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Simplified Quantum Mechanics via Linear Algebra

The states of a quantum system are the vectors

S = {~v ∈ Cn | ‖~v‖2 = 1}

for some fixed n.

Two states ~v and ~w are considered the same (modulo a phase shift)
if there exists a z ∈ C such that |z | = 1 and ~v = z ~w .

Quantum mechanics was derived around the idea that observables of
a quantum system are quantized in the sense that there will exists a
basis of eigenstates ~v1, ~v2, . . . , ~vn where the value of the observable
for each state is a fixed number λ1, λ2, . . . , λn respectively, and all
other states are superpositions of the eigenstates.

Thus observables are modelled by A ∈ Mn,n(C) where ~vk is an
eigenvector with eigenvalue λk for all k.

Matrices do not necessarily commute =⇒ uncertainty!
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Valid Observables

As
〈A~vk , ~vk〉 = 〈λk~vk , ~vk〉 = λk ‖~vk‖2 = λk ,

it is extrapolated that the value of the observable A on the state
~v ∈ S is 〈A~v , ~v〉.
As observed values should be real, we require A to be self-adjoint:

〈A∗~v , ~w〉 =
1

4

4∑
k=1

ik〈A∗(~v + ik ~w), ~v + ik ~w〉

=
1

4

4∑
k=1

ik〈~v + ik ~w ,A(~v + ik ~w)〉

=
1

4

4∑
k=1

ik〈A(~v + ik ~w), ~v + ik ~w〉

=
1

4

4∑
k=1

ik〈A(~v + ik ~w), ~v + ik ~w〉 = 〈A~v , ~w〉.
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Spectral Theorem for Self-Adjoint Matrices

Conversely, if A is self-adjoint, then

λk = λk〈~vk , ~vk〉 = 〈λk~vk , ~vk〉 = 〈A~vk , ~vk〉 = 〈~vk ,A~vk〉 = 〈~vk , λk~vk〉 = λk

so λk ∈ R for all k.

Theorem (Spectral Theorem for Self-Adjoint Matrices)

Let A ∈ Mn,n(C). Then the following are equivalent:

1 A is self-adjoint.

2 There exists an orthonormal basis of eigenvectors of A corresponding
to real eigenvalues.

3 There exists a unitary matrix U ∈ Mn,n(C) and a diagonal matrix
D ∈ Mn,n(R) such that A = UDU∗.

For observables, the eigenstates are an orthonormal basis for Cn.

Paul Skoufranis (YorkU) Completely Positive Map Between Matrices February 24, 2021 4 / 28



Superposition of Eigenstates

If ~v ∈ S, then there exists a1, a2, . . . , an ∈ C such that

~v = a1~v1 + a2~v2 + · · ·+ an~vn.

Note

〈A~v , ~v〉 =
n∑

k=1

n∑
j=1

akaj〈A~vk , ~vj〉 =
n∑

k=1

n∑
j=1

akajλk〈~vk , ~vj〉 =
n∑

k=1

|ak |2λk .

As ‖~v2‖ = 1, we have by a similar computation that

n∑
k=1

|ak |2 = 1.

Thus we view ~v to be the state which is in the eigenstate ~vk with
probability pk = |ak |2 for all k .
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Traces and Density Matrices

Definition

Given a matrix B = [bi ,j ] ∈ Mm,m(C), the trace of B is

Trm(B) =
m∑

k=1

bk,k .

Note if B ∈ Mm,n(C) and C ∈ Mn,m(C), then Trm(BC ) = Trn(CB).

Thinking of ~v ∈ S as a column vector

〈A~v , ~v〉 = Tr1(~v∗A~v) = Trn(A(~v~v∗)).

We call ~v~v∗ ∈ Mn,n(C) the density matrix of the state ~v .

Note Trn(~v~v∗) = Tr1(~v∗~v) = ‖~v‖22 = 1, (~v~v∗)∗ = ~v~v∗, and if ~w is an
eigenvector for ~v~v∗ with eigenvalue λ,

λ〈~w , ~w〉 = 〈~v~v∗~w , ~w〉 = 〈〈~w , ~v〉~v , ~w〉 = |〈~w , ~v〉|2 ≥ 0.

Hence ~v~v∗ is a positive matrix (i.e. positive semi-definite) of trace 1.
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Quantum Channels

A quantum channel is a communication channel that can transmit
quantum information. Such channels are important in quantum computing
where a qubit (a two-dimensional quantum system) is used in place of a
bit.

To proceed mathematically, quantum information is encoded via the
density matrices of quantum states. Then quantum channels are precisely
the functions Φ : Mn,n(C)→ Mm,m(C) such that

Φ preserves the trace: Trm(Φ(A)) = Trn(A) for all A ∈ Mn,n(C),

Φ is positive: Φ(A) is positive for all positive A ∈ Mn,n(C),

Φ is linear, and

Φ is completely positive.

To summarize, quantum channels are completely positive, trace-preserving
linear maps.
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Completely Positive Maps

Note for all d , n ∈ N that Md ,d(Mn,n(C)) ∼= Mdn,dn(C).

Definition

A linear map Φ : Mn,n(C)→ Mm,m(C) is said to be completely positive if
for every d ∈ N the map Φd : Md ,d(Mn,n(C))→ Md ,d(Mm,m(C)) defined
by

Φd([Ai ,j ]) = [Φ(Ai ,j)]

is a positive map.
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Examples of Positive Maps

Define Φ : Mn,n(C)→ Mn,n(C) by Φ(A) = AT . As

Φ(A∗A) = (A∗A)T = AT (A∗)T = AT (AT )∗

we see that Φ is positive.

Define Φ : Mn,n(C)→ C by Φ(A) = Trn(A). Then Φ is positive as
Trn(A) will be the sum of the eigenvalues of A (counting algebraic
multiplicity).

Define Φ : Mn,n(C)→ Mn,n(C) by

Φ([ai ,j ]) = diag(a1, a2, . . . , an).

Then Φ is positive as a positive matrix must have positive entries
along the diagonal and a diagonal matrix is positive if and only if the
entries along the diagonal are positive.
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Transpose and Complete Positivity

Define Φ : M2,2(C)→ M2,2(C) by Φ(A) = AT . Then Φ is not completely
positive. Indeed consider

A =


[

1 0
0 0

] [
0 1
0 0

]
[

0 0
1 0

] [
0 0
0 1

]
 ∼=


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 .
Clearly A is self-adjoint with eigenvalues 0, 0, 0, and 2, so A is positive.
However

Φ2(A) =


[

1 0
0 0

] [
0 0
1 0

]
[

0 1
0 0

] [
0 0
0 1

]
 ∼=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


which has eigenvalues 1, 1, 1, and −1 and thus is not positive.
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Trace and Complete Positivity

Define Φ : Mn,n(C)→ C by Φ(A) = Trn(A). Then Φ is completely
positive. Indeed let A = [Ai ,j ] ∈ Md ,d(Mn,n(C)) be positive. Then for all
~x = (x1, x2, . . . , xd) ∈ Cd we have

〈Φd(A)~x , ~x〉 =
d∑

i ,j=1

Trn(Ai ,j)xjxi = Trn

 d∑
i ,j=1

xiAi ,jxj

 .

However, writing A = B∗B we see that

d∑
i ,j=1

xiAi ,jxj =

x1In...
xd In


∗

A

x1In...
xd In

 =

B

x1In...
xd In



∗B

x1In...
xd In




is a positive matrix. Therefore, as Trn is positive, 〈Φd(A)~x , ~x〉 ≥ 0. Hence
Φd(A) is positive.
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Trace and Complete Positivity

For a fixed positive matrix B ∈ Mn,n(C), define ΦB : Mn,n(C)→ C by
ΦB(A) = Trn(AB). Then ΦB is completely positive. Indeed, as B is
positive, we can write B = C ∗C for some C ∈ Mn,n(C). Then for all
positive A = [Ai ,j ] ∈ Md ,d(Mn,n(C)) we have that

(ΦB)d(A) = [Trn(C ∗CAi ,j)] = [Trn(CAi ,jC
∗)] = (Trn)d(SAS∗)

where
S = diag(C ,C , . . . ,C ).

As A is positive, we can write A = T ∗T for some T ∈ Md ,d(Mn,n(C)) so

SAS∗ = (ST )(ST )∗

is positive. Therefore, as Trn is completely positive, (ΦB)d(A) is positive.

Thus ‘positive’ observables define completely positive maps on the density
matrices.
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Diagonals and Complete Positivity

Define Φ : Mn,n(C)→ Mn,n(C) by

Φ([ai ,j ]) = diag(a1, a2, . . . , an).

Then Φ is completely positive. Indeed let A = [Ai ,j ]i ,j ∈ Md ,d(Mn,n(C)) be
positive. Write Ai ,j = [ai ,j ,p,q]p,q. Then

Φd(A) =



a1,1,1,1 0
. . .

0 a1,1,n,n

 · · ·

a1,d ,1,1 0
. . .

0 a1,d ,n,n


...

...ad ,1,1,1 0
. . .

0 ad ,1,n,n

 · · ·

ad ,d ,1,1 0
. . .

0 ad ,d ,n,n




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Diagonals and Complete Positivity

Reordering the basis (which is conjugating by a unitary and thus preserves
positivity), we obtain that Φd(A) is positive if and only if

C = diag


a1,1,1,1 · · · a1,d ,1,1

...
...

ad ,1,1,1 · · · ad ,d ,1,1

 , . . . ,
a1,1,n,n · · · a1,d ,n,n

...
...

ad ,1,n,n · · · ad ,d ,n,n




is positive. By conjugating A by the same unitary matrix, we get that
T = [[ai ,j ,p,q]p,q]i ,j is positive. As each diagonal entry in C is a diagonal
minor of T and thus positive, we quickly check that C is positive.
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Quantum to Classical

For the remainder of the talk, we will use E to denote the expectation
onto the diagonal map; that is, E : Mn,n(C)→ Mn,n(C) is defined by

E ([ai ,j ]) = diag(a1, a2, . . . , an).

The expectation map is of interest as it takes matrices (quantum
information) and produces commuting matrices (classical information).

Question

Given a self-adjoint A ∈ Mn,n(R), can we determine the possible values of
E (A) based on the eigenvalues of A?

To be specific, if D = diag(x1, x2, . . . , xn) with x1, x2, . . . xn ∈ R, then
every self-adjoint matrix with eigenvalues x1, x2, . . . xn is of the form UDU∗

for some unitary matrix U ∈ Mn,n(C). So what is

{E (UDU∗) | U ∈ Mn,n(C) a unitary}?
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Expectations to Doubly Stochastic Matrices

Fix x1, x2, . . . xn ∈ R with x1 ≥ x2 ≥ · · · ≥ xn and D = diag(x1, x2, . . . , xn).
Let U = [ui ,j ] and suppose E (UDU∗) = diag(y1, y2, . . . , yn). As

UDU∗ =

[
n∑

k=1

ui ,kxkuj ,k

]
,

we see that

yi =
n∑

k=1

|ui ,k |2xk

for all i . Thus if

S = [|ui ,j |2], ~x = (x1, x2, . . . , xn)T , and ~y = (y1, y2, . . . , yn)T

we have S~x = ~y . Moreover, the sum of any row or column of S is 1 as U
is a unitary matrix. Such a matrix is an example of a doubly stochastic
matrix.
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Doubly Stochastic Matrices to Majorization

Note
n∑

i=1

yi =
n∑

i=1

n∑
k=1

|ui ,k |2xk =
n∑

k=1

n∑
i=1

|ui ,k |2xk =
n∑

k=1

xk

(i.e. Tr(E (UDU∗)) = Tr(D)). For distinct i1, i2, . . . , i` ∈ {1, 2, . . . , n},∑̀
p=1

yip =
∑̀
p=1

n∑
k=1

|uip ,k |2xk ≤
∑̀
k=1

xk .

Definition

Given ~x = (x1, x2, . . . , xn) ∈ Rn and ~y = (y1, y2, . . . , yn) ∈ Rn, it is said
that ~x majorizes ~y , denoted ~y ≺ ~x , if∑n

k=1 yk =
∑n

k=1 xk , and

for all l ,

max{∑`
p=1 yip |i1,...,i`∈{1,2,...,n} distinct}≤max{∑`

p=1 xip |i1,...,i`∈{1,2,...,n} distinct}.
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Majorization to Permutation Majorization

Suppose ~x = (x1, x2, . . . , xn) ∈ Rn and ~y = (y1, y2, . . . , yn) ∈ Rn with

~y ≺ ~x , x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn.

As ~y ≺ ~x , x1 ≥ y1 and if xk = yk for all 1 ≤ k < `, then x` ≥ y`. Let p be
the first index where xp > yp. As

∑n
k=1 xk =

∑n
k=1 yk , there exists a first

index q where xq < yq. So xp > yp ≥ yq > xq. Choose θ ∈ [0, 2π] such
that if

x ′p = cos2(θ)xp + sin2(θ)xq and x ′q = sin2(θ)xp + cos2(θ)xq

then either x ′p = yp and x ′q < yq, or x ′p > yp and x ′q = yq. As

x ′p + x ′q = xp + xq

and xk ≥ yk for all p < k < q, if x ′k = xk for all k 6= p, q, then

(y1, y2, . . . , yn) ≺ (x ′1, x
′
2, . . . , x

′
n) ≺ (x1, x2, . . . , xn).
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Permutation Majorization to Expectations

Repeating, we get a chain

~y = ~xr ≺ ~xr−1 ≺ · · · ≺ ~x1 ≺ ~x0 = ~x

where ~xk and ~xk+1 differ in only two entries in the above way and the pairs
of entries differ from all other pairs of (~x`, ~x`+1). With the notation above,
if

U1 = cos(θ)Ep,p − sin(θ)Ep,q + sin(θ)Eq,p + cos(θ)Eq,q +
n∑

k=1
k 6=p,q

Ek,k ,

then the diagonal entries of U1diag(x1, x2, . . . , xn)U∗1 are ~x1. This can be
repeated with each progressive unitary Uk not disturbing the previously
‘corrected’ diagonal entries in lieu of new off-diagonal entries so that when
we take the product of the Uk we get a unitary U such that

E (UDU∗) = diag(y1, y2, . . . , yn).
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Schur-Horn Theorem

Theorem (Schur-Horn Theorem; 1923, 1954, etc.)

Let ~x = (x1, x2, . . . , xn) ∈ Rn and ~y = (y1, y2, . . . , yn) ∈ Rn. The following
are equivalent:

If D = diag(x1, x2, . . . , xn), there exists a unitary U ∈ Mn,n(R) such
that

E (UDU∗) = diag(y1, y2, . . . , yn).

There exists a doubly stochastic matrix A ∈ Mn,n(R) such that
A~x = ~y.

~y ≺ ~x.

There exists a chain

~y = ~xr ≺ ~xr−1 ≺ · · · ≺ ~x1 ≺ ~x0 = ~x

where ~xk and ~xk+1 differ in only two entries in the above way and the
pairs of entries differ from all other pairs of (~x`, ~x`+1).
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Convex Hull of Unitary Orbit

Convexity is important in functional analysis. Given A ∈ Mn,n(C), let

conv(U(A)) =

{
m∑

k=1

tkUkAU
∗
k

∣∣∣∣∣ U1,U2,...,Um∈Mn,n(C) unitaries,
t1,t2,...,tm∈(0,1), and

t1+t2+···+tm=1

}
.

If A = diag(a1, a2, . . . , an) ∈ Mn,n(R), if B = diag(b1, b2, . . . , bn) is the
above matrix, and Uk = [ui ,j ,k ] then

~b =

(
m∑

k=1

tk [|ui ,j ,k |2]

)
~a,

so ~b ≺ ~a. Conversely, by using the chain of majorizations, and[
x ′p 0
0 x ′q

]
= cos2(θ)

[
1 0
0 1

] [
xp 0
0 xq

] [
1 0
0 1

]
+sin2(θ)

[
0 1
1 0

] [
xp 0
0 xq

] [
0 1
1 0

]
if ~b ≺ ~a then diag(b1, b2, . . . , bn) ∈ conv(U(diag(a1, a2, . . . , an))).
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Convex Hulls and Density Matrices

Theorem

Let A,B ∈ Mn,n(C) be self-adjoint. Then the following are equivalent:

The eigenvalues of B are majorized by the eigenvalues of A.

B ∈ conv(U(A)).

Let P = diag(1, 0, 0, . . . , 0) ∈ Mn,n(R). Note if B = Mn,n(C), then B ≺ P
if and only if Tr(B) = 1 and B is positive. Thus for any positive matrix B
of trace 1 we can write

B =
m∑

k=1

tkUkPU
∗
k .

If ~u1, . . . , ~um are the first rows of U1, . . . ,Um respectively, then

B =
m∑

k=1

tk~uk~u
∗
k

Thus B represents the density matrix of a superposition of states!
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To Infinity and Beyond

A Hilbert space is an inner product space that is complete (i.e. every
Cauchy sequence converges) with respect to the norm

‖~x‖ =
√
〈~x , ~x〉.

Given a Hilbert space H, an orthonormal basis is a maximal
orthonormal set.

Every Hilbert space with an infinitely countable orthonormal basis is
isomorphic to

`2 =

{
(xn)n≥1

∣∣∣∣∣
∞∑
n=1

|xn|2 <∞

}
.

If L2[0, 1] is the square-integrable ‘functions’ on [0, 1], then
L2[0, 1] ∼= `2.

Paul Skoufranis (YorkU) Completely Positive Map Between Matrices February 24, 2021 23 / 28



Bounded Linear Maps

Given two Hilbert spaces H and K, the bounded linear maps from H
to K, denoted B(H,K), are all linear maps T : H → K such that

‖T‖ = sup {‖T (~x)‖K | ~x ∈ H, ‖~x‖H ≤ 1} <∞.

If T ∈ B(H,K), then there exists a T ∗ ∈ B(K,H) such that

〈T ∗(~x), ~y〉H = 〈~x ,T (~y)〉K

for all ~x ∈ K and ~y ∈ H.

A C∗-algebra is a norm-closed subalgebra A of B(H) such that if
A ∈ A then A∗ ∈ A.

An A ∈ A is positive if A = B∗B for some B ∈ A; equivalently
〈A~x , ~x〉H ≥ 0 for all ~x ∈ H.

A II1 factor is a unital C∗-algebra with a faithful tracial state, trivial
centre, and is closed in the weak operator topology.
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Schur-Horn Theorem in II1 Factors

Theorem (Ravichandran; preprint 2012)

Let M be a type II1 factor, let A be a MASA in M, and let EA : M→ A
denote the normal conditional expectation. Given self-adjoint elements
T ∈M and S ∈ A, the following are equivalent:

1 S ≺ T,

2 there exists an element R ∈ U(T ) such that EA(R) = S.

Theorem (Kennedy, Skoufranis; 2015)

Let M be a type II1 factor, let A be a MASA in M, and let EA : M→ A
denote the normal conditional expectation. Given elements T ∈M and
S ∈ A, the following are equivalent:

1 S ≺w T,

2 there exists an element R ∈M with σR = σT such that EA(R) = S.

In addition, the above is logically equivalent to Ravichandran’s result.
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Closed Convex Hull of Unitary Orbits in C∗-Algebras

Let A be a unital C∗-algebra and let T (A) denote all ‘unbounded traces’;
that is, all maps τ : A+ → [0,∞] such that

τ(T + S) = τ(T ) + τ(S) for all T ,S ∈ A+,

τ(αT ) = ατ(T ) for all T ∈ A+ and α ∈ R+ (0 · ∞ = 0),

τ(X ∗X ) = τ(XX ∗) for all X ∈ A, and

τ is lower semicontinuous.

Theorem (Ng, Robert, Skoufranis; 2018)

Let A be a unital C∗-algebra and let T , S ∈ A be self-adjoint. The
following are equivalent:

S ∈ conv(U(T )).

τ((S − α)+) ≤ τ((T − α)+) and τ((−S − α)+) ≤ τ((−T − α)+) for
all τ ∈ T (A) and α ∈ R.
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Courses to Take

Undergraduate:

MATH 2022: Linear Algebra II

MATH 3001: Analysis II

MATH 4011: Metric Spaces

MATH 4012: Lebesgue Measure Theory

PHYS 4010: Quantum Mechanics

EECS 4141: Introduction to Quantum Computing?

Graduate:

MATH 6280: Measure Theory

MATH 6450: Topology

MATH 6461: Functional Analysis I

MATH 6462: Functional Analysis II

PHYS 5000: Quantum Mechanics I
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Thanks for Listening!
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