IMPORTANT CONCEPTS

1. Induction
 - (Principle of Mathematical Induction) For each $k \in \mathbb{N}$, let P_k be a mathematical statement that is either true or false. Suppose
 (i) (base case) P_1 is true, and
 (ii) (inductive step) if $k \in \mathbb{N}$ and P_k is true, then P_{k+1} is true.
 Then P_n is true for all $n \in \mathbb{N}$.
 - Very useful for: showing formulae hold for all $n \in \mathbb{N}$, showing a property is true for all elements of a sequence.
 - Can be useful to include multiple statements in P_k for all k.
 - (Principle of Strong Mathematical Induction) For each $k \in \mathbb{N}$, let P_k be a mathematical statement that is either true or false. Suppose
 (a) P_1 is true, and
 (b) if $k \in \mathbb{N}$ and P_m is true is true for all $m \leq k$, then P_{k+1} is true.
 Then P_n is true for all $n \in \mathbb{N}$.
 - Strong induction can be used to assume multiple (i.e. all) previous statements are true in order to prove the next is.
 - (Well Ordering Principle) Each non-empty subset $S \subseteq \mathbb{N}$ has a least element.
 - The Well Ordering Principle, Induction, and Strong Induction are logically equivalent.

2. Recursion
 - A recursive process is one in which objects are defined in terms of other objects of the same type.
 - Usually, we can describe a relation between objects based on a number n and the corresponding objects based on the numbers $\{1, \ldots, n\}$. This often lets us reduce a problem to a simpler one.

3. Recurrence Relations
 - Suppose a sequence $(a_n)_{n \geq 0}$ is defined recursively by the equation $a_{n+k} + b_1a_{n+k-1} + \cdots + b_k a_n = 0$ for all $n \geq k$, where b_1, \ldots, b_k are constants. If the equation
 \[x^k + b_1x^{k-1} + \cdots + b_k = 0 \]
 (called the characteristic equation) has distinct roots r_1, \ldots, r_k, then there exists constants c_1, \ldots, c_k such that
 \[a_n = c_1r_1^n + \cdots + c_k r_k^n \quad \text{for all } n. \]
 The values of c_1, \ldots, c_k can be determined by the values of a_0, \ldots, a_{k-1}.
 - Suppose a sequence $(a_n)_{n \geq 0}$ is defined recursively by the equation $a_{n+2} + b_1a_{n+1} + b_2 a_n = 0$ for all $n \geq k$, where b_1 and b_2 are constants. If the equation
 \[x^2 + b_1x + b_2 = 0 \]
 (called the characteristic equation) has exactly one root r, then there exists constants c_1 and c_2 such that
 \[a_n = c_1r^n + c_2nr^n \quad \text{for all } n. \]
 The values of c_1 and c_2 can be determined by the values of a_0 and a_1.
 - If a more complicated recurrence relation is given, the only real method for determining a formula for the sequence is via ad hoc methods. Sometimes it is not possible to find a closed form either!