a multiple of ϕ is a
state on A. However, by the Continuous Functional Calculus for Normal Operators, there exists a sequence
of functions fn ∈ C(σ(A)) such that limn→∞Afn(A) = A. Hence ϕ(A) = 0 so A is not a strictly positive
operator. Thus we may assume that each element in Sε does not vanish on AA.

For each ϕ ∈ Sε choose an element Aϕ ∈ AA such that ϕ(Aϕ) 6= 0. Therefore, by the Cauchy Schwarz
Inequality for positive linear functionals, 0 < |ϕ(Aϕ)|2 ≤ ‖ϕ‖ϕ(AϕA

∗
ϕ). Hence there exists a weak∗-

neighbourhood Uϕ of ϕ in Sε such that ψ(AϕA
∗
ϕ) > 0 for all ψ ∈ Uϕ. Therefore, since Sε is weak∗-compact,

there exists A1, . . . , An ∈ AA such that

ϕ(A1A1 + · · ·+AnA
∗
n) > 0

for all ϕ ∈ Sε.
Let Mε := inf{ϕ(A1A1 + · · ·+AnA

∗
n) | ϕ ∈ Sε}. Since Sε is weak∗-compact, it is clear that Mε > 0. Let

Tε := 1
Mε

(A1A1 + · · ·+AnA
∗
n) which is a positive element in AA (as AA is a right ideal). Hence

ϕ(Tε + εIÃ −B) ≥ 1 + ε ‖ϕ‖ − 1 = ε > 0

for all ϕ ∈ Sε. Moreover, if ϕ is a state on A that is not in Sε then

ϕ(Tε + εIÃ −B) ≥ 0 + ε− ε ≥ 0.

Hence ϕ(Tε + εIÃ −B) ≥ 0 for all states ϕ on A and hence B ≤ Tε + εIÃ.
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Notice that B
1
2

(
T

1
2
ε + εIÃ

)−1

T
1
2
ε is a well-defined element in A such that

∥∥∥∥B 1
2 −B 1

2

(
T

1
2
ε + εIÃ

)−1

T
1
2
ε

∥∥∥∥2

=

∥∥∥∥(T 1
2
ε + εIÃ − T

1
2
ε

)(
T

1
2
ε + εIÃ

)−1

B
(
T

1
2
ε + εIÃ

)−1 (
T

1
2
ε + εIÃ − T

1
2
ε

)∥∥∥∥
= ε2

∥∥∥∥(T 1
2
ε + εIÃ

)−1

B
(
T

1
2
ε + εIÃ

)−1
∥∥∥∥

≤ ε2
∥∥∥∥(T 1

2
ε + εIÃ

)−1

(Tε + εIÃ)
(
T

1
2
ε + εIÃ

)−1
∥∥∥∥

≤ ε

as f(x) = ε2 x2+ε
(x+ε)2 obtains its maximum at x = 0. Thus

B = lim
ε→0+

T
1
2
ε

(
T

1
2
ε + εIÃ

)−1

B
(
T

1
2
ε + εIÃ

)−1

T
1
2
ε .

However, T
1
2
ε ∈ AA as Tε ∈ AA, T

1
2
ε is a limit of polynomials in Tε that vanish at zero, and AA is a closed

right ideal. Furthermore, since
(
T

1
2
ε + εIÃ

)−1

B
(
T

1
2
ε + εIÃ

)−1

T
1
2
ε ∈ A, we obtain that B ∈ AA which is a

contradiction. Hence if AA is not dense in A, A is not a strictly positive element.

Theorem 5.18. Let A be a C∗-algebra and let B be a C∗-subalgebra of A. Suppose there exists a strictly
positive element A of A such that A ∈ B. Then there exists a unital, injective ∗-homomorphism π :M(B)→
M(A).

Proof. Let π : A→ B(H) be a faithful, non-degenerate representation. Therefore Theorem 3.6 implies that
ID(π(A)) =M(A).

We claim that π|B is a faithful, non-degenerate representation of B. Clearly π|B is faithful as π is
faithful. To see that π|B is non-degenerate, we notice that π(A)H is dense in H by Lemma 5.12. Hence π|B
is a faithful, non-degenerate representation of B. Therefore Theorem 3.6 implies that M(B) = ID(π(B)).

To complete the proof it suffices to show that if T ∈ ID(π(B)) then T ∈ ID(π(A)). Suppose T ∈
ID(π(B)). Hence Tπ(A) ∈ π(B) so Tπ(AA) ⊆ π(B)π(A) ⊆ π(A). Therefore, as A is a strictly positive
element of A, Proposition 5.17 implies that AA is dense in A so Tπ(A) ⊆ π(A). Similarly π(A)T ⊆ π(A) so
T ∈ ID(π(A) as desired.
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