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Abstract

These notes are based on my knowledge of completely positive maps that I have gained throughout
my studies. Most of the results contained in these notes may be found in Vern Paulsen’s Completely
Bounded Maps and Operators Algebras which is a very complete resource on these topics. However, my
notes will focus on those ideas that are essential to be able to study C∗-algebras and will take a slightly
different point of view towards the subject matter.

These notes will assume that the reader has a basic knowledge of C∗-algebras including knowledge of
the Continuous Functional Calculus for Normal Operators, a basic knowledge about positive operators,
and knowledge of C∗-bounded approximate identities for C∗-algebras. All C∗-algebras will be non-unital
unless otherwise specified and all inner products will be linear in the first variable.

This document is for educational purposes and should not be referenced. Please contact the author
of this document if you need aid in finding the correct reference. Comments, corrections, and recom-
mendations on these notes are always appreciated and may be e-mailed to the author (see his website
for contact info).

Contents

1 Introduction 2

2 Positive Maps 15

3 Completely Positive and Completely Bounded Maps 23

4 Arveson’s Extension Theorem and Stinespring’s Theorem 34

5 Applications of Completely Positive Maps 49

6 Liftings of Completely Positive Maps 59

7 Wittstock’s Theorem 62



1 Introduction

Completely positive maps are an important collection of morphisms between C∗-algebras. These maps have
many of the same properties as ∗-homomorphism even though they are generally not multiplicative. Various
interesting properties of C∗-algebra can be developed by considering how completely positive maps behave
on these C∗-algebras. To begin these notes, we will review how positive linear functionals on C∗-algebra
behave.

Definition 1.1. Let A be a C∗-algebra. A linear functional ϕ : A → C is said to be positive if ϕ(A) ≥ 0
whenever A ∈ A and A ≥ 0. A linear functional ϕ : A→ C is said to be a state if ϕ is positive and ‖ϕ‖ = 1.

States are the building blocks of the proof of the GNS theorem; the fact that for every C∗-algebra A
there exists a Hilbert space H such that A may be viewed as a C∗-subalgebra of B(H). Before we give some
examples of positive linear functionals, we first note the following simple yet important observation.

Lemma 1.2. Let A be a C∗-algebra and let ϕ : A → C be a positive linear functional. Then ϕ(A) ∈ R
whenever A is a self-adjoint element of A. Moreover ϕ(A∗) = ϕ(A) for all A ∈ A.

Proof. Suppose A ∈ A be self-adjoint. By the Continuous Functional Calculus for Normal Operators,
A = A+ − A− where A+ and A− are positive operators. Since ϕ is a positive linear functional, ϕ(A+) and
ϕ(A−) are positive scalars and thus ϕ(A) = ϕ(A+)− ϕ(A−) ∈ R.

Next suppose that A ∈ A is an arbitrary operator. Then ϕ(Re(A)), ϕ(Im(A)) ∈ R so

ϕ(A∗) = ϕ((Re(A) + iIm(A))∗) = ϕ(Re(A)− iIm(A))

= ϕ(Re(A))− iϕ(Im(A)) = ϕ(Re(A)) + iϕ(Im(A)) = ϕ(A)

as desired.

Examples of positive linear functionals are abundant in mathematics.

Example 1.3. Let X be a compact Hausdorff space and let µ be a probability measure on X. If ϕ : C(X)→
C is defined by

ϕ(f) =

∫
X

f(x)dµ(x)

for each f ∈ C(X), then ϕ is a state on C(X). To see this we first notice that ϕ is clearly linear by
integration theory. Next if f ∈ C(X) is positive then f = g∗g for some g ∈ C(X). Whence for all x ∈ X
f(x) = g∗(x)g(x) = g(x)g(x) ≥ 0. Therefore ϕ(f) is the integral of a continuous function that is positive
everywhere and thus ϕ(f) ≥ 0. Moreover

|ϕ(f)| ≤
∫
X

|f(x)|dµ(x) ≤
∫
X

‖f‖∞ dµ(x) ≤ ‖f‖∞ µ(X) = ‖f‖∞

for all f ∈ C(X). Thus ‖ϕ‖ ≤ 1. Since ϕ(IC(X)) = µ(X) = 1, ‖ϕ‖ = 1. Whence ϕ is a state on C(X). In
particular the map f 7→ f(x) is defines a state on C(X) for all x ∈ X.

Example 1.4. Let A be a C∗-algebra and let π : A→ B(H) be a ∗-homomorphism. For each ξ ∈ H define
ϕξ : A→ C by ϕξ(A) = 〈π(A)ξ, ξ〉 for all A ∈ A. It is clear that ϕξ is well-defined and linear. In addition if
A ∈ A is positive then A = B∗B for some B ∈ A and thus

ϕξ(A) = 〈π(B∗B)ξ, ξ〉 = 〈π(B)ξ, π(B)ξ〉 = ‖π(B)ξ‖ ≥ 0.

Whence each ϕξ is a positive linear functional. Note that for all A ∈ A

|ϕξ(A)| ≤ ‖π(A)ξ‖ ‖ξ‖ ≤ ‖A‖ ‖ξ‖2

so ‖ϕξ‖ ≤ ‖ξ‖2. Moreover, if A is unital and π(IA) = IH then ‖ϕξ‖ = ‖ξ‖2 as ϕξ(IA) = ‖ξ‖2. If ϕξ is a
state, we call ϕξ a vector state on A.
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In fact it will be shown later that every state on a C∗-algebra is a vector state on A.

Example 1.5. Let A =Mn(C) and define tr : A→ C by tr([ai,j ]) = 1
n

∑n
j=1 aj,j for all [ai,j ] ∈Mn(C). It

is clear that tr is a linear functional. To see that tr is positive, we notice that for all A = [ai,j ] ∈ A

tr(A∗A) = tr

([
n∑
k=1

ak,iak,j

])

=
1

n

n∑
j=1

n∑
k=1

ak,jak,j

=
1

n

n∑
j=1

n∑
k=1

|ak,j |2 ≥ 0.

Whence tr is a positive linear functional.
We claim that tr is a state on A. To see this, we notice that tr(In) = 1 so ‖tr‖ ≥ 1. To prove the other

inequality, let A = [ai,j ] ∈ A be arbitrary and let Ei,j be the canonical matrix units ofMn(C). Since Ei,i is
a projection, ‖Ei,i‖ = 1. Then

|ai,i| = ‖ai,iEi,i‖ = ‖Ei,iAEi,i‖ ≤ ‖Ei,i‖ ‖A‖ ‖Ei,i‖ = ‖A‖ .

Thus

|tr(A)| ≤ 1

n

n∑
j=1

|aj,j | ≤
1

n

n∑
j=1

‖A‖ = ‖A‖ .

Hence ‖tr‖ = 1 and tr is a state on A.

Notice that all of the positive linear functionals given in the above examples were continuous even though
continuity was not required in Definition 1.1. It turns out that if a linear functional is positive then it is
automatically continuous. To prove this, we begin with a lemma about convergence of positive elements in
a C∗-algebra that the reader may not be familiar with.

Lemma 1.6. Let A be a C∗-algebra. Suppose (An)n≥1 ∈ A is a sequence such that limn→∞An = A ∈ A
and An ≥ 0 for all n ∈ N. Then A is positive.

Proof. By considering the unitization Ã of A, we may assume that A is unital. By the continuity of the
adjoint A∗ = limn→∞A∗n = limn→∞An = A as each An is self-adjoint. Let c := supn≥1 ‖An‖ < ∞. Thus
‖A‖ ≤ c. Since 0 ≤ An ≤ cIA for all n, 0 ≤ 2An ≤ 2cIA for all n and thus −cIA ≤ 2An − cIA ≤ cIA for
all n. Thus (by the Continuous Functional Calculus) ‖2An − cIA‖ ≤ c for all n ∈ N. As limn→∞An = A,
limn→∞ 2An − cIA = 2A− cIA so ‖2A− cIA‖ ≤ c. Whence −cIA ≤ 2A− cIA ≤ cIA and thus 0 ≤ A ≤ cIA
as desired.

Proposition 1.7. Let A be a C∗-algebra and let ϕ : A → C be a positive linear functional. Then ϕ is
continuous.

Proof. First we claim that {ϕ(A) | A ∈ A, A ≥ 0, ‖A‖ ≤ 1} is a bounded subset of R≥0 (that is, we
claim ϕ is bounded on the positive elements of norm at most one). To see this, suppose otherwise. Then
for each n ∈ N there would exists an An ∈ A such that An ≥ 0, ‖An‖ ≤ 1, and ϕ(An) ≥ n2. Consider
B :=

∑∞
n≥1

1
n2An. Notice that B is a well-defined operator in A as ( 1

n2An)n≥1 is an absolutely summable

sequence since
∥∥ 1
n2An

∥∥ ≤ 1
n2 .

For each m ∈ N

B −
m∑
n=1

1

n2
An =

∞∑
n≥m+1

1

n2
An ≥ 0
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by Lemma 1.6. Whence

ϕ (B)−
m∑
n=1

ϕ

(
1

n2
An

)
= ϕ

(
B −

m∑
n=1

1

n2
An

)
≥ 0

so

ϕ(B) ≥
m∑
n=1

1

n2
ϕ(An) ≥

m∑
n=1

1 = m

for every m ∈ N. As this is an impossibility, we must have that {ϕ(A) | A ∈ A, A ≥ 0, ‖A‖ ≤ 1} is bounded
in R≥0.

Let
M := sup{ϕ(A) | A ∈ A, A ≥ 0, ‖A‖ ≤ 1}

and let A ∈ A be arbitrary. Write A = Re(A) + iIm(A) and recall ‖Re(A)‖ , ‖Im(A)‖ ≤ ‖A‖. By the
Continuous Functional Calculus, both Re(A) and Im(A) can be written as the difference of two positive
elements each with norm at most ‖Re(A)‖ and ‖Im(A)‖ respectively. Whence A = P1 − P2 + iP3 − iP4

where Pj ∈ A are positive elements with ‖Pj‖ ≤ ‖A‖. Thus

|ϕ(A)| ≤
4∑
j=1

|ϕ(Pj)| ≤
4∑
j=1

M ‖Pj‖ ≤ 4M ‖A‖ .

Thus ϕ is bounded with ‖ϕ‖ ≤ 4M .

The bounded of 4M obtained in the above proposition is never tight. Indeed looking at Examples 1.3,
1.4, and 1.5, we see that ‖ϕ‖ = ϕ(IA) in all of these examples. Below we will show that this is not a
coincidence. Although Proposition 1.11 will encapsulate Corollary 1.9, the proof of Corollary 1.9 is simple,
interesting, and will be used later in a more general setting. We begin with the following proposition for
unital C∗-algebras.

Proposition 1.8. Let A be a unital C∗-algebra. Suppose ϕ : A → C is a continuous linear functional such
that ‖ϕ‖ = ϕ(IA) = 1 and suppose N ∈ A is a normal operator. Then ϕ(N) ∈ conv(σ(N)) where σ(N) is
the spectrum of N and conv(σ(N)) is the closure of the convex hull of σ(N).

Proof. Suppose that N ∈ A is a normal operator such that ϕ(N) /∈ conv(σ(N)). Basic geometry (via the
separating version of the Hahn Banach Theorem) shows that there exists a z ∈ C and an r > 0 such that

conv(σ(N)) ⊆ Br[z] := {z′ ∈ C | |z − z′| ≤ r}

and |ϕ(N)− z| > r (that is conv(σ(N)) is contained in the closed ball of radius r centred at z yet ϕ(N) is
not in this ball).

Consider T := N − zIA ∈ A. Thus T is a normal element such that σ(T ) = σ(N)− z ⊆ Br[z]− z = Br[0]
where Br[0] is the closed ball of radius r around the origin. Since T is normal ‖T‖ = spr(T ) ≤ r. However

|ϕ(T )| = |ϕ(N)− zϕ(IA)| = |ϕ(N)− z| > r

which contradicts the fact that ‖ϕ‖ = 1.

Corollary 1.9. Let A be a unital C∗-algebra and let ϕ : A→ C be a linear functional. Then ϕ is positive if
and only if ‖ϕ‖ = ϕ(IA).

Proof. First suppose that ϕ is positive. We need to show that |ϕ(A)| ≤ ϕ(IA) ‖A‖ for all A ∈ A. First we
will prove the result for self-adjoint elements of A and then for a general element of A.

Let A ∈ A be self-adjoint. Then ϕ(A) ∈ R by Lemma 1.2. Since ‖A‖ IA −A ≥ 0, ‖A‖ϕ(IA)− ϕ(A) ≥ 0.
Similarly as ‖A‖ IA +A ≥ 0, ‖A‖ IA + ϕ(A) ≥ 0. Combining these two inequalities, we obtain that

−‖A‖ϕ(IA) ≤ ϕ(A) ≤ ‖A‖ϕ(IA)
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so |ϕ(A)| ≤ ϕ(IA) ‖A‖ as required.
Let A ∈ A be an arbitrary element. Then there exists a θ ∈ [0, 2π) such that |ϕ(A)| = eiθϕ(A) = ϕ(eiθA).

Let B := eiθA. Then
0 ≤ |ϕ(A)| = ϕ(B) = ϕ(Re(B)) + iϕ(Im(B)).

However, by Lemma 1.2, ϕ(Re(B)) and ϕ(Im(B)) are real numbers. Therefore 0 ≤ ϕ(Re(B)) + iϕ(Im(B))
is possible only if ϕ(Im(B)) = 0. Thus, since Re(B) is self-adjoint, by applying the above result in the
self-adjoint case we obtain that

|ϕ(A)| = ϕ(Re(B)) ≤ ‖Re(B)‖ϕ(IA) ≤ ‖B‖ϕ(IA) = ‖A‖ϕ(IA)

as desired.
Next suppose that ‖ϕ‖ = ϕ(IA). If ϕ = 0, we are done so suppose ‖ϕ‖ > 0 and define ψ : A → C

by ψ(A) = 1
‖ϕ‖ϕ(A). Then ψ is a linear functional such that ψ(IA) = ‖ψ‖ = 1. By Proposition 1.8

ψ(N) ∈ conv(σ(N)) whenever N is a normal element of A. In particular, if A ∈ A is a positive element,
ψ(A) ∈ conv(σ(A)) ⊆ [0,∞). Whence ϕ(A) = ‖ϕ‖ψ(A) ≥ 0. Hence ϕ is a positive linear functional.

Remarks 1.10. To prove the analogue of Corollary 1.9 for positive linear functionals on a non-unital
C∗-algebra, we notice that if ϕ : A→ C is a positive linear functional and we define [·, ·] : A× A→ C by

[A,B] = ϕ(B∗A)

for all A,B ∈ A, then [·, ·] is a positive sesquilinear form on A. Indeed [·, ·] is clearly linear in the first
component, conjugate linear in the second component, and [A,A] = ϕ(A∗A) ≥ 0 as ϕ is a positive linear
functional. It is a simple proof to show that a positive sesquilinear form on a vector space satisfies the
Cauchy-Schwarz inequality (this will be left as an exercise) so that

|ϕ(B∗A)| = | [A,B] | ≤ [A,A]
1
2 [B,B]

1
2 = ϕ(A∗A)

1
2ϕ(B∗B)

1
2

for all A,B ∈ A. This observation is essential in the following result along with the incredibly important
GNS construction.

Proposition 1.11. Let A be a C∗-algebra and let ϕ : A→ C be a linear functional. Then the following are
equivalent:

1. ϕ is a positive linear functional.

2. ‖ϕ‖ = limΛ ϕ(Eλ) for all C∗-bounded approximate identities (Eλ)Λ of A.

3. ‖ϕ‖ = limΛ ϕ(Eλ) where (Eλ)Λ is a C∗-bounded approximate identity of A.

Proof. (1) implies (2) Suppose that ϕ is a positive linear functional and (Eλ)Λ is any C∗-bounded approxi-
mate identity of A. If ϕ = 0 the result clearly holds. Therefore we will assume that ‖ϕ‖ > 0. Since (Eλ)Λ

is an increase net of positive elements of A and ϕ is positive, (ϕ(Eλ))Λ is an increasing net of positive real
numbers and thus converges to supΛ ϕ(Eλ). Since ‖Eλ‖ ≤ 1 for all λ, clearly ‖ϕ‖ ≥ limΛ ϕ(Eλ).

Next suppose A ∈ A is arbitrary. Since 0 ≤ Eλ and ‖Eλ‖ ≤ 1 for all λ ∈ Λ, 0 ≤ E2
λ ≤ Eλ by the

Continuous Functional Calculus and thus 0 ≤ ϕ(E2
λ) ≤ ϕ(Eλ) for all λ ∈ Λ. Since ϕ is continuous by

Proposition 1.7 and (Eλ)Λ is a C∗-bounded approximate identity for A,

|ϕ(A)| = lim
Λ
|ϕ(AEλ)|

≤ lim
Λ
|ϕ(AA∗)| 12 |ϕ(E∗λEλ)| 12 by the Cauchy-Schwarz inequality from Remarks 1.10

≤ lim
Λ
‖ϕ‖

1
2 ‖AA∗‖

1
2 ϕ(E2

λ)
1
2

≤ ‖ϕ‖
1
2 ‖A‖ lim

Λ
ϕ(Eλ)

1
2 .
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As the above inequality holds for all A ∈ A, we obtain that

‖ϕ‖ ≤ ‖ϕ‖
1
2

(
lim
Λ
ϕ(Eλ)

) 1
2

and thus, as ‖ϕ‖ 6= 0, ‖ϕ‖ = limΛ ϕ(Eλ).
(2) implies (3) Clear.
(3) implies (1) Suppose that (Eλ)Λ is a C∗-bounded approximate identity such that ‖ϕ‖ = limΛ ϕ(Eλ).

First we will show that if A ∈ A is self-adjoint then ϕ(A) ∈ R (which is necessary if ϕ is to be positive by
Lemma 1.2). Thus suppose A ∈ A is self-adjoint and write ϕ(A) = a+ bi where a, b ∈ R. We desire to show
that b = 0. The following may seem extremely obscure, but is a common trick. By exchanging A with −A
we can assume that b ≥ 0. For each λ ∈ Λ and n ∈ N consider Aλ,n := A+ inEλ. Then

lim inf
Λ
‖Aλ,n‖2 = lim inf

Λ
‖(A− inEλ)(A+ inEλ)‖

≤ lim inf
Λ
‖A‖2 + n ‖AEλ − EλA‖+ n2

= ‖A‖2 + n2.

So

a2 + (b+ n ‖ϕ‖)2 = |a+ (b+ n ‖ϕ‖)i|2

= lim
Λ
|ϕ(A) + inϕ(Eλ)|2

= lim
Λ
|ϕ(Aλ,n)|2

≤ ‖ϕ‖2 lim inf
Λ
‖Aλ,n‖2

≤ ‖ϕ‖2 ‖A‖2 + ‖ϕ‖2 n2.

Thus
a2 + b2 + 2bn ‖ϕ‖+ ‖ϕ‖2 n2 ≤ ‖ϕ‖2 ‖A‖2 + ‖ϕ‖2 n2

for all n ∈ N so
a2 + b2 + 2bn ‖ϕ‖ ≤ ‖ϕ‖2 ‖A‖2

for all n ∈ N. As b ≥ 0, this is possible if and only if b = 0. Therefore ϕ maps self-adjoint elements to
self-adjoint elements.

To complete the proof that ϕ is positive, it suffices to show that ϕ(A) ≥ 0 for all A ∈ A such that A ≥ 0
and ‖A‖ ≤ 1 (as we can scale all other positive elements). Thus suppose A ∈ A is such that A ≥ 0 and
‖A‖ ≤ 1. Let Bλ := A− Eλ. Then

−IA ≤ −Eλ ≤ A− Eλ ≤ A ≤ IA

in the unitization of A. Whence ‖A− Eλ‖ ≤ 1 so |ϕ(A) − ϕ(Eλ)| ≤ ‖ϕ‖ for all λ ∈ Λ. Since ‖ϕ‖ =
limΛ ϕ(Eλ), by taking a limit we obtain that |ϕ(A) − ‖ϕ‖ | ≤ ‖ϕ‖. However ϕ(A) ∈ R so this inequality
implies that 0 ≤ ϕ(A) ≤ ‖ϕ‖ as desired.

Before we move onto proving the GNS construction, we make an important and necessary detour into the
land of extending positive linear functionals. The importance of the Hahn-Banach Theorem is the ability to
extend a linear functional f defined on a subspace Y of a Banach space X to a linear functional f̃ : X→ C
such that ‖f‖ =

∥∥∥f̃∥∥∥. Thus it is natural to ask whether or not states can be extended to states on C∗-

algebras. The answer is yes as will be shown below. The proof of this result is made up of a few small
extension results that exploit Corollary 1.9 and a few subtleties.

Lemma 1.12. Let A be a non-unital C∗-algebra, let Ã be the unitization of A, and let ϕ : A → C be a
positive linear functional. Then ϕ has a unique positive extension ϕ̃ : Ã→ C such that ‖ϕ̃‖ = ‖ϕ‖.
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Proof. If ϕ̃ : Ã→ C is a positive extension of ϕ such that ‖ϕ‖ = ‖ϕ̃‖ then ϕ̃(IÃ) = ‖ϕ̃‖ = ‖ϕ‖ by Corollary
1.9 (or Proposition 1.11). Thus the only possible way to define ϕ̃ is by ϕ̃(λIÃ + A) = λ ‖ϕ‖+ ϕ(A). Hence
if there is a norm-preserving positive extension of ϕ it must be unique.

Now define ϕ̃ : Ã → C by ϕ̃(λIÃ + A) = λ ‖ϕ‖ + ϕ(A) for all A ∈ A and λ ∈ C. Since every element

of Ã has a unique decomposition as a sum of an element of CIÃ and an element of A, ϕ̃ is a well-defined
linear functional. To show that ϕ̃ is positive it suffices by Corollary 1.9 (or Proposition 1.11) to show that
‖ϕ̃‖ = ϕ̃(IÃ) (that is; ϕ̃ will be positive if and only if ‖ϕ‖ = ‖ϕ̃‖ so it suffices to show that ϕ̃ is a norm-
preserving extension to complete the proof). Let (Eλ)Λ be a C∗-bounded approximate identity for A. Since
ϕ is positive, Proposition 1.11 implies that ‖ϕ‖ = limΛ ϕ(Eλ). Since ϕ is positive and thus continuous, we
have for all αIÃ +A ∈ Ã that

|ϕ̃(αIÃ +A)| = |α ‖ϕ‖+ ϕ(A)|
= lim

Λ
|αϕ(Eλ) + ϕ(AEλ)|

= lim
Λ
|ϕ(αEλ +AEλ)|

≤ lim sup
Λ
‖ϕ‖

∥∥(αIÃ +A)Eλ
∥∥

≤ lim sup
Λ
‖ϕ‖

∥∥(αIÃ +A)
∥∥ ‖Eλ‖

= ‖ϕ‖
∥∥(αIÃ +A)

∥∥ .
Whence ‖ϕ̃‖ ≤ ‖ϕ‖. Since clearly ‖ϕ̃‖ ≥ ‖ϕ‖, the result follows.

Lemma 1.13. Let A be a unital C∗-algebra, let ϕ : A→ C be a positive linear functional, and view A as a
non-unital C∗-subalgebra of A⊕C canonically. Then ϕ has a unique positive extension ϕ̃ : A⊕C→ C such
that ‖ϕ̃‖ = ‖ϕ‖.

Proof. If ϕ̃ : A⊕ C→ C is a positive extension of ϕ such that ‖ϕ‖ = ‖ϕ̃‖ then

ϕ̃(IA ⊕ 1) = ‖ϕ̃‖ = ‖ϕ‖ = ϕ(IA) = ϕ̃(IA ⊕ 0)

by Corollary 1.9 (or Proposition 1.11). Hence ϕ̃(0⊕1) = 0. Thus the only possible way to define ϕ̃ : A⊕C→ C
so that ϕ̃ is positive is by ϕ̃(A ⊕ λ) = ϕ(A). Hence if there is a norm-preserving positive extension of ϕ it
must be unique.

Now define ϕ̃ : A⊕ C→ C by ϕ̃(A⊕ λ) = ϕ(A) for all A ∈ A and λ ∈ C. As ‖A⊕ λ‖ = max{‖A‖ , |λ|},
and A ⊕ λ ≥ 0 if and only if A ≥ 0 and λ ≥ 0, it is trivial to verify that ϕ̃ is a norm-preserving positive
extension of ϕ.

Lemma 1.14. Let A ⊆ B be C∗-algebras with the same unit. If ϕ : A → C is a positive linear functional
then ϕ has a positive extension ϕ̃ : B→ C such that ‖ϕ̃‖ = ‖ϕ‖.

Proof. Let A ⊆ B be C∗-algebras with the same unit and suppose ϕ : A→ C is a positive linear functional.
By the Hahn-Banach Theorem there exists a linear functional ϕ̃ : B→ C such that ϕ̃|A = ϕ and ‖ϕ‖ = ‖ϕ̃‖.
Thus, by Corollary 1.9 (or Proposition 1.11),

‖ϕ̃‖ = ‖ϕ‖ = ϕ(IA) = ϕ(IB) = ϕ̃(IB)

Whence ϕ̃ is positive by Corollary 1.9 (or Proposition 1.11).

Theorem 1.15. Let A ⊆ B be C∗-algebras and let ϕ : A → C be a positive linear functional. Then there
exists a positive linear functional ψ : B→ C such that ψ|A = ϕ and ‖ψ‖ = ‖ϕ‖.

Proof. We shall break the proof into two cases that will follow easily from the above lemmas.
Case 1: A is not unital Let B̃ be the unitization of B if B is not unital and let B̃ be B if B is unital.

Consider the ∗-algebra
CIB̃ + A := {λIB̃ +A | A ∈ A, λ ∈ C} ⊆ B̃.
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Let Ã be the unitization of A and define π : Ã→ CIB̃ +A by π(λIÃ +A) = λIB̃ +A for all A ∈ A and λ ∈ C.
It is easy to verify that π is a ∗-homomorphism. As the domain of π is a C∗-algebra and the range of π sits
inside the C∗-algebra B̃, the range of π is a C∗-algebra. As π(Ã) = CIB̃ + A, CIB̃ + A is a C∗-subalgebra

of B̃ with the same unit. Moreover if π(λIÃ +A) = 0 then λIB̃ = −A ∈ A. As A is not unital, this implies

that λ = 0 and then A = 0. Whence π must be injective and thus CIB̃ + A is ∗-isomorphic to Ã.
By Lemma 1.12, ϕ extends to a positive linear functional ϕ̃ : CIB̃ + A→ C such that ‖ϕ̃‖ = ‖ϕ‖. Since

CIB̃ + A ⊆ B̃ are C∗-algebras with the same unit, Lemma 1.14 implies that ϕ̃ extends to a positive linear

functional ψ̃ : B̃ → C such that
∥∥∥ψ̃∥∥∥ = ‖ϕ̃‖. Let ψ : B → C be defined by ψ = ψ̃|B. Since the restriction

of a positive linear functional is clearly positive, ψ is a positive linear functional. Moreover ψ extends ϕ by

construction and ‖ψ‖ ≤
∥∥∥ψ̃∥∥∥ = ‖ϕ‖ ≤ ‖ψ‖ (where the last inequality comes from the fact that ψ extends ϕ).

Case 2: A is unital Let B̃ be the unitization of B if B is not unital and let B̃ be B if B is unital. If
A and B̃ have the same unit, the result follows from Lemma 1.14. Else suppose that IA 6= IB̃. Whence we

have that IA ≤ IB̃ (as A ⊆ B̃) so P := IB̃ − IA is a non-zero projection in B̃. Define π : A ⊕ C → B̃ by
π(A ⊕ λ) = A + λP for all A ∈ A and λ ∈ C. We claim that π is an injective ∗-homomorphism. It is clear
that π is well-defined, linear, and ∗-preserving. To see that π is multiplicative, we note that PA = AP = 0
for all A ∈ A since IB̃A = AIB̃ = A = IAA = AIA for all A ∈ A. Therefore

π(A1 ⊕ λ1)π(A2 ⊕ λ2) = (A1 + λ1P )(A2 + λ2P ) = A1A2 + λ1λ2P = π((A1 ⊕ λ1)(A2 ⊕ λ2))

for all A1, A2 ∈ A and λ1, λ2 ∈ C. Whence π is a ∗-homomorphism. To see that π is injective, suppose
π(A ⊕ λ) = 0. Then A + λP = 0 so that 0 = P (A + λP ) = λP . Thus λ = 0 as P 6= 0. Whence A = 0 so
A⊕ λ = 0. Thus π is an injective ∗-homomorphism so A⊕C can be viewed as a C∗-subalgebra of B̃. Since
IA ⊕ 1 is a unit for A ⊕ C and π(IA ⊕ 1) = IA + P = IB̃, A ⊕ C can be viewed as a C∗-algebra of B̃ with
the same unit.

By Lemma 1.13, ϕ extends to a positive linear functional ϕ̃ : A ⊕ C → C such that ‖ϕ̃‖ = ‖ϕ‖. Since
A ⊕ C ⊆ B̃ are C∗-algebras with the same unit, Lemma 1.14 implies that ϕ̃ extends to a positive linear

functional ψ̃ : B̃ → C such that
∥∥∥ψ̃∥∥∥ = ‖ϕ̃‖. Let ψ : B → C be defined by ψ = ψ̃|B. Since the restriction

of a positive linear functional is clearly positive, ψ is a positive linear functional. Moreover ψ extends ϕ by

construction and ‖ψ‖ ≤
∥∥∥ψ̃∥∥∥ = ‖ϕ‖ ≤ ‖ψ‖ (where the last inequality comes from the fact that ψ extends

ϕ).

As a corollary of the above proposition (or simply Lemma 1.12), we obtain a non-unital version of
Proposition 1.8.

Proposition 1.16. Let A be a C∗-algebra. Suppose ϕ : A→ C is a positive linear functional with ‖ϕ‖ = 1
and N ∈ A is a normal operator. Then ϕ(N) ∈ conv(σ(N)) where σ(N) is the spectrum of N and conv(σ(N))
is the closure of the convex hull of σ(N).

Proof. If A is unital, the result was proven in Proposition 1.8. If A is not unital, let Ã be the unitization
of A. By Lemma 1.12, ϕ extends to a positive linear functional ϕ̃ : Ã → C such that ‖ϕ̃‖ = ‖ϕ‖ = 1.
By Corollary 1.9 (or Proposition 1.11), ϕ̃(IÃ) = ‖ϕ̃‖ = 1. Thus if N ∈ A is a normal operator then

ϕ(N) = ϕ̃(N) ∈ conv(σ(N)) by applying Proposition 1.8 to N and ϕ̃.

Now that we have demonstrated that positive linear functionals can be extended to positive linear func-
tionals, we will proceed with the GNS construction. To obtain the result that every C∗-algebra may be
represented on a Hilbert space (Theorem 1.20), it is possible to consider only unital C∗-algebras in extending
linear functionals and in the following theorem. However, it is instructive to prove the following theorem for
non-unital C∗-algebras.

Theorem 1.17 (Gelfand-Naimark-Segal Construction). Let A be a C∗-algebra and let ϕ : A → C be a
non-zero positive linear functional. Then there exists a Hilbert space H, a ∗-homomorphism π : A→ B(H),
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and a vector ξ ∈ H such that π(A)ξ = H (a vector that satisfies this property is said to be cyclic for π(A)),

‖ξ‖2H = ‖ϕ‖, and 〈π(A)ξ, ξ〉 = ϕ(A). If A is unital then π(IA) = IH.

Proof. Since ϕ is a positive linear functional, the map [·, ·] : A × A → C defined by [A,B] = ϕ(B∗A) is a
positive sesquilinear form on A as seen in Remarks 1.10. We want to turn A with this positive sesquilinear
form into a Hilbert space. To do this, we must first make this positive sesquilinear form an inner product
by removing the elements A ∈ A such that [A,A] = 0. Let

N := {A ∈ A | [A,A] = 0}.

We claim that N is a subspace of A. Indeed if A ∈ N and B ∈ A then

| [A,B] | ≤ [A,A]
1
2 [B,B]

1
2 = 0.

Whence
N = {A ∈ A | [A,B] = 0 for all B ∈ A}

which is clearly a subspace of A. Therefore [·, ·] defines an inner product 〈·, ·〉 : (A/N ) × (A/N ) → C by
〈A+N , B +N〉 = [A,B]. Let H be the completion of A/N with respect to the norm induced by this inner
product. Whence H is a Hilbert space.

Next we desire to construct the ∗-homomorphism π. This will be constructed by letting A act on itself
by multiplication on the left. Define π

′′
: A → L(A) by π

′′
(A)B = AB. Clearly π

′′
is a well-defined

homomorphism into L(A) as each π
′′
(A) is clearly linear. We claim that π

′′
defines a homomorphism from

A to L(A/N ). Indeed if A,B ∈ A then[
π
′′
(A)B, π

′′
(A)B

]
= ϕ(B∗A∗AB) ≤ ϕ(‖A∗A‖AB

∗B) ≤ ‖A‖2A [B,B]

as ϕ is a positive linear functional. Whence π
′′
(A)B ∈ N whenever B ∈ N . Therefore we may define

π′ : A→ L(A/N ) by π′(A)(B +N ) = AB +N . By the above inequality, we obtain that

‖π′(A)(B +N )‖H ≤ ‖A‖A ‖B +N‖H

Therefore, for each A ∈ A we can extend π′(A) to an element Aπ ∈ B(H) by continuity. Define π : A→ B(H)
by π(A) = Aπ for all A ∈ A. We claim that π is a ∗-homomorphism. To see that π is linear, we notice for
all A,B ∈ A and λ ∈ C that π(λA+B) = λπ(A) +π(B) on the dense subset A/N of H. Whence π must be
linear by continuity. Similarly if A,B ∈ A then π(AB) = π(A)π(B) on the dense subset A/N of H. Whence
π must be multiplicative by continuity. Lastly we notice for all A,B,C ∈ A that

〈π(A)∗(B +N ), C +N〉 = 〈B +N , AC +N〉
= ϕ((AC)∗B)

= ϕ(C∗(A∗B))

= 〈π(A∗)(B +N ), C +N〉.

Since A/N is dense in H, we obtain by continuity of the inner product that 〈π(A)∗η, ζ〉 = 〈π(A∗)η, ζ〉 for all
η, ζ ∈ H. Whence π is a ∗-homomorphism.

Lastly, we need to construct the vector ξ. In the case that A is unital this task is not difficult. We will
first present the case when A is unital, and then the case when A is not unital.

Case 1: A is unital Let ξ := IA +N ∈ H. Then

‖ξ‖2H = 〈IA +N , IA +N〉 = ϕ(I∗AIA) = ϕ(IA) = ‖ϕ‖

by Corollary 1.9. Moreover π(A)ξ = A/N = H so ξ is a cyclic vector. Notice π(IA)(A+N ) = A+N for all
A ∈ A. Whence π(IA) = IH. Lastly

〈π(A)ξ, ξ〉 = 〈A+N , IA +N〉 = ϕ(I∗AA) = ϕ(A)
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for all A ∈ A. Whence ξ has the desired properties.
Case 2: A is not unital Let (Eλ)Λ be a C∗-bounded approximate identity of A and let ξλ := Eλ + N .

We claim that (ξλ)Λ is a Cauchy net in H. To begin we notice if α, β ∈ Λ then

‖ξα − ξβ‖2H = ϕ((Eα − Eβ)2) = ϕ(E2
α) + ϕ(E2

β)− ϕ(EαEβ)− ϕ(EβEα).

Note that ϕ(E2
α) and ϕ(E2

β) are positive as ϕ is positive and thus ϕ(EαEβ) + ϕ(EβEα) ∈ R. Let ε > 0.
By Proposition 1.11 and the fact that (ϕ(Eλ))Λ is an increasing net, there exists an α0 ∈ Λ such that
‖ϕ‖ − ε ≤ ϕ(Eλ) for all λ ≥ α0. Since (Eλ)Λ is a C∗-bounded approximate identity, there exists a β0 such
that if λ ≥ β0 then ‖EλEα0

− Eα0
‖ < ε and ‖Eα0

Eλ − Eα0
‖ < ε. Thus for all β ≥ β0

|2ϕ(Eα0
)− ϕ(Eα0

Eβ)− ϕ(EβEα0
)| < 2 ‖ϕ‖ ε

and thus −ϕ(Eα0Eβ)− ϕ(EβEα0) < 2 ‖ϕ‖ ε− 2ϕ(Eα0) as all terms under consideration are real. Therefore

‖ξα0
− ξβ‖2H = ϕ(E2

α0
) + ϕ(E2

β)− ϕ(Eα0
Eβ)− ϕ(EβEα0

)

≤ 2 ‖ϕ‖+ (2 ‖ϕ‖ ε− 2ϕ(Eα0
))

≤ 2 ‖ϕ‖+ 2 ‖ϕ‖ ε− 2(‖ϕ‖ − ε)
= 2(‖ϕ‖+ 1)ε

whenever β ≥ β0. Thus if β, λ ≥ β0

‖ξβ − ξλ‖H ≤ ‖ξβ − ξα0
‖H + ‖ξα0

− ξλ‖H ≤ 2
√

2(‖ϕ‖+ 1)ε

As ε > 0 was arbitrary, we obtain that (ξλ)Λ is a Cauchy net in H.
Let ξ := limΛ ξλ ∈ H. To complete the proof it suffices to show that ξ satisfies the three claims in the

theorem. For the first we notice that

‖ξ‖2H = lim
Λ
‖ξλ‖2H = lim

Λ
ϕ(E2

λ) = ‖ϕ‖

since (E2
λ)Λ is also a C∗-bounded approximate identity for A and by Proposition 1.11. Next we claim that

π(A)ξ = A+N for all A ∈ A. To see this, we notice that

‖π(A)ξ − (A+N )‖2H = lim
Λ
‖π(A)ξλ − (A+N )‖2H

= lim
Λ
‖(AEλ −A) +N‖2H

≤ lim inf
Λ

ϕ((AEλ −A)∗(AEλ −A))

≤ lim
Λ
‖ϕ‖ ‖AEλ −A‖2 = 0

for all A ∈ A. Whence π(A)ξ = A+N for all A ∈ A and thus π(A)ξ = A/N = H. Lastly we notice that

〈π(A)ξ, ξ〉 = 〈A+N , ξ〉
= lim

Λ
〈A+N , Eλ +N〉

= lim
Λ
ϕ(EλA) = ϕ(A)

for all A ∈ A as desired.

The above theorem is extremely important as it show that each state on a C∗-algebra provides a repre-
sentation of the C∗-algebra. The following is an example that we hope removes some mystery of the GNS
construction.
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Example 1.18. Let X be a compact Hausdorff space, x ∈ X, and ϕx : C(X) → C be defined by ϕx(f) =
f(x). It was shown in Example 1.3 that ϕx is a state on C(X). In the GNS construction, we see that
N = {f ∈ C(X) | f(x) = 0} so that f + N = g + N in A/N if and only if f(x) = g(x). Thus it is easy
to see that the map U : A/N → C defined by U(f + N ) = f(x) is a well-defined isometry of pre-Hilbert
spaces. Whence A/N is complete and isomorphic to C. Then, by identifying the Hilbert space H in the
above construction with C, it is trivial to verify that the ∗-homomorphism π : C(X)→ B(C) constructed in
the above theorem is π(f)λ = f(x)λ for all λ ∈ C and f ∈ C(X).

To complete our proof that every C∗-algebra can be viewed as a C∗-subalgebra of some B(H), it suffices
to construct a faithful ∗-homomorphism π : A→ B(H). To do this we will appeal to Theorem 1.15 and the
above theorem.

Lemma 1.19. Let A be a C∗-algebra and let A ∈ A be self-adjoint. Then there exists a Hilbert space HA
and a representation πA : A → B(HA) such that ‖πA(A)‖ = ‖A‖A. If A is unital then we may choose πA
such that πA(IA) = IHA .

Proof. Let C∗(A) be the C∗-subalgebra of A generated by A. Then C∗(A) is isomorphic to the continuous
functions on σ(A) that vanish at zero. Since ‖A‖A = spr(A), there exists an x ∈ σ(A) such that |x| = ‖A‖A.
Define ϕ : C(σ(A)) → C by ϕ(f) = f(x). By Example 1.3, ϕ is a state on C(σ(A)) and thus defines a
state ψ : C∗(A)→ C. Since ψ(A) = x, |ψ(A)| = ‖A‖A (alternatively, such a state can be constructed using
Gelfand Theorem which is implicitly used to view C∗(A) as continuous functions).

By Theorem 1.15 ψ extends to a state ψ̃ : A → C. By Theorem 1.16 there exists a ∗-homomorphism
πA : A→ B(HA) and a ξ ∈ HA such that ‖ξ‖ = 1 and 〈πA(B)ξ, ξ〉 = ψ̃(B) for all B ∈ A (and πA(IA) = IHA
if A is unital). In particular

‖A‖A = |ψ(A)| = |ψ̃(A)| = |〈πA(A)ξ, ξ〉| ≤ ‖πA(A)‖

Since π is a ∗-homomorphism between C∗-algebras, ‖πA(A)‖ ≤ ‖A‖ so ‖πA(A)‖ = ‖A‖A.

Theorem 1.20 (GNS Theorem). Let A be a C∗-algebra. Then there exists a Hilbert space H and a faithful
∗-homomorphism π : A→ B(H). Whence every C∗-algebra may be viewed as a closed ∗-subalgebra of B(H).
If A is unital then we may choose π such that π(IA) = IH.

Proof. For each non-zero positive element A ∈ A, let HA be a Hilbert space and πA : A → C be a ∗-
homomorphism from Lemma 1.19 such that ‖πA(A)‖ = ‖A‖A (and πA(IA) = IHA if A is unital). Define

π : A→ B
(⊕

A∈A\{0},A≥0HA
)

by

π(B) =
⊕

A∈A\{0},A≥0

πA(B)

for all B ∈ A. Note that π does map into B
(⊕

A∈A\{0},A≥0HA
)

since if B ∈ A then ‖πA(B)‖ ≤ ‖B‖ so that

π(B) is a direct sum of uniformly bounded operators and thus is bounded. Clearly π is a ∗-homomorphism
being the direct sum of ∗-homomorphisms (and clearly π(IA) = IH if A is unital).

To complete the proof it suffices to show that π is isometric. Fix B ∈ A \ {0}. Then ‖πB∗B(B∗B)‖ =

‖B∗B‖ = ‖B‖2 so

‖π(B)‖2 ≥ ‖πB∗B(B)‖2 = ‖πB∗B(B)∗πB∗B(B)‖ = ‖πB∗B(B∗B)‖ = ‖B∗B‖ = ‖B‖2

so ‖π(B)‖ = ‖B‖ as π is contractive.
Since the image of a C∗-algebra under a ∗-homomorphism is closed, the final statement follows.

The above theorem allows us to use the structure of the bounded operators on a Hilbert space to prove
many interesting properties of C∗-algebras. The first property we will discuss is another characterization of
a positive operator in B(H).
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Proposition 1.21. Let T ∈ B(H). Then T ≥ 0 if and only if 〈Tξ, ξ〉 ≥ 0 for all ξ ∈ H.

Proof. If T ≥ 0, T = N∗N for some N ∈ B(H). Whence

〈Tξ, ξ〉 = 〈N∗Nξ, ξ〉 = ‖Nξ‖2 ≥ 0

for all ξ ∈ H.
Next suppose that 〈Tξ, ξ〉 ≥ 0 for all ξ ∈ H. Thus

〈(T − T ∗)ξ, ξ〉 = 〈Tξ, ξ〉 − 〈ξ, T ξ〉 = 〈Tξ, ξ〉 − 〈Tξ, ξ〉 = 0

for all ξ ∈ H. However, for every R ∈ B(H) and every ζ, η ∈ H, it is trivial to verify the identity

〈Rζ, η〉 =
1

4
(〈R(ζ + η), ζ + η〉 − 〈R(ζ − η), ζ − η〉+ i〈R(ζ + iη), ζ + iη〉 − i〈R(ζ − iη), ζ − iη〉) .

Thus as 〈(T −T ∗)ξ, ξ〉 = 0 for all ξ ∈ H, the above inequality implies that 〈(T −T ∗)ζ, η〉 = 0 for all ζ, η ∈ H
and thus T = T ∗.

Since T is self-adjoint, we may apply the Continuous Functional Calculus to write T = T+ − T− where
T+, T− ∈ B(H) are positive and T+T− = 0 = T−T+. We desire to show that T− = 0. Since 〈Tξ, ξ〉 ≥ 0 for
all ξ ∈ H, we obtain that

〈T−ξ, ξ〉 ≤ 〈T+ξ, ξ〉

for all ξ ∈ H. By substituting T−η for ξ in the above expression for any η ∈ H, using the fact that T 3
− ≥ 0

by the Continuous Functional Calculus, and the first direction of the proof, we have that

0 ≤ 〈T 3
−η, η〉 ≤ 〈T+T−η, T−η〉 = 0

Whence 〈T 3
−η, η〉 = 0 for all η ∈ H. As demonstrated above, this implies T 3

− = 0. Whence T− = 0 by the
Continuous Functional Calculus and thus T = T+ ≥ 0.

Another property that will be essential in Chapter 3 is that if A is a C∗-algebra, n ∈ N, and Mn(A)
is the ∗-algebra of the n × n matrices with entries in A with the operations [Ai,j ] + [Bi,j ] = [Ai,j + Bi,j ],
[Ai,j ][Bi,j ] = [

∑n
k=1Ai,kBk,j ], and [Ai,j ]

∗ = [A∗j,i] for all [Ai,j ], [Bi,j ] ∈Mn(A), thenMn(A) is a C∗-algebra.
To prove that Mn(A) is a C∗-algebra, we will use prove that Mn(B(H)) is a C∗-algebra for every Hilbert
space H and apply the GNS Theorem.

Lemma 1.22. Let H be a Hilbert space and n ∈ N. Then Mn(B(H)) is a ∗-algebra where the operations
are as defined above and Mn(B(H)) ' B(H⊕n) as ∗-algebras (where H⊕n is the direct sum of n copies of
H). Whence Mn(B(H)) can be given a C∗-norm.

Proof. For i ∈ {1, . . . , n}, let Ei : H → H⊕n be defined by

Eiξ = 0⊕ 0⊕ · · · ⊕ 0⊕ ξ ⊕ 0⊕ · · · ⊕ 0

where the ξ occurs in the ith-coordinate of the direct summand. It is trivial to verify that E∗i Ei = IH,
E∗jEi = 0 for all i 6= j, and

∑n
i=1EiE

∗
i = IH⊕n . Define π :Mn(B(H))→ B(H⊕n) by

π([Ti,j ]) =

n∑
i,j=1

EiTi,jE
∗
j

for all [Ti,j ] ∈Mn(B(H)). Note that each π([Ti,j ]) is a finite sum of bounded operators and thus is bounded.
By the known facts of the Ei and the operations on Mn(B(H)), π is a ∗-homomorphism. We claim that π
is injective. To see this, we notice that if π([Ti,j ]) = 0 then Tk,` = E∗kπ([Ti,j ])E` = 0 (by the properties of
the Ei) for all k, ` ∈ {1, . . . , n}. Whence [Ti,j ] = 0.

Lastly, we claim that π is surjective. To see this, let T ∈ B(H⊕n) be arbitrary. Let Ti,j := E∗i TEj ∈ B(H).
Then it is easy to verify (by using the properties of the Eis) that π([Ti,j ]) =

∑n
i,j=1EiE

∗
i TEjE

∗
j = T .
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From now on we will view Mn(B(H)) and B(H⊕n) as the same C∗-algebra using either identification
as required. The only restriction remaining in showing that Mn(A) is a C∗-algebra using Theorem 1.20 is
completeness. The following lemma solves this problem and is extremely useful.

Lemma 1.23. Let [Ti,j ] ∈Mn(B(H)) for some n ∈ N and some Hilbert space H. Then

max
i,j
‖Ti,j‖ ≤ ‖[Ti,j ]‖ ≤

 n∑
i,j=1

‖Ti,j‖2
 1

2

≤ nmax
i,j
‖Ti,j‖ .

Proof. For i ∈ {1, . . . , n}, let Ei : H → H⊕n be defined by

Eiξ = 0⊕ 0⊕ · · · ⊕ 0⊕ ξ ⊕ 0⊕ · · · ⊕ 0

where the ξ occurs in the ith-coordinate of the direct summand. Suppose [Ti,j ] ∈ Mn(B(H)). By the proof
of Lemma 1.22, Tk,` = E∗k [Ti,j ]E` for all k, ` ∈ {1, . . . , n}. Since each Ei is an isometry, ‖Ei‖ = 1 for all
i ∈ {1, . . . , n} so

‖Tk,`‖ = ‖E∗k [Ti,j ]E`‖ ≤ ‖[Ti,j ]‖

for all k, ` ∈ {1, . . . , n}. Thus maxi,j ‖Ti,j‖ ≤ ‖[Ti,j ]‖.
For the second inequality, let ξ = (ξ1, . . . , ξn) ∈ H⊕n be arbitrary. Then

‖[Ti,j ]ξ‖2 =

∥∥∥∥∥∥
 n∑
j=1

T1,jξj , . . . ,

n∑
j=1

Tn,jξj

∥∥∥∥∥∥
2

=

n∑
k=1

〈
n∑
i=1

Tk,iξi,

n∑
j=1

Tk,jξj

〉

≤
n∑
k=1

n∑
i,j=1

|〈Tk,iξi, Tk,jξj〉|

≤
n∑
k=1

n∑
i,j=1

‖Tk,i‖ ‖ξi‖ ‖Tk,j‖ ‖ξj‖

=

n∑
k=1

(
n∑
i=1

‖Tk,i‖ ‖ξi‖

)2

≤
n∑
k=1

( n∑
i=1

‖Tk,i‖2
) 1

2

 n∑
j=1

‖ξj‖2
 1

2


2

=

n∑
k=1

(
n∑
i=1

‖Tk,i‖2
)
‖ξ‖2 = ‖ξ‖2

n∑
i,j=1

‖Ti,j‖2 .

Thus, as this holds for all ξ ∈ H⊕n, we have ‖[Ti,j ]‖ ≤
(∑n

i,j=1 ‖Ti,j‖
2
) 1

2

as claim.

Finally, it is clear that
(∑n

i,j=1 ‖Ti,j‖
2
) 1

2 ≤ nmaxi,j ‖Ti,j‖ as
√
n2 = n.

Theorem 1.24. Let A be a C∗-algebra and let n ∈ N. Then Mn(A) is a ∗-algebra with the operations
[Ai,j ]+ [Bi,j ] = [Ai,j +Bi,j ], [Ai,j ][Bi,j ] = [

∑n
k=1Ai,kBk,j ], and [Ai,j ]

∗ = [A∗j,i] for all [Ai,j ], [Bi,j ] ∈Mn(A).
Moreover there is a unique C∗-norm on Mn(A).

Proof. It is trivial to verify that Mn(A) is a ∗-algebra with the operations indicated above. Moreover, if a
C∗-norm exists on Mn(A) then it must unique by C∗-algebra theory.

To show that Mn(A) is a C∗-algebra, let π : A → B(H) be a faithful ∗-homomorphism which exists
by Theorem 1.20. Since π is a ∗-homomorphism between C∗-algebras, π(A) is a closed ∗-subalgebra of
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B(H). Define π(n) : Mn(A) → Mn(B(H)) by π(n)([Ai,j ]) = [π(Ai,j)]. It is trivial to verify that π(n) is
a ∗-homomorphism and that π(n) is injective since π is injective. Thus π(n)(Mn(A)) is a ∗-subalgebra of
Mn(B(H)). Thus we can define a C∗-norm on Mn(A) by

‖[Ai,j ]‖Mn(A) =
∥∥π(n)([Ai,j ])

∥∥
Mn(B(H))

for all [Ai,j ] ∈ Mn(A). Thus it remains only to show that Mn(A) is complete. To begin, suppose that
([Ai,j,k])k≥1 ∈ Mn(A) is a Cauchy sequence. Then ([π(Ai,j,k)])k≥1 is a Cauchy sequence in Mn(B(H)).
Since maxi,j ‖Ti,j‖ ≤ ‖[Ti,j ]‖ for all [Ti,j ] ∈ Mn(B(H)), we obtain that (π(Ai,j,k))k≥1 is a Cauchy sequence
in π(A) ⊆ B(H) for all i, j ∈ {1, . . . , n}. Since π(A) is closed and thus complete, for each i, j ∈ {1, . . . , n}
there exists a Ai,j ∈ A such that π(Ai,j) = limk→∞ π(Ai,j,k). We claim that ([π(Ai,j,k)])k≥1 converges to
π(n)([Ai,j ]) so that ([Ai,j,k])k≥1 converges to [Ai,j ] in Mn(A). To see this, we notice by Lemma 1.23 that

lim sup
k→∞

‖[Ai,j ]− [Ai,j,k]‖ = lim sup
k→∞

‖[π(Ai,j)]− [π(Ai,j,k)]‖ ≤ lim
k→∞

 n∑
i,j=1

‖π(Ai,j)− π(Ai,j,k)‖2
 1

2

= 0.

Whence Mn(A) is complete with respect to this C∗-norm and thus is a C∗-algebra.

Notice that if A is a non-unital C∗-algebra and Ã is the unitization of A then Mn(A) ⊆ Mn(Ã) for
all n ∈ N although Mn(Ã) is not in general the unitization of Mn(A) (as it could be larger). Using
Mn(A) ⊆Mn(Ã) we can often assume that A has a unit when dealing with Mn(A).

In Chapter 3 maps like π(n) will be of the greatest importance.
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2 Positive Maps

In the first chapter of these notes we examined positive linear functionals and obtained some important
results pertaining to C∗-algebras. In this section we will generalize the notion of positive linear functionals
to maps between C∗-algebras.

Definition 2.1. Let A and B be C∗-algebras. A linear map ϕ : A→ B is said to be positive if ϕ(A) ≥B 0
whenever A ∈ A and A ≥A 0.

Example 2.2. Positive linear functionals are positive maps with the complex numbers as their range.

Example 2.3. Let A and B be C∗-algebras and let π : A→ B be a ∗-homomorphism. Then π is a positive
map since

π(A∗A) = π(A∗)π(A) = π(A)∗π(A) ≥B 0

for all A ∈ A.

Example 2.4. Let A be a C∗-algebra and let A ∈ A be arbitrary. Define ϕ : A→ A by ϕ(B) = A∗BA for
all B ∈ A. Then ϕ is a positive map since

ϕ(B∗B) = A∗B∗BA = (BA)∗BA ≥ 0

for all B ∈ B. In general ϕ is not a ∗-homomorphism. The map ϕ is known as the conjugation by A.

Example 2.5. Define ϕ :Mn(C) →Mn(C) by ϕ(A) = AT for all A ∈ Mn(C) where AT is the transpose
of A. Then ϕ is a positive map since

ϕ(A∗A) = (A∗A)T = AT (A∗)T = AT
(
AT
)∗

for all A ∈ A as the transpose and the adjoint commute.

Example 2.6. Let ϕi : Ai → Bi be positive maps for i = 1, 2. Then the map ϕ1⊕ϕ2 : A1⊕A2 → B1⊕B2

defined by (ϕ1 ⊕ ϕ2)(A1 ⊕A2) = ϕ1(A1)⊕ ϕ2(A2) for all Ai ∈ Ai is a positive map. Indeed

(ϕ1 ⊕ ϕ2)((A1 ⊕A2)∗(A1 ⊕A2)) = ϕ1(A∗1A1)⊕ ϕ2(A∗2A2) ≥ 0

since ϕi are positive and an element B1 ⊕B2 ∈ B1 ⊕B2 is positive if and only if B1 ≥ 0 and B2 ≥ 0. Thus
the direct sum of positive maps is positive.

The most obvious questions are whether or not the theorems developed for positive linear functionals
hold for positive maps between C∗-algebras. It turns out that the continuity and many (if not all) of the
norm properties of positive linear functionals carry-forward to positive maps between C∗-algebras. However,
the extension properties of positive maps will not hold in general. The proof that positive maps between
C∗-algebras are continuous is virtually identical to Proposition 1.7 with the addition of the following lemma.

Lemma 2.7. Let A be a C∗-algebra and let A,B ∈ A. If 0 ≤ A ≤ B then ‖A‖ ≤ ‖B‖.

Proof. In the unitization of A, 0 ≤ A ≤ B ≤ ‖B‖ IA. Thus ‖A‖ ≤ ‖B‖ by the Continuous Functional
Calculus.

Proposition 2.8. Let A and B be C∗-algebra and let ϕ : A→ B be a positive map. Then ϕ is continuous.

Proof. We proceed as we did in Proposition 1.7. We claim that {‖ϕ(A)‖B | A ∈ A, A ≥ 0, ‖A‖A ≤ 1} is
a bounded subset of R≥0 (that is, we claim ϕ is bounded on the positive elements of norm at most one).
To see this, suppose otherwise. Then for each n ∈ N there would exists an An ∈ A such that An ≥ 0,
‖An‖A ≤ 1, and ‖ϕ(An)‖B ≥ n3. Consider B :=

∑∞
n≥1

1
n2An. Notice that B is a well-defined operator in A

as ( 1
n2An)n≥1 is an absolutely summable sequence since

∥∥ 1
n2An

∥∥
A
≤ 1

n2 .
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For each m ∈ N

B −
m∑
n=1

1

n2
An =

∞∑
n≥m+1

1

n2
An ≥ 0

by Lemma 1.6. Whence

ϕ (B)−
m∑
n=1

ϕ

(
1

n2
An

)
= ϕ

(
B −

m∑
n=1

1

n2
An

)
≥ 0

so

ϕ(B) ≥
m∑
n=1

1

n2
ϕ(An) ≥ 1

m2
ϕ(Am)

for every m ∈ N. Since 0 ≤ 1
m2ϕ(Am) as ϕ is a positive map, Lemma 2.7 implies that

‖ϕ(B)‖B ≥
1

m2
‖ϕ(Am)‖A ≥

1

m2
m3 = m

for every m ∈ N. As this is an impossibility, we must have that {‖ϕ(A)‖B | A ∈ A, A ≥ 0, ‖A‖A ≤ 1} is
bounded in R≥0.

Let
M := sup{‖ϕ(A)‖B | A ∈ A, A ≥ 0, ‖A‖A ≤ 1}

and let A ∈ A. Write A = Re(A) + iIm(A) and recall ‖Re(A)‖A , ‖Im(A)‖A ≤ ‖A‖A. By the Continuous
Functional Calculus, both Re(A) and Im(A) can be written as the difference of two positive elements each
with norm at most ‖Re(A)‖ and ‖Im(A)‖ respectively. Whence A = P1 − P2 + iP3 − iP4 where Pj ∈ A are
positive elements with ‖Pj‖A ≤ ‖A‖A for all j. Thus

‖ϕ(A)‖B ≤
4∑
j=1

‖ϕ(Pj)‖B ≤
4∑
j=1

M ‖Pj‖A ≤ 4M ‖A‖A

Thus ϕ is bounded with ‖ϕ‖ ≤ 4M .

It remains to generalize Proposition 1.11 to positive maps. However, it is clear that the proof of Propo-
sition 1.11 does not follow to the setting of positive maps since one direction uses the Cauchy-Schwarz
inequality and the other makes use of properties of the complex numbers. We will see in Chapter 3 that
the proof of Proposition 1.11 generalizes to a subcollection of positive maps. It can be shown that Propo-
sition 1.11 generalizes to positive maps but the proof will detour us from our ultimate goal of studying
the subcollection of positive maps in Chapter 3. For a quick outline, it is possible to show that a positive
map between unital C∗-algebras obtains its norm at the identity. If ϕ : A → B is a positive map between
non-unital C∗-algebras, we recall that the double duals A∗∗ and B∗∗ are unital C∗-algebras (specifically von
Neumann algebras) such that any C∗-bounded approximate identity of A converges to the identity of A∗∗ in
the weak∗-topology. It is then possible to show that the second adjoint of ϕ, ϕ∗∗ : A→ B, is also a positive
map that is weak∗-continuous. Therefore, it is easy to see that the norm of ϕ∗∗ is obtained at the unit of A∗∗

and thus is at most the limit inferior of the norms of ϕ evaluated at the C∗-bounded approximate identity
of A.

Before we move on to Chapter 3, we desire to generalize the notion of a positive map. To have a notion
of a positive map between vector spaces we need only have a notion of positivity in each space. Therefore we
can consider positive maps between vector subspaces of C∗-algebras. One small problem is that we would
like to be able to decompose every element of these subspaces into a linear combination of positive elements
in these subspaces. One way of doing this is to consider special subspaces of unital C∗-algebras known as
operator systems.

Definition 2.9. An operator system S is a (not necessarily closed) vector subspace of some unital C∗-algebra
A such that IA ∈ S and S is closed under adjoints (that is S∗ = {T ∈ A | T ∗ ∈ S} = S).
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There are a plethora of operator systems so we simple give a few common examples.

Example 2.10. Unital C∗-algebras are clearly operator systems.

Example 2.11. Let A be a unital C∗-algebra and A ∈ A be arbitrary. Then

P(A) := span{I, {An, (A∗)n}n≥1}

is an operator system of A that is not a ∗-algebra.

Example 2.12. Let S := {f ∈ C(T) | f(z) = az + b + cz, a, b, c ∈ C}. Clearly S is an operator system of
C(T) that is not a ∗-algebra.

Next we demonstrate that operator systems have the desired positivity results mentioned above.

Lemma 2.13. Let S ⊆ A be an operator system. Then every element of S is a linear combination of four
positive elements of S.

Proof. Let A ∈ S be arbitrary. Since S is closed under adjoints, A∗ ∈ S. Therefore Re(A), Im(A) ∈ S
are self-adjoint elements (this is one of many reasons why operator systems are required to be closed under
adjoints). Thus it suffices to show that every self-adjoint element of S is a linear combination of two positive
elements.

Let A ∈ S be self-adjoint. Then ‖A‖ IA − A and ‖A‖ IA + A are positive elements of A. Since IA ∈ S,
‖A‖ IA −A, ‖A‖ IA +A ∈ S (this is one of many reasons why operator systems are required to have units).
Moreover A = 1

2 (‖A‖ IA +A)− 1
2 (‖A‖ IA −A) so A is a linear combination of positive elements of S.

Now we may generalize the notion of positive maps to operator systems.

Definition 2.14. Let S ⊆ A be an operator system and B a C∗-algebra. A linear map ϕ : S → B is said
to be positive if ϕ(A) ≥B 0 whenever A ∈ S and A ≥A 0. If B = C, we say that ϕ is a positive linear
functional.

As unital C∗-algebras are operator systems, we have already seen several positive maps. The following
is an example of a positive map on an operator system that is not a C∗-algebra.

Example 2.15. Let S := {f ∈ C(T) | f(z) = az + b + cz, a, b, c ∈ C}. Clearly S is an operator system of
C(T). Define ϕ : S →M2(C) by

ϕ(az + b+ cz) =

[
b 2a
2c b

]
It is easy to check that ϕ is well-defined (as every element of S has a unique representation as az + b+ cz)
and is linear. We claim that ϕ is positive. To see this, suppose that f(z) = az + b + cz ∈ S is positive.
Then f = f∗ which implies that b = b∗ and a = c∗ due to the unique representations of elements of S.
Thus it is clear that ϕ(f) is self-adjoint. Next we notice that since f ≥ 0, f(z) ≥ 0 for all z ∈ T. Whence
b+2Re(az) ≥ 0 for all z ∈ C. However 2Re(az) ≥ −2|a| for all z ∈ T and equality is obtained for some z ∈ T
(that is, if a = reiθ, where r ≥ 0 and θ ∈ [0, 2π), Re(a(−e−iθ)) = −|a|). Since f ≥ 0 we must have that
b ≥ 2|a|. Since ϕ(f) is self-adjoint, ϕ(f) is positive if and only if its eigenvalues are non-negative. However,
the characteristic equation of ϕ(f) is

χϕ(f)(λ) = λ2 − 2bλ+ b2 − 4ac

so that ϕ(f) has real eigenvalues if and only if

2b±
√

4b2 − 4(b2 − 4ac)

2
= b± 4|ac|

are both positive. However b ≥ 2|a| ≥ 0 so b ≥ 0 and b2 ≥ 4|a|2. Thus 0 ≤
√
b2 − 4|a|2 ≤ b. Whence ϕ(f)

is positive so ϕ is a positive linear map.
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The next logical question is whether or not all positive maps on operator systems are continuous. The
answer is yes, but we will see that the norms of positive maps on operator systems need not be obtained at
the identity. First we generalize Lemma 1.2 to show that positive maps on operator systems take self-adjoint
elements to self-adjoint elements.

Lemma 2.16. Let S ⊆ A be an operator system or C∗-algebra, let B be a C∗-algebra, and let ϕ : S → B be a
positive map. Then ϕ(A) is self-adjoint whenever A is a self-adjoint element of S. Moreover ϕ(A∗) = ϕ(A)∗

for all A ∈ S.

Proof. First suppose S is a C∗-algebra. Let A ∈ S be self-adjoint. By the Continuous Functional Calculus,
there exists positive elements A+, A− ∈ S such that A = A+ − A−. Then ϕ(A) = ϕ(A+) − ϕ(A−) is
self-adjoint being the difference of two positive operators.

Let A ∈ S be arbitrary. Thus

ϕ(A∗) = ϕ((Re(A) + iIm(A))∗) = ϕ(Re(A)− iIm(A))
= ϕ(Re(A))− iϕ(Im(A))
= (ϕ(Re(A)) + iϕ(Im(A)))∗ = ϕ(A)∗

as desired.
Now suppose S is an operator system. This proof will serve as a great example of why the conditions in

the definition of an operator system are necessary. Let A ∈ S be self-adjoint. Let A+ := 1
2 (‖A‖ IA +A) and

A− := 1
2 (‖A‖ IA − A) which are positive elements of S with A = A+ − A−. Then ϕ(A) = ϕ(A+) − ϕ(A−)

is self-adjoint being the difference of two positive operators.
Let A ∈ S be arbitrary. Since S is closed under adjoints, the self-adjoint elements Re(A) and Im(A) are

in S. Thus the computation in the previous case shows ϕ(A∗) = ϕ(A)∗ as desired.

Proposition 2.17. Let S ⊆ A be an operator system, let B be a C∗-algebra, and let ϕ : S → B be a positive
map. Then ϕ is continuous with ‖ϕ‖ ≤ 2 ‖ϕ(IA)‖B. If B = C then ‖ϕ‖ = |ϕ(IA)|.

Proof. We will mostly follow the proof of Proposition 2.8 yet we will make use of the unit in S to simplify
the first step. Let A ∈ S be positive with ‖A‖A ≤ 1. Then 0 ≤ A ≤ IA so 0 ≤ ϕ(A) ≤ ϕ(IA). Whence
‖ϕ(A)‖B ≤ ‖ϕ(IA)‖B by Lemma 2.7.

To prove the inequality with the constant 2 (instead of perhaps the constant 4 which we would obtain
using the proof of Proposition 2.8) we will need to be a little careful. Consider A ∈ A with A self-adjoint
and ‖A‖A ≤ 1. Then ϕ(A) is self-adjoint by Lemma 2.16. Let A+ := 1

2 (IA +A) and A− := 1
2 (IA−A) which

are positive elements of S with A = A+ −A− and ‖A+‖A , ‖A−‖A ≤ 1. Whence

−A− ≤ A ≤ A+.

By applying ϕ and the above results for positive operators, we obtain that

−‖ϕ(IA)‖ IB̃ ≤ −ϕ(IA) ≤ −ϕ(A−) ≤ ϕ(A) ≤ ϕ(A+) ≤ ϕ(IA) ≤ ‖ϕ(IA)‖ IB̃

where IB̃ is the unit of the unitization of B if B is not unital. Therefore ‖ϕ(A)‖B ≤ ‖ϕ(IA)‖B by the
Continuous Functional Calculus.

Finally suppose A ∈ S is an arbitrary element such that ‖A‖A ≤ 1. Then Re(A) and Im(A) are
self-adjoint elements of S with norm at most one. Whence

‖ϕ(A)‖B ≤ ‖ϕ(Re(A))‖B + ‖ϕ(Im(A))‖B ≤ 2 ‖ϕ(IA)‖B

as desired.
Now suppose that B = C. We know from above that |ϕ(A)| ≤ ‖A‖A ϕ(IA) for all A ∈ S self-adjoint. Let

A ∈ S be arbitrary and choose θ ∈ [0, 2π) such that eiθϕ(A) = |ϕ(A)| and let B := eiθA ∈ S. Then

|ϕ(A)| = ϕ(B) = ϕ(Re(B)) + iϕ(Im(B))
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(as Re(B), Im(B) ∈ S so it makes sense to apply ϕ to these elements). Since Re(B) and Im(B) are
self-adjoint elements of S, ϕ(Re(B)) and ϕ(Im(B)) are real numbers by Lemma 2.16. However, since
ϕ(Re(B)) + iϕ(Im(B)) is a real number, this implies that ϕ(Im(B)) = 0 and ϕ(Re(B)) ≥ 0 so

|ϕ(A)| = ϕ(Re(B)) = |ϕ(Re(B))| ≤ ‖Re(B)‖A ϕ(IA) ≤ ‖B‖A ϕ(IA) = ‖A‖A ϕ(IA).

Since A ∈ S was arbitrary, ‖ϕ‖ ≤ ϕ(IA). Since the other inequality is clear, we have completed the proof.

Remarks 2.18. It turns out that inequality ‖ϕ‖ ≤ 2 ‖ϕ(IA)‖B obtained in the previous proposition is strict
for arbitrary positive maps on operator systems. For example, consider the positive map ϕ from Example
2.15. Then ϕ(1) = I2 has norm one yet if f(z) = z for all z ∈ T, f ∈ S and ‖f‖ = 1 yet

ϕ(f) =

[
0 2
0 0

]
has norm two.

However there are many cases where we can obtain a tighter bounded for the norm of a positive map.
The first we will demonstrate is when the range of the positive map is an abelian C∗-algebra. To prove this
we need a simple lemma.

Lemma 2.19. Let S ⊆ A be an operator system and let B and C be C∗-algebras. If ϕ : S → B and
ψ : B→ C are positive maps then ψ ◦ ϕ : S → C is a positive map.

Proof. Let A ∈ S be a positive operator. Since ϕ is a positive map, ϕ(A) ∈ B is positive. Since ψ is a
positive map, (ψ ◦ ϕ)(A) = ψ(ϕ(A)) is positive in C as desired.

Proposition 2.20. Let S ⊆ A be an operator system, let X be a compact Hausdorff space, and let ϕ : S →
C(X) be a positive map. Then ‖ϕ‖ = ‖ϕ(IA)‖.

Proof. Clearly ‖ϕ‖ ≥ ‖ϕ(IA)‖∞. The idea for the rest of the proof is to make use of the norm equality from
Proposition 2.17 for positive linear functionals. For each x ∈ X define δx : C(X) → C by δx(f) = f(x) for
all f ∈ C(X). Then each δx is a positive linear functional by Example 1.3. Moreover ‖f‖ = supx∈X |δx(f)|
for all f ∈ C(X). Let A ∈ A be arbitrary. Then

‖ϕ(A)‖ = sup
x∈X
|δx(ϕ(A))|.

However δx ◦ ϕ : S → C is a positive linear functional for all x ∈ X. Thus ‖δx ◦ ϕ‖ = δx(ϕ(IA)) by
Proposition 2.17. Hence

‖ϕ(A)‖ ≤ sup
x∈X
‖δx ◦ ϕ‖ ‖A‖ = sup

x∈X
‖δx(ϕ(IA))‖ ‖A‖ = ‖ϕ(IA)‖ ‖A‖

so ‖ϕ‖ ≤ ‖ϕ(IA)‖.

Next we will show that the norm of a positive map from C(X) (where X is a compact Hausdorff space)
is obtained at the identity. First we need a small technical lemma and a common theorem from the theory
of C(X) that will not be proven. Note that the following lemma is trivial in the case that A = C(X).

Lemma 2.21. Let A be a C∗-algebra. Suppose A1, . . . , An ∈ A are positive elements. Then for all
λ1, . . . , λn ∈ C with |λi| ≤ 1 for all i ∈ {1, . . . , n}, ‖

∑n
i=1 λiAi‖ ≤ ‖

∑n
i=1Ai‖.

Proof. To prove this lemma, we will Theorem 1.24 and matrix tricks. By considering the unitization of A if
necessary, we may assume that A is unital. Notice in Mn(A) that

∑n
i=1 λiAi 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 =


A

1
2
1 0 · · · 0
...

...
...

A
1
2
n 0 · · · 0


∗

λ1I 0 · · · 0

0
. . .

. . . 0
...

. . .
. . . 0

0 0 · · · λnI



A

1
2
1 0 · · · 0
...

...
...

A
1
2
n 0 · · · 0

 .
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Thus, by Lemma 1.23,

∥∥∥∥∥
n∑
i=1

λiAi

∥∥∥∥∥ ≤
∥∥∥∥∥∥∥∥∥


∑n
i=1 λiAi 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


∥∥∥∥∥∥∥∥∥ ≤

∥∥∥∥∥∥∥∥

A

1
2
1 0 · · · 0
...

...
...

A
1
2
n 0 · · · 0


∥∥∥∥∥∥∥∥

2
∥∥∥∥∥∥∥∥∥∥


λ1I 0 · · · 0

0
. . .

. . . 0
...

. . .
. . . 0

0 0 · · · λnI


∥∥∥∥∥∥∥∥∥∥
.

It is clear that ∥∥∥∥∥∥∥∥∥∥


λ1I 0 · · · 0

0
. . .

. . . 0
...

. . .
. . . 0

0 0 · · · λnI


∥∥∥∥∥∥∥∥∥∥

= max
i=1,...,n

|λi| ≤ 1

(by either viewing A⊕n as a C∗-algebra of Mn(A) or using the fact that the norm on Mn(A) comes from
the norm of Mn(B(H)) ' B(H⊕n) and the norm in B(H⊕n) can easily be check to have this property).
Moreover∥∥∥∥∥∥∥∥

A

1
2
1 0 · · · 0
...

...
...

A
1
2
n 0 · · · 0


∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥

A

1
2
1 0 · · · 0
...

...
...

A
1
2
n 0 · · · 0


∗ 

A
1
2
1 0 · · · 0
...

...
...

A
1
2
n 0 · · · 0


∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥


∑n
i=1Ai 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


∥∥∥∥∥∥∥∥∥ .

However, by Lemma 1.23 (using the second inequality),∥∥∥∥∥∥∥∥∥


∑n
i=1Ai 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


∥∥∥∥∥∥∥∥∥ ≤

∥∥∥∥∥
n∑
i=1

Ai

∥∥∥∥∥
2
 1

2

=

∥∥∥∥∥
n∑
i=1

Ai

∥∥∥∥∥ .
Whence ‖

∑n
i=1 λiAi‖ ≤ ‖

∑n
i=1Ai‖ as desired.

Theorem 2.22. Let X be a compact Hausdorff space and let {Ui}ni=1 be a finite open covering of X. Then
there exists continuous function gi : X → [0, 1] such that

∑n
i=1 gi = IC(X) and gi|Uci = 0. The collection

{gi}ni=1 is called a partition of unity of X.

Proposition 2.23. Let B be a unital C∗-algebra, let X be a compact Hausdorff space, and let ϕ : C(X)→ B
be a positive map. Then ‖ϕ‖ = ‖ϕ(1)‖ where 1 is the constant function on X with value 1.

Proof. Clearly ‖ϕ‖ ≥ ‖ϕ(1)‖. Fix f ∈ C(X) with ‖f‖ ≤ 1. The idea of the proof is to approximate f using
a partition of unity from the above theorem and appeal to the Lemma 2.21 to say that the norm of ϕ(f)
is not too large. To begin let ε > 0 and for each y ∈ X let Uy := f−1(Bε(f(y))) which will be open in X
since f is continuous. Since X =

⋃
y∈X Uy and X is compact, there exists a finite open subcover {Uxi}ni=1

of X such that for all x ∈ Uxi |f(x) − f(xi)| < ε. By the above theorem there exists continuous functions
gi : X → [0, 1] such that

∑n
i=1 gi = 1 and gi(x) = 0 for all x /∈ Uxi .

For each i ∈ {1, . . . , n} let λi := f(xi). Since ‖f‖ ≤ 1, |λi| ≤ 1 for all i ∈ {1, . . . , n}. Moreover for any
x ∈ X ∣∣∣∣∣f(x)−

n∑
i=1

λigi(x)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

(f(x)− λi)gi(x)

∣∣∣∣∣ ≤
n∑
i=1

|f(x)− λi|gi(x) ≤
n∑
i=1

εgi = ε

since if x ∈ Uxi then |f(x)−λi| = |f(x)−f(xi)| < ε and if x /∈ Uxi then gi(x) = 0. Hence ‖f −
∑n
i=1 λigi‖∞ ≤

ε.
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Since gi are positive for all i ∈ {1, . . . , n} and ϕ is a positive map, ϕ(gi) are positive for all i ∈ {1, . . . , n}.
Moreover notice that ‖

∑n
i=1 ϕ(gi)‖ = ‖ϕ (

∑n
i=1 gi)‖ = ‖ϕ(1)‖ and |λi| ≤ 1 for all i ∈ {1, . . . , n}. Whence

‖
∑n
i=1 λiϕ(gi)‖ ≤ ‖ϕ(1)‖ by Lemma 2.21. Therefore

‖ϕ(f)‖ ≤

∥∥∥∥∥ϕ
(
f −

n∑
i=1

λigi

)∥∥∥∥∥+

∥∥∥∥∥
n∑
i=1

λiϕ(gi)

∥∥∥∥∥ ≤ ε ‖ϕ‖+ ‖ϕ(1)‖

Thus, as ‖ϕ‖ < ∞ is a constant and ε > 0 was arbitrary, ‖ϕ(f)‖ ≤ ‖ϕ(1)‖. Thus, as f was arbitrary,
‖ϕ‖ ≤ ‖ϕ(1)‖ as desired.

Remarks 2.24. The above proposition allows us prove that there are positive maps from operator systems
that cannot be extended to positive maps on the entire C∗-algebra. To see this consider ϕ : S →M2(C) as
constructed in Example 2.15. Then ϕ cannot be extended to a positive map ϕ̃ : C(T) →M2(C) since this
would imply

‖ϕ̃‖ = ‖ϕ̃(1)‖ = ‖ϕ(1)‖ =
1

2
‖ϕ‖

which is impossible as 0 < ‖ϕ‖ ≤ ‖ϕ̃‖ since ϕ̃ extends ϕ.

One topic we have yet to address is whether positive linear functionals on operator systems have the same
properties as positive linear functional on C∗-algebras. The answer is yes (except for the GNS construction)
and proofs are almost identical to those given in Chapter 1.

Proposition 2.25. Let S ⊆ A be an operator system. Suppose ϕ : S → C is such that ‖ϕ‖ = ϕ(IA) = 1
and suppose N ∈ S is a normal operator. Then ϕ(N) ∈ conv(σ(N)) where σ(N) is the spectrum of N and
conv(σ(N)) is the closure of the convex hull of σ(N).

Proof. Suppose that N ∈ S is a normal operator such that ϕ(N) /∈ conv(σ(N)). Basic geometry (via the
separating version of the Hahn Banach Theorem) shows that there exists a z ∈ C and an r > 0 such that

conv(σ(N)) ⊆ Br[z] = {z′ ∈ C | |z − z′| ≤ r}

and |ϕ(N)− z| > r (that is conv(σ(N)) is contained in the closed ball of radius r centred at z yet ϕ(N) is
not in this ball).

Consider T := N − zIA ∈ S. Thus T is a normal element such that σ(T ) = σ(N)− z ⊆ Br[z]− z = Br[0]
where Br[0] is the closed ball of radius r around the origin. Since T is normal ‖T‖ = spr(T ) ≤ r. However

|ϕ(T )| = |ϕ(N)− zϕ(IA)| = |ϕ(N)− z| > r

which contradicts the fact that ‖ϕ‖ = 1.

Corollary 2.26. Let S ⊆ A be an operator system and let ϕ : S → C be a linear functional. Then ϕ is
positive if and only if ‖ϕ‖ = ϕ(IA).

Proof. If ϕ is positive, Proposition 2.17 implies that ‖ϕ‖ = ϕ(IA).
Next suppose that ‖ϕ‖ = ϕ(IA). If ϕ = 0, we are done so suppose ‖ϕ‖ > 0 and define ψ : A → C

by ψ(A) = 1
‖ϕ‖ϕ(A). Then ψ is a linear functional such that ψ(IA) = ‖ψ‖ = 1. By Proposition 2.25

ψ(N) ∈ conv(σ(N)) whenever N is a normal element of A. In particular, if A ∈ A is a positive element,
ψ(A) ∈ conv(σ(A)) ⊆ [0,∞). Whence ϕ(A) = ‖ϕ‖ψ(A) ≥ 0. Hence ϕ is a positive linear functional.

Proposition 2.27. Let S ⊆ A be an operator system and let ϕ : S → C be a positive linear functional.
Then there exists a positive linear functional ϕ̃ : A→ C such that ‖ϕ̃‖ = ‖ϕ‖ and ϕ̃|S = ϕ.

Proof. By the Hahn-Banach Theorem there exists a linear functional ϕ̃ : A → C such that ‖ϕ̃‖ = ‖ϕ‖ and
ϕ̃|S = ϕ. By Proposition 2.17 ‖ϕ̃‖ = ‖ϕ‖ = ϕ(IA) = ϕ̃(IA). Whence by Corollary 2.26 ϕ̃ is positive.
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Lastly we would like to remark that many authors require that operator systems are closed. The following
proposition shows why.

Proposition 2.28. Let S ⊆ A be an operator system, let B a C∗-algebra, and let ϕ : S → B be a positive
map. Then there exists a positive map ϕ : S → B extending ϕ.

Proof. Since ϕ is positive, ϕ is continuous by Proposition 2.17 and thus extends to a linear map ϕ : S → B.
It remains to show that ϕ is positive. Let A ∈ S be positive. Then there exists a sequence (A′n)n≥1 ⊆ S
such that A = limn→∞A′n. Let An := Re(A′n) ∈ A. Since A is positive, A is self-adjoint so A = A∗ =
limn→∞(A′n)∗ and thus A = limn→∞An.

Let ε > 0. Since A = limn→∞An, by the lower semicontinuity of the spectrum there exists an N ∈ N
such that σ(An) ⊆ [−ε, spr(A) + ε] for all n ≥ N . Therefore An ≥ −εIA for all n ≥ N so that ϕ(An) ≥
−εϕ(IA) = −ε ‖ϕ‖ for all n ≥ N . Since ϕ(A) = limn→∞ ϕ(An) ∈ R, we obtain that ϕ(A) ≥ −ε ‖ϕ‖ for all
ε > 0. Whence ϕ(A) ≥ 0 so ϕ is a positive map.

We close this chapter by noting that there exists an abstract notion of an operator system. For our
purposes, viewing operator systems as unital linear subspaces of C∗-algebra that are closed under adjoints
will be enough.
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3 Completely Positive and Completely Bounded Maps

In this chapter we will begin to examine the subcollection of positive maps known as completely positive
maps that were mentioned in the previous chapter. Completely positive maps behave significantly better
that positive maps and most positive maps that one usually encounters are completely positive. In this
chapter we will develop the basic theory behind completely positive maps. As a result, we will also study
maps known as completely bounded maps as the basic theory of both types of maps goes hand-in-hand. To
obtain the most generality for completely bounded maps, we make the following definition.

Definition 3.1. Let A be a C∗-algebra. An operator space S of A is a (not necessarily closed) vector
subspace of A. Notice that operator systems and C∗-algebras are operator spaces.

The intuition behind studying completely positive and completely bounded maps is that given an operator
space S there are canonical norms on n×n matrices with entries in S. In particular, if S ⊆ A is an operator
space (operator system, C∗-subalgebra) then Mn(S) ⊆ Mn(A) is easily verified to be an operator space
(operator system, C∗-subalgebra). In the case S is an operator system or C∗-algebra, this allows us to
consider positive maps on Mn(S). Moreover, the proof of Theorem 1.24 showed us a convenient way of
taking a linear map ϕ : A→ B and obtaining a linear map ϕ(n) :Mn(A)→Mn(B).

Definition 3.2. Let S ⊆ A be an operator space, let B be a C∗-algebra, and let ϕ : S → B be a linear
map. For each n ∈ N define ϕ(n) :Mn(S)→Mn(B) by

ϕ(n)([Ai,j ]) = [ϕ(Ai,j)].

It is then clear that if ψ : S → B is a linear map and λ ∈ C is a scalar then (ϕ+ λψ)(n) = ϕ(n) + λψ(n).

Define ‖ϕ‖n =
∥∥ϕ(n)

∥∥ and ‖ϕ‖cb = supn ‖ϕ‖n (which is known as the completely bounded norm). The
linear map ϕ is said to be completely bounded if ‖ϕ‖cb < ∞. It is then clear that the completely bounded
norm is indeed a norm on the vector space of all completely bounded maps from S to B.

Now suppose S is an operator system or a C∗-algebra. For an n ∈ N, the linear map ϕ is said to be
n-positive if ϕ(n) is a positive map. The linear map ϕ is said to be completely positive if ϕ(n) is positive for
all n.

Remarks 3.3. Traditional what we have denoted ϕ(n) is denoted ϕn in the literature. We have made
this non-standard notation in the hopes that students new to the theory will not confuse these maps with
sequences of maps and in the hope that those familiar with the theory will be able to easily follow this
notation.

Recall that Proposition 2.8 and Proposition 2.17 imply that positive maps (and thus completely positive
maps) are norm continuous. We will use this result without statement for the rest of these notes. We begin
with some examples and non-examples of completely positive and completely bounded maps.

Example 3.4. Let A and B be C∗-algebras and let π : A → B be a ∗-homomorphism. It is easy to verify
that π(n) : Mn(A) → Mn(B) is also a ∗-homomorphism. Therefore π(n) is positive for all n ∈ N and
thus π is completely positive. Moreover, since every ∗-homomorphism between C∗-algebras is contractive,∥∥π(n)

∥∥ ≤ 1 for all n ∈ N. Thus ‖π‖cb ≤ 1. Whence π is also completely bounded.

Example 3.5. Let A be a C∗-algebra and let S ∈ A be arbitrary. Define ϕ : A → A by ϕ(A) = S∗AS for
all A ∈ A. Then

ϕ(n)([Ai,j ]) = [S∗AijS] = diagn(S)∗[Aij ]diagn(S)

(where diagn(S) is the n × n matrix in Mn(A) with S in each diagonal entry and 0 in each non-diagonal
entry). If [Ai,j ] ∈Mn(A) is positive then [Ai,j ] = [Ni,j ]

∗[Ni,j ] so that

ϕ(n)([Ai,j ]) = ([Ni,j ]diagn(S))∗([Ni,j ]diagn(S)) ≥ 0.

23



Hence ϕ is completely positive. Moreover∥∥ϕ(n)([Ai,j ])
∥∥ ≤ ‖diagn(S∗)‖ ‖[Ai,j ]‖ ‖diagn(S)‖ = ‖S∗‖ ‖S‖ ‖[Ai,j ]‖

for all [Ai,j ] ∈Mn(A) and n ∈ N. Therefore ‖ϕ‖cb ≤ ‖S∗‖ ‖S‖ = ‖S‖2.
Similarly, if S, T ∈ A we can define ϕ : A → A by ϕ(A) = SAT . Then ϕ is a completely bounded map

with ‖ϕ‖cb ≤ ‖S‖ ‖T‖. However it is possible that ϕ is not even positive.
More generally, if H and K are Hilbert spaces and V ∈ B(H,K) then the map ϕ : B(H)→ B(H) defined

by ϕ(T ) = V ∗TV is completely positive by the same arguments.

Example 3.6. Let ϕ : M2(C) → M2(C) be defined by ϕ(A) = AT for all A ∈ M2(C). It was shown in
Example 2.5 that ϕ was positive. However ϕ is not 2-positive. To see this consider ϕ(2) : M2(M2(C)) '
M4(C)→M2(M2(C)) 'M4(C) (where M2(M2(C)) 'M4(C) by Lemma 1.22). Let

A :=


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 ∈M2(M2(C)).

Then A is positive since

〈A(h1, . . . , h4), (h1, . . . , h4)〉 = (h1 + h4)h1 + (h1 + h4)h4 = (h1 + h4)2 ≥ 0

(or alternatively that A is clearly self-adjoint and A2 = 2A so σ(A) ⊆ {0, 2}). However

ϕ(2)(A) =

 ϕ

([
1 0
0 0

])
ϕ

([
0 1
0 0

])
ϕ

([
0 0
1 0

])
ϕ

([
0 0
0 1

])
 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


is not positive as 〈ϕ(2)(A)(0, 1,−1, 0), (0, 1,−1, 0)〉 = −2 < 0 (or since λ = −1 is an eigenvalue). Hence ϕ
is not 2-positive. In fact, ϕ is not n-positive for all n > 1 as we will see shortly. It turns out that ϕ is
completely bounded with ‖ϕ‖cb = 2. The proof of this follows from Proposition 7.2 which we will postpone
until our further studies of completely bounded maps and the canonical shuffle.

Example 3.7. LetH be an infinite dimensional separable Hilbert space with an orthonormal basis {em}m≥1.
Consider the linear map ϕ : B(H) → B(H) given by ϕ(T ) = T t, the transpose map (that is 〈T tej , ei〉 =

〈T ∗ej , ei〉 defines an element of B(H)). It is easy to verify by definitions that ‖T t‖ = ‖T ∗‖ = ‖T‖ (that is

T th = T ∗h where
∑
m≥1 λmem =

∑
m≥1 λmem). Thus ‖ϕ‖ = 1.

We claim that
∥∥ϕ(n)

∥∥ = n for all n ∈ N. To see this, for each i, j ∈ N let Ei,j ∈ B(H) be the operator

such that Ei,j

(∑
m≥1 λmem

)
= λjei . Then for each n ∈ N consider An = [Ej,i] ∈ Mn(B(H)). We notice

that A2
n = [Ej,i]

2 = [
∑n
k=1Ek,iEj,k] = [δi,jPn] where Pn is the projection onto span{e1, . . . , en}. Thus A2

is the finite direct sum of orthogonal projections and hence a projection. Therefore
∥∥A2

∥∥ = 1. However

A∗ = [Ej,i]
∗ = [E∗i,j ] = [Ej,i]. Therefore A is self-adjoint and thus ‖A‖2 = ‖A∗A‖ = 1. Hence ‖A‖ = 1.

However ϕ(n)(An) = [Ei,j ]. We claim that [Ei,j ] has norm n. To see this we note that [Ei,j ]
∗ = [E∗j,i] = [Ei,j ]

and [Ei,j ]
2 = [

∑n
k=1Ei,kEk,j ] = n[Ei,j ]. Thus [Ei,j ] is self-adjoint and the function z2 − nz is equal to 0 on

the functional calculus of [Ei,j ]. Thus n ∈ σ([Ei,j ]) as [Ei,j ] 6= 0. Thus ‖[Ei,j ]‖ = spr([Ei,j ]) = n (we could
have also use the fact that 1

n [Ei,j ] is a projection). Hence
∥∥ϕ(n)(A)

∥∥ = n so that
∥∥ϕ(n)

∥∥ ≥ n. Thus ϕ is a
continuous linear map that is not completely bounded. Later (Proposition 3.10) it will be possible to show
that ‖ϕn‖ ≤ n.

Next we will show that continuous linear functionals are completely bounded and positive linear function-
als are completely positive. This provides one motivations for studying completely bounded and completely
positive maps; they are a nice generalization of continuous linear functionals and positive linear functionals
that share many of the same properties.
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Proposition 3.8. Let S ⊆ A be an operator space and let ϕ : S → C be a continuous linear functional.
Then ϕ is completely bounded with ‖ϕ‖cb = ‖ϕ‖. Moreover if S is an operator system or a C∗-algebra and
ϕ is positive then ϕ is completely positive.

Proof. To show that ϕ is completely bounded we will show that ‖ϕ‖cb = ‖ϕ‖. Let A = [Ai,j ] ∈ Mn(S)
be arbitrary. We desire to show that

∥∥ϕ(n)(A)
∥∥ ≤ ‖ϕ‖ ‖A‖. To see this we recall that

∥∥ϕ(n)(A)
∥∥ =

sup{|〈ϕ(n)(A)x, y〉| | x, y ∈ Cn, ‖x‖ , ‖y‖ ≤ 1} as ϕ(n)(A) ∈ Mn(C). However, if x = (x1, . . . , xn) and
y = (y1, . . . , yn) are unit vectors in Cn, then

|〈ϕ(n)(A)x, y〉| =

∣∣∣∣∣∣
n∑

i,j=1

ϕ(Ai,j)xjyi

∣∣∣∣∣∣ =

∣∣∣∣∣∣ϕ
 n∑
i,j=1

Ai,jxjyj

∣∣∣∣∣∣ ≤ ‖ϕ‖
∥∥∥∥∥∥

n∑
i,j=1

Ai,jxjyj

∥∥∥∥∥∥ .
Thus it suffices to show that

∥∥∥∑n
i,j=1Ai,jxjyj

∥∥∥ ≤ ‖A‖. To see this, we notice that
∑n
i,j=1Ai,jxjyj 0 . . . 0

0 0 . . .
...

...
. . .

. . .
...

0 . . . . . . 0

 =


y11 . . . yn1
0 . . . 0
...

...
0 . . . 0


 A1,1 . . . A1,n

...
...

An,1 . . . An,n


 x11 0 . . . 0

...
...

...
xn1 0 . . . 0

 .

By Lemma 1.23
∥∥∥∑n

i,j=1Ai,jxjyj

∥∥∥ is smaller than the norm of the left-most matrix and the other three

matrices have norm
(∑n

i=1 |yi|2
) 1

2 , ‖A‖, and
(∑n

i=1 |xi|2
) 1

2 respectively. However, if x and y are unit

vectors, ‖y‖2 , ‖x‖2 ≤ 1. Hence
∥∥∥∑n

i,j=1 ai,jxjyj

∥∥∥ ≤ ‖A‖ as desired. Hence ϕ is completely bounded with∥∥ϕ(n)

∥∥ = ‖ϕ‖ for all n ∈ N.
Now suppose that ϕ is positive. We need to show that ϕ(n) is positive for all n ∈ N. Fix n ∈ N and let

A = [Ai,j ] ∈ Mn(S) be an arbitrary positive element. To show that ϕ(n)(A) is positive we notice for all
x = (x1, . . . , xn) ∈ Cn that

〈ϕ(n)(A)x, x〉 =

n∑
i,j=1

ϕ(Ai,j)xjxi = ϕ

 n∑
i,j=1

Ai,jxjxi

 .

Therefore, by Proposition 1.21, it suffices to show that
∑n
i,j=1Ai,jxjxi is a positive element of A as ϕ is

positive. However, using a matrix trick similar to that from Lemma 2.21 and viewing Mn(S) ⊆ Mn(A) ⊆
Mn(B(H)) for some Hilbert space H, we see that

n∑
i,j=1

Ai,jxjxi =


 IH

...
IH



∗
 x11 0 . . . 0

...
...

...
xn1 0 . . . 0



∗

A

 x1IA 0 . . . 0
...

...
...

xn1 0 . . . 0


 IH

...
IH

 .
Hence, since A is positive, the product on the right is positive and thus

∑n
i,j=1Ai,jxjxj positive. Since

A ∈Mn(A) was arbitrary and since n ∈ N was arbitrary, ϕ is completely positive as desired.

Proposition 3.9. Let S ⊆ A be an operator space and let B and C be C∗-algebras. If ϕ : S → B and
ψ : B → C are completely bounded then ψ ◦ ϕ : S → C is a completely bounded map. If S is an operator
system or C∗-algebra and ϕ and ψ are completely positive maps then ψ ◦ ϕ : S → C is a completely positive
map.

Proof. It is trivial to verify that (ψ ◦ ϕ)(n) = ψ(n) ◦ ϕ(n). Therefore∥∥(ψ ◦ ϕ)(n)

∥∥ ≤ ∥∥ψ(n)

∥∥∥∥ϕ(n)

∥∥ ≤ ‖ψ‖cb ‖ϕ‖cb
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for all n ∈ N so ψ ◦ ϕ is completely bounded if ψ and ϕ are completely bounded.
By Lemma 2.19 the composition of positive maps is positive and thus ψ◦ϕ is completely positive whenever

ϕ and ψ are completely positive.

Our first result is to show that if ϕ is continuous then ϕ(n) is continuous for all n ∈ N. However, we will
see that the norms need not behave very well.

Proposition 3.10. Let S ⊆ A be an operator space, let B be a C∗-algebra, and let ϕ : S → B be a continuous
linear map. Then ϕ(n) is continuous for all n. Moreover

∥∥ϕ(n)

∥∥ ≤ n ‖ϕ‖.
Proof. First we may assume that B ⊆ B(H) for some Hilbert space H. Then for all A = [Ai,j ] ∈ Mn(S)
ϕ(n)([Ai,j ]) = [ϕ(Ai,j)]. Then, by Lemma 1.23, we have that

∥∥ϕ(n)(A)
∥∥ ≤

 n∑
i,j=1

‖ϕ(Ai,j)‖2
 1

2

≤ ‖ϕ‖

 n∑
i,j=1

‖Ai,j‖2
 1

2

≤ ‖ϕ‖

 n∑
i,j=1

‖A‖2
 1

2

= n ‖ϕ‖ ‖A‖ .

Thus ϕ(n) is continuous and
∥∥ϕ(n)

∥∥ ≤ n ‖ϕ‖.
Note Example 3.7 shows that the inequality obtained above is tight. Next we will show that the norms

of ϕ(n) behave fairly nice and show that the positivity of ϕ(n) behave as expected.

Proposition 3.11. Let S ⊆ A be an operator system or C∗-algebra and let B a C∗-algebra. If ϕ : S → B
is linear then

∥∥ϕ(k)

∥∥ ≤ ∥∥ϕ(n)

∥∥ for all k ≤ n. Moreover, if ϕ is n-positive then ϕ is k-positive for all k ≤ n.
Consequently ϕ is not k-positive for all k ≥ n if ϕ is not n-positive.

Proof. Suppose k ≤ n. Then each A ∈Mk(A) we define

A′ :=

[
A 0k×(n−k)

0(n−k)×k 0(n−k)×(n−k)

]
∈Mn(S).

Therefore the map from Mk(A) to Mn(A) defined by A 7→ A′ is a well-defined, injective ∗-homomorphism
and therefore isometric. Hence ‖A′‖ = ‖A‖ for all A ∈Mk(S).

Similarly since

ϕ(n)(A
′) =

[
ϕ(k)(A) 0k×(n−k)

0(n−k)×k 0(n−k)×(n−k)

]
∈Mn(B)∥∥ϕ(k)(A)

∥∥ =
∥∥ϕ(n)(A

′)
∥∥. Thus∥∥ϕ(k)

∥∥ = sup{
∥∥ϕ(k)(A)

∥∥ | A ∈Mk(S), ‖A‖ ≤ 1}
= sup{

∥∥ϕ(n)(A
′)
∥∥ | A ∈Mk(S), ‖A‖ ≤ 1}

≤ sup{
∥∥ϕ(n)(B)

∥∥ | B ∈Mn(S), ‖B‖ ≤ 1}
=
∥∥ϕ(n)

∥∥ .
Thus we have obtained our norm inequality.

Now we desire to show that if ϕ is n-positive then ϕk is positive whenever k ≤ n. Let A ∈ Mk(S) be
positive. Then A′ ≥ 0 since A′ is the image of the positive operator A under a ∗-homomorphism as described
above. Thus ϕ(n)(A

′) ≥ 0 as ϕ is n-positive. But then, if we view B ⊆ B(H) by the GNS construction, we

obtain that for all h = (h1, . . . , hk) ∈ H⊕k2

〈ϕ(k)(A)h, h〉 = 〈ϕ(n)(A
′)(h1, . . . , hk, 0, . . . , 0), (h1, . . . , hk, 0, . . . , 0)〉 ≥ 0

as ϕ(n)(A
′) ≥ 0. Hence ϕ(k)(A) ≥ 0 for all A ≥ 0, A ∈Mk(S). Hence ϕ(k) is positive.
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We note that the proof of the above result could be slightly simplified if Lemma 3.17 part (3) was proved
first although the proof of said lemma is more complicated than the above argument.

So far we have seen that continuous linear functionals are completely bounded and positive linear func-
tionals are completely positive. Our next goal is to develop some similar results where continuity/positivity
imply completely bounded/positive.

Let X be a compact Hausdorff space and let C(X) be the C∗-algebra of continuous functions on X. We
wish to considerMn(C(X)) for all n ∈ N. Notice that each element F = [fi,j ] ofMn(C(X)) can be viewed
as a continuous matrix-valued function from X (continuous as if xn → x in X then each component of F
converges (by Lemma 1.23) and hence [fi,j(xn)]→ [fi,j(x)] in the norm on Mn(C) (by Lemma 1.23)).

Lemma 3.12. Let X be a compact Hausdorff space and let C(X) be the C∗-algebra of continuous functions
on X. Then ‖F‖ = sup{‖F (x)‖Mn(C) | x ∈ X} is the unique C∗-norm on Mn(C(X)).

Proof. We note that clearly ‖F‖ ≥ 0, ‖F‖ = 0 if and only if F (x) = [0] for all x ∈ X if and only if F = [0],
the triangle inequality and scalar property clearly hold as they hold for Mn(C), and, since each component
of F is bounded on X being a continuous function on a compact set,

‖F (x)‖ ≤

 n∑
i,j=1

|Fi,j(x)|2
 1

2

≤

 n∑
i,j=1

‖Fi,j‖2∞

 1
2

<∞

by Lemma 1.23. Therefore this is a norm.
We claim that this norm is a C∗-norm. FirstMn(C(X)) is complete with respect to this norm by applying

Lemma 1.23 and the same arguments used in Theorem 1.24. To see that this norm is submultiplicative, we
notice for every F1, F2 ∈Mn(C(X)) and every x ∈ X that

‖F1F2(x)‖ = ‖F1(x)F2(x)‖ ≤ ‖F1(x)‖ ‖F2(x)‖ ≤ ‖F1‖ ‖F2‖

as the norm on Mn(C) is submultiplicative. Hence, as this holds for all x ∈ X, ‖F1F2‖ ≤ ‖F1‖ ‖F2‖ so
that this norm on Mn(C(X)) is submultiplicative. Lastly, to see that this norm is a C∗-norm, we notice

that for all x ∈ X and F ∈ Mn(C(X)) ‖F ∗F (x)‖ = ‖F ∗(x)‖ ‖F (x)‖ = ‖F (x)‖2 as the norm on Mn(C) is

a C∗-norm. Hence ‖F ∗F‖ = ‖F‖2 so that this norm is a C∗-algebra norm. Consequently, as each ∗-algebra
has a unique C∗-norm, this norm is the C∗-norm on Mn(C(X)).

With this in hand we can easily prove the following lemma and subsequent corollary.

Lemma 3.13. Let X be a compact Hausdorff space and A = [fi,j ] ∈ Mn(C(X)). Then A is positive in
Mn(C(X)) if and only if A(x) ≥ 0 as an element of Mn(C) for all x ∈ X.

Proof. In the case n = 1, this is equivalent to saying that a continuous function on a compact Hausdorff
space is positive if and only if its range is positive. Since this is true, it seems logical that this lemma should
be true. Suppose A ≥ 0 in Mn(C(X)). Then there exists an N ∈ Mn(C(X)) such that A = N∗N . Thus
for all x ∈ X A(x) = (N∗N)(x) = N(x)∗N(x) ≥ 0

Now suppose for all x ∈ X that A(x) ≥ 0. Therefore A(x)∗ = A(x) for all x ∈ X and thus A is self-
adjoint. Moreover, for all λ ∈ C with λ /∈ [0,∞), the matrix λIn − A(x) is invertible for all x ∈ X. Thus
for all x ∈ X the matrix Fλ(x) = (λIn − A(x))−1 exists. By the cofactor expansion of a matrix we can see
that Fλ ∈ Mn(C(X)) as each entry with be a rational function of linear combinations of the continuous
functions λδi,j − fi,j(x) with non-vanishing denominator (this is by Cramer’s rule. The denominator is
det(λIn −A(x)) 6= 0 as the matrix is invertible). Moreover, for all x ∈ X

(λIn −A(x))Fλ(x) = In = Fλ(x)(λIn −A(x))

and hence
(λIMn(C(X)) −A)Fλ = IMn(C(X)) = Fλ(λIMn(C(X)) −A)

as element of Mn(C(X)). Hence λIMn(C(X)) −A is invertible in Mn(C(X)) for all λ /∈ [0,∞) and hence A
is positive.
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Corollary 3.14. Let S be an operator space, let X be a compact Hausdorff space, and let ϕ : S → C(X)
be a bounded linear map. Then ϕ is completely bounded and ‖ϕ‖cb = ‖ϕ‖. Moreover, if S is an operator
system or C∗-algebra and ϕ is positive then ϕ is completely positive and ‖ϕ‖cb = ‖ϕ(1)‖.

Proof. We shall follow the same idea as Proposition 2.20 and apply the results for linear functionals. Let
x ∈ X be arbitrary. We define the function δx : C(X)→ C by δx(f) = f(x) for all f ∈ C(X). Then the map
δx ◦ϕ : S → C is a continuous linear functional. Hence

∥∥(δx ◦ ϕ)(n)

∥∥ = ‖δx ◦ ϕ‖ for all n ∈ N by Proposition
3.8. However, for all A = [Ai,j ] ∈Mn(S),

(δx ◦ ϕ)(n)(A) = [δx ◦ ϕ(Ai,j)] = [ϕ(Ai,j)(x)] = ϕ(n)(A)(x).

Hence for all x ∈ X and A ∈Mn(S)
∥∥ϕ(n)(A)(x)

∥∥ ≤ ‖δx ◦ ϕ‖ ‖A‖. Thus∥∥ϕ(n)(A)
∥∥ = sup{

∥∥ϕ(n)(A)(x)
∥∥ | x ∈ X}

≤ ‖A‖ sup{‖δx ◦ ϕ‖ | x ∈ X}
= ‖A‖ sup{‖ϕ(B)(x)‖ | x ∈ X,B ∈ S, ‖B‖ ≤ 1}
= ‖A‖ sup{‖ϕ(B)‖ | B ∈ S, ‖B‖ ≤ 1}
= ‖A‖ ‖ϕ‖

for all A ∈Mn(S). Thus
∥∥ϕ(n)

∥∥ ≤ ‖ϕ‖ for all n ∈ N and hence ϕ is completely bounded with ‖ϕ‖cb = ‖ϕ‖.
Suppose that ϕ is positive. We need to show that ϕ(n) is positive. Thus let A = [Ai,j ] ∈ Mn(S) be an

arbitrary positive element. Since ϕ is a positive map and δx is a positive linear functional for all x ∈ X
(by Example 1.3), δx ◦ ϕ is a positive linear functional for all x ∈ X. Hence (δx ◦ ϕ)(n) is a positive map
by Proposition 3.8. Since ϕ(n)(A)(x) = (δx ◦ ϕ)(n)(A) and A ≥ 0, ϕ(n)(A)(x) ≥ 0 for all x ∈ X. Whence
ϕ(n)(A) ≥ 0 by Lemma 3.13. Hence ϕ is completely positive.

So far the theory of completely bounded maps and completely positive maps have not been that different.
Since our current goal is to study completely positive maps, we will focus on results pertaining to completely
positive maps for the remainder of the section. Our first result is that positive maps from abelian C∗-algebras
are automatically completely positive. To prove this we need a small lemma and to make use of ideas from
Proposition 2.23.

Lemma 3.15. Let [αi,j ] ∈ Mn(C) be a positive matrix, let B be a C∗-algebra, and let B be a positive
element of B. Then [αi,jB] is positive in Mn(B).

Proof. By considering the unitization of B if B is not unital we may assume B is unital. First we note
that since [αi,j ] is positive in Mn(C) there exists an [λi,j ] ∈ Mn(C) such that [αi,j ] = [λi,j ]

∗[λi,j ]. Thus
[αi,jIB] = [λi,jIB]∗[λi,jIB] ∈Mn(B) is a positive matrix.

Since B is positive we may write B = N∗N for some N ∈ B. Hence, if diag(A) is the n × n matrix
diagonal matrix with A in each entry of the diagonal,

[αi,jB] = [αi,jIB]diag(B) = [λi,jIB]∗[λi,jIB]diag(N∗N)

= [λi,jIB]∗[λi,jIB]diag(N∗)diag(N)

= diag(N)∗[λi,jIB]∗[λi,jIB]diag(N)

= ([λi,jIB]diag(N))∗[λi,jIB]diag(N) ≥ 0

as the diagonal matrices will commute with [λi,jIB] as N commutes with scalar multiples of IB.

Theorem 3.16. Let B be a C∗-algebra, let X be a compact Hausdorff space, and let ϕ : C(X) → B be a
positive map. Then ϕ is completely positive.
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Proof. Fix n ∈ N and let A ∈ Mn(C(X)) be an arbitrary positive element. It suffices to show that
ϕ(n)(A) ≥ 0. To show this we will follow the ideas used in the proof of Proposition 2.23 and approximate
A using a partition of unity. In this manner, let ε > 0 and suppose A = [fi,j ] where fi,j ∈ C(X). For
each y ∈ X let Uy :=

⋂n
i,j=1 f

−1
i,j (Bε(fi,j(y))) (where Bε(z) := {z′ ∈ X | |z − z′| < ε}). Since each

fi,j is continuous and we are taking the intersection of a finite number of open sets, Uy is an open set
containing y. Since X =

⋃
y∈X Uy and X is compact there exists a finite open cover {Uxk}mk=1 of X such

that |fi,j(x) − fi,j(xk)| < ε for all x ∈ Uxk and for all i, j. Hence Theorem 2.22 implies that there exists a
partition of unity {gk}mk=1 such that gk : X → [0, 1] are continuous,

∑m
k=1 gk = IC(X), and gk|U cxk = 0.

Let Ak := A(xk) = [fi,j(xk)] = [ai,j,k]. Then Ak is a positive matrix by Lemma 3.13. Next notice if
x ∈ Uxk then, by an application of Lemma 1.23,

‖A(x)−Ak‖ ≤

 n∑
i,j

|fi,j(x)− fi,j(xk)|2
 1

2

≤ nε.

Consider the element A′ :=
∑
k gkAk ∈Mn(C(X)). Then for all x ∈ X

‖A(x)−A′(x)‖ =

∥∥∥∥∥
m∑
k=1

gk(x)(A(x)−Ak)

∥∥∥∥∥ ≤
m∑
k=1

gk(x) ‖A(x)−Ak‖ ≤
m∑
k=1

gk(x)nε = nε

as if x /∈ Uxk then gk = 0 and if x ∈ Uxk then ‖A(x)−Ak‖ ≤ nε. Since this holds for all x ∈ X ‖A−A′‖ ≤ nε.
We can now use A′ to show that ϕ(n)(A) must be positive. First we notice that ϕ(n)(gk(x)Ak) =

ϕ(n)([gk(x)ai,j,k]) = [ai,j,kϕ(gk(x))]. However, as the range of gk was [0, 1], gk is positive in C(X) and hence
ϕ(gk) is positive as ϕ is positive. Moreover Ak = [ai,j,k] is a positive scalar matrix. Hence ϕ(n)(gk(x)Ak) =
[ai,j,kϕ(gk(x))] is positive by Lemma 3.15. Therefore ϕ(n)(A

′) is positive. Hence, as ϕ(n) is continuous by
Proposition 3.10, ∥∥ϕ(n)(A)− ϕ(n)(A

′)
∥∥ ≤ ∥∥ϕ(n)

∥∥ ‖A−A′‖ ≤ ∥∥ϕ(n)

∥∥nε
Hence ϕ(n)(A) is within a constant scalar multiple of ε of a positive element of B. Thus ϕ(n)(A) is a limit
of positive elements of B and thus is positive by Lemma 1.6.

To develop more properties about completely positive maps it would be nice to determine more informa-
tion about when elements of Mn(A) are positive. The following lemma contains the most common results
and is essential to studying such positive elements.

Lemma 3.17. Let A be a unital C∗-algebra, let A,B, P,Q ∈ A, and suppose A ⊆ B(H). Then

1.

[
IA A
A∗ B

]
is positive in M2(A) if and only if A∗A ≤ B.

2. If

[
P A
A∗ P

]
is positive in M2(A) then A∗A ≤ ‖P‖P and consequently ‖A‖ ≤ ‖P‖.

3.

[
P A
A∗ Q

]
is positive in M2(B(H)) if and only if P ≥ 0, Q ≥ 0, and |〈Aη, ξ〉|2 ≤ 〈Pξ, ξ〉〈Qη, η〉 for

all ξ, η ∈ H.

Proof. All three parts are basically brute computations using Proposition 1.21. We proceed to prove part
(1). Let

M :=

[
IA A
A∗ B

]
.
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Suppose A∗A ≤ B (and thus B is positive). Then 〈(B −A∗A)η, η〉 ≥ 0 so that 〈Bη, η〉 ≥ 〈Aη,Aη〉 = ‖Aη‖2
for all η ∈ H. Thus for all ξ ⊕ η ∈ H⊕2

〈M(ξ ⊕ η), ξ ⊕ η〉 = 〈ξ, ξ〉+ 〈Aη, ξ〉+ 〈A∗ξ, η〉+ 〈Bη, η〉
≥ ‖ξ‖2 − 2 ‖Aη‖ ‖ξ‖+ 〈Bη, η〉
≥ ‖ξ‖2 − 2 ‖Aη‖ ‖ξ‖+ ‖Aη‖2

= (‖ξ‖ − ‖Aη‖)2 ≥ 0

(where the first inequality makes sense since M is self-adjoint so 〈M(ξ, η), (ξ, η)〉 is real and 〈ξ, ξ〉 and 〈Bη, η〉
are positive as B is positive). Hence M is positive when B ≥ A∗A.

Next suppose that B � A∗A. If B is not positive then there exists an η ∈ H such that 〈M(0, η), (0, η)〉 =
〈Bη, η〉 � 0 and thus M would not be positive. Thus we may assume that B ≥ 0 so that 〈Bη, η〉 ≥ 0 for all
η ∈ H. Since B � A∗A there exists a vector η0 ∈ H such that 〈(B − A∗A)η0, η0〉 � 0. Since A∗A ≥ 0 this

forces 〈(B − A∗A)η0, η0〉 to be real and strictly less than 0. Thus 0 ≤ 〈Bη0, η0〉 < ‖Aη0‖2 for some η0 ∈ H.

As ‖Aη0‖ 6= 0, we can let η := η0
‖Aη0‖ ∈ H. Thus 0 ≤ 〈Bη, η〉 < ‖Aη‖2 = 1. Thus, if we let ξ := −Aη ∈ H,

then ‖ξ‖ = 1 and

〈M(ξ ⊕ η), ξ ⊕ η〉 = 〈ξ, ξ〉+ 〈Aη, ξ〉+ 〈A∗ξ, η〉+ 〈Bη, η〉
= ‖ξ‖2 − 2 ‖Aη‖2 + 〈Bη, η〉
= 1− 2 + 〈Bη, η〉
< 1− 2 + 1 = 0

and thus the matrix is not positive when B � A∗A.
To prove (2), we will show that if A∗A � ‖P‖P then the desired matrix cannot be positive using the

same technique as in part (1). Let

M :=

[
P A
A∗ P

]
and suppose that ‖P‖P � A∗A. If P is not positive, there exists an η ∈ H that 〈M(0, η), (0, η)〉 = 〈Pη, η〉 � 0
and thus M would not be positive. Hence we may assume that P ≥ 0 so that 〈Pη, η〉 ≥ 0 for all η ∈ H.
Since ‖P‖P � A∗A there exists a vector η0 ∈ H such that 〈(‖P‖P − A∗A)η0, η0〉 � 0. Since A∗A ≥ 0 this

forces 〈(‖P‖P − A∗A)η0, η0〉 to be real and strictly less than 0. Thus 0 ≤ ‖P‖ 〈Pη0, η0〉 < ‖Aη‖2 for some

η0 ∈ H. As ‖Aη0‖ 6= 0, we can let η := η0
‖Aη0‖ ∈ H. Thus 0 ≤ ‖P‖ 〈Pη, η〉 < ‖Aη‖2 = 1. Notice that if P = 0

and we let ξ := −Aη ∈ H then

〈M(ξ ⊕ η), ξ ⊕ η〉 = 〈Pξ, ξ〉+ 〈Aη, ξ〉+ 〈A∗ξ, η〉+ 〈Pη, η〉 = −2 ‖Aη‖2 < 0.

Else, if P 6= 0 and we let ξ := − 1
‖P‖Aη ∈ H, then

〈M(ξ ⊕ η), ξ ⊕ η〉 = 〈Pξ, ξ〉+ 〈Aη, ξ〉+ 〈A∗ξ, η〉+ 〈Pη, η〉

= 〈Pξ, ξ〉 − 2 ‖Aη‖2 1

‖P‖
+ 〈Pη, η〉

< ‖P‖ ‖ξ‖2 − 2 ‖Aη‖2 1

‖P‖
+ ‖Aη‖2 1

‖P‖

= ‖P‖
∥∥∥∥− 1

‖P‖
Aη

∥∥∥∥2

− ‖Aη‖2 1

‖P‖
= 0

and thus the matrix is not positive when ‖P‖P � A∗A. Thus if M is positive then A∗A ≤ ‖P‖P ≤ ‖P‖2 IH
and consequently ‖A‖2 = ‖A∗A‖ ≤ ‖P‖2.
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Lastly, part (3) follows is very similar to part (1). Let

M :=

[
P A
A∗ Q

]
.

Suppose that P and Q are positive and |〈Aη, ξ〉|2 ≤ 〈Pξ, ξ〉〈Qη, η〉 for all ξ, η ∈ H. Then for all ξ⊕ η ∈ H⊕2

〈M(ξ ⊕ η), ξ ⊕ η〉 = 〈Pξ, ξ〉+ 〈Aη, ξ〉+ 〈A∗ξ, η〉+ 〈Qη, η〉
≥ 〈Pξ, ξ〉 − 2|〈Aη, ξ〉|+ 〈Qη, η〉
≥ 〈Pξ, ξ〉 − 2〈Pξ, ξ〉〈Qη, η〉+ 〈Qη, η〉
= (〈Pξ, ξ〉 − 〈Qη, η〉)2 ≥ 0

(where the first inequality holds since 〈M(ξ, η), (ξ, η)〉 is real as M is self-adjoint and 〈Pξ, ξ〉 and 〈Qη, η〉 are
positive as P and Q are real). Thus M is positive.

Next suppose one of the conditions of part (3) fail. If Q is not positive then there exists an η ∈ H such
that 〈M(0, η), (0, η)〉 = 〈Qη, η〉 � 0 and thus M would not be positive. Similarly if P is not positive then
there exists a ξ ∈ H such that that 〈M(ξ, 0), (ξ, 0)〉 = 〈Pξ, ξ〉 � 0 and thus M would not be positive. Thus
we may assume that P ≥ 0 and Q ≥ 0 so that 〈Pξ, ξ〉 ≥ 0 and 〈Qη, η〉 ≥ 0 for all ξ, η ∈ H. Lastly suppose

|〈Aη0, ξ〉| > 〈Pξ, ξ〉
1
2 〈Qη0, η0〉

1
2 for some ξ, η0 ∈ H. Let θ ∈ [0, 2π) be such that

|〈Aη0, ξ〉| = −eiθ〈Aη0, ξ〉

and let η := eiθη0 ∈ H. Then

−〈Aη, ξ〉 = |〈Aη0, ξ〉| > 〈Pξ, ξ〉
1
2 〈Qη0, η0〉

1
2 = 〈Pξ, ξ〉 12 〈Qη, η〉 12 ≥ 0.

Suppose 〈Pξ, ξ〉 12 = 0. Since 〈Aη, ξ〉 < 0, there exists an a ∈ R so that 2a〈Aη, ξ〉+ 〈Qη, η〉 < 0. Then

〈M(aξ ⊕ η), aξ ⊕ η〉 = a2〈Pξ, ξ〉+ a〈Aη, ξ〉+ a〈A∗ξ, η〉+ 〈Qη, η〉
= 2a〈Aη, ξ〉+ 〈Qη, η〉 < 0

and thus M can not be positive. Similarly, suppose 〈Qη, η〉 12 = 0. Since 〈Aη, ξ〉 < 0, there exists an a ∈ R
so that 2a〈Aη, ξ〉+ 〈Pξ, ξ〉 < 0. Then

〈M(ξ ⊕ aη), ξ ⊕ aη〉 = 〈Pξ, ξ〉+ a〈Aη, ξ〉+ a〈A∗ξ, η〉+ a2〈Qη, η〉
= 〈Pξ, ξ〉+ 2a〈Aη, ξ〉 < 0

and thus M cannot be positive. Lastly, suppose b = 〈Pξ, ξ〉 12 > 0 and a = 〈Qη, η〉 12 > 0. Then

〈M(aξ ⊕ bη), aξ ⊕ bη〉 = a2〈Pξ, ξ〉+ ab〈Aη, ξ〉+ ab〈A∗ξ, η〉+ b2〈Qη, η〉
= a2〈Pξ, ξ〉 − 2ab〈Aη, ξ〉+ b2〈Qη, η〉
< a2〈Pξ, ξ〉 − 2ab〈Pξ, ξ〉 12 〈Qη, η〉 12 + b2〈Qη, η〉

=
(
a〈Pξ, ξ〉 12 − b〈Qη, η〉 12

)2

= 0

and thus M cannot be positive.

It worthwhile to mention that the converse of Lemma 3.17 part (2) fails. Indeed if we let

P :=

[
1 0
0 0

]
∈M2(C) A :=

[
0 0
−1 0

]
∈M2(C)
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then P ≥ 0 and A∗A = P = ‖P‖P yet

[
P A
A∗ P

]
=


1 0 0 0
0 0 −1 0
0 −1 1 0
0 0 0 0


is not positive by normal methods (i.e. it has a negative eigenvalue and fails 〈Bh, h〉 ≥ 0 for h = (0, 1, 1, 0)).

It is also interesting to note that combining parts (1) and (3) give the interesting identity that A∗A ≤ B
if and only if |〈Ax, y〉|2 ≤ ‖x‖2 〈By, y〉 for all x, y ∈ H.

So far, every completely positive map we have seen has been completely bounded. Lemma 3.17 will allow
us to show that every completely positive map is completely bounded. We will deal with the unital case
separately as it is easier and more elegant than the non-unital case.

Theorem 3.18. Let S ⊆ A be an operator system, let B be a C∗-algebra, and let ϕ : S → B be a completely
positive map. Then ϕ is completely bounded and ‖ϕ(IA)‖ = ‖ϕ‖ = ‖ϕ‖cb.

Proof. From definition of ‖ · ‖ and ‖ · ‖cb it is clear that ‖ϕ(IA)‖ ≤ ‖ϕ‖ ≤ ‖ϕ‖cb. Thus it suffices to show
that

∥∥ϕ(n)

∥∥ ≤ ‖ϕ(IA)‖ for all n ∈ N. Fix an arbitrary A ∈ Mn(S) with ‖A‖ ≤ 1 and let In be the identity
matrix in Mn(S). Then the matrix [

In A
A∗ In

]
is positive in M2(Mn(S)) ' M2n(S) by Lemma 3.17 part (1) as ‖A‖ ≤ 1 so that A∗A ≤ In. Therefore,
since ϕ is completely positive,

ϕ(2n)

([
In A
A∗ In

])
=

[
ϕ(n)(In) ϕ(n)(A)
ϕ(n)(A

∗) ϕ(n)(In)

]
is a positive matrix. Thus

∥∥ϕ(n)(A)
∥∥ ≤ ∥∥ϕ(n)(In)

∥∥ by Lemma 3.17 part (2). However ϕ(n)(In) is the n× n
diagonal matrix with ϕ(IA) in each entry along the diagonal so that

∥∥ϕ(n)(A)
∥∥ = ‖ϕ(IA)‖. Whence, as

A ∈Mn(A) and n ∈ N were arbitrary,
∥∥ϕ(n)

∥∥ ≤ ‖ϕ(IA)‖ and the result follows.

We note that Theorem 3.16 and Theorem 3.18 together imply Proposition 2.23.
To deal with the case of completely positive maps with non-unital domains, we would like to have a

result similar to Proposition 1.11. However a close investigation of Proposition 1.11 reveals that we need a
Cauchy-Schwarz inequality. It was easy to develop such an inequality for positive linear functionals. Next
we will develop one such identity for completely positive maps (and another will be developed later).

Lemma 3.19. Let A and B be C∗-algebras and let ϕ : A → B be a 2-positive map. Then ‖ϕ(A∗B)‖B ≤
‖ϕ(A∗A)‖

1
2

B ‖ϕ(B∗B)‖
1
2

B for all A,B ∈ A.

Proof. By the GNS construction we may assume that B ⊆ B(H). Fix A,B ∈ A and consider

M :=

[
A∗A A∗B
B∗A B∗B

]
=

[
A B
0 0

]∗ [
A B
0 0

]
≥ 0.

Since ϕ is 2-positive

ϕ(2)(M) =

[
ϕ(A∗A) ϕ(A∗B)
ϕ(B∗A) ϕ(B∗B)

]
=

[
ϕ(A∗A) ϕ(A∗B)
ϕ(A∗B)∗ ϕ(B∗B)

]
is positive in B. Hence |〈ϕ(A∗B)η, ξ〉| ≤ |〈ϕ(A∗A)ξ, ξ〉| 12 |〈ϕ(B∗B)η, η〉| 12 for all ξ, η ∈ H by Lemma 3.17

part (3). Thus ‖ϕ(A∗B)‖B ≤ ‖ϕ(A∗A)‖
1
2

B ‖ϕ(B∗B)‖
1
2

B as desired.

32



Theorem 3.20. Let A and B be C∗-algebras and let ϕ : A → B be a completely positive map. For any
C∗-bounded approximate identity (Eλ)Λ of A ‖ϕ‖cb = limΛ ‖ϕ(Eλ)‖B = supΛ ‖ϕ(Eλ)‖B = ‖ϕ‖.

Proof. Let (Eλ)Λ be any C∗-bounded approximate identity for A. Since Eλ ≤ Eα whenever λ ≤ α and ϕ is
a positive map, 0 ≤ ϕ(Eλ) ≤ ϕ(Eα) whenever λ ≤ α. Whence 0 ≤ ‖ϕ(Eλ)‖B ≤ ‖ϕ(Eα)‖B ≤ ‖ϕ‖ whenever
λ ≤ α. Thus (‖ϕ(Eλ)‖B)Λ is an increasing net of real numbers so limΛ ‖ϕ(Eλ)‖B = supΛ ‖ϕ(Eλ)‖B ≤ ‖ϕ‖.
Thus to complete the proof it suffices to show that

∥∥ϕ(n)

∥∥ ≤ supΛ ‖ϕ(Eλ)‖B for all n ∈ N.
First we will show that ‖ϕ‖ ≤ supΛ ‖ϕ(Eλ)‖B and extrapolate the proof for an arbitrary n ∈ N. Let

A ∈ A be arbitrary with ‖A‖ ≤ 1. Since ϕ is 2-positive, the above lemma implies that ‖ϕ(B∗A)‖B ≤
‖ϕ(A∗A)‖

1
2

B ‖ϕ(B∗B)‖
1
2

B for all B ∈ A. Since 0 ≤ E∗λEλ = E2
λ ≤ Eλ for all λ ∈ Λ, (Eλ)Λ is a C∗-bounded

approximate identity, and ϕ is continuous being a positive map,

‖ϕ(A)‖B = lim
Λ
‖ϕ(EλA)‖B

≤ sup
Λ
‖ϕ(A∗A)‖

1
2

B

∥∥ϕ(E2
λ)
∥∥ 1

2

B

≤ sup
Λ
‖ϕ‖

1
2 ‖A∗A‖

1
2

A ‖ϕ(Eλ)‖
1
2

B

= ‖ϕ‖
1
2 sup

Λ
‖ϕ(Eλ)‖

1
2

B .

Since the above holds for all A ∈ A with ‖A‖ ≤ 1, ‖ϕ‖ ≤ ‖ϕ‖
1
2 supΛ ‖ϕ(Eλ)‖

1
2

B. Whence ‖ϕ‖
1
2 ≤

supΛ ‖ϕ(Eλ)‖
1
2

B so ‖ϕ‖ ≤ supΛ ‖ϕ(Eλ)‖B.

Fix n ∈ N. Let E
(n)
λ ∈ Mn(A) be the n × n diagonal matrix with Eλ in each entry along the diagonal.

Since (Eλ)Λ is a C∗-bounded approximate identity for A, it is easy to verify that
(
E

(n)
λ

)
Λ

is a C∗-bounded

approximate identity for Mn(A). Moreover ϕ(n)

(
E

(n)
λ

)
is the n × n diagonal matrix with ϕ(Eλ) in each

entry along the diagonal so that
∥∥∥ϕ(n)

(
E

(n)
λ

)∥∥∥
Mn(B)

= ‖ϕ(Eλ)‖B. Since ϕ(n) is completely positive and(
E

(n)
λ

)
Λ

is a C∗-bounded approximate identity for Mn(A), the above proof implies that

∥∥ϕ(n)

∥∥ = sup
Λ

∥∥∥ϕ(n)

(
E

(n)
λ

)∥∥∥
Mn(B)

= sup
Λ
‖ϕ(Eλ)‖B .

Since the above holds for all n ∈ N, ‖ϕ‖cb = supΛ ‖ϕ(Eλ)‖B as desired.
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4 Arveson’s Extension Theorem and Stinespring’s Theorem

So far our study of completely positive maps has been very similar to our study of positive linear functionals in
that Theorem 3.20 generalizes the essential direction of Proposition 1.11. As with positive linear functionals
we desire to see if we can extend completely positive maps to completely positive maps and if we can
generalize the GNS construction. In this section we shall accomplish both. We will proceed in a slightly
different order then we did with the theory of positive linear functionals and develop Stinespring’s Theorem
(the generalization of the GNS construction) before proving Arveson’s Extension Theorem (which states that
completely positive maps can be extended to completely positive maps of the same norm). This change has
been made to simplify the proof of Arveson’s Extension Theorem in the non-unital case.

Stinespring’s Theorem will tell us that every completely positive map on a C∗-algebra has a certain form.
Recall by the GNS construction that every C∗-algebra can be viewed as a C∗-subalgebra of some B(H) and
thus the range of every completely positive map may be viewed as a subset of B(H) (as, from Example
3.4, ∗-isomorphisms are invertible completely positive maps). Moreover Example 3.4 showed us that all
∗-homomorphisms are completely positive and Example 3.5 showed us that if H and K are Hilbert spaces
and V ∈ B(H,K) then the map ϕ : B(H)→ B(H) defined by ϕ(T ) = V ∗TV for all T ∈ B(H) is completely
positive. Recall from Proposition 3.9 that the composition of completely positive maps is completely positive
so that if A is a C∗-algebra, H and K are Hilbert spaces, π : A → B(H) is a ∗-homomorphism, and
V ∈ B(H,K) then ϕ : A→ B(H) defined by

ϕ(A) = V ∗π(A)V

for all A ∈ A is a completely positive map. Stinespring’s Theorem tells us that every completely positive
map on a C∗-algebra has this form.

Theorem 4.1 (Stinespring). Let A be a C∗-algebra, let H be a Hilbert space, and let ϕ : A → B(H) be a
completely positive map. Then there exists a Hilbert space K, a unital ∗-homomorphism π : A→ B(K), and

a bounded linear operator V : H → K with ‖V ‖2 = ‖ϕ‖ such that ϕ(A) = V ∗π(A)V for all A ∈ A. If A
is unital then π is unital. If ϕ(IA) = IH then V can be taken to be an isometry so we may view H as a
Hilbert subspace of K and ϕ(A) = PHπ(A)|H where PH is the projection of K onto H. Finally, if A and H
are separable, then K can be taken to be separable.

Before proving Stinespring’s Theorem we note that this theorem is actually a generalization of the GNS
construction given in Theorem 1.17. To see this we recall that positive linear functionals are completely
positive by Proposition 3.8. Therefore, if we apply Stinespring’s Theorem to a positive linear functional
ϕ : A → C = B(C), we obtain a ∗-homomorphism π : A → B(K) and a map V : C → K with ‖V ‖2 = ‖ϕ‖
such that ϕ(A) = V ∗π(A)V for all A ∈ A. Let ξ := V (1) ∈ K. Thus V (λ) = λξ for all λ ∈ C so that

‖ϕ‖ = ‖V ‖2 = ‖ξ‖2. Moreover

〈π(A)ξ, ξ〉 = 〈V ∗π(A)V (1), 1〉 = 〈ϕ(A)1, 1〉 = ϕ(A)

for all A ∈ A. Whence Stinespring’s Theorem does indeed generalize the GNS construction. Moreover, it is
possible in the following proof to see the proof of the GNS construction given in Theorem 1.17.

Proof. To construct π we will mimic the proof of Theorem 1.17 by changing the space upon which A will
act. We will omit some of the trivial details contained in Theorem 1.17. Those unfamiliar with algebraic
tensor products should familiarize themselves with the Universal Property of Algebraic Tensor Products.

Consider the algebraic tensor product A�H of A and H. We desire to define a positive sesquilinear form
[·, ·] : A�H → C such that

[A⊗ ξ,B ⊗ η] = 〈ϕ(B∗A)ξ, η〉H
for all A,B ∈ A and ξ, η ∈ H. The question is, how can we do this?

To proceed in creating our sesquilinear form, fix B ∈ A and η ∈ H. Define φB,η : A × H → C by
φB,η(A, ξ) = 〈ϕ(B∗A)ξ, η〉H for all (A, ξ) ∈ A×H. Since ϕ is linear, it is clear that φB,η is a bilinear form.
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Therefore by the Universal Property of Algebraic Tensor Products there exists a linear map φB,η : A�H → C
such that φB,η(A⊗ ξ) = φB,η(A, ξ) = 〈ϕ(B∗A)ξ, η〉H. Let G be the space of all conjugate linear functionals

on A � H. Define ψ : A × H → G by ψ(B, η) = (φB,η)∗ where (φB,η)∗(u) = φB,η(u) for all u ∈ A � H (it
is clear that (φB,η)∗ is a conjugate linear map since φB,η was a linear map). We claim that ψ is a bilinear
form. To see this we notice for all λ ∈ C, B1, B2 ∈ A, and η ∈ H that

(φλB1+B2,η)∗(A⊗ ξ) = φλB1+B2,η(A⊗ ξ)
= 〈ϕ((λB1 +B2)∗A)ξ, η〉H
= λ 〈ϕ(B∗1A)ξ, η〉H + 〈ϕ((B∗2A)ξ, η〉H
= λ〈ϕ(B∗1A)ξ, η〉H + 〈ϕ(B∗2A)ξ, η〉H
= λ(φB1,η)∗(A⊗ ξ) + (φB2,η)∗(A⊗ ξ)

for all elementary tensors A ⊗ ξ ∈ A ⊗ H. Thus, since this holds for all elementary tensors, we obtain
by conjugate linearity that (φλB1+B2,η)∗ = λ(φB1,η)∗ + (φB2,η)∗. Thus ψ is linear in the first component.
Similarly ψ is linear in the second component so that ψ is a bilinear form. Thus by the Universal Property
of Algebraic Tensor Products there exists a Ψ : A�H → G such that Ψ(B ⊗ η) = ψ(B, η) = (φB,η)∗ for all
elementary tensors B ⊗ η ∈ A�H.

Define [·, ·] : A�H → C by [u, v] = (Ψ(v)∗)(u) for all u, v ∈ A�H (where ∗ represents the same operation
on linear/conjugate linear functionals that was used before). Then

[A⊗ ξ,B ⊗ η] = (Ψ(B ⊗ η)∗)(A⊗ ξ) = ((φB,η)∗)∗(A⊗ ξ) = φB,η(A⊗ ξ) = 〈ϕ(B∗A)ξ, η〉H

as desired. To see that [·, ·] is a sesquilinear form we notice that each Ψ(v) ∈ G is conjugate linear so Ψ(v)∗ is
linear so [·, ·] is linear in the first component. Since Ψ is linear, Ψ(·)∗ is conjugate linear so [·, ·] is conjugate
linear in the second component. Thus [·, ·] is a sesquilinear form.

To see that [·, ·] is a positive sesquilinear form we notice for all
∑n
j=1Aj ⊗ ξj ∈ A�H that n∑

j=1

Aj ⊗ ξj ,
n∑
i=1

Ai ⊗ ξi

 =

n∑
j=1

n∑
i=1

〈ϕ(A∗iAj)ξj , ξi〉H

= 〈[ϕ(A∗iAj)](ξ1 ⊕ · · · ⊕ ξn), ξ1 ⊕ · · · ⊕ ξn〉H⊕n
=
〈
ϕ(n)([A

∗
iAj ])(ξ1 ⊕ · · · ⊕ ξn), ξ1 ⊕ · · · ⊕ ξn

〉
H⊕n .

Thus to show that
[∑n

j=1Aj ⊗ ξj ,
∑n
i=1Ai ⊗ ξi

]
≥ 0 it suffices, by Proposition 1.21, to show that [A∗iAj ] ≥ 0

as ϕ(n) is positive. However

[A∗iAj ] =

 A∗1A1 . . . A∗1An
...

...
A∗nA1 . . . A∗nAn

 =



A1 . . . An
0 . . . 0
...

...
0 . . . 0



∗ 

A1 . . . An
0 . . . 0
...

...
0 . . . 0


so [A∗iAj ] ≥ 0. Hence [·, ·] is a sesquilinear form and thus satisfies the Cauchy-Schwartz inequality; namely

| [u, v] |2 ≤ [u, u] [v, v]

for all u, v ∈ A�H. Therefore, if we define

N := {u ∈ A�H | [u, u] = 0} = {u ∈ A�H | [u, v] = 0 for all v ∈ A�H}

then N is a subspace of A � H by the last term in the above expression. Consider the quotient space
(A�H)/N and notice that

〈u+N , v +N〉K = [u, v]
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defines inner product on this space. Thus, if K is the completion of (A � H)/N with respect to this inner
product, K is a Hilbert space. Moreover, it is clear that K is separable if A and H are separable.

Let A ∈ A be arbitrary. Define the linear map π00(A) : A�H → A�H by

π00(A)

 n∑
j=1

Aj ⊗ ξj

 =

n∑
j=1

AAj ⊗ ξj

(which is well-defined and exists by universality). We desire to show that π00(A) defines a linear map on
(A�H)/N by showing N is invariant under π00(A). To see this let

∑n
j=1Aj ⊗ ξj ∈ A�H be arbitrary. By

considering the unitization of A if necessary, the following computations are valid. Notice ‖A∗A‖ IA −A∗A
is a positive element of A so ‖A∗A‖ IA −A∗A = N∗N for some N ∈ A. Moreover if

X := ‖A∗A‖ [IA]− [A∗A] = [‖A∗A‖ −A∗A]

is the matrix with the positive element ‖A∗A‖ − A∗A in each entry then X = [N∗/
√
n][N/

√
n] is positive.

Thus
[A∗iA

∗AAj ] = diag(A∗1, . . . , A
∗
n)[A∗A]diag(A1, . . . , An)

≤ ‖A∗A‖ diag(A∗1, . . . , A
∗
n)[IA]diag(A1, . . . , An) = ‖A∗A‖ [A∗iAj ].

Hence, with the above expression and the fact that ϕ(n) is positive, we obtain for all
∑n
j=1Aj ⊗ hj ∈ A�H

thatπ00(A)

 n∑
j=1

Aj ⊗ ξj

 , π00(A)

(
n∑
i=1

Ai ⊗ ξi

) =

n∑
i,j=1

[AAj ⊗ ξj , AAi ⊗ ξi]

=

n∑
i,j=1

〈ϕ(A∗iA
∗AAj)ξj , ξi〉H

=
〈
ϕ(n)([A

∗
iA
∗AAj ])(ξ1 ⊕ · · · ⊕ ξn), ξ1 ⊕ · · · ⊕ ξn

〉
H⊕n

≤
〈
‖A∗A‖ϕ(n)([A

∗
iAj ])(ξ1 ⊕ · · · ⊕ ξn), ξ1 ⊕ · · · ⊕ ξn

〉
H⊕n

= ‖A∗A‖
n∑

i,j=1

〈ϕ(A∗iAj)ξj , ξi〉H

= ‖A‖2
 n∑
j=1

Aj ⊗ ξj ,
n∑
i=1

Ai ⊗ ξi

 .
Therefore π(A) leaves N invariant as if [u, u] = 0 then [π(A)u, π(A)u] = 0. Define π0(A) : (A � H)/N →
(A � H)/N by π0(A)(u + N ) = π00(A)u which is a well-defined linear map from the above argument.
Moreover, the above inequality shows that ‖π0(A)‖ ≤ ‖A‖ with respect to the inner product 〈·, ·〉K on
(A�H)/N and thus we can extend π0(A) to a bounded linear map on K which we shall denoted Aπ.

We claim that the map π : A → B(K) defined by π(A) = Aπ for all A ∈ A is a ∗-homomorphism. It is
clear that π00 was linear and multiplicative and thus since taking the quotient and extending by continuity
will preserve these properties, π is linear and multiplicative. Moreover we notice for all A ∈ A and all
u =

∑n
i=1Ai ⊗ ξi, v =

∑n
j=1Bj ⊗ ηj ∈ A�H that

〈π(A∗)(u+N ), (v +N )〉K =

n∑
i,j=1

〈ϕ(B∗jA
∗Ai)ξi, ηj〉H

=

n∑
i,j=1

[Ai ⊗ ξi, ABj ⊗ ηj ]

= 〈(u+N ), π(A)(v +N )〉K = 〈π(A)∗(u+N ), (v +N )〉K.
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Hence by continuity and the density of (A � H)/N in K, π is self-adjoint. Hence π : A → B(K) is a
∗-homomorphism.

Now that π has been constructed we divide into the unital and non-unital cases showing that there exists
a map V ∈ B(H,K) with the desired properties.

Case 1: A is unital Since π00(IA) is the identity map, π0(IA) is identity map and thus π(IA) is the
identity map. Whence π is unital.

Define V : H → K by V (η) = IA ⊗ η + N for all η ∈ H. It is clear that V is linear. Moreover V is
bounded as

‖V η‖2K = 〈IA ⊗ η +N , IA ⊗ η +N〉K = 〈ϕ(I∗AIA)η, η〉H = 〈ϕ(IA)η, η〉H ≤ ‖ϕ‖ ‖η‖2H

with equality if ϕ(IA) = IB(H). Therefore ‖V ‖2 ≤ ‖ϕ‖ and V is an isometry when ϕ is unital (as ‖ϕ‖ =
‖ϕ(IA)‖ = 1 when ϕ is unital by Theorem 3.18).

Next notice for all η, ξ ∈ H and A ∈ A that

〈V ∗π(A)V η, ξ〉H = 〈π(A)(IA ⊗ η +N ), IA ⊗ ξ +N〉K = 〈A⊗ η, IA ⊗ ξ〉K = 〈ϕ(A)η, ξ〉H.

Thus ϕ(A) = V ∗π(A)V as desired. When V is an isometry it is clear that we may view H ' Ran(V ) ⊆ K
and thus ϕ(A) = PHπ(A)|H under this identification. Lastly we notice that

‖ϕ(A)‖ ≤ ‖V ∗π(A)V ‖ ≤ ‖V ∗‖ ‖π(A)‖ ‖V ‖ ≤ ‖V ‖2 ‖A‖

for all A ∈ A. Whence ‖ϕ‖ ≤ ‖V ‖2. Combining this inequality with inequality obtained earlier completes
the first case.

Case 2: A is not unital Let (Eλ)Λ be a C∗-bounded approximate identity of A and define Vλ ∈ B(H,K)
by Vλ(η) = Eλ ⊗ η +N for all η ∈ H. Then each Vλ is bounded since

‖Vλ(η)‖2K = 〈Eλ ⊗ η +N , Eλ ⊗ η +N〉K = 〈ϕ(E2
λ)η, η〉H =

∥∥ϕ(E2
λ)
∥∥ |η‖2H ≤ ‖ϕ‖ ‖η‖2H

for all η ∈ H.
We claim that (Vλ(η))Λ is a Cauchy net in K for each η ∈ H. To begin we notice if α, β ∈ Λ and η ∈ H

then
‖Vα(η)− Vβ(η)‖2K = 〈(ϕ(E2

α) + ϕ(E2
β)− ϕ(EαEβ)− ϕ(EβEα))η, η〉H.

Note that 〈ϕ(E2
α)η, η〉H and 〈ϕ(E2

β)η, η〉H are positive as ϕ is positive and thus 〈ϕ(EαEβ)η+ϕ(EβEα)η, η〉H
must be real. Let ε > 0 and define ϕη : A→ C by ϕη(A) = 〈ϕ(A)η, η〉H for all A ∈ A. Since ϕ is a positive
map, ϕη is a positive linear functional. By Proposition 1.11 and the fact that (ϕη(Eλ))Λ is an increasing
net of positive numbers, there exists an α0 ∈ Λ such that ‖ϕη‖ − ε ≤ ϕη(Eλ) for all λ ≥ α0. Since (Eλ)Λ

is a C∗-bounded approximate identity, there exists a β0 such that if λ ≥ β0 then ‖EλEα0 − Eα0‖A < ε and
‖Eα0Eλ − Eα0‖A < ε. Thus for all β ≥ β0

|2ϕη(Eα0
)− ϕη(Eα0

Eβ)− ϕη(EβEα0
)| < 2 ‖ϕη‖ ε

and thus −ϕη(Eα0
Eβ)−ϕη(EβEα0

) < 2 ‖ϕη‖ ε−2ϕη(Eα0
) as all terms under consideration are real numbers.

Therefore

‖Vα0(η)− Vβ(η)‖2K = ϕη(E2
α0

) + ϕη(E2
β)− ϕη(Eα0Eβ)− ϕη(EβEα0)

≤ 2 ‖ϕη‖+ (2 ‖ϕη‖ ε− 2ϕη(Eα0))

≤ 2 ‖ϕη‖+ 2 ‖ϕη‖ ε− 2(‖ϕη‖ − ε)
= 2(‖ϕη‖+ 1)ε

whenever β ≥ β0. Thus if β, λ ≥ β0

‖Vβ(η)− Vλ(η)‖ ≤ ‖Vβ(η)− Vα0(η)‖+ ‖Vα0(η)− Vλ(η)‖ ≤ 2
√

2(‖ϕη‖+ 1)ε.
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As ε > 0 was arbitrary, we obtain that (Vλ(η))Λ is a Cauchy net in K.
Define V ∈ B(H,K) by V (η) = limΛ Vλ(η) for all η ∈ H. It is trivial to verify that V is a well-defined

linear map as each Vλ(η) is a linear map. Moreover

‖V η‖2K = lim
Λ
‖Vλ(η)‖2K ≤ ‖ϕ‖ ‖η‖

2
H .

Whence V is a bounded linear map with ‖V ‖2 ≤ ‖ϕ‖.
To complete the proof it suffices to show that V satisfies the claims in the theorem. For the first we

notice that

〈V ∗π(A)V ξ, η〉H = lim
Λ
〈V ∗λ π(A)Vλξ, η〉H

= lim
Λ
〈AEλ ⊗ ξ +N , Eλ ⊗ η +N〉K

= lim
Λ
〈ϕ(EλAEλ)ξ, η〉H

= 〈ϕ(A)ξ, η〉

for all A ∈ A and ξ, η ∈ H. Thus ϕ(A) = V ∗π(A)V for all A ∈ A as desired. Lastly we notice that

‖ϕ(A)‖ ≤ ‖V ∗π(A)V ‖ ≤ ‖V ∗‖ ‖π(A)‖ ‖V ‖ ≤ ‖V ‖2 ‖A‖

for all A ∈ A. Whence ‖ϕ‖ ≤ ‖V ‖2. Combining this inequality with inequality obtained earlier completes
the proof.

Stinespring’s Theorem is very useful in developing theorems about completely positive maps. The follow-
ing is one example of this which give us another Cauchy-Schwarz inequality for completely positive maps.

Theorem 4.2. Let A be a C∗-algebra and let ϕ : A→ B be a completely positive map. Then ϕ(A)∗ϕ(A) ≤
‖ϕ‖ϕ(A∗A) for all A ∈ A.

Proof. By using the GNS construction we may view B ⊆ B(H) and thus we can apply Stinespring’s Theorem

to obtain a Hilbert space K and a bounded operator V ∈ B(H,K) such that ‖V V ∗‖ = ‖V ‖2 = ‖ϕ‖ and
ϕ(A) = V ∗π(A)V for all A ∈ A. Whence for all A ∈ A

ϕ(A)∗ϕ(A) = V ∗π(A)∗V V ∗π(A)V ≤ V ∗π(A)∗(‖V V ∗‖ IK)π(A)V = ‖ϕ‖V ∗π(A∗A)V = ‖ϕ‖ϕ(A∗A)

as desired.

Another use of Stinespring’s Theorem is the ability to determine that some completely positive maps
have multiplicative properties. We will present two proofs; the first which is intuitive but only works in the
unital case and the second which works in the non-unital case and is a little tricky.

Theorem 4.3. Let A and B be unital C∗-algebra and let ϕ : A → B be a unital, completely positive map.
Suppose A0 is a C∗-subalgebra of A such that ϕ|A0 is multiplicative (that is ϕ(A1A2) = ϕ(A1)ϕ(A2) for all
A1, A2 ∈ A0). Then ϕ(AXB) = ϕ(A)ϕ(X)ϕ(B) for all A,B ∈ A0 and X ∈ A.

Proof. Without loss of generality we may assume B ⊆ B(H). As ϕ is unital, Stinespring’s Theorem implies
there exists a Hilbert space K containing H and a ∗-homomorphism π : A → B(K) such that ϕ(A) =
PHπ(A)|H for all A ∈ A. First we will show that for each A ∈ A0 π(A) decomposes as a diagonal operator
with respect to the decompositionH⊕H⊥ ofK with ϕ(A) in the first entry. With respect to the decomposition
H⊕H⊥ of K write

π(A) =

[
ϕ(A) π1,2(A)
π2,1(A) π2,2(A)

]
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for all A ∈ A where π1,2 : A→ B(H⊥,H), π2,1 : A→ B(H,H⊥), and π2,2 : A→ B(H⊥) are linear maps. To
begin suppose A ∈ A0 is self-adjoint. Since π is a ∗-homomorphism and A is self-adjoint, π1,2(A) = π2,1(A)∗.
However [

ϕ(A2) π1,2(A2)
π2,1(A2) π2,2(A2)

]
= π(A2) = π(A)2 =

[
ϕ(A)2 + π1,2(A)π2,1(A) ∗

∗ ∗

]
(where ∗ represents expressions unimportant to us). Thus ϕ(A2) = ϕ(A)2 + π1,2(A)π2,1(A). Since ϕ is
multiplicative on A0, ϕ(A2) = ϕ(A)2 and thus 0 = π1,2(A)π2,1(A) = π1,2(A)π1,2(A)∗. Thus π1,2(A) = 0 =
π2,1(A). Since the self-adjoint elements of A0 span A0, we obtain that

π(A) =

[
ϕ(A) 0

0 π2,2(A)

]
for all A ∈ A0. Whence if A,B ∈ A0 and X ∈ A

π(AXB) = π(A)π(X)π(B)

=

[
ϕ(A) 0

0 π2,2(A)

] [
ϕ(X) π1,2(X)
π2,1(X) π2,2(X)

] [
ϕ(B) 0

0 π2,2(B)

]
=

[
ϕ(A)ϕ(X)ϕ(B) ∗

∗ ∗

]
so ϕ(AXB) = PHπ(AXB)|H = ϕ(A)ϕ(X)ϕ(B) as desired.

Theorem 4.4. Let A and B be C∗-algebra and let ϕ : A → B be a completely positive map with ‖ϕ‖ = 1.
Suppose A0 is a C∗-subalgebra of A such that ϕ|A0 is multiplicative (that is ϕ(A1A2) = ϕ(A1)ϕ(A2) for all
A1, A2 ∈ A0). Then ϕ(AXB) = ϕ(A)ϕ(X)ϕ(B) for all A,B ∈ A0 and X ∈ A.

Proof. First we claim that ϕ(AX) = ϕ(A)ϕ(X) for all A ∈ A0 and X ∈ A. To begin we notice that
ϕ(AA∗) = ϕ(A)ϕ(A)∗ for all A ∈ A0 as ϕ is multiplicative on A0 and self-adjoint (being a completely positive
map). Since ϕ is completely positive with ‖ϕ‖ = 1, ϕ(2) is completely positive and

∥∥ϕ(2)

∥∥ = ‖ϕ‖ = 1 by
Theorem 3.20. Thus, by Theorem 4.2,

ϕ(2)

([
A 0
X∗ 0

])
ϕ(2)

([
A 0
X∗ 0

])∗
≤
∥∥ϕ(2)

∥∥ϕ(2)

([
A 0
X∗ 0

] [
A 0
X∗ 0

]∗)
.

By expanding out both sides we obtain that[
ϕ(A)ϕ(A)∗ ϕ(A)ϕ(X)
ϕ(X∗)ϕ(A)∗ ϕ(X)∗ϕ(X)

]
≤
[

ϕ(AA∗) ϕ(AX)
ϕ(X∗A∗) ϕ(X∗X)

]
so that the matrix

M =

[
ϕ(AA∗)− ϕ(A)ϕ(A)∗ ϕ(AX)− ϕ(A)ϕ(X)
ϕ(X∗A∗)− ϕ(X∗)ϕ(A)∗ ϕ(X∗X)− ϕ(X∗)ϕ(X)

]
is positive. However the (1, 1)-entry of M is zero. Thus, a simple application of Lemma 3.17 part (3) implies
that ϕ(AX)− ϕ(A)ϕ(X) = 0. Whence ϕ(AX) = ϕ(A)ϕ(X) for all A ∈ A0 and X ∈ A.

To see that ϕ(XB) = ϕ(X)ϕ(B) for all B ∈ A0 and X ∈ A we notice that

ϕ(XB) = ϕ(B∗X∗)∗ = (ϕ(B∗)ϕ(X∗))∗ = ϕ(X)ϕ(B).

Whence for all A,B ∈ A0 and X ∈ B

ϕ(AXB) = ϕ(A)ϕ(XB) = ϕ(A)ϕ(X)ϕ(B)

as desired.
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Our next goal is to be able to extend completely positive maps to completely positive maps. If ϕ : A→ B
is a completely positive map, we can apply the GNS construction and the fact that ∗-homomorphisms are
completely positive to view ϕ : A → B(H) for some Hilbert space H. Arveson’s Extension Theorem will
allow us to extend ϕ to a completely positive map ϕ̃ with the one caveat that the range of ϕ̃ may not sit
inside B ⊆ B(H). This is a technical issue that is necessary for the proof of Arveson’s Extension Theorem
and will be explored in Chapter 5.

First we note that complete positivity is essential as Remarks 2.24 showed that there exists positive maps
ϕ : S → B that cannot be extended to a positive map on C(T).

To begin the proof of Arveson’s Extension Theorem we will first show that completely positive maps into
Mn(C) can be extended to completely positive maps for each n ∈ N. The B(H)-case of Arveson’s Extension
Theorem will then follow by taking the completely positive map into B(H), creating a net of completely
positive maps into arbitrarily large matrix algebras, considering a certain topology, and taking a cluster
point.

To begin the proof, we first prove a simple lemma that will make it easier for us to check that a map is
positive.

Lemma 4.5. Let A be a C∗-algebra. Then every positive element ofMn(A) is the sum of n positive elements
of the form [A∗iAj ] for some {A1, . . . , An} ∈ A.

Proof. First suppose we have chosen {Ai}ni=1 ∈ A. Then A∗1A1 . . . A∗1An
...

...
A∗nA1 . . . A∗nAn

 =



A1 . . . An
0 . . . 0
...

...
0 . . . 0



∗ 

A1 . . . An
0 . . . 0
...

...
0 . . . 0

 .
Thus [A∗iAj ] is a positive matrix.

Now suppose P ∈ Mn(A) is a positive matrix. Hence there exists a B ∈ Mn(A) such that P = B∗B.
Let Rk be an n × n matrix with its kth row being the kth row of B and 0’s elsewhere. Then R∗iRj = 0 if
i 6= j. Thus P = R∗1R1 + . . .+R∗nRn. However each R∗kRk is of the form [A∗iAj ] for some {A1, . . . , An} ∈ A
as each Rk is a matrix with only non-zero entries in the kth row (i.e. Ai is the ith entry of the kth row) thus
completing the proof.

By the above lemma, to show that ϕ : A → B is n-positive it suffices to check that ϕ(n)([A
∗
iAj ]) is

positive for all A1, . . . , An ∈ A.
To show that completely positive maps into Mn(C) can be extended to completely positive maps for

each n ∈ N, we will make use of the fact that positive linear functionals can be extended and a certain
correspondence between linear maps from a space S into Mn(C) and linear maps from Mn(S) into C.

Definition 4.6. Let S be an operator system and let {ej}nj=1 be the canonical basis for Cn. If ϕ : S →
Mn(C) is linear we define sϕ :Mn(S)→ C by

sϕ([Ai,j ]) =
1

n

n∑
i,j=1

〈ϕ(Ai,j)ej , ei〉Cn

for all [Ai,j ] ∈Mn(S). We shall call sϕ the linear functional associated with ϕ. Note that sϕ takes a matrix
[Ai,j ] ∈Mn(S) and sums up the (i, j)th entry of ϕ applied to the (i, j)th entry of [Ai,j ] (up to an averaging
term).

If s :Mn(S)→ C is linear then we define ϕs : S →Mn(C) by

〈ϕs(A)ej , ei〉 = ns(A⊗ Ei,j)

for all A ∈ A where Ei,j is the matrix inMn(C) with a 1 in the (i, j)th entry and 0’s elsewhere (by A⊗Ei,j ,
we mean the matrix in Mn(S) with A in the (i, j)th entry and 0’s elsewhere). We shall call ϕs the linear
map associated with s.
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Remarks 4.7. Consider sϕ. If x denotes the vector in (Cn)⊕n = Cn ⊕ . . .⊕Cn given by x := e1 ⊕ · · · ⊕ en
then

sϕ([Ai,j ]) =
1

n

n∑
i,j=1

〈ϕ(Ai,j)ej , ei〉Cn =
1

n
〈ϕ(n)([Ai,j ])x, x〉(Cn)⊕n .

It will be useful for later to note that ‖x‖2 =
√
n.

It is also useful to note that the maps T : L(S,Mn(C)) → L(Mn(S),C) given by T (ϕ) = sϕ and
R : L(Mn(S),C) → L(S,Mn(C)) given by R(s) = ϕs are linear maps (it is clear from the definitions that
ϕs and sϕ are linear maps). Notice that for all ψ ∈ L(S,Mn(C)) that

RT (ψ)(A) = ϕsψ (A) = n[sψ(A⊗ Ei,j)] = n

[
1

n
〈ψ(A)ej , ei〉Cn

]
= [〈ψ(A)ej , ei〉Cn ] = ψ(A)

for all A ∈ S. Hence RT : L(S,Mn(C))→ L(S,Mn(C)) is the identity map. Also, for all f ∈ L(Mn(S),C)

TR(f)[Ai,j ] = sϕf [Ai,j ] = 1
n

∑n
i,j=1〈ϕf (Ai,j)ej , ei〉Cn

= 1
n

∑n
i,j=1 nf(Ai,j ⊗ Ei,j)

= f
(∑n

i,j=1Ai,j ⊗ Ei,j
)

= f([Ai,j ])

for all [Ai,j ] ∈ Mn(S). Hence TR : L(Mn(S),C) → L(Mn(S),C) is also the identity map. Therefore the
maps T and R are mutual inverses.

Example 4.8. Let S := C and define ψ : S → Mn(C) by ψ(α) = [α], the matrix with every entry equal
to α. Notice then that σ := sψ : Mn(S) = Mn(C) → C is such that sψ([αi,j ]) = 1

n

∑n
i,j=1 αi,j which is a

scalar multiple of the sum of the entries of [αi,j ].

Example 4.9. Let S := C and define trm :Mm(S) =Mm(C)→ C by trm([αi,j ]) = 1
m

∑m
i=1 αi,i (i.e. trm

is the normalized trace). Notice then that ϕtrm : S = C→Mm(C) is such that ϕtrm(α) = [trm(α⊗Ei,j)] =
αIm.

Using matrix tricks it is possible to verify that σ and trm are positive linear functionals. Moreover notice
that ψ(n)([αi,j ]) = [αi,j [1]] (where [1] ∈ Mn(C) is the matrix with 1s in each entry) and (ϕtrm)(n)([αi,j ]) =
[αi,jIm]. Using more matrix tricks it is possible to verify that ψ(n) and (ϕtrm)(n) are positive maps for all
n ∈ N and thus ψ and ϕtrm are completely positive. Coincidence, I think not!

Theorem 4.10. Let A be a unital C∗-algebra, let S ⊆ A be an operator system or C∗-algebra, and let
ϕ : S →Mn(C) be a linear map. Then the following are equivalent:

1. ϕ is completely positive.

2. ϕ is n-positive.

3. sϕ is positive.

Proof. It is clear that if ϕ is completely positive then ϕ is n-positive. Hence (1) implies (2).
Suppose that ϕ is n-positive. Then for all [Ai,j ] ∈Mn(S) we have from Remarks 4.7 that

sϕ([Ai,j ]) =
1

n
〈ϕ(n)([Ai,j ])x, x〉(Cn)⊕n

where x = e1 ⊕ · · · ⊕ en. Therefore if [Ai,j ] ≥ 0 then sϕ([Ai,j ]) ≥ 0 as ϕ(n) was positive (and thus
〈ϕ(n)([Ai,j ])x, x〉(Cn)⊕n ≥ 0 by Theorem 1.21). Therefore (2) implies (3).

Lastly suppose sϕ is positive. By Theorem 1.15 or Proposition 2.27 (depending on whether S is an
operator system or C∗-algebra) we may extend sϕ to a positive linear functional f : Mn(A) → C. Since f
extends sϕ, the linear map ψ associated with f extends ϕ (this easily follows from Remarks 4.7). Thus it
suffices to show that ψ is completely positive.
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To show that ψ is m-positive it suffices to show that ψ(m)([A
∗
iAj ]) ≥ 0 for all {A1, . . . , Am} ∈ A by

Lemma 4.5. However, since ψ : A →Mn(C), ψ(m) :Mm(A) →Mm(Mn(C)) ' Mmn(C). Thus it suffices
to show that

〈ψ(m)([A
∗
iAj ])(x1 ⊕ · · · ⊕ xm), x1 ⊕ · · · ⊕ xm〉(Cn)⊕m ≥ 0

for all xi ∈ Cn. For each j write xj =
∑n
k=1 λj,kek where {e1, . . . , en} is the standard basis for Cn. Then

〈ψ(m)([A
∗
iAj ])(x1 ⊕ · · · ⊕ xm), x1 ⊕ · · · ⊕ xm〉(Cn)⊕m =

m∑
i,j=1

〈ψ(A∗iAj)xj , xi〉Cn

=

m∑
i,j=1

n∑
k,l=1

λj,kλi,l〈ψ(A∗iAj)ek, el〉Cn

= n

m∑
i,j=1

n∑
k,l=1

λj,kλi,lf(A∗iAj ⊗ El,k).

Let Bi ∈Mn(C) be the matrix with (λi,1, . . . , λi,n) as its first row and 0’s elsewhere. Then

B∗iBj =

n∑
k,l=1

λi,lλj,kEl,k.

For each C ∈ A and T = [αi,j ] ∈Mn(C) let C ⊗ T denote the matrix [αi,jC] ∈Mn(A). Therefore

〈ψ(m)([A
∗
iAj ])(x1 ⊕ · · · ⊕ xm), x1 ⊕ · · · ⊕ xm〉(Cn)⊕m = n

m∑
i,j=1

f(A∗iAj ⊗B∗iBj)

= nf

((
n∑
i=1

Ai ⊗Bi

)∗( n∑
i=1

Ai ⊗Bi

))
≥ 0

as f is positive. Therefore ψ(m) is positive for all m ∈ N and hence ϕ is completely positive.

Note that the above result can be extremely useful as it is much easier to verify that a linear functional
is positive than it is to verify that a map is completely positive using definitions. Moreover we know some
additional properties of positive linear functionals such as how to extend them. Thus we can use the theory
of positive linear functional to extend completely positive maps in this setting.

Theorem 4.11. Let A be a unital C∗-algebra, let S ⊆ A be an operator system or C∗-algebra, and let
ϕ : S →Mn(C) be a completely positive map. Then there exists a completely positive map ψ : A→Mn(C)
extending ϕ.

Proof. Since ϕ is completely positive, the linear functional associated with ϕ, sϕ :Mn(S)→ C, is positive by
Theorem 4.10. Hence, by Theorem 1.15 or Proposition 2.27 (depending on whether S is an operator system
or C∗-algebra), sϕ extends to a positive linear functional f :Mn(A)→ C. Let ψ : A→Mn(C) be the linear
map associated with f . Hence ψ is completely positive by Theorem 4.10. However ϕ = ϕsϕ = ϕf |S = ψ|S
(where the restriction is clearly true by the definitions). Hence we have the desired result.

Notice that if S and A share the same unit then Theorem 3.18 implies that ψ and ϕ (as in the previous
theorem) have the same norm. However if S does not have the same unit as A it is possible that ψ and
ϕ do not have the same norm. One would hope that there is a norm relation between ϕ and sϕ and there
is. However this norm relation depends on n and will cause problems in the proof of Arveson’s Extension
Theorem in the non-unital case. Nevertheless we will find a way around this.

Now that we have developed a theory of completely positive maps into Mn(C) we wish to be able to
extend these results to completely positive maps into B(H). To do this we will need to develop a certain
topology which will be essential. Below is probably not the quickest way to develop this topology but we
develop some nice and more general theory along the way.

42



Construction 4.12. Let X and Y be Banach spaces, let Y∗ be the dual space of Y, and let B(X,Y∗)
be the bounded linear maps from X into Y∗. We desire to show that there exists a Banach space Z such
that B(X,Y∗) ' Z∗. This will then allow us to equip B(X,Y∗) with a weak∗-topology. The idea behind
the construction is if W is a Banach space, then we desire to extract a certain closed subspace Z of W∗∗∗;
namely the image of W∗ under the canonical inclusion.

To construct Z let x ∈ X and y ∈ Y be arbitrary and define a linear functional x ⊗ y : B(X,Y∗) → C
by x ⊗ y(L) = L(x)(y) for all L ∈ B(X,Y∗). It is clear that x ⊗ y is linear as evaluation in B(X,Y∗) and
evaluation in Y∗ are linear. Moreover it is easy to see that ‖x⊗ y(L)‖ = ‖L(x)(y)‖ ≤ ‖L‖ ‖x‖ ‖y‖ for all
L ∈ B(X,Y∗) so that ‖x⊗ y‖ ≤ ‖x‖ ‖y‖. To see that this inequality is actually an equality we can apply
the Hahn-Banach Theorem to obtain linear functionals fx ∈ X∗ and gy ∈ Y∗ such that ‖fx‖ = 1 = ‖gy‖,
fx(x) = ‖x‖, and gy(y) = ‖y‖. Define Lx,y ∈ B(X,Y∗) by Lx,y(x′) = fx(x′)gy. Then it is clear that Lx,y is
linear and

‖Lx,y‖ = sup{‖fx(x′)gy‖ | x′ ∈ X ‖x′‖ ≤ 1}
= ‖gy‖ sup{|fx(x′)| | x′ ∈ X ‖x′‖ ≤ 1}
= ‖gy‖ ‖fx‖ = 1.

Since x ⊗ y(Lx,y) = Lx,y(x)(y) = fx(x)gy(y) = ‖x‖ ‖y‖ and ‖Lx,y‖ = 1, ‖x⊗ y‖ ≥ ‖x‖ ‖y‖ and thus we
obtain equality.

We claim that the algebraic tensor product X � Y is isomorphic (as a vector space) to span{x ⊗
y}x∈X,y∈Y ⊆ B(X,Y∗)∗. To see this we note that it is easy to verify that

(a1x1 + a2x2)⊗ (b1y1 + b2y2) =

2∑
i,j=1

aibj(xi ⊗ yj)

for all x1, x2 ∈ X, y1, y2 ∈ Y, and a1, a2, b1, b2 ∈ C. Thus, by the Universal Property of the Algebraic Tensor
Product, there exists a linear map ϕ : X⊗Y→ B(X,Y∗)∗ such that ϕ(x⊗ y) = x⊗ y (where ⊗ means the
appropriate thing in each space). Clearly ϕ maps onto the span of {x⊗y}x∈X,y∈Y in B(X,Y∗)∗. To see that
ϕ is injective, suppose 0 6= t =

∑n
i=1 xi ⊗ yi is in the kernel of ϕ with the xis and yis linearly independent.

Then for all L ∈ B(X,Y∗)
∑n
i=1 L(xi)(yi) = 0. By the Hahn Banach Theorem there exists linear functions

fxi ∈ X∗ and gyi ∈ Y∗ such that ‖fxi‖ = 1 = ‖gyi‖, fxi(xj) = δi,j ‖xi‖, and gyi(yj) = δi,j ‖yi‖. Define
Lxi,yi ∈ B(X,Y∗) by Lxi,yi(x

′) = fxi(x
′)gyi . Hence

0 =

n∑
j=1

Lxi,yi(xj)(yj) =

n∑
j=1

fxi(xj)gyi(yj) = ‖xi‖ ‖yi‖ .

Hence xi = 0 or yi = 0 which contradicts the fact that the xis and the yis are linearly independent. Hence
ϕ is injective and thus we can identify X�Y with this set.

Let Z be the closed linear span of the elementary tensors {x⊗ y}x∈X,y∈Y in B(X,Y∗)∗. Therefore, since
Z is a closed vector subspace of a Banach space, Z is a Banach space. Moreover the following lemma shows
us that Z satisfies our hopes of performing this construction.

Lemma 4.13. B(X,Y∗) is isometrically isomorphic to Z∗ by the map ϕ : B(X,Y∗)→ Z∗ induced by

ϕ(L)

(
n∑
i=1

xi ⊗ yi

)
=

n∑
i=1

xi ⊗ yi(L).

Proof. For each fixed L ∈ B(X,Y∗) the map ψL : X × Y → C defined by ψL(x, y) = x ⊗ y(L) is bilinear.
Therefore by the Universality Property of the Algebraic Tensor Product ψL extends to a linear functional
ϕL : X � Y ⊆ Z → C such that ϕL (

∑n
i=1 xi ⊗ yi) =

∑n
i=1 xi ⊗ yi(L). Moreover we notice that ϕL is
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continuous on X�Y as

‖ϕL‖ = sup


∣∣∣∣∣ϕL

(
n∑
i=1

xi ⊗ yi

)∣∣∣∣∣ |
n∑
i=1

xi ⊗ yi ∈ X�Y,

∥∥∥∥∥
n∑
i=1

xi ⊗ yi

∥∥∥∥∥
Z

≤ 1


= sup


∣∣∣∣∣
n∑
i=1

xi ⊗ yi(L)

∣∣∣∣∣ |
n∑
i=1

xi ⊗ yi ∈ X�Y,

∥∥∥∥∥
n∑
i=1

xi ⊗ yi

∥∥∥∥∥
Z

≤ 1


≤ ‖L‖ .

Hence ϕL extends by continuity to a linear functional, which we will also call ϕL, on Z. Thus if we define
ϕ : B(X,Y∗) → Z∗ by ϕ(L) = ϕL for all L ∈ B(X,Y∗) then ϕ is a linear map (linear since a simple
computation show that ϕλL1+L2 = λϕL1 + ϕL2 on X � Y and then extend by continuity to obtain this
result). Therefore the map ϕ is well-defined and linear.

To see that ϕ is isometric we notice that the above computation shows us that ‖ϕ(L)‖ ≤ ‖L‖. Moreover
the above computation show us that

‖ϕ(L)‖ = sup


∣∣∣∣∣
n∑
i=1

L(xi)(yi)

∣∣∣∣∣ |
n∑
i=1

xi ⊗ yi ∈ X�Y,

∥∥∥∥∥
n∑
i=1

xi ⊗ yi

∥∥∥∥∥
Z

≤ 1

 .

However for all ε > 0 there exists an x ∈ X such that ‖x‖ = 1 and ‖L(x)‖ > ‖L‖ − ε
2 . Moreover there

also exists a y ∈ Y such that ‖y‖ = 1 and ‖L(x)(y)‖ > ‖L(x)‖ − ε
2 > ‖L‖ − ε. Thus we then have that

‖x⊗ y‖ = ‖x‖ ‖y‖ = 1 and ‖L(x)(y)‖ > ‖L‖ − ε. Thus ‖ϕ(L)‖ > ‖L‖ − ε for all ε > 0. Thus ‖ϕ(L)‖ = ‖L‖
as desired. Therefore ϕ is a linear isometry and thus is injective.

Now all that remains is to show that ϕ is surjective. In this regard, let f ∈ Z∗ be arbitrary. Then for all
x ∈ X define the linear functional fx : Y→ C by fx(y) = f(x⊗y) for all y ∈ Y. Since |fx(y)| ≤ ‖f‖ ‖x‖ ‖y‖,
fx ∈ Y∗. Define L ∈ B(X,Y∗) by L(x) = fx. Since it is clear that fλx1+x2

= λfx1
+ fx2

, L is linear, and
since ‖fx‖ ≤ ‖f‖ ‖x‖, ‖L‖ ≤ ‖f‖ so that L is indeed bounded. Therefore all that remains is to show that
ϕ(L) = f but this is trivial since

ϕ(L)(x⊗ y) = L(x)(y) = fx(y) = f(x⊗ y).

Hence by linearity ϕ(L) = f on X�Y and therefore, by continuity, ϕ(L) = f on Z as desired. Therefore ϕ
is an isometric isomorphism and the result follows.

From now on we shall drop the ϕ and write L(x ⊗ y) = L(x)(y) interchangeably. Now that we have
B(X,Y∗) ' Z∗ we may place a weak∗-topology on B(X,Y∗) induced by Z which we will call the Bounded
Weak topology (or just BW topology). It is useful to note that a net {Lλ}Λ converges to L in the BW
topology if and only if Lλ(z)→ L(z) for all z ∈ Z (where we now drop the ϕ in the preceding lemma). This
enables us the slightly stronger result in the case of a bounded net.

Lemma 4.14. Let (Lλ)Λ be a norm bounded net in B(X,Y∗). Then Lλ converges to L in the BW topology
if and only if Lλ(x) converges to L(x) in the weak∗-topology on Y∗ generated by Y for all x ∈ X.

Proof. Suppose that Lλ converges to L in the BW topology. Then for each x ∈ X and for all y ∈ Y

Lλ(x)(y) = Lλ(x⊗ y)→ L(x⊗ y) = L(x)(y).

As this holds for all y ∈ Y, Lλ(x)→ L(x) in the weak∗-topology on Y∗ for each x ∈ X.
Now suppose that (Lλ)Λ is a norm bounded net such that Lλ(x) converges to L(x) in the weak∗-topology

on Y∗ for all x ∈ X. Then, by linearity and finiteness,

Lλ

(
n∑
i=1

xi ⊗ yi

)
→ L

(
n∑
i=1

xi ⊗ yi

)
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for all
∑n
i=1 xi ⊗ yi ∈ X�Y. Fix z ∈ Z and let ε > 0. Then, due to the density of X�Y in Z, there exists

a t =
∑n
i=1 xi ⊗ yi ∈ X�Y such that ‖z − t‖ < ε

M where

M := max{sup{‖Lλ‖ | λ ∈ Λ}, ‖L‖ , 1} <∞

as {Lλ}λ∈Λ was norm bounded. Since we have shown that Lλ(t) → L(t), there exists λ′ ∈ Λ such that if
λ ≥ λ′ then ‖Lλ(t)− L(t)‖ < ε. Thus for all λ ≥ λ′,

‖Lλ(z)− L(z)‖ ≤ ‖Lλ‖ ‖z − t‖+ ‖Lλ(t)− L(t)‖+ ‖L‖ ‖t− z‖ ≤ 3ε

Therefore Lλ(z)→ L(z) for all z ∈ Z and thus Lλ → L in the BW topology.

The above actually shows something special. Let H be a Hilbert space. Then, since H∗ ' H, B(H) =
B(H,H) is a dual space by Lemma 4.13. The question is, “Can we identify this Banach space in another
manner?” To do this we shall need to recall some of spectral theory for compact normal operators.

Definition 4.15. A compact operator K ∈ B(H) is said to be of trace class if the eigenvalues (including
multiplicity) of |T | are summable. Let ‖T‖1 denote sum of the eigenvalues (including multiplicity) of |T |
and let C1 denote the set of trace class operators.

Facts 4.16. The set of trace class operators C1 is a vector subspace of B(H), ‖ · ‖1 is a norm on C1, C1
is complete with respect to ‖ · ‖1, and the finite rank operators are dense in C1 with respect to this norm.
Moreover TK ∈ C1 and KT ∈ C1 whenever T ∈ B(H) and K ∈ C1.

If {eλ}Λ is an orthonormal basis for H, define Tr : C1 → C by Tr(K) =
∑

Λ〈Keλ, eλ〉 for all K ∈ C1.
Then Tr is a well-defined continuous linear functional that does not depend on the choice of orthonormal
basis {eλ}Λ. Moreover Tr(TK) = Tr(KT ) for all T ∈ B(H) and K ∈ C1.

For each T ∈ B(H) define ϕT : C1 → C by ϕT (K) = Tr(KT ) for all K ∈ C1. Then ϕT is continuous with
‖ϕT ‖ = ‖T‖. The map Φ : B(H)→ C∗1 defined by Φ(T ) = ϕT is a bijective isometry.

By the above facts and Construction 4.12, B(X, C∗1 ) = B(X,B(H)) has a BW topology for every Banach
space X. This topology is also called the point-ultraweak topology (as the weak∗-topology on B(H) induced
by the trace class operators is called the ultraweak topology and Lemma 4.14 implies that convergence in
the BW topology is pointwise convergence in the ultraweak topology). We will abuse the notation and write
B(X,B(H)) for B(X, C∗1 ) (it turns out that C1 is the only predual of B(H)). On bounded nets, Lemma 4.14
tells us this is the same as the point-WOT.

Proposition 4.17. Let X be a Banach space and H a Hilbert space. Then a norm bounded net (Lλ)Λ ⊆
B(X,B(H)) converges in the BW topology to L if and only if 〈(Lλ(x))ξ, η〉 converges to 〈(L(x))ξ, η〉 for all
ξ, η ∈ H and x ∈ X.

Proof. Recall from Lemma 4.14 that Lλ converges to L in the BW topology if and only if Lλ(x) converges
to L(x) in the weak∗-topology on B(H) (generated by C1) for all x ∈ X. However Lλ(x) converges weak∗ to
L(x) in B(H) = (C1)∗ if and only if (Lλ(x))(K)→ (L(x))(K) for all K ∈ C1 if and only if Tr((Lλ(x))K)→
Tr((L(x))K) for all K ∈ C1. The idea behind this proof is that the weak∗-topology on B(H) induced by the
trace class operators agrees with the WOT on bounded sets as the finite rank operators are dense in the set
of trace class operators.

Suppose that Lλ converges to L in the BW topology. For each ξ, η ∈ H, define ξη∗ ∈ B(H) by (ξη∗)(ζ) =
〈ζ, η〉ξ so that ξη∗ is a finite rank operator (and thus a trace class operator). Since ξη∗ ∈ C1 for all ξ, η ∈ H
it is easy to verify that Tr(T (ξη∗)) = 〈Tξ, η〉 for all T ∈ B(H) and thus we obtain that

〈(Lλ(x))ξ, η〉 = Tr((Lλ(x))(ξη∗))→ Tr((L(x))(ξη∗)) = 〈(L(x))ξ, η〉.

Thus one direction holds.
For the other direction, suppose 〈(Lλ(x))ξ, η〉 converges to 〈(L(x))ξ, η〉 for all ξ, η ∈ H and x ∈ X.

Therefore Tr((Lλ(x))(ξη∗)) → Tr((L(x))(ξη∗)) for all ξ, η ∈ H and x ∈ X. Therefore, by linearity and
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finiteness, we obtain for all finite rank operators F that Tr((Lλ(x))F ) → Tr((L(x))F ) for all x ∈ X. Fix
x ∈ X, K ∈ C1, and ε > 0. By the fact that the finite rank operators are dense in C1 there exists a finite
rank operator F such that ‖K − F‖1 ≤

ε
3M(‖x‖+1) where M := 1 + sup{{‖Lλ‖ | λ ∈ Λ} ∪ ‖L‖} which

is finite as (Lλ)Λ is a bounded net. Since F is a finite rank operator there exists a λ0 ∈ Λ such that
|Tr((L(x))F )− Tr((Lλ(x))F )| < ε

3 for all λ ≥ λ0. Hence for all λ ≥ λ0,

|Tr((L(x))K)− Tr((Lλ(x))K)|
≤ |Tr((L(x))K − (L(x))F )|+ |Tr((L(x))F − (Lλ(x))F )|+ |Tr((Lλ(x))F − (Lλ(x))K)|

≤ ‖L(x)‖ ‖K − F‖1 +
ε

3
+ ‖Lλ(x)‖ ‖F −K‖1

≤ ε

3
+
ε

3
+
ε

3
= ε.

Therefore Tr((Lλ(x))K)→ Tr((L(x))K). However, since K ∈ C1 and x ∈ X was arbitrary, we have that Lλ
converges to L in the BW topology as desired.

Now that we are in the final stretch of our proof of Arveson’s Extension Theorem, we need to define a
few sets and prove some simple properties of these sets.

Notation 4.18. Let S ⊆ A be operator system or C∗-algebra and let H a Hilbert space. Then for each
r ∈ [0,∞) we define

Br(M,H) := {L ∈ B(M,B(H)) | ‖L‖ ≤ r} and
CPr(S,H) := {L ∈ B(S,B(H)) | L is completely positive, ‖L‖ ≤ r}.

With these sets in hand, we shall now begin our first major step in proving the Arveson’s Extension
Theorem.

Theorem 4.19. Let S ⊆ A be a closed operator system or C∗-algebra. Then each set listed in 4.18 is
compact in the BW topology.

Proof. First note that we require S to be closed in order to be able to consider the BW topology. Since the
BW topology is a weak∗-topology, the Banach-Alaoglu Theorem implies that every norm closed ball around
0 is compact in the BW topology. Thus Br(M,H) is BW-compact for all r.

To see that CPr(S,H) is BW-compact, we notice that CPr(S,H) ⊆ Br(S,H) and thus it suffices to show
that CPr(S,H) is BW-closed. Thus let (Lλ)Λ ⊆ CPr(S,H) be a convergent net in the BW topology. Let L
be the limit of Lλ. Since Lλ ∈ Br(S,H) for all λ ∈ Λ and Br(S,H) is a compact set in the BW topology
(which is Hausdorff), Br(S,H) is closed. Therefore L ∈ Br(S,H) and thus ‖L‖ ≤ r. Therefore to show that
L ∈ CPr(S,H) it suffices to show that L is completely positive. Fix n ∈ N and consider L(n). Then for all
A ∈ S 〈(Lλ(A))ξ, η〉H → 〈(L(A))ξ, η〉H for all ξ, η ∈ H as (Lλ)Λ is a bounded net and thus Proposition 4.17
applies. Therefore, by finiteness, we have for all positive [Ai,j ] ∈Mn(S) and ξ = ξ1 ⊕ . . .⊕ ξn ∈ H⊕n that

〈(Lλ)(n)([Ai,j ])ξ, ξ〉H⊕n → 〈L(n)([Ai,j ])ξ, ξ〉H⊕n .

Hence, as this holds for all positive [Ai,j ] ∈ Mn(S) and ξ = ξ1 ⊕ . . . ⊕ ξn,∈ H⊕n, we obtain that
〈L(n)([Ai,j ])ξ, ξ〉H⊕n ≥ 0 since each Lλ is n-positive. Therefore L(n) is positive for all n ∈ N so that L
is completely positive. Therefore CPr(S,H) is a BW-closed set in a BW-compact set and thus is BW-
compact.

Now we just need one more little lemma that may seem a little out of place (in that we could have proven
this much earlier).

Lemma 4.20. Let A and B be a unital C∗-algebra, let S be an operator system of A, and let ϕ : S → B be
a completely positive map. Then ϕ extends by continuity to a completely positive map ψ : S → B.
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Proof. From Proposition 2.28 we know that every positive map extends by continuity to a positive map on
the norm closure of its domain. Therefore if ψ : S → B is the extension of ϕ then ψ is positive. Now
fix n ∈ N and suppose ψ′ is the positive extension of ϕ(n) on Mn(S). Notice that Mn(S) = Mn(S) by
applying Lemma 1.23. We claim that ψ′ = (ψ)(n) so that ψ is n-positive. However for all A ∈ Mn(S)
ψ′(A) = ϕ(n)(A) = ψ(n)(A). Thus, by continuity, ψ′ = ψ(n) so that ψ is n-positive. As this holds for all
n ∈ N, ψ is completely positive and extends ϕ.

With this in hand we are now able to prove the Arveson’s Extension Theorem. Unfortunately the
following proof only works in the unital case as this guarantees (by Theorem 3.18) that the norms of the
completely positive maps under consideration are bounded. In the non-unital case we were not able to show
that the norms of the completely positive maps under consideration are bounded so the proof does not work.
We will deal with the non-unital case afterwards in a fashion similar to that of Chapter 1 for positive linear
functionals.

Theorem 4.21 (Arveson’s Extension Theorem; Unital Version). Let S ⊆ A be an operator system and let
ϕ : S → B(H) be a complete positive map. Then there exists a completely positive map ψ : A → B(H) such
that ψ|B = ϕ and ‖ψ‖ = ‖ϕ‖.

Proof. Note that as completely positive maps obtain their norm at the identity, any completely positive
extension ψ of a completely positive map ϕ on an operator system must have the property that ‖ψ‖ = ‖ϕ‖.
Thus it suffices to find a completely positive extension. By Lemma 4.20 we may extend ϕ to a completely
positive map on the norm closure of S. Thus, without loss of generality, we may assume that S is a closed
operator system. The idea of the remainder of the proof is to use what we have developed; construct a net
of completely positive maps into matrix algebras so that they can be extended by Theorem 4.11 and then
take a cluster point using the BW topology.

Let F be any finite dimensional subspace of H and let PF be the orthogonal projection onto F . Notice
that PFB(H)PF is ∗-isomorphic to B(F) and we will make this identification. Define ϕF : S → B(F)
by ϕF (A) = PFϕ(A)PF for all A ∈ S. Note that ϕF is completely positive as it is the composition of the
conjugation by PF and a ∗-isomorphism identifying PFB(H)PF with B(F) and the composition of completely
positive maps is completely positive by Proposition 3.9.

Since B(F) is isomorphic toMn(C) for some n ∈ N, Theorem 4.11 implies that there exists a completely
positive map ψF : A→ B(F) that extends ϕF . Define ψ′F : A→ B(H) by for each A ∈ A letting ψ′F (A) be
the operator that equals ψF (A) on F and is 0 on F⊥. Therefore, since ψ′F is the composition of ψF and the
∗-homomorphism πF : B(F) → B(H) where πF (T ) is the operator that equals T on F and is 0 on F⊥ and
since the composition of completely positive maps is completely positive, ψ′F is completely positive.

Note that for every finite dimensional subspace F that ψ′F ∈ CP‖ϕ‖(A,H) as each ψ′F is completely
positive and thus

‖ψ′F‖ = ‖ψ′F (IA)‖ = ‖ϕF (IA)‖ ≤ ‖ϕ(IA)‖ = ‖ϕ‖
by Theorem 3.18. Moreover the set of finite-dimensional subspace of H form a directed net under inclu-
sion. Hence (ψ′F )F⊆H finite is a net in CP‖ϕ‖(A,H). Since CP‖ϕ‖(A,H) is BW-compact by Theorem 4.19

(ψ′F )F⊆H finite has a convergent subnet. Let ψ ∈ CP‖ϕ‖(A,H) be the limit of this convergent subnet. Hence
ψ is completely positive.

All that remains is to show that this ψ extends ϕ. To see this let A ∈ S be arbitrary. Fix x, y ∈ H
and let F be the finite dimensional subspace spanned by x and y. Then for any finite dimensional subspace
F1 ⊇ F in our convergent subnet (which exists by the definition of a subnet)

〈ϕ(A)x, y〉 = 〈ϕ(A)|F1x, PF1y〉 = 〈ϕF1(A)x, y〉 = 〈ψ′F1
(A)x, y〉.

However ψ′F → ψ in the BW topology and (ψ′F )F⊆H finite is a bounded net. Hence, by Proposition 4.17,

the above equality implies for every A ∈ S and every x, y ∈ H that 〈ϕ(A)x, y〉 = 〈ψ(A)x, y〉. Therefore
ψ(A) = ϕ(A) for all A ∈ S. Hence ψ is a completely positive map on A that extends ϕ.

To prove the non-unital Arveson Extension Theorem, we will prove three results very similar to Lemma
1.12, Lemma 1.13, and Theorem 1.15.
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Lemma 4.22. Let B be a non-unital C∗-algebra, let B̃ denote the unitization of B, and let ϕ : B→ B(H)
be a completely positive map. Then there exists a completely positive map ϕ̃ : B̃→ B(H) such that ϕ̃|B = ϕ
and ‖ϕ̃‖ = ‖ϕ‖.

Proof. By Stinespring’s Theorem (the non-unital case) there exists a Hilbert space K, a ∗-homomorphism

π : B → B(K), and a V ∈ B(H,K) such that ‖V ‖2 = ‖ϕ‖ and ϕ(B) = V ∗π(B)V for all B ∈ B. Define
π̃ : B̃ → B(K) by π̃(λIB̃ + B) = λIK + π(B) for all λ ∈ C and B ∈ B. It is easy to verify that π̃ is a
∗-homomorphism.

Define ϕ̃ : B̃→ B(H) by

ϕ̃(λIB̃ +B) = λV ∗V + ϕ(B) = V ∗π̃(λI +B)V

for all λIB̃ +B ∈ B̃. By the remarks preceding Stinespring’s Theorem the later expression shows that ϕ̃ is
a completely positive map. It is clear that ϕ̃ extends ϕ. Lastly, by Theorem 3.18,

‖ϕ̃‖ =
∥∥ϕ̃(IB̃)

∥∥ = ‖V ∗V ‖ = ‖V ‖2 = ‖ϕ‖

as desired.

Lemma 4.23. Let B be a C∗-algebra and let ϕ : B→ B(H) be a completely positive map. Then there exists
a completely positive map ϕ̃ : B⊕ C→ B(H) such that ϕ̃|B = ϕ and ‖ϕ̃‖ = ‖ϕ‖.

Proof. Define ϕ̃(B⊕λ) = ϕ(B) for all λ ∈ C and B ∈ B. It is trivial to verify that ϕ̃ is completely positive,
ϕ̃|B = ϕ, and ‖ϕ̃‖ = ‖ϕ‖.

Theorem 4.24 (Arveson’s Extension Theorem; Non-Unital Version). Let B ⊆ A be C∗-algebras and ϕ :
B→ B(H) be a complete positive map. Then there exists a completely positive map ψ : A→ B(H) such that
ψ|B = ϕ and ‖ψ‖ = ‖ϕ‖.

Proof. We shall break the proof into a two cases that will follow easily from the above lemmas.
Case 1: B is not unital Let Ã be the unitization of A if A is not unital and let Ã be A if A is unital.

Consider the ∗-algebra
CIÃ + B := {λIÃ +B | B ∈ B, λ ∈ C} ⊆ Ã.

Then, as in the proof of Theorem 1.15, CIÃ + B is a C∗-algebra that is ∗-isomorphic to B̃.
By Lemma 4.22 ϕ extends to a completely positive map ϕ̃ : CIÃ + B → B(H) such that ‖ϕ̃‖ = ‖ϕ‖.

Since CIÃ+B ⊆ Ã are C∗-algebras with the same unit, Theorem 4.21 implies that ϕ̃ extends to a completely

positive map ψ̃ : Ã → B(H) such that
∥∥∥ψ̃∥∥∥ = ‖ϕ̃‖. Let ψ : A → B(H) be defined by ψ = ψ̃|A. Since the

restriction of a positive linear functional is clearly positive, ψ is a completely positive map. Moreover, by

construction, ψ extends ϕ and ‖ψ‖ ≤
∥∥∥ψ̃∥∥∥ = ‖ϕ‖ ≤ ‖ψ‖ (where the last inequality comes from the fact that

ψ extends ϕ).
Case 2: B is unital Let Ã be the unitization of A if A is not unital and let Ã be A if A is unital. If B

and Ã have the same unit, the result follows from Theorem 4.21. Else when IB 6= IÃ, the proof of Theorem

1.15 shows that B⊕ C can be viewed as a C∗-algebra of Ã with the same unit.
By Lemma 4.23 ϕ extends to a completely positive map ϕ̃ : B⊕ C→ B(H) such that ‖ϕ̃‖ = ‖ϕ‖. Since

B⊕C ⊆ Ã are C∗-algebras with the same unit, Theorem 4.21 implies that ϕ̃ extends to a completely positive

map ψ̃ : Ã → B(H) such that
∥∥∥ψ̃∥∥∥ = ‖ϕ̃‖. Let ψ : A → B(H) be defined by ψ = ψ̃|A. Since the restriction

of a completely positive map is clearly completely positive, ψ is a completely positive map. Moreover, by

construction, ψ extends ϕ and ‖ψ‖ ≤
∥∥∥ψ̃∥∥∥ = ‖ϕ‖ ≤ ‖ψ‖ (where the last inequality comes from the fact that

ψ extends ϕ).
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5 Applications of Completely Positive Maps

In this chapter we will examine some applications of completely positive maps. Unfortunately we will not
go into much detail as there is a large amount of additional material that would be required.

Our first application comes from the fact that Arveson’s Extension Theorem allows us to extend com-
pletely positive maps as long as the range is allowed to be contained in B(H). We desire to determine
when a C∗-algebra B has the property that every completely positive map into B has a completely positive
extension.

Definition 5.1. A C∗-algebra B is said to be injective if for every C∗-algebra A, every operator system or
C∗-subalgebra S ⊆ A, and every completely positive map ϕ : S → B there exists a completely positive map
ϕ̃ : A→ B such that ϕ̃|S = ϕ and ‖ϕ̃‖ = ‖ϕ‖.

Example 5.2. Let H be any Hilbert space. The C∗-algebra B(H) is injective by Theorem 4.21 and Theorem
4.24.

For our next example it makes sense to consider the example in full generality.

Lemma 5.3. Let {An}n≥1 be a (possibly finite) collection of C∗-algebras. Define∏
n≥1

An := {(An)n≥1 | An ∈ An, sup
n≥1
‖An‖An <∞}.

Then
∏
n≥1 An is a C∗-algebra with pointwise addition, multiplication, and involution and the C∗-norm

‖(An)n≥1‖ = supn≥1 ‖An‖An . Moreover if S ⊆ A is an operator system or C∗-algebra and ϕn : S → An
are completely positive maps with supn≥1 ‖ϕn‖ <∞ then there exists a well-defined completely positive map
ϕ : S →

∏
n≥1 A such that ϕ(A) = (ϕn(A))n≥1 and ‖ϕ‖ = supn≥1 ‖ϕn‖.

Proof. It is trivial to verify that
∏
n≥1 An is a C∗-algebra,

Mm

∏
n≥1

An

 ' ∏
n≥1

Mm(An)

for all m ∈ N via the map [(Ai,j,n)n≥1] 7→ ([Ai,j,n])n≥1, and that an element (An)n≥1 ∈
∏
n≥1 An is positive

if and only if An ≥ 0 for all n.
Suppose S ⊆ A is an operator system or C∗-algebra and ϕn : S → An are completely positive maps

with supn≥1 ‖ϕn‖ < ∞. Define ϕ : S →
∏
n≥1 A by ϕ(A) = (ϕn(A))n≥1. Since supn≥1 ‖ϕn‖ < ∞

(ϕn(A))n≥1 ∈
∏
n≥1 An for all A ∈ S so that ϕ is well-defined. Clearly ϕ is linear. We claim that ϕ is

completely positive. To see this, let A = [(Ai,j,n)n≥1] ∈ Mm(A) be an arbitrary positive element. Then,

using the isomorphism Mm

(∏
n≥1 An

)
'
∏
n≥1Mm(An),

ϕ(m)(A) = [ϕ((Ai,j,n)n≥1)] = [(ϕn(Ai,j,n))n≥1] ' ([ϕn(Ai,j,n)])n≥1 = ((ϕn)(m)([Ai,j,n]))n≥1 ≥ 0

since each ϕn is completely positive and by the description of the positive elements of
∏
n≥1 An. Whence ϕ

is completely positive. Lastly

‖ϕ‖ = sup{‖(ϕn(A))n≥1‖ | A ∈ S, ‖A‖ ≤ 1}
= sup{‖ϕn(A)‖An | A ∈ S, ‖A‖ ≤ 1, n ∈ N}
= sup

n≥1
‖ϕn‖

as desired.

Proposition 5.4. Let {An}n≥1 be a (possibly finite) collection of injective C∗-algebras. Then
∏
n≥1 An is

injective.
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Proof. To begin suppose S ⊆ A is an operator system or C∗-algebra and ϕ : S →
∏
n≥1 An is completely

positive. For each k ∈ N define πk :
∏
n≥1 An → Ak by π((An)n≥1) = Ak for all (An)n≥1 ∈

∏
n≥1 An. Clearly

πk is a ∗-homomorphism. For each k ∈ N define ϕk : S → Ak by ϕk = πk ◦ ϕ. Thus ϕk is the composition
of completely positive maps and thus is completely positive by Proposition 3.9. Clearly ‖ϕk‖ ≤ ‖ϕ‖ and ϕk
is the kth component of ϕ.

Since each Ak is injective, there exist completely positive maps ϕ̃k : A → Ak with ‖ϕ̃k‖ = ‖ϕk‖ ≤ ‖ϕ‖.
Define ϕ̃ : A →

∏
n≥1 An by ϕ̃(A) = (ϕ̃n(A))n≥1 for all A ∈ A. Then, by Lemma 5.3, ϕ̃ is a well-defined

completely positive map such that

‖ϕ̃‖ = sup
k≥1
‖ϕ̃k‖ = sup

k≥1
‖ϕk‖ ≤ ‖ϕ‖ .

It is easy to verify that ϕ̃|S = ϕ as ϕ̃n|S = ϕn for all n ∈ N. Whence
∏
n≥1 An is injective.

Example 5.5. The C∗-algebra `∞(N) :=
∏
n≥1C is injective by Proposition 5.4.

Example 5.6. Finite C∗-algebras are injective being direct sums of matrix algebras Mn(C).

Example 5.7. The C∗-algebra c(N) of all convergent sequences is not injective. To see this let ϕ : c(N)→
c(N) be the identity map and notice that c(N) ⊆ `∞(N). Thus if c(N) were injective there would exists a
completely positive map ψ : `∞(N) → c(N) extending ϕ. Notice that I := (1)n≥1 ∈ c(N) is a unit for both
c(N) and `∞(N). Since ψ is multiplicative on c(N), Theorem 4.4 implies that ψ(AXB) = ψ(A)ψ(X)ψ(B)
for all A,B ∈ c(N) and X ∈ `∞(N).

To obtain a contradiction, fix X = (xn)n≥1 ∈ `∞(N) \ c(N) and let ψ(A) = (an)n≥1 ∈ c(N). For each
m ∈ N let Em be the sequence in c(N) with a one in the mth spot and zeros elsewhere. Then XEm ∈ c(N)
so that

Em(an)n≥1 = ψ(Em)ψ(X) = ψ(EmX) = EmX = Em(xn)n≥1

for each m ∈ N Whence am = xm for each m ∈ N so that X = (an)n≥1 ∈ c(N) which is a contradiction.
Thus c(N) is not injective.

The following observation based on the above example is essential in order to obtain more examples of
injective and non-injective C∗-algebras and for theoretical reasons.

Theorem 5.8. A C∗-algebra B ⊆ B(H) is injective if and only if there exists a completely positive map
Φ : B(H)→ B such that Φ|B = IdB and ‖Φ‖ = 1.

Proof. Suppose that B is injective. Then IdB : B → B is completely positive. Since B ⊆ B(H) is a C∗-
subalgebra and B is injective, there exists a completely positive map Φ : B(H) → B such that Φ|B = IdB
and ‖Φ‖ = ‖IdB‖ = 1.

Next suppose there exists a completely positive map Φ : B(H)→ B such that Φ|B = IdB and ‖Φ‖ = 1.
Let S ⊆ A be an operator system and let ϕ : S → B ⊆ B(H) be a completely positive map. By the Arveson
Extension Theorem there exists a completely positive map ψ : A → B(H) so that ψ|S = ϕ and ‖ϕ‖ = ‖ψ‖.
Let ϕ̃ : A→ B be defined by ϕ̃ = Φ ◦ ψ. Then ϕ̃ is completely positive and

ϕ̃(A) = Φ(ψ(A)) = Φ(ψ|S(A)) = Φ(ϕ(A)) = ϕ(A)

for all A ∈ S. Whence ϕ̃ is a completely positive extension of ϕ with ‖ϕ̃‖ = ‖Φ ◦ ψ‖ ≤ ‖Φ‖ ‖ψ‖ = ‖ϕ‖.

In the case that IH ∈ B the condition ‖Φ‖ = 1 can be removed from the above theorem by Theorem
3.18. The above theorem promotes us to make the following definition.

Definition 5.9. Let B ⊆ A be C∗-algebras. A conditional expectation of A onto B is a completely positive
map Φ : A→ B such that Φ|B = IdB and ‖Φ‖ = 1.

Thus Theorem 5.8 says that a C∗-subalgebra B of B(H) is injective if and only if there exists a conditional
expectation of B(H) onto B.
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Remarks 5.10. Notice, by Theorem 4.4, that if Φ : A → B is a conditional expectation onto B then
Φ(B1XB2) = B1Φ(X)B2 for all B1, B2 ∈ B and X ∈ B(H). Moreover, if A and B are unital C∗-algebras,
then Φ(IA) = IB. Indeed as Φ is completely positive of norm one, IB ≤ IA, and Φ|B = IdB, we must have

IB = Φ(IB) ≤ Φ(IA) ≤ ‖Φ(IA)‖ IB = IB

and thus Φ(IA) = IB.

One rather fortunate or unfortunate result of the above theorem depending on your point of view is the
following.

Corollary 5.11. Let B be an injective C∗-algebra. Then B is unital.

Proof. Suppose B is an injective C∗-algebra. By the GNS construction we may view B as a C∗-subalgebra of
B(H). Since B is injective, there exists a completely positive map Φ : B(H)→ B such that Φ|B = IdB and
‖Φ‖ = 1. By Theorem 4.4 Φ(B1XB2) = B1Φ(X)B2 for all B1, B2 ∈ B and X ∈ B(H). Let P := Φ(IH) ∈ B.
We claim that P is a unit of B. Indeed for all B ∈ B

BP = Φ(B)Φ(IH) = Φ(BIH) = Φ(B) = B = Φ(IHB) = Φ(IH)Φ(B) = PB.

Whence B is unital.

Our next example verifies that an important von Neumann algebra is not injective. The arguments used
are essential arguments for group von Neumann algebras and are a topic of discussion by themselves. Those
unfamiliar with group C∗-algebras may skip the following example without loss.

Example 5.12. Let F2 be the free group on two generators. The von Neumann algebra L(F2) is not injective.
To see this we will show that there does not exist a completely positive map Φ : B(`2(F2)) → L(F2) such
that Φ|C∗λ(F2) = IdC∗λ(F2) where C∗λ(F2) ⊆ L(F2) is the reduced group C∗-algebra. It suffices to prove the
non-existence of such a Φ since if L(F2) were injective then there would exists a conditional expectation
Φ : B(`2(F2))→ L(F2) by Theorem 5.8.

Suppose exist a completely positive map Φ : B(`2(F2)) → L(F2) such that Φ|C∗λ(F2) = IdC∗λ(F2). For

each A ∈ `∞(F2) define mA ∈ B(`2(F2)) by mAδg = A(g)δg for all g ∈ F2 (where A(g) is the gth entry of
A ∈ `∞(F2) and δg ∈ `2(F2) is the function that is one at g and zero elsewhere) and by extending by linearity.
Clearly mA is indeed a well-defined bounded operator. Define π : `∞(F2)→ B(`2(F2)) by π(A) = mA for all
A ∈ `∞(F2). It is trivial to verify that π is a unital ∗-homomorphism.

Let τ : L(F2) → C be defined by τ(T ) = 〈Tδe, δe〉 for all T ∈ L2(F2) where e ∈ F2 is the identity. It is
trivial to verify that τ(TS) = τ(ST ) for all S, T ∈ L(F2) (first verify this for T = λ(g) and S = λ(h) where
g, h ∈ F2 (where λ(g)δk = δg−1k is the left-regular representation) and then use linearity and WOT-density
twice) and τ is a positive linear functional.

Define µ : `∞(F2)→ C by µ(A) = τ(Φ(π(A))) for all A ∈ `∞(F2). Since µ is the composition of positive
maps, µ is a positive linear functional. Moreover

µ(I`∞(F2)) = τ(Φ(π(I`∞(F2)))) = τ(Φ(IC∗λ(F2))) = τ(IC∗λ(F2)) = 1

so µ is a state on `∞(F2). For each A ∈ `∞(F2) and g ∈ F2 define g · A ∈ `∞(F2) by (g · A)(h) = A(g−1h).
We claim that µ(g ·A) = µ(A) for all A ∈ `∞(F2) and g ∈ F2. To see this we first notice that

λ(g)π(A)λ(g)−1δh = λ(g)π(A)δg−1h = λ(g)(A(g−1h)δg−1h) = A(g−1h)δh = π(g ·A)δh

for all h ∈ F2. Whence λ(g)π(A)λ(g)−1 = π(g ·A) for all A ∈ `∞(F2) and g ∈ F2. Since Φ|C∗λ(F2) = IdC∗λ(F2)

and Φ is a completely positive map, Theorem 4.4 implies

Φ(λ(g)Tλ(g)−1) = λ(g)Φ(T )λ(g)−1
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for all g ∈ F2 and T ∈ B(`2(F2)) (as λ(g) ∈ C∗λ(F2)). Using this and the fact that τ(TS) = τ(ST ) for all
S, T ∈ L(F2) we obtain that

µ(g ·A) = τ(Φ(π(g ·A))) = τ(Φ(λ(g)π(A)λ(g)−1)) = τ(λ(g)Φ(π(A))λ(g)−1) = τ(Φ(π(A))) = µ(A)

as claimed.
We claim that such a µ cannot possibly exists. To see this let a and b be generators of F2 and consider

the sets

Xi := {w ∈ F2 | when written as a reduced word w starts with ak where k ≡ i mod 2}

for i = 0, 1 and

Yi := {w ∈ F2 | when written as a reduced word w starts with bk where k ≡ j mod 3}

for j = 0, 1, 2. Clearly X0 and X1 are disjoint, Y0, Y1, and Y2 are pairwise disjoint, X0 = aX1, and
Y0 = b2Y1 = bY2. For a subset Z ⊆ F2 let χZ ∈ `∞(F2) be the characteristic function of Z (that is χZ(g) = 1
if g ∈ Z and zero otherwise). Notice

1 = µ(I`∞(F2)) = µ(χX0
) + µ(χX1

) = µ(a · χX1
) + µ(χX1

) = 2µ(χX1
)

so µ(χX1
) = 1

2 . Similarly

1 = µ(χY0
) + µ(χY1

) + µ(χY2
) = µ(χY0

) + µ(b · χY0
) + µ(b2 · χY0

) = 3µ(χY0
)

so µ(χY0
) = 1

3 . However X1 ⊆ Y0 (as reduced word in X1 starts with a non-zero power of a) and thus
χY0
≥ χX1

. However µ is positive and µ(χY0
) < µ(χX0

) which is impossible. Hence we have found our
contradiction so L(F2) cannot possibly be injective.

Our next examples fall in the realm of von Neumann algebras. Again this section may be skipped without
loss to the reader that is not familiar with material in the following paragraph.

Remarks 5.13. Let M ⊆ B(H) be a finite von Neumann algebra with H separable. Then there exists
a faithful normal trace τ on M. Recall that we can give M an inner product by 〈x, y〉 = τ(y∗x) (this is
an actual inner product as τ is faithful). Let L2(M, τ) be the completion of M with respect to this inner
product. Thus L2(M, τ) is a Hilbert space. Notice that for all x ∈ M the map Mx : M → M defined by
Mx(y) = xy is continuous with respect to the inner product norm as

‖xy‖22 = τ(y∗x∗xy∗) ≤ ‖x‖2 τ(y∗y) = ‖x‖2 ‖y‖22

and thus extends to an element of B(L2(M), τ). Since

〈(Mx)∗y, z〉 = 〈y, xz〉 = τ(z∗x∗y) = 〈x∗y, z〉 = 〈Mx∗y, z〉

and MxMy = Mxy for all x, y, z ∈M, the map π : M→ B(L2(M), τ) given by π(x) = Mx is a ∗-isomorphism
so we can view M ⊆ B(L2(M, τ)). Moreover π(M) is closed in the WOT and π is normal (ultraweakly
continuous).

Using L2(M) it is possible to show the following.

Theorem 5.14. Let H be a separable Hilbert space, let M ⊆ B(H) be a finite von Neumann algebra, let
τ be a faithful normal trace on M, and let N ⊆ M be a von Neumann subalgebra of M with IM ∈ N.
Then there exists a unique trace-preserving conditional expectation EN : M → N of M onto N (that is a
conditional expectation such that τ(x) = τ(EN(x)) for all x ∈M). Specifically EN(T ) = PNTPN where PN

is the projection onto the subspace L2(N, τ) of L2(M, τ) generated by N (which we can view as a subset of
L2(M, τ) by above). Moreover EN is normal.
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Thus we obtain the following.

Theorem 5.15. Let H be a separable Hilbert space, let M ⊆ B(H) be an injective finite von Neumann
algebra, and let N be a von Neumann subalgebra of M such that IM ∈ N. Then N is injective.

Proof. Let N ⊆M be as above. Since M is injective, there exists a conditional expectation Φ : B(H)→M
by Theorem 5.8. Therefore EN ◦ Φ : B(H) → N is a conditional expectation so N is injective by Theorem
5.8.

The following theorem is slightly technical. However this theorem is important.

Theorem 5.16. Let H be a separable Hilbert space, let M ⊆ B(H) be a finite von Neumann algebra, and
let τ be a faithful normal trace on M. Suppose (Nn)n≥1 be an increasing family of injective von Neumann
subalgebras of M such that IM ∈ Nn for all n ≥ 1 and

⋃
n≥1 Nn is ultraweakly dense in M. Then M is

injective.

Proof. Let (Nn)n≥1 be an increasing family of injective von Neumann subalgebras of M such that IM ∈ Nn

for all n ≥ 1 and
⋃
n≥1 Nn is ultraweakly dense in M. By Theorem 5.14 there exists conditional expectations

En : M → Nn onto Nn for all n ∈ N. Since
⋃
n≥1 Nn is ultraweakly dense in M, En(T ) → T ultraweakly

for all T ∈ M (to see this recall that the conditional expectations En are defined by En(x) = PnxPn
where Pn is the orthogonal projection of L2(M, τ) onto L2(Nn, τ). Since

⋃
n≥1 Nn is ultraweakly dense in

M, En(T ) → T in the WOT on B(L2(M, τ)) for all T ∈ M (i.e. it is easy to show for all Tn, Sn ∈ Nn

that 〈TTn, Sn〉 = 〈PmTPmTn, Sn〉 for all m ≥ n and T ∈ M. Then, since
⋃
n≥1 Nn is ultraweak dense

in M,
⋃
n≥1 Nn ⊆ L2(M, τ) is dense and thus we obtain the result by taking limits). Since the WOT on

B(L2(M, τ)) and ultraweak topology agree on bounded sets, we obtain the desired result).
Since Nn is injective for all n ∈ N, En extend to unital completely positive maps ψn : B(H) → Nn.

Therefore (ψn)n≥1 is a sequence in CP1(B(H),H). Since this set is compact in the BW topology by Theorem
4.19, there exists a completely positive map Ψ : B(H) → M such that ‖Ψ‖ ≤ 1 and ψnλ(T ) → Ψ(T ) in
the ultraweak topology for all T ∈ B(H) (where nλ represents a subnet). Since M is ultraweakly closed
and since ψnλ(T ) ∈ M for all λ and T ∈ B(H), Ψ(T ) ∈ M for all T ∈ B(H). Lastly if T ∈ M then
ψnλ(T ) = Enλ(T ) → T in the ultraweak topology. Whence Ψ(T ) = T for all T ∈ M so Ψ is a conditional
expectation of B(H) onto M. Whence M is injective by Theorem 5.8.

There is one last von Neumann algebra we desire to consider; the hyperfinite II1 factor (denoted R) which
is the WOT-closure of a particular faithful representation of a particular approximately finite dimensional
C∗-algebra. It turns out R is a very important von Neumann algebra.

Corollary 5.17. The hyperfinite II1 factor R is injective.

Proof. Recall R is the increasing limit of finite dimensional C∗-algebras (and thus von Neumann algebras)
{An}n≥1 such that IR ∈ An and

⋃
n≥1 An is ultraweakly dense in R. Since finite dimensional C∗-algebras

are injective by Example 5.6, R is injective by Theorem 5.16.

Next we leave injective C∗-algebras and consider a completely different application of completely positive
maps. We begin with a definition.

Definition 5.18. A C∗-algebra A is said to be nuclear if there exists a net of natural numbers (nλ)Λ

and nets of contractive, completely positive maps ϕλ : A → Mnλ(C) and ψλ : Mnλ(C) → A such that
limΛ ‖A− ψλ(ϕλ(A))‖ = 0 for every A ∈ A.

For those familiar with tensor products of C∗-algebras and the definition of a nuclear C∗-algebra with
respect to tensors, the two notions agree although this will not be shown here. We begin with a few examples
after proving an equivalent definition.
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Proposition 5.19. Suppose A is a C∗-algebra such that there exists a net of finite dimensional C∗-algebras
Aλ and nets of contractive, completely positive maps ϕλ : A→ Aλ and ψλ : Aλ → A such that

lim
λ
‖A− ψλ(ϕλ(A))‖ = 0

for every A ∈ A. Then A is nuclear.

Proof. Since Aλ is a finite dimensional C∗-algebra for every λ there exists nλ ∈ N such that Aλ ⊆Mnλ(C).
Therefore ϕλ can be viewed as a map with codomain Mnλ(C).

Since Aλ is a finite dimensional C∗-algebra, Example 5.6 implies that Aλ is injective. Thus the identity
map IdAλ : Aλ → Aλ extends to a completely positive map Eλ : Mnλ(C) → Aλ such that Eλ(A) = A for
all A ∈ Aλ and ‖Eλ‖ = 1. Define ψ′λ :Mnλ(C)→ A by ψ′λ = ψλ ◦Eλ. Thus ψ′λ is a contractive, completely
positive map.

We claim that limΛ ‖A− ψ′λ(ϕλ(A))‖ = 0 for every A ∈ A (which then implies A is nuclear). However,
since Eλ(A) = A for all A ∈ Aλ and ϕλ(A) ∈ Aλ, ψ′λ(ϕλ(A)) = ψλ(ϕλ(A)). Whence the result follows as
limΛ ‖A− ψλ(ϕλ(A))‖ = 0 for every A ∈ A.

Example 5.20. Finite dimensional C∗-algebras are clearly nuclear by the above result.

Example 5.21. Recall that a C∗-algebra A is said to be approximately finite dimensional if there exists an
increasing sequence of finite dimensional C∗-subalgebras An of A such that A =

⋃
n≥1 An. For example the

compact operators on a separable Hilbert space are approximately finite dimensional.
Every approximately finite dimensional C∗-algebra is nuclear. To see this let A be approximately finite

dimensional. Then there exists an increasing sequence of finite dimensional C∗-subalgebras An of A such
that A =

⋃
n≥1 A. Since each An is a finite dimensional C∗-algebra, Example 5.6 implies that each An is

injective. Thus the identity map IdAn : An → An extends to a completely positive map ϕn : A → An such
that ϕn(A) = A for all A ∈ An and ‖ϕn‖ = 1. Define ψn : An → A to be the inclusion map. Clearly ψ is
completely positive and contractive.

We claim that limn→∞ ‖A− ψn(ϕn(A))‖ = 0 for all A ∈ A. If A ∈ A∩Am for some m ∈ N then A ∈ An
for all n ≥ m so that ϕn(A) = A for all n ≥ m. Whence ψn(ϕn(A)) = ψn(A) = A for all n ≥ m. Thus
the claim is true for all A ∈

⋃
n≥1 An. Now suppose A ∈ A is arbitrary and ε > 0. Then there exists a

B ∈
⋃
n≥1 An such that ‖A−B‖ ≤ ε. Whence

lim sup
n→∞

‖A− ψn(ϕn(A))‖ ≤ lim sup
n→∞

‖A−B‖+ ‖B − ψn(ϕn(B))‖+ ‖ψn(ϕn(B −A))‖

≤ lim sup
n→∞

ε+ ‖B − ψn(ϕn(B))‖+ ‖ψn‖ ‖ϕn‖ ‖B −A‖

≤ lim sup
n→∞

2ε+ ‖B − ψn(ϕn(B))‖ = 2ε.

Thus, as this holds for all ε > 0, limn→∞ ‖A− ψn(ϕn(A))‖ = 0 as desired. Whence A is nuclear.

Example 5.22. If X is a compact Hausdorff space then C(X) is nuclear. Indeed for every finite subset
F ⊆ C(X) and ε > 0 we will construct unital, completely positive maps ϕ(F,ε) : C(X) → Cn(F,ε) and

ψ(F,ε) : Cn(F,ε) → C(X) such that
∥∥f − ψ(F,ε)(ϕ(F,ε)(f))

∥∥
∞ ≤ ε for all f ∈ F . The result will follow by

taking the ordering (F , ε) ≤ (F ′, ε′) if F ⊆ F ′ and ε′ ≤ ε.
The idea behind constructing these maps is the partition of unity argument along with the approximation

argument used in Proposition 2.23. Fix F ⊆ C(X) finite and ε > 0. For each x ∈ X there is an open subset
Ux of X such that if y ∈ Ux then |f(x) − f(y)| < ε for all f ∈ F . Since X =

⋃
x∈X Ux and X is compact,

there exists a finite subset {x1, . . . , xn(F,ε)} ⊆ X so that X =
⋃n(F,ε)
i=1 Uxi . Define ϕ(F,ε) : C(X)→ Cn(F,ε) by

ϕ(F,ε)(f) = (f(x1), . . . , f(xn(F,ε))) for all f ∈ C(X). Since point evaluations are positive linear functionals
and thus completely positive maps, Lemma 5.3 implies that ϕ(F,ε) is a completely positive map. Clearly
ϕ(F,ε) is unital and therefore contractive.

Since X =
⋃n(F,ε)
i=1 Uxi , Theorem 2.22 implies that there exists {gi}

n(F,ε)
i=1 ⊆ C(X, [0, 1]) such that gi ≥ 0,

gi(xi) = 1,
∑n(F,ε)
i=1 gi = 1, and gi|Ucxi = 0. Since the map z ∈ C 7→ zg ∈ C(X) is positive when g is positive,
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the map ψn(F,ε) : Cn(F,ε) → C(X) defined by ψn(F,ε)((a1, . . . , an(F,ε))) =
∑n(F,ε)
i=1 aigi is the sum of positive

maps and thus is positive. By Corollary 3.14, ψn(F,ε) is automatically completely positive as its range is
abelian. Clearly ψn(F,ε) is unital and thus contractive.

Lastly we notice that ψn(F,ε)(ϕn(F,ε)(f)) =
∑n(F,ε)
i=1 f(xi)gi for all f ∈ C(X). Whence if f ∈ F and x ∈ X

∣∣f(x)− ψn(F,ε)(ϕn(F,ε)(f))(x)
∣∣ =

∣∣∣∣∣
n(F,ε)∑
i=1

(f(x)− f(xi))gi(x)

∣∣∣∣∣
≤

n(F,ε)∑
i=1

|f(x)− f(xi)|gi(x)

=

n(F,ε)∑
i=1

εgi(x) = ε

where line 2 to 3 comes from the fact that if gi(x) 6= 0 then x ∈ Uxi so |f(x) − f(xi)| < ε (see Proposition
2.23 if more detail are needed). Thus ∥∥f − ψn(F,ε) ◦ ϕn(F,ε)(f)

∥∥
∞ < ε

for all f ∈ F as desired.

In Examples 5.21 and 5.22, it is easy to see that the contractive, completely positive maps implementing
the nuclearity of A can be chosen to be unital when A is unital. It is useful for technical purposes to
demonstrate this fact for all unital, nuclear C∗-algebras. The proof of this fact will be demonstrated in
Proposition 5.24 after the following technical lemma.

Lemma 5.23. Let A be a unital C∗-algebra and let ϕ̃ : A → Mn(C) be a completely positive map. Then
there exists a unital, completely positive map ϕ : A→Mn(C) such that

ϕ̃(A) = ϕ̃(IA)
1
2ϕ(A)ϕ̃(IA)

1
2

for all A ∈ A.

Proof. Since ϕ̃ is a completely positive map, ϕ̃(IA) ≥ 0 so ϕ̃(IA)
1
2 makes sense. In the case that ϕ̃(IA) is an

invertible element in Mn(C), it is clear that if we define ϕ : A→Mn(C) by

ϕ(A) = ϕ̃(IA)−
1
2 ϕ̃(A)ϕ̃(IA)−

1
2

for all A ∈ A, then ϕ is a completely positive map being the conjugate of a completely positive map by
a self-adjoint operator. Moreover, it is clear that ϕ(IA) = In and that the conclusion of the lemma holds.
Hence the result is complete in the case that ϕ̃(IA) is an invertible element in Mn(C).

Suppose ϕ̃(IA) is not an invertible element in Mn(C) and let P be the projection onto the orthogonal
complement of the kernel of ϕ̃(IA). Since ϕ̃(A) ≤ ϕ̃(IA) for all A ∈ A such that 0 ≤ A ≤ IA, it is easy to see
that

ϕ̃(A) = Pϕ̃(A) = ϕ̃(A)P

for all A ∈ A such that 0 ≤ A ≤ IA. By taking linear combinations, we obtain that the above equation holds
for all A ∈ A. Thus the range of ϕ̃ commutes with P and ϕ̃(A)(In − P ) = 0 = (In − P )ϕ̃(A) for all A ∈ A.

Define ϕ̃0 : A → PMn(C)P by ϕ̃0(A) = Pϕ̃(A)P for all A ∈ A. Therefore ϕ̃0(IA) is invertible in
PMn(C)P . Since PMn(C)P 'Mk(C) where k is the dimension of the range of P , by the first part of the
proof there exists a unital, completely positive map ϕ0 : A→ PMn(C)P such that

ϕ̃0(A) = ϕ̃0(IA)
1
2ϕ0(A)ϕ̃0(IA)

1
2

for all A ∈ A.
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Let φ : A→ C be any state on A and define ϕ : A→Mn(C) by

ϕ(A) = ϕ0(A) + (In − P )φ(A)

for all A ∈ A. Since the range of ϕ0 is orthogonal to In − P , it is easy to view ϕ as the direct sum of
completely positive maps and thus is a completely positive map. Moreover we notice that

ϕ(IA) = ϕ0(IA) + (In − P )φ(IA) = P + (In − P ) = In

so ϕ is a unital, completely positive map. Moreover, since ϕ̃(A)(In − P ) = 0 = (In − P )ϕ̃(A) for all A ∈ A,
we obtain that

ϕ̃(IA)
1
2ϕ(A)ϕ̃(IA)

1
2 = ϕ̃(IA)

1
2Pϕ0(A)Pϕ̃(IA)

1
2 = ϕ̃(A)

for all A ∈ A as desired.

Proposition 5.24. Let A be a unital, nuclear C∗-algebra. Then there exists a net of natural numbers
(nλ)Λ and nets of unital, completely positive maps ϕλ : A → Mnλ(C) and ψλ : Mnλ(C) → A such that
limΛ ‖A− ψλ(ϕλ(A))‖ = 0 for every A ∈ A.

Proof. Since A is nuclear, there exists a net of natural numbers (nλ)Λ and nets of contractive, completely

positive maps ϕ̃λ : A → Mnλ(C) and ψ̃λ : Mnλ(C) → A such that limΛ

∥∥∥A− ψ̃λ(ϕ̃λ(A))
∥∥∥ = 0 for every

A ∈ A. By Lemma 5.23 for each λ ∈ Λ there exists a unital, completely positive map ϕλ : A → Mnλ(C)
such that

ϕ̃λ(A) = ϕ̃λ(IA)
1
2ϕλ(A)ϕ̃λ(IA)

1
2

for all A ∈ A. Thus it remains to correct the maps ψ̃λ.

Since limΛ

∥∥∥IA − ψ̃λ(ϕ̃λ(IA))
∥∥∥ = 0, we obtain for sufficiently large λ that ψ̃λ(ϕ̃λ(IA)) is an invertible

element of A. Moreover, by a simple application of the Continuous Functional Calculus for Normal Operators,
we obtain that

lim
Λ

∥∥∥IA − ψ̃λ(ϕ̃λ(IA))−
1
2

∥∥∥ = 0.

For each λ ∈ Λ sufficiently large, define ψλ :Mnλ(C)→ A by

ψλ(T ) = ψ̃λ(ϕ̃λ(IA))−
1
2 ψ̃λ(ϕ̃λ(IA)

1
2T ϕ̃λ(IA)

1
2 )ψ̃λ(ϕ̃λ(IA))−

1
2

for all T ∈ Mnλ(C). Then ψλ is a completely positive map being the composition of a conjugation map
(which is completely positive) by a self-adjoint operator followed by the composition of a completely positive
map followed by the composition of another conjugation map (which is completely positive). Moreover we
notice that

ψλ(In) = ψ̃λ(ϕ̃λ(IA))−
1
2 ψ̃λ(ϕ̃λ(IA)

1
2 ϕ̃λ(IA)

1
2 )ψ̃λ(ϕ̃λ(IA))−

1
2 = IA

so each ψλ is a unital, completely positive map. Finally we notice for all A ∈ A that

ψλ(ϕλ(A)) = ψ̃λ(ϕ̃λ(IA))−
1
2 ψ̃λ(ϕ̃λ(IA)

1
2ϕλ(A)ϕ̃λ(IA)

1
2 )ψ̃λ(ϕ̃λ(IA))−

1
2

= ψ̃λ(ϕ̃λ(IA))−
1
2 ψ̃λ(ϕ̃λ(A))ψ̃λ(ϕ̃λ(IA))−

1
2 .

However, since

lim
Λ

∥∥∥IA − ψ̃λ(ϕ̃λ(IA))−
1
2

∥∥∥ = 0.

and since limΛ

∥∥∥A− ψ̃λ(ϕ̃λ(A))
∥∥∥ = 0 for every A ∈ A, we easily obtain that

lim
Λ
‖A− ψλ(ϕλ(A))‖ = 0

as desired.
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In general C∗-subalgebras of nuclear C∗-algebras need not be nuclear. However the following result says
we are not too far off.

Proposition 5.25. Let A be a nuclear C∗-algebra and let B be a C∗-subalgebra of A such that there exists
a conditional expectation Φ : A→ B. Then B is nuclear.

Proof. Let ϕλ : A → Mnλ(C) and ψλ : Mnλ(C) → A by contractive, completely positive maps such that
limΛ ‖A− ψλ(ϕλ(A))‖ = 0 for every A ∈ A. Let ϕ′λ : B →Mnλ(C) and ψ′λ : Mnλ(C) → B be defined by
ϕ′λ = ϕλ|B and ψ′λ = Φ ◦ψλ. Clearly ϕ′λ and ψ′λ are contractive, completely positive maps. Moreover for all
B ∈ B

lim
Λ
ψ′λ(ϕ′λ(B)) = lim

Λ
Φ(ψλ(ϕλ(B))) = Φ(B) = B.

Thus B is nuclear.

The following is our easiest example of a C∗-algebra that is not nuclear. It will make use of reduced group
C∗-algebras and the proof given in Example 5.12. Those unfamiliar with group C∗-algebras may again skip
this example without loss.

Example 5.26. Let F2 be the free group on two generators. The reduced group C∗-algebra C∗λ(F2) is not
nuclear. To begin we recall that Example 5.12 showed that there does not exist a completely positive map
Φ : B(`2(F2))→ L(F2) such that Φ|C∗λ(F2) = IdC∗λ(F2). We will show that if C∗λ(F2) were nuclear then such a
Φ must exists and thus obtain a contradiction.

Suppose C∗λ(F2) is nuclear. Then there exists nets of contractive, completely positive maps ϕα : C∗λ(F2)→
Mnα(C) and ψα :Mnα(C)→ C∗λ(F2) such that limα ‖A− ψα(ϕα(A))‖ = 0 for every A ∈ C∗λ(F2). Since each
Mnα(C) is injective, there exists contractive, completely positive maps ϕ′α : B(`2(F2))→Mnα(C) extending
ϕα. Then (ψα◦ϕ′α)Λ is a net of contractive, completely positive maps from B(`2(F2)) to B(`2(F2)). Therefore,
by Theorem 4.19, (ψα ◦ ϕ′α)Λ has a contractive, completely positive map Φ : B(`2(F2)) → B(`2(F2)) as a
cluster point in the BW topology.

We claim that Φ maps into L(F2). To see this we notice (ψα ◦ ϕ′α)Λ is a bounded net and thus for all
T ∈ B(`2(F2)) Φ(T ) is the WOT-limit of a subnet of ψα(ϕ′α(T )) by Proposition 4.17. However ψα(ϕ′α(T )) ∈
C∗λ(F2) for all α so that Φ(T ) ∈ C∗λ(F2)

WOT
= L(F2) as desired.

Lastly, if T ∈ C∗λ(F) then Φ(T ) is the WOT-limit of a subnet of ψα(ϕ′α(T )). However ψα(ϕ′α(T )) =
ψα(ϕα(T )) converges to T in norm and thus Φ(T ) = T as desired. Whence we have constructed an impossible
map Φ. Thus C∗λ(F2) cannot be nuclear.

Note that the above proof can also be used to show that L(F2) is not a nuclear C∗-algebra. However
there is another notion of nuclearity for von Neumann algebras that is better.

Definition 5.27. A von Neumann algebra M is said to be semidiscrete if there exists a net of natural numbers
(nλ)Λ and nets of contractive, completely positive maps ϕλ : M → Mnλ(C) and ψλ : Mnλ(C) → M such
that ψλ(ϕλ(T )) converges to T in the ultraweak topology for every T ∈M.

Since the elements ψλ(ϕλ(T )) in the above definition are bounded over all λ, concluding that ψλ(ϕλ(T ))
converges to T in the ultraweak topology is the same as saying ψλ(ϕλ(T )) converges to T in the WOT
whenever M is a von Neumann subalgebra of some B(H).

Our first result is the the following which is very similar to the proof given in Example 5.26.

Proposition 5.28. Every semidiscrete von Neumann algebra is injective.

Proof. Let M ⊆ B(H) be a semidiscrete von Neumann algebra. Then there exists nets of contractive,
completely positive maps ϕα : M → Mnα(C) and ψα : Mnα(C) → M such that ψα(ϕα(T )) converges to
T ultraweakly for every T ∈ M. Since each Mnα is injective, there exists contractive, completely positive
maps ϕ′α : B(H) →Mnα extending ϕα. Then (ψα ◦ ϕ′α)Λ is a net of contractive, completely positive maps
from B(H) to B(H). Therefore, by Theorem 4.19, (ψα ◦ ϕ′α)Λ has a contractive, completely positive map
Φ : B(H)→ B(H) as a cluster point in the BW topology.
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We claim that Φ maps into M. To see this, we notice (ψα ◦ ϕ′α)Λ is a bounded net and thus for all
T ∈ B(H) Φ(T ) is the WOT-limit of a subnet of ψα(ϕ′α(T )) by Proposition 4.17. However ψα(ϕ′α(T )) ∈M

for all α so that Φ(T ) ∈M
WOT

= M as desired.
Lastly, if T ∈M then Φ(T ) is the WOT-limit of a subnet of ψα(ϕ′α(T )). However ψα(ϕ′α(T )) = ψα(ϕα(T ))

converges to T in norm and thus Φ(T ) = T as desired. Thus Φ is a conditional expectation of B(H) onto M
and thus M is injective by Theorem 5.8.

It turns out that the converse of the above theorem is true although this is extremely difficult to prove.
Using Example 5.12 we obtain the following.

Corollary 5.29. Let F2 be the free group on two generators. Then L(F2) is not semidiscrete.

To obtain an example of a semidiscrete von Neumann algebra (without using the fact that every injective
von Neumann algebra is semidiscrete) we consider the proof of Theorem 5.16. Again, those unfamiliar with
the hyperfinite II1 factor may skip the following without loss.

Theorem 5.30. The hyperfinite II1 factor R is semidiscrete.

Proof. Let (Nn)n≥1 be an increasing family of finite dimensional C∗-algebras such that IR ∈ Nn for all
n ≥ 1, Nn ' M2n(C), and

⋃
n≥1 Nn is ultraweakly dense in M. Since R has a faithful trace, there exists

conditional expectations ϕn : R → Nn onto Nn for all n ∈ N. Since
⋃
n≥1 Nn is ultraweakly dense in R,

ϕn(T ) → T ultraweakly for all T ∈ R (to see this recall that the conditional expectations En are defined
by En(x) = PnxPn where Pn is the orthogonal projection of L2(R, τ) onto L2(Nn, τ). Since

⋃
n≥1 Nn is

ultraweakly dense in R, En(T )→ T in the WOT on B(L2(R, τ)) for all T ∈ R (i.e. it is easy to show for all
Tn, Sn ∈ Nn that 〈TTn, Sn〉 = 〈PmTPmTn, Sn〉 for all m ≥ n and T ∈ R. Then, since

⋃
n≥1 Nn is ultraweak

dense in R,
⋃
n≥1 Nn ⊆ L2(R, τ) is dense and thus we obtain the result by taking limits). Since the WOT

on B(L2(R, τ)) and ultraweak topology agree on bounded sets, we obtain the desired result).
Define ψn : Nn → R to be the inclusion map. Since Nn 'M2n(C) for all n and ψn(ϕn(T )) = ϕn(T )→ T

ultraweakly for all T ∈ R, R is semidiscrete as desired.
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6 Liftings of Completely Positive Maps

In this chapter we will briefly examine the problem of when a completely positive map into a quotient
C∗-algebra may be lifted to a completely positive map. In particular, Theorem 6.4 will demonstrate that
every unital, completely positive map from a unital, nuclear C∗-algebra (as described in Chapter 5) into a
unital quotient C∗-algebra can be lifted to a completely positive map. To prove this fact, we need only two
technical results that are interesting by themselves.

To begin the first technical result, we make the following definition.

Definition 6.1. Let L(X,Y) be the set of all linear maps from a separable Banach space X to a Banach
space Y. The point-norm topology on L(X,Y) is the topology such that a sequence (ψn)n≥1 in L(X,Y)
converges to ψ ∈ L(X,Y) if and only if limn→∞ ‖ψ(x)− ψn(x)‖ = 0 for all x ∈ X.

In the above definition, we insist that X is separable so that we can consider sequences. Thus we can
prove the following result.

Lemma 6.2. Let J be an ideal in a unital C∗-algebra B and let S be a separable operator system. The set
of contractive, completely positive maps from S into B/J with a contractive, completely positive lifting to B
is closed in the point-norm topology on all bounded linear maps from S into B/J. Thus the set of unital,
completely positive maps from S into B/J with a unital, completely positive lifting to B is closed in the
point-norm topology on all bounded linear maps from S into B/J.

Proof. Let q : B → B/J be the canonical quotient map. Let ϕ : S → B/J be a bounded linear map
such that there exists contractive (unital), completely positive maps ψ′n : S → B such that (q ◦ ψ′n)n≥1

converges to ϕ in the point-norm topology. Clearly this implies ϕ is completely positive and contractive
(unital). Let {Ak}k≥1 be a dense subset of S. Therefore, by passing to a subsequence, we may assume that
‖q(ψ′n(Ak))− ϕ(Ak)‖ < 1

2n for all k ≤ n.
We claim that it suffices to construct a sequence ψn : S → B of contractive (unital), completely positive

maps such that ‖q(ψn(Ak))− ϕ(Ak)‖ < 1
2n for all k ≤ n and ‖ψn+1(Ak)− ψn(Ak)‖ < 1

2n−3 for all k ≤ n−1.
If such a sequence exists, then it is clear that (ψn(Ak))n≥1 is a Cauchy sequence for all k ∈ N and thus, as
{Ak}k≥1 is a dense subset of S, ψ(A) := limk→∞ ψn(A) exists for all A ∈ S. Clearly ψ will be a contractive
(unital), completely positive map (being the point-norm limit of contractive (unital), completely positive
maps) and, since ‖q(ψn(Ak))− ϕ(Ak)‖ < 1

2n for all k ≥ 1, q(ψ(Ak)) = ϕ(Ak) for all k ∈ N. Therefore, by
density, q ◦ ψ = ϕ as desired.

To construct such a sequence, we proceed by induction. Let ψ1 := ψ′1. Suppose we have constructed
ψn : S → B such that ‖q(ψn(Ak))− ϕ(Ak)‖ ≤ 1

2n for all k ≤ n and ‖ψn(Ak)− ψn−1(Ak)‖ < 1
2n−3 for all

k ≤ n− 1. Let (Eλ)Λ be a quasicentral C∗-bounded approximate identity for J in B. Then

lim
Λ

∥∥∥(IB − Eλ)
1
2ψn(A)(IB − Eλ)

1
2 + E

1
2

λ ψn(A)E
1
2

λ − ψn(A)
∥∥∥ = 0

for all A ∈ S, and, if Bk := ψ′n+1(Ak)− ψn(Ak), then

lim
Λ

∥∥∥(IB − Eλ)
1
2Bk(IB − Eλ)

1
2

∥∥∥ = ‖q(Bk)‖ < 2

2n

if k ≤ n. Hence there exists an E := Eλ ∈ J so that∥∥∥(IB − E)
1
2ψn(Ak)(IB − E)

1
2 + E

1
2ψn(Ak)E

1
2 − ψn(Ak)

∥∥∥ < 1

2n+1

for all k ≤ n+ 1 and
∥∥∥(IB − E)

1
2Bk(IB − E)

1
2

∥∥∥ < 1
2n−1 for all k ≤ n. Define ψn+1 : S → B by

ψn+1(A) := (IB − E)
1
2ψ′n+1(A)(IB − E)

1
2 + E

1
2ψn(A)E

1
2
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for all A ∈ S. Clearly ψn+1 is a completely positive map. In the contractive case, to see that ψn+1 is
contractive we note that ψ′n+1 and ψn are contractive maps and (IB −E) +E = IB so ‖ψn+1(IS)‖ ≤ 1. In
the unital case, to see that ψn+1 is unital we note that ψ′n+1 and ψn are unital maps and (IB−E) +E = IB
so ψn+1(IS) = IB. To see that ψn+1 has the desired properties, we notice that q ◦ ψn+1 = q ◦ ψ′n+1 so
‖q(ψn(Ak))− ϕ(Ak)‖ < 1

2n for all k ≤ n+ 1. Moreover

‖ψn+1(Ak)− ψn(Ak)‖ ≤ 1
2n+1 +

∥∥∥(IB − e)
1
2ψ′n+1(A)(IB − E)

1
2 − (IB − E)

1
2ψn(Ak)(IB − E)

1
2

∥∥∥
= 1

2n+1 + ‖Bk‖ ≤ 1
2n−2 .

for all k ≤ n as desired.

To complete the proof of Theorem 6.4, we will use Lemma 6.2 and the following lemma that shows that
algebraic liftings of unital, completely positive maps from matrix algebras can be taken to be positive.

Lemma 6.3. Let B be a unital C∗-algebra, let ϕ :Mn(C)→ B be a linear map, and let {Ei,j}ni,j=1 denote
the standard matrix units for Mn(C). Then the following are equivalent:

1. ϕ is completely positive.

2. ϕ is n-positive.

3. [ϕ(Ei,j)] is positive in Mn(B).

Proof. It is clear that (1) implies (2). To see that (2) implies (3), we notice that [Ei,j ] ∈ Mn(Mn(C)) is
self-adjoint (as [Ei,j ]

∗ = [E∗j,i] = [Ei,j ]) and [Ei,j ]
2 = [

∑n
k=1Ei,kEk,j ] = n[Ei,j ]. Hence z2 − nz = 0 on

σ([Ei,j ]) and thus σ([Ei,j ]) ⊆ {0, n}. Hence [Ei,j ] is positive. Therefore, since ϕ is n-positive, ϕ([Ei,j ]) is
positive in Mn(B).

Suppose (3) holds. Let k ∈ N be arbitrary. Without loss of generality we may assume B ⊆ B(H) for some
Hilbert space H. To show that ϕ is k-positive, let A1, . . . , Ak ∈ Mn(C) be arbitrary. Since As ∈ Mn(C),
there exists ai,j,s ∈ C (s ∈ {1, . . . k}, i, j ∈ {1, . . . n}) such that As =

∑n
i,j=1 ai,j,sEi,j . Thus, a simple

computation shows that

A∗iAj =

 n∑
l,m=1

al,m,iEm,l

( n∑
s,t=1

as,t,jEs,t

)
=

n∑
l,m,t=1

al,m,ial,t,jEm,t.

Fix h = (h1, h2, . . . , hk) ∈ H⊕k and let xl,m :=
∑k
j=1 al,m,jhj ∈ H for l,m = {1, . . . n}. Then

k∑
i,j=1

〈ϕ(A∗iAj)hj , hi〉 =

k∑
i,j=1

n∑
l,m,t=1

〈ϕ(al,m,ial,t,jEm,t)hj , hi〉

=

k∑
i,j=1

n∑
l,m,t=1

〈ϕ(Em,t)al,t,jhj , al,m,ihi〉

=

k∑
i=1

n∑
l,m,t=1

〈ϕ(Em,t)xl,t, al,m,ihi〉

=

n∑
l,m,t=1

〈ϕ(Em,t)xl,t, xl,m〉

=

n∑
l=1

n∑
m,t=1

〈ϕ(Em,t)xl,t, xl,m〉.

However, [ϕ(Ei,j)] is positive inMn(B) and hence
∑n
m,t=1〈ϕ(Em,t)xl,t, xl,m〉 = 〈φ(n)([Em,t])x, x〉 ≥ 0 where

x = (xl,1, . . . , xl,n) ∈ Hn. Hence, since the sum of positive numbers is positive,
∑k
i,j=1〈ϕ(A∗iAj)hj , hi〉 ≥ 0.

Hence ϕ is k-positive and, as k ∈ N was arbitrary, ϕ is completely positive as desired.
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Theorem 6.4. Let A be a unital, separable, nuclear C∗-algebra, let B be a unital C∗-algebra, let J be an
ideal of B, and let q : B → B/J be the canonical quotient map. Then for every unital, completely positive
map ϕ : A→ B/J there exists a unital, completely positive map Φ : A→ B such that q ◦ Φ = ϕ.

Proof. Let ϕ : A→ B/J be a unital, completely positive map. Since A is separable, Lemma 6.2 implies that
the set of unital, completely positive maps from A into B/J that have liftings is closed in the point-norm
topology. Thus it suffices to show that ϕ is a point-norm limit of unital, completely positive maps into
B/J with unital, completely positive liftings. Since A is unital and nuclear, Proposition 5.24 implies that
ϕ is a point-norm limit of unital completely positive maps of the form ψ ◦ φ where φ : A → Mn(C) and
ψ : Mn(C) → B/J are unital, completely positive maps. If we can show that ψ has a lifting to a unital,
completely positive map, then ψ ◦ φ has a lifting to a unital, completely positive map and thus we are done
by Lemma 6.2.

To see that ψ has a completely positive lifting, let {Ei,j}ni,j=1 denote the standard matrix units for
Mn(C). Note that [ψ(Ei,j)] ∈ Mn(B/J) ' Mn(B)/Mn(J) is positive. Therefore, standard functional
calculus results imply that there exists a positive matrix [Bi,j ] ∈ Mn(B) such that qn([Bi,j ]) = [ϕ(Ei,j)].
Define Ψ : Mn(C) → B by Ψ([ai,j ]) =

∑n
i,j=1 ai,jBi,j for all [ai,j ] ∈ Mn(C). Clearly Ψ is a linear map.

Notice that Ψn([Ei,j ]) = [Bi,j ] ≥ 0 so Ψ is a completely positive map by Lemma 6.3. Moreover

q(Ψ([ai,j ])) = q

 n∑
i,j=1

ai,jBi,j

 =

n∑
i,j=1

ai,jϕ(Ei,j) = ψ([ai,j ])

so Ψ is a lifting of ψ.
However, Ψ need not be unital. To fix this, we notice that q(Ψ(In)) = ψ(In) = IB/J. Since Ψ(In) is

self-adjoint, Ψ(In) = IB +A where A ∈ Jsa. Using the Continuous Functional Calculus, write A = A+−A−
where A+, A− ∈ J+ are such that A+A− = 0. Let f : Mn(C) → C be any state on Mn(C) and define
Ψ′ :Mn(C))→ B by

Ψ′(T ) := (IB +A+)−
1
2 (Ψ(T ) + f(T )A−)(IB +A+)−

1
2

for all T ∈Mn(C)). Clearly

Ψ′(In) = (IB +A+)−
1
2 (Ψ(In) +A−)(IB +A+)−

1
2 = (IB +A+)−

1
2 (IB +A+)(IB +A+)−

1
2 = IB

so Ψ′ is a unital, completely positive map (completely positive being the sum of completely positive maps

as the sum of positive operators is positive). Since q
(

(IB +A+)−
1
2

)
= IB/J and

q(Ψ(T ) + f(T )A−) = q(Ψ(T )) = ψ(T )

for all T ∈Mn(C), Ψ′ is the desired unital, completely positive lifting of ψ.
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7 Wittstock’s Theorem

So far we have mainly studied completely positive maps and have ignored completely bounded maps except
in the basic theory where the two notions went hand-in-hand. The purpose of this chapter is to develop some
important results pertaining to completely bounded maps. Recall that every continuous linear functional on
a C∗-algebra is completely bounded. Moreover it is possible to show that if ϕ : A→ C is a continuous linear
functional then there exists a Hilbert space H, ∗-homomorphism π : A → B(H), and vectors ξ, η ∈ H with
‖ξ‖ ‖η‖ = ‖ϕ‖ such that ϕ(A) = 〈π(A)ξ, η〉. We will develop a similar theorem for completely bounded maps
which will be very similar to Stinespring’s Theorem. In particular, to prove this theorem we will show that
if ϕ : A1 → B is a completely bounded map, then there exists a completely positive map Φ : A2 →M2(B)
such that ϕ is the (1, 2)-entry of this map. This will enable us to show that every completely bounded map
(and thus every continuous linear functional) is the linear combination of four completely positive maps and
that every completely bounded map can be extended to a completely bounded map with the same completely
bounded norm.

To begin it helps to develop the ‘canonical shuffle’ and ‘scalar matrices’.

Remarks 7.1. Let A be a C∗-algebra and consider [[Ai,j,k,`]i,j ]k,` ∈ Mn(Mm(A)) where [[Ai,j,k,`]i,j ]k,`
means the element of Mn(Mm(A)) whose (k, `)th-matrix entry is the n × n matrix whose (i, j)th-entry is
Ai,j,k,`. Notice that Mn(Mm(A)) 'Mnm(A) so we can view [[Ai,j,k,`]i,j ]k,` as an element of Mnm(A). By
conjugating [[Ai,j,k,`]i,j ]k,` by a permutation matrix in Mnm(A) (which is a unitary matrix) we can obtain
the matrix [[Ai,j,k,`]k,`]i,j ∈Mm(Mn(A)). This operation is called the canonical shuffle.

Since conjugating by a unitary preserves positivity and norms, we see that [[Ai,j,k,`]i,j ]k,` is positive if and
only if [[Ai,j,k,`]k,`]i,j is positive and ‖[[Ai,j,k,`]i,j ]k,`‖ = ‖[[Ai,j,k,`]k,`]i,j‖. Whence we can use the canonical
shuffle to aid us when dealing with matrix algebras of matrix algebras.

For an example of the use of the canonical shuffle, we first present the following result that provides
information about the completely bounded norm of an operator into a matrix algebra.

Proposition 7.2. Let M be an operator space and let φ :M→Mn(C) be bounded. Then ‖φ‖cb ≤ n ‖φ‖.

Proof. Let {Ei,j}ni,j=1 be the canonical matrix units of Mn(C) and for each A ∈M write

φ(A) =

n∑
i,j=1

φi,j(A)⊗ Ei,j ∈ C⊗Mn(C) 'Mn(C)

where φi,j : M → C are continuous linear functionals. This is possible since φ is linear and continuous in
each component by Lemma 1.23. Using the matrix units Ei,j , we notice that E1,kφ(A)E`,1 is the matrix
with φk,`(A) in the first entry and zeros elsewhere. Thus

‖φk,`(A)‖ = ‖E1,kφ(A)E`,1‖ ≤ ‖E1,k‖ ‖φ(A)‖ ‖E`,1‖ = ‖φ(A)‖

for all A ∈ A. Thus ‖φi,j‖ ≤ ‖φ‖. Moreover, since each φi,j is a continuous linear functional, ‖φi,j‖cb =
‖φi,j‖ ≤ ‖φ‖ by Proposition 3.8.

Fix m ∈ N and suppose X = [Ai,j ] ∈Mm(M). By performing the canonical shuffle on φ(m)(X), φ(m)(X)

becomes
∑n
i,j=1(φi,j)(m)(X)⊗Ei,j . Hence ‖φm(X)‖ =

∥∥∥∑n
i,j=1(φi,j)(m)(X)⊗ Ei,j

∥∥∥. Hence, by Lemma 1.23,

∥∥φ(m)(X)
∥∥ ≤

 n∑
i,j=1

∥∥(φi,j)(m)(X)
∥∥2

 1
2

≤

 n∑
i,j=1

∥∥(φi,j)(m)

∥∥2 ‖X‖2
 1

2
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≤

 n∑
i,j=1

‖φ‖2 ‖X‖2
 1

2

= n ‖φ‖ ‖X‖ .

However, this holds for all X = [Ai,j ] ∈ Mm(M) so ‖φ‖m ≤ n ‖φ‖. Hence, as this holds for all m ∈ N,
‖φ‖cb ≤ n ‖φ‖ as desired.

Now that we have developed the canonical shuffle, we may continue our study of completely bounded
maps. We begin with the following observation.

Remarks 7.3. Suppose A is a unital C∗-algebra. Then we may define a ∗-homomorphism π : Mn(C) →
Mn(A) by π([αi,j ]) = [αi,jIA]. Clearly π is a ∗-homomorphism so the range of π is a C∗-subalgebra ofMn(A).
The C∗-subalgebra π(Mn(C)) is known as the scalar matrices of Mn(A). As π is a ∗-homomorphism, the
scalar matrices ofMn(A) behave in an identical way to matrices inMn(C) with regards to norms, positivity,
invertibility, and functional calculus.

Our first result will give us the ability to take a contractive, completely bounded map and obtain a
completely positive map. The following theorem is essential to the remainder of the chapter.

Theorem 7.4. Let A and B be unital C∗-algebras, letM be a subspace of A, and let ϕ :M→ B be a linear
map. Define an operator system SM ⊆M2(A) by

SM =

{[
λIA A
B∗ µIA

]
| λ, µ ∈ C, A,B ∈M

}
and Φ : SM →M2(B) by

Φ

([
λIA A
B∗ µIA

])
=

[
λIB ϕ(A)
ϕ(B)∗ µIB

]
.

If ‖ϕ‖cb ≤ 1 then Φ is completely positive.

Proof. The idea of this proof is to use Lemma 3.19 and the canonical shuffle to show that Φ is completely
positive. Fix an arbitrary n ∈ N, let [Si,j ] ∈Mn(SM), and write

Si,j =

[
λi,jIA Ai,j
B∗i,j µi,jIA

]
.

Since M2(SM) is a subspace of Mn(M2(A)), we may perform the canonical shuffle to view [Si,j ] as an
element of M2(Mn(A)). In this form, we can write

[Si,j ] =

[
H A
B∗ K

]
(∗)

where H := [λi,jIA], K := [µi,jIA], A := [Ai,j ], and B := [Bi,j ] are elements ofMn(A). If we apply a similar
process to Φ(n)([Si,j ]), we obtain that

Φ(n)([Si,j ]) =

[
H ′ ϕ(n)(A)

ϕ(n)(B)∗ K ′

]
(∗∗)

where H ′ := [λi,jIB] and K ′ := [µi,jIB] are elements of Mn(B). Therefore to show that Φ is completely
positive it suffices to show that if (∗) is positive then (∗∗) is positive.

Suppose that (∗) is positive. We notice that if (∗) is positive then A = B in order for (∗) to be self-
adjoint. Whence (∗∗) is self-adjoint. Moreover H and K must be positive elements by Lemma 3.17 part
(3). Therefore H ′ and K ′ are also positive as H and K are scalar matrices (see Remarks 7.3). To show that
Φ(n)([Si,j ]) is positive we need to apply a small trick so we may assume that H and K are invertible.
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Let ε > 0 and consider Hε = εIMn(A) + H, Kε = εIMn(A) + K, H ′ε := εIMn(B) + H ′, and K ′ε :=
εIMn(B) +K ′. Since H, K, H ′, and K ′ are positive scalar matrices, Hε, Kε, H

′
ε, and K ′ε are invertible scalar

matrices. Thus we can consider the scalar matrices H
− 1

2
ε , K

− 1
2

ε , (H ′ε)
− 1

2 , and (K ′ε)
− 1

2 to obtain that[
IMn(A) H

− 1
2

ε AK
− 1

2
ε

K
− 1

2
ε A∗H

− 1
2

ε IMn(A)

]
=

[
H
− 1

2
ε 0

0 K
− 1

2
ε

] [
Hε A
A∗ Kε

] [
H
− 1

2
ε 0

0 K
− 1

2
ε

]

is a positive matrix since the matrix on the right is a conjugation the positive matrix εIM2n(A) + (∗). Thus

Lemma 3.19 part (2) implies that
∥∥∥H− 1

2
ε AK

− 1
2

ε

∥∥∥ ≤ 1. Moreover, since ϕ(n) is linear and H
− 1

2
ε , K

− 1
2

ε , (H ′ε)
− 1

2 ,

and (K ′ε)
− 1

2 are scalar matrices, a simple computation shows that

ϕ(n)(H
− 1

2
ε AK

− 1
2

ε ) = (H ′ε)
− 1

2ϕ(n)(A)(K ′ε)
− 1

2 .

Therefore

Φ(n)([Si,j ]) + εIM2n(B)

=

[
H ′ε ϕ(n)(A)

ϕ(n)(A)∗ K ′ε

]
=

[
(H ′ε)

1
2 0

0 (K ′ε)
1
2

] [
IMn(B) ϕ(n)(H

− 1
2

ε AK
− 1

2
ε )

ϕ(n)(H
− 1

2
ε AK

− 1
2

ε )∗ IMn(B)

] [
(H ′ε)

1
2 0

0 (K ′ε)
1
2

]
.

Since ‖ϕ‖cb ≤ 1,
∥∥∥H− 1

2
ε AK

− 1
2

ε

∥∥∥ ≤ 1 implies that
∥∥∥ϕ(n)(H

− 1
2

ε AK
− 1

2
ε )

∥∥∥ ≤ 1. Therefore, by Lemma 3.19 part

(1), the middle matrix on the right hand side is positive. Consequently the matrix on the left hand side
is positive. Whence σ(Φ(n)([Si,j ])) ∩ (−∞,−ε) = ∅ for all ε > 0 so that Φ(n)([Si,j ]) is positive. Thus Φ is
completely positive.

With the above theorem and the Arveson Extension Theorem it is not difficult to show that completely
bounded maps may be extended to completely bounded maps.

Theorem 7.5 (Wittstock’s Extension Theorem). Let A be a unital C∗-algebra, letM be a subspace of A, and
let ϕ :M→ B(H) be a completely bounded map. Then there exists a completely bounded map ψ : A→ B(H)
such that ψ|M = ϕ and ‖ψ‖cb = ‖ϕ‖cb.

Proof. To prove this result we will take the completely positive map obtained in Theorem 7.4 and extend it
to a completely positive map by Arveson’s Extension Theorem. Then, using an application of Lemma 1.23
and the canonical shuffle, we will show that the (1, 2)-entry of this completely positive map is the desired
completely bounded extension of ϕ.

If ϕ = 0 then the result is trivial. Otherwise we may scale ϕ so that ‖ϕ‖cb = 1 as it is easy to check that
‖aϕ‖cb = |a| ‖ϕ‖cb for all a ∈ C. Let SM and Φ be as in Theorem 7.4. Since ‖ϕ‖cb = 1, Φ is completely
positive and unital so ‖Φ‖ = 1. By the Arveson Extension Theorem there exists a completely positive map
Ψ :M2(A)→M2(B(H)) ' B(H⊕H) such that Ψ|SM = Φ and ‖Ψ‖cb = ‖Ψ‖ = ‖Φ‖ = 1.

Define ψ : A→ B(H) by

Ψ

([
0 A
0 0

])
=

[
∗ ψ(A)
∗ ∗

]
(where ∗ represents something we do not care about) or, to be more specific,

ψ(A) = PΨ

([
0 A
0 0

])[
0 0
1 0

]
|H⊕0
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where P is the projection of H⊕H onto H⊕{0} ' H. It is clear by construction that ψ is well-defined and
linear. Moreover, since Ψ extends Φ, ψ extends ϕ. Moreover, since ‖Ψ‖cb = 1, we obtain that

‖ψ(A)‖ ≤ ‖P‖
∥∥∥∥Ψ

([
0 A
0 0

])∥∥∥∥ ≤ ‖Ψ‖∥∥∥∥[ 0 A
0 0

]∥∥∥∥ ≤ ‖Ψ‖ ‖A‖ ≤ ‖A‖
(by applying Lemma 1.23 for the matrix norm inequality). Hence ψ is contractive.

It remains only to to show that ψ is completely contractive (which implies since it extends ϕ that
‖ψ‖cb = 1 = ‖ϕ‖cb as desired). The proof that ‖ψ‖cb ≤ 1 will follow easily by applying the canonical shuffle.
Let A = [Ai,j ] ∈Mn(A) be arbitrary. Then

Ψ(n)

([[
0 Ai,j
0 0

]])
=

[[
∗ ψ(Ai,j)
∗ ∗

]]
.

By performing the canonical shuffle on the matrix of matrices on the right we obtain the matrix[
∗ ψ(n)(A)
∗ ∗

]
.

Therefore, by applying Lemma 1.23, we obtain that

∥∥ψ(n)(A)
∥∥ ≤ ∥∥∥∥[ ∗ ψ(n)(A)

∗ ∗

]∥∥∥∥ ≤ ∥∥Ψ(n)

∥∥∥∥∥∥[[ 0 Ai,j
0 0

]]∥∥∥∥ =

∥∥∥∥[[ 0 Ai,j
0 0

]]∥∥∥∥ .
However, by another application of the canonical shuffle,[[

0 Ai,j
0 0

]]
becomes [

0 A
0 0

]
and thus ∥∥∥∥[[ 0 Ai,j

0 0

]]∥∥∥∥ =

∥∥∥∥[ 0 A
0 0

]∥∥∥∥ ≤ ‖A‖
by applying the fact that the canonical shuffle preserves the norm and by applying Lemma 1.23 to obtain
the inequality. Hence

∥∥ψ(n)(A)
∥∥ ≤ ‖A‖. Whence ‖ψ‖n ≤ 1 for all n ∈ N and thus, as ψ extends ϕ,

‖ψ‖cb = ‖ϕ‖cb = 1.

Our next goal is to yet again apply the completely positive map obtained in Theorem 7.4 to show that
every completely bounded map can be written in a certain way. To begin we show that the desired maps
are completely bounded.

Example 7.6. Let A be a C∗-algebra and let H and K be Hilbert spaces. Let π : A → B(K) be a ∗-
homomorphism, let V,W ∈ B(H,K) be arbitrary, and define ϕ : B(K) → B(H) by ϕ(T ) = W ∗TV for all
T ∈ B(K). Since π is completely positive, π is completely bounded. Moreover ϕ is completely bounded by
Example 3.5. Therefore, by Proposition 3.9, the map ψ := ϕ ◦ π : A→ B(H) defined by ψ(A) = W ∗π(A)V
for all A ∈ A is completely bounded.

We will show that every completely bounded map ψ : A→ B(H) is contained in the above example. To
begin we need to show that the proof of Theorem 7.5 can be improved to obtain more information about
the extension of the map Φ. To simplify technical reasons, we will only deal with unital C∗-algebras and
our final result will apply to non-unital C∗-algebras as we can extend every completely bounded map on a
non-unital C∗-algebra into B(H) to a completely bounded map on the unitization.
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Lemma 7.7. Let A be a unital C∗-algebra, and let ϕ : A→ B(H) be completely bounded. Then there exists
completely positive maps ϕi : A → B(H) with ‖ϕi‖cb = ‖ϕ‖cb for i = 1, 2 such that the map Ψ : M2(A) →
B(H⊕H) given by

Ψ

([
a b
c d

])
=

[
ϕ1(a) ϕ(b)
ϕ∗(c) ϕ2(d)

]
is completely positive (ϕ∗(c) = ϕ(c∗)∗). Moreover if ‖ϕ‖cb = 1 then we may take ϕ1(IA) = ϕ2(IA) = IH.

Proof. By scaling ϕ if necessary, we may assume that ‖ϕ‖cb = 1 (after making this assumption, we can scale
Ψ back and the ϕi will still have the correct properties). Since ‖ϕ‖cb = 1 we may apply Theorem 7.4 to
obtain a completely positive map Φ : SA → B(H ⊕ H) where SA ⊆ M2(A). By the Arveson’s Extension
Theorem Φ extends to a completely positive map Ψ :M2(A)→ B(H⊕H).

Firstly we notice that for all B,C ∈ A that[
0 B
C 0

]
∈ SA

and consequently

Ψ

([
0 B
C 0

])
= Φ

([
0 B
C 0

])
=

[
0 ϕ(B)

ϕ(C∗)∗ 0

]
=

[
0 ϕ(B)

ϕ∗(C) 0

]
.

Thus to show that Ψ has the desired form we need only create ϕ1 and ϕ2 and use the linearity of Ψ.
To create ϕ1 we desired to show that if we restrict Ψ to elements whose only non-zero entry is in the

(1, 1)-entry then we get matrices in M2(B(H)) where only the (1, 1)-entry is non-zero. Let P ∈ A be an
arbitrary positive element with P ≤ IA. Then it is clear that[

P 0
0 0

]
≤
[
IA 0
0 0

]
.

Thus [
0 0
0 0

]
≤ Ψ

([
P 0
0 0

])
≤ Ψ

([
IA 0
0 0

])
=

[
IA 0
0 0

]
(∗)

as Ψ is positive. However if

Ψ

([
P 0
0 0

])
=

[
P1 P2

P3 P4

]
then, by Lemma 3.19 part (3), the first inequality in (∗) implies that P4 ≥ 0 and the second inequality in
(∗) implies that −P4 ≥ 0. Hence P4 = 0. Thus P2 = P3 = 0 by applying Lemma 3.19 part (3). Whence

Ψ

([
P 0
0 0

])
=

[
P1 0
0 0

]
for some P1 ∈ B(H). Hence, since A is the span of its positive elements, for each A ∈ A

Ψ

([
A 0
0 0

])
=

[
A1,1 0

0 0

]
for some A1,1 ∈ B(H). Thus we may define the linear map ϕ1 : A→ B(H) such that

Ψ

([
A 0
0 0

])
=

[
ϕ1(A) 0

0 0

]
(ϕ1 is linear as Ψ is linear) for all A ∈ A. However we need to show that ϕ1 is completely positive. To see
this notice if [Ai,j ] ∈Mn(A) is positive then[[

Ai,j 0
0 0

]]
∈Mn(M2(A))
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is positive by the canonical shuffle and Lemma 3.19 part (3). Then, since Ψ(n) is completely positive,

Ψ(n)

([[
Ai,j 0

0 0

]])
=

[[
ϕ1(Ai,j) 0

0 0

]]
is positive. Hence, by another canonical shuffle,[

(ϕ1)(n)([Ai,j ]) 0
0 0

]
∈M2(Mn(A))

is positive. Whence (ϕ1)(n)([Ai,j ]) is positive by Lemma 3.19 part (3). Hence ϕ1 is completely positive.
By similar arguments, we can construct a completely positive map ϕ2 : A → B(H) such that we get

our final decomposition. Moreover, since ϕ1(IA) = ϕ2(IA) = IH as Ψ is unital and since ϕi are completely
bounded, we obtain that ‖ϕi‖cb = 1 = ‖ϕ‖cb as desired.

Notice the beauty of the above lemma which can be interpreted as saying that every completely bounded
map into B(H) can be viewed as the (1, 2)-entry of a completely positive map into M2(B(H)).

Now that we know the extension Ψ of Φ has this nice matrix form we can use this to prove a decomposition
theorem for completely bounded maps. First we prove a simple yet technical lemma.

Lemma 7.8. Let A be a unital C∗-algebra and let π1 : M2(A) → B(K1) a unital ∗-homomorphism. Then
there exists a Hilbert space K, a unital ∗-homomorphism π : A → B(K), and a unitary W : K1 → K ⊕ K
such that

π1

([
A1,1 A1,2

A2,1 A2,2

])
= W ∗

[
π(A1,1) π(A1,2)
π(A2,1) π(A2,2)

]
W

for all Ai,j ∈ A.

Proof. We desire to construct π from π1. To do this we notice that

P1 := π1

([
IA 0
0 0

])
and P4 := π1

([
0 0
0 IA

])
are orthogonal projections that sum to the identity (as π1 is unital ∗-homomorphism). Moreover

U := π1

([
0 IA
IA 0

])
is a self-adjoint unitary and P1 = UP4U so P1 and P4 are unitarily equivalent. Let K := P1(K1) which is a
Hilbert space as P1 is an orthogonal projection. Since P1U = UP4, for all η ∈ P4(K1),

Uη = UP4η = P1Uη ∈ K.

Similarly if ξ ∈ K,
Uξ = UP1ξ = P4Uξ ∈ P4(K1).

Hence, as U is a unitary, U |K is a unitary that takes K = P1(K1) onto P4(K1). Therefore the map W : K1 =
P1(K1)⊕P4(K1)→ K⊕K defined by W (ξ+ η) = ξ⊕Uη for all ξ ∈ P1(K1) and η ∈ P4(K1) is a well-defined
unitary with W ∗ : K ⊕K → P1(K1)⊕ P4(K1) ' K by W ∗(ξ ⊕ η) = ξ + Uη.

Since

π1

([
A 0
0 0

])
= P1π1

([
A 0
0 0

])
P1

the map π : A→ B(K) defined by

π(A)ξ = π1

([
A 0
0 0

])
(ξ)
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for all ξ ∈ K is well-defined as the right hand side may be viewed as an element of K. It is easy to verify
that π is a ∗-homomorphism and

π(A)ξ = π1

([
A 0
0 0

])
P1(ξ + η) = π1

([
A 0
0 0

])
(ξ + η)

for all ξ ∈ K and η ∈ P4(K1). Moreover π is unital as π(IA) = IK.
It remains only to show the equation relating π, π1, and W described in the theorem. To see this notice

for all ξ ∈ K, η ∈ P4(K1), and A ∈ A that

W ∗
[
π(A) 0

0 0

]
W (ξ + η) = W ∗

[
π(A) 0

0 0

] [
ξ
Uη

]
= W ∗((π(A)ξ)⊕ 0)

= π(A)ξ

= π1

([
A 0
0 0

])
(ξ + η)

and

W ∗
[

0 π(A)
0 0

]
W (ξ + η) = W ∗

[
0 π(A)
0 0

] [
ξ
Uη

]
= W ∗(π(A)Uη ⊕ 0)

= π(A)Uη

= π1

([
A 0
0 0

])
P1(Uη + Uξ) as Uξ ∈ P4(K1)

= π1

([
A 0
0 0

])
U(η + ξ)

= π1

([
0 A
0 0

])
(η + ξ)

and

W ∗
[

0 0
0 π(A)

]
W (ξ + η) = W ∗

[
0 0
0 π(A)

] [
ξ
Uη

]
= W ∗(0⊕ π(A)Uη)

= Uπ(A)Uη

= Uπ1

([
A 0
0 0

])
P1(Uη + Uξ) as Uξ ∈ P4(K1)

= Uπ1

([
A 0
0 0

])
U(η + ξ)

= π1

([
0 0
0 A

])
(η + ξ)

and

W ∗
[

0
π(A) 0

]
W =

(
W ∗

[
0 π(A)
0 0

]
W

)∗
= π1

([
0 A
0 0

])∗
= π1

([
0 0
A 0

])
.

Whence, using linearity and combining the above expressions, we obtain the desired equation relating π, π1,
and W .

Theorem 7.9 (Wittstock). Let A be a C∗-algebra and let ϕ : A → B(H) be a completely bounded map.
Then there exists a Hilbert space K, a ∗-homomorphism π : A → B(K), and bounded operators Vi : H → K
(for i = 1, 2) such that ‖ϕ‖cb = ‖V1‖ ‖V2‖ and ϕ(A) = V ∗1 π(A)V2 for all A ∈ A. Moreover if ‖ϕ‖cb = 1 then
V1 and V2 may be taken to be isometries. In A is unital, π can be taken to be unital.
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Proof. If ϕ = 0 the result is trivial. As we have done several times in this chapter, by scaling (and unscaling
at the end) we may assume that ‖ϕ‖cb = 1. First suppose A is a unital C∗-algebra. Let ϕ1, ϕ2, and Ψ
be as in Lemma 7.7 where the ϕis are unital as ‖ϕ‖cb = 1. Since Ψ is completely positive and unital, by
Stinespring’s Theorem there exists a Hilbert space K1, a unital ∗-homomorphism π1 :M2(A)→ B(K1), and
an isometry V0 : H⊕H → K1 such that Ψ([Ai,j ]) = V ∗0 π1([Ai,j ])V0 for all [Ai,j ] ∈M2(A).

By Lemma 7.8 there exists a Hilbert space K, a unital ∗-homomorphism π : A → B(K), and a unitary
W : K1 → K⊕K such that

π1

([
A1,1 A1,2

A2,1 A2,2

])
= W ∗

[
π(A1,1) π(A1,2)
π(A2,1) π(A2,2)

]
W.

Thus[
ϕ1(A1,1) ϕ(A1,2)
ϕ∗(A2,1) ϕ2(A2,2)

]
= Ψ([Ai,j ]) = V ∗0 W

∗
[
π(A1,1) π(A1,2)
π(A2,1) π(A2,2)

]
WV0 = V ∗

[
π(A1,1) π(A1,2)
π(A2,1) π(A2,2)

]
V

where V := WV0 : H⊕H → K⊕K is the composition of an isometry and a unitary and thus is an isometry.
All that remains is to extract V1 and V2 from V .

Notice for any ξ ∈ H[
ξ
0

]
=

[
IH 0
0 0

] [
ξ
0

]
=

[
ϕ1(IA) 0

0 0

] [
ξ
0

]
= V ∗

[
π(IA) 0

0 0

]
V

[
ξ
0

]
= V ∗

[
IK 0
0 0

]
V

[
ξ
0

]
.

Hence if V

[
ξ
0

]
=

[
η1

η2

]
∈ K ⊕K then

‖ξ‖2 =

〈
V ∗
[
IK 0
0 0

]
V

[
ξ
0

]
,

[
ξ
0

]〉
H⊕H

=

〈[
IK 0
0 0

] [
η1

η2

]
,

[
η1

η2

]〉
K⊕K

= ‖η1‖2 .

Since V is an isometry, the above equation implies that η2 = 0 so that

V

[
ξ
0

]
=

[
η1

0

]
.

Therefore, as this holds for all ξ ∈ H, there exists a linear map V1 : H → K such that[
V1ξ
0

]
= V

[
ξ
0

]
.

Also, since V is an isometry, V1 is an isometry. Similarly there exists an isometry V2 : H → K such that[
0
V2ξ

]
= V

[
0
ξ

]
.

As V is linear, we obtain that V = V1 ⊕ V2 and thus V ∗ = V ∗1 ⊕ V ∗2 . Hence[
ϕ1(A) ϕ(B)
ϕ∗(C) ϕ2(D)

]
= V ∗

[
π(A) π(B)
π(C) π(D)

]
V =

[
V ∗1 π(A)V1 V ∗1 π(B)V2

V ∗2 π(C)V1 V ∗2 π(D)V2

]
which completes the proof (in the unital case) as then ϕ(B) = V ∗1 π(B)V2 for all B ∈ A.

If A is not unital let Ã be the unitization of A. By Theorem 7.5 there exists a completely bounded map
ϕ̃ : Ã→ B(H) such that ϕ̃|A = ϕ and ‖ϕ̃‖cb = ‖ϕ‖cb. By the above proof there exists a Hilbert space K, a ∗-

homomorphism π̃ : Ã→ B(K), and bounded operators Vi : H → K (for i = 1, 2) such that ‖ϕ̃‖cb = ‖V1‖ ‖V2‖
and ϕ̃(A) = V ∗1 π̃(A)V2 for all A ∈ Ã (where V1 and V2 are isometries if ‖ϕ‖cb = ‖ϕ̃‖cb = 1). If π = π̃|A, we
obtain that ϕ(A) = ϕ̃(A) = V ∗1 π(A)V2 for all A ∈ A and thus the result follows.
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As a corollary to the above theorem we obtain a standard result about continuous linear functionals on
a C∗-algebra.

Corollary 7.10. Let A be a C∗-algebra and let ϕ : A → C be a continuous linear functional. Then there
exists a Hilbert space K, a ∗-homomorphism π : A → B(K), and vectors ξ, η ∈ K such that ‖ϕ‖ = ‖ξ‖ ‖η‖
and ϕ(A) = 〈π(A)ξ, η〉K for all A ∈ A.

Proof. Since ϕ is a continuous linear functional, Proposition 3.8 implies that ϕ : A→ C = B(C) is completely
bounded with ‖ϕ‖cb = ‖ϕ‖. By Theorem 7.9 there exists a Hilbert space K, a ∗-homomorphism π : A →
B(K), and bounded operators Vi : H → K (for i = 1, 2) such that ‖ϕ‖cb = ‖V1‖ ‖V2‖ and ϕ(A) = V ∗1 π(A)V2

(as bounded operators on C) for all A ∈ A.
Let ξ := V2(1) and let η := V1(1). Since V1(λ) = λη and V2(λ) = λξ for all λ ∈ C, it is trivial to verify

that ‖η‖ = ‖V1‖ and ‖ξ‖ = ‖V2‖ so that ‖ϕ‖ = ‖ϕ‖cb = ‖ξ‖ ‖η‖. Moreover

ϕ(A) = 〈ϕ(A)1, 1〉C = 〈π(A)V2(1), V1(1)〉K = 〈π(A)ξ, η〉K

for all A ∈ A as desired.

Remarks 7.11. Notice that if A is a C∗-algebra, ϕi : A→ B(H) are completely positive maps, and λi ∈ C
are scalars, the map ψ : A→ B(H) given by

ψ(A) =

m∑
i=1

λiϕi(A)

is completely bounded. Indeed ‖ψ‖n ≤
∑m
i=1 |λi| ‖ϕi‖n =

∑m
i=1 |λi| ‖ϕi‖ for all n ∈ N. We desire to show

that every completely bounded map on a C∗-algebra is a linear combination of completely positive maps.
This will follow easily from Theorem 7.9. This will also allow us to show that every continuous linear
functional is a linear combination of positive linear functionals whose norms satisfy a certain condition.

Theorem 7.12. Let A be a C∗-algebra and let ϕ : A → B(H) be a completely bounded map. Then there

exists completely positive maps ϕj : A→ B(H) such that ‖ϕj‖ ≤ 2 ‖ϕ‖cb for all j and ϕ(A) =
∑4
j=1 i

jϕj(A)
for all A ∈ A. If ϕ(A∗) = ϕ(A)∗ for all A ∈ A we may take ϕ1 = ϕ3 = 0.

Proof. Let ϕ : A → B(H) be a completely bounded map. By Theorem 7.9 there exists Hilbert space K,
a ∗-homomorphism π : A → B(K), and bounded operators Vi : H → K (for i = 1, 2) such that ‖ϕ‖cb =
‖V1‖ ‖V2‖ and ϕ(A) = V ∗1 π(A)V2 for all A ∈ A. By scaling V1 and V2 appropriately, we may assume that

‖V1‖ = ‖V2‖ = ‖ϕ‖
1
2

cb. For each j ∈ {1, 2, 3, 4} define ϕj : A→ B(H) by

ϕj(A) =

(
V2 + ijV1

2

)∗
π(A)

(
V2 + ijV1

2

)
for all A ∈ A which is a well-defined, completely positive map by the remarks preceding Theorem 4.1.
Moreover

‖ϕj‖ ≤
1

4

∥∥V2 + ijV1

∥∥2 ≤ 1

4
(‖V2‖+ ‖V1‖)2 = ‖ϕ‖cb .

Moreover we notice (by the same equation as the polarization identity) that

ϕ(A) = V ∗1 π(A)V2

=

4∑
j=1

(
V1 + ijV2

2

)∗
π(A)

(
V1 + ijV2

2

)

=

4∑
j=1

ijϕj(A)
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for all A ∈ A as desired.
Lastly suppose that ϕ(A∗) = ϕ(A)∗ for all A ∈ A. If A ∈ A is self-adjoint then

iϕ1(A)− ϕ2(A)− iϕ3(A) + ϕ4(A) = ϕ(A) = ϕ(A)∗ = −iϕ1(A)− ϕ2(A) + iϕ3(A) + ϕ4(A)

as each ϕj is a positive map so ϕj(A)∗ = ϕj(A) as A is self-adjoint. By rearranging the equation we obtain
that ϕ1(A) = ϕ3(A) for all A ∈ A self-adjoint and thus (as the self-adjoint elements span a C∗-algebra)
ϕ1 = ϕ3. Whence for all A ∈ A

ϕ(A) = iϕ1(A)− ϕ2(A)− iϕ3(A) + ϕ4(A) = ϕ4(A)− ϕ2(A)

so we may take ϕ1 = ϕ3 = 0.

Theorem 7.13. Let A be a C∗-algebra and let ϕ : A → C be a continuous linear functional. Then there
exists positive linear functionals ϕj : A→ C such that

∑4
j=1 ‖ϕj‖ ≤ 2 ‖ϕ‖ and ϕ(A) =

∑4
j=1 i

jϕj(A) for all
A ∈ A. Moreover if ϕ(A∗) = ϕ(A)∗ for all A ∈ A then we may take ϕ1 = ϕ3 = 0 and ‖ϕ2‖+ ‖ϕ3‖ = ‖ϕ‖.

Proof. The proof of this theorem is basically the same as Theorem 7.12 except for the norm condition that
will follow from the parallelogram law. Suppose that ϕ : A → C is a continuous linear functional. By
Corollary 7.10 there exists a Hilbert space K, a ∗-homomorphism π : A → B(K), and vectors ξ, η ∈ K such

that ‖ϕ‖ = ‖ξ‖ ‖η‖ and ϕ(A) = 〈π(A)ξ, η〉 for all A ∈ A. By scaling we may assume that ‖ξ‖ = ‖η‖ = ‖ϕ‖
1
2 .

For each j ∈ {1, 2, 3, 4} define ϕj : A→ C by

ϕj(A) =

〈
π(A)

(
ξ + ijη

2

)
,
ξ + ijη

2

〉
for all A ∈ A which is a well-defined, positive linear functional by Example 1.4. Moreover

‖ϕj‖ ≤
∥∥∥∥ξ + ijη

2

∥∥∥∥2

=
1

4

∥∥ξ + ijη
∥∥2

so that (by the parallelogram law)

4∑
j=1

‖ϕj‖ ≤
1

4

4∑
j=1

∥∥ξ + ijη
∥∥2

=
1

4

(
(2 ‖ξ‖2 + 2 ‖η‖2) + (2 ‖ξ‖2 + 2 ‖iη‖2

)
= 2 ‖ϕ‖ .

Moreover we notice (by the same equation as the polarization identity) that

ϕ(A) = 〈π(A)ξ, η〉

=

4∑
j=1

〈
π(A)

(
ξ + ijη

2

)
,
ξ + ijη

2

〉

=

4∑
j=1

ijϕj(A)

for all A ∈ A as desired.
Lastly suppose that ϕ(A∗) = ϕ(A)∗ for all A ∈ A. If A ∈ A is self-adjoint then

iϕ1(A)− ϕ2(A)− iϕ3(A) + ϕ4(A) = ϕ(A) = ϕ(A)∗ = −iϕ1(A)− ϕ2(A) + iϕ3(A) + ϕ4(A)

as each ϕj is a positive map so ϕj(A)∗ = ϕj(A) as A is self-adjoint. By rearranging the equation, we obtain
that ϕ1(A) = ϕ3(A) for all A ∈ A self-adjoint and thus (as the self-adjoint elements span a C∗-algebra)
ϕ1 = ϕ3. Whence for all A ∈ A

ϕ(A) = iϕ1(A)− ϕ2(A)− iϕ3(A) + ϕ4(A) = ϕ4(A)− ϕ2(A)
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so we may take ϕ1 = ϕ3 = 0. Moreover

‖ϕ2‖+ ‖ϕ4‖ ≤
1

4

(
‖ξ − η‖2 + ‖ξ + η‖2

)
=

1

4

(
2 ‖ξ‖2 + 2 ‖η‖2

)
= ‖ϕ‖ .

Since clearly
‖ϕ‖ = ‖ϕ2 − ϕ4‖ ≤ ‖ϕ2‖+ ‖ϕ4‖ ,

the norm condition follows.

Notice that the above (along with the Riesz Representation Theorem for positive linear functionals of
the continuous functions on a compact Hausdorff space) shows that every finite signed measure µ on a
compact Hausdorff space X can be written as µ = µ1 − µ2 where µ1 and µ2 are positive measures with
‖µ‖ = µ1(X) + µ2(X).

To complete this chapter, we will present a result that shows certain completely bounded maps are close
to completely positive maps thus further intertwining the theory of these types of maps.

Theorem 7.14. Let A be a unital C∗-algebra, let S ⊆ A be an operator system, let H be a Hilbert space, and
let Φ : S → B(H) be a unital, self-adjoint, completely bounded map. Then there exists a unital, completely
positive map Ψ : A → B(H) such that ‖Ψ|S − Φ‖cb ≤ 2(‖Φ‖cb − 1). In particular, if ‖Φ‖cb = 1 then Φ is
completely positive.

Proof. Since Φ is unital, ‖Φ‖cb ≥ 1. By Theorem 7.5 there exists a completely bounded map Ψ0 : A→ B(H)
such that Ψ0|S = Φ and ‖Ψ0‖cb = ‖Φ‖cb. By Theorem 7.9 there exists a Hilbert space K, a unital ∗-
homomorphism π : A→ B(K), and isometries Vi : H → K (for i ∈ {1, 2}) such that Ψ0(A) = ‖Φ‖cb V ∗1 π(A)V2

for all A ∈ A.
Since Φ is self-adjoint, we obtain that

Φ(A) = Ψ0(A) = ‖Φ‖cb V
∗
1 π(A)V2 = ‖Φ‖cb V

∗
2 π(A)V1

for all A ∈ S. Define Ψ : A→ B(H) by

Ψ(A) =
1

2
(V ∗1 π(A)V1 + V ∗2 π(A)V2)

for all A ∈ A. Clearly Ψ is a completely positive map (being the sum of completely positive maps) with
Ψ(IA) = 1

2 (V ∗1 V1 + V ∗2 V2) = IH. Moreover we notice for all A ∈ S that

1

2
‖Φ‖cb (V1 − V2)∗π(A)(V1 − V2) =

1

2
‖Φ‖cb (V ∗1 π(A)V1 + V ∗2 π(A)V2 − V ∗1 π(A)V2 − V ∗2 π(A)V1)

= ‖Φ‖cb Ψ(A)− Φ(A).

Therefore

‖Ψ|S − Φ‖cb ≤ ‖Ψ− ‖Φ‖cb Ψ‖
cb

+ ‖‖Φ‖cb Ψ|S − Φ‖
cb
≤ (‖Φ‖cb − 1) +

1

2
‖Φ‖cb ‖V1 − V2‖2 .

However, since Φ(IA) = IH, IH = ‖Φ‖cb V ∗1 V2 so

1

2
‖Φ‖cb ‖V1 − V2‖2 =

1

2
‖‖Φ‖cb IH − 2IH + ‖Φ‖cb IH‖ = ‖Φ‖cb − 1

and thus
‖Ψ|S − Φ‖cb ≤ 2(‖Φ‖cb − 1)

as desired.
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