Linear Algebra, Quantum Information Theory, and Operator Algebras

Paul Skoufranis

York University

February 24, 2021

Simplified Quantum Mechanics via Linear Algebra

• The states of a quantum system are the vectors

$$\mathcal{S} = \{ \vec{\mathbf{v}} \in \mathbb{C}^n \mid \|\vec{\mathbf{v}}\|_2 = 1 \}$$

for some fixed *n*.

- Two states \vec{v} and \vec{w} are considered the same (modulo a phase shift) if there exists a $z \in \mathbb{C}$ such that |z| = 1 and $\vec{v} = z\vec{w}$.
- Quantum mechanics was derived around the idea that observables of a quantum system are *quantized* in the sense that there will exists a basis of eigenstates $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ where the value of the observable for each state is a fixed number $\lambda_1, \lambda_2, \ldots, \lambda_n$ respectively, and all other states are superpositions of the eigenstates.
- Thus observables are modelled by A ∈ M_{n,n}(ℂ) where v_k is an eigenvector with eigenvalue λ_k for all k.
- Matrices do not necessarily commute \implies uncertainty!

Valid Observables

As

$$\langle A\vec{v}_k, \vec{v}_k \rangle = \langle \lambda_k \vec{v}_k, \vec{v}_k \rangle = \lambda_k \|\vec{v}_k\|^2 = \lambda_k,$$

it is extrapolated that the value of the observable A on the state $\vec{v} \in S$ is $\langle A\vec{v}, \vec{v} \rangle$.

• As observed values should be real, we require A to be self-adjoint:

$$\begin{split} \langle A^* \vec{v}, \vec{w} \rangle &= \frac{1}{4} \sum_{k=1}^4 i^k \langle A^* (\vec{v} + i^k \vec{w}), \vec{v} + i^k \vec{w} \rangle \\ &= \frac{1}{4} \sum_{k=1}^4 i^k \langle \vec{v} + i^k \vec{w}, A(\vec{v} + i^k \vec{w}) \rangle \\ &= \frac{1}{4} \sum_{k=1}^4 i^k \overline{\langle A(\vec{v} + i^k \vec{w}), \vec{v} + i^k \vec{w} \rangle} \\ &= \frac{1}{4} \sum_{k=1}^4 i^k \langle A(\vec{v} + i^k \vec{w}), \vec{v} + i^k \vec{w} \rangle = \langle A \vec{v}, \vec{w} \rangle. \end{split}$$

Spectral Theorem for Self-Adjoint Matrices

Conversely, if A is self-adjoint, then

$$\lambda_{k} = \lambda_{k} \langle \vec{v}_{k}, \vec{v}_{k} \rangle = \langle \lambda_{k} \vec{v}_{k}, \vec{v}_{k} \rangle = \langle A \vec{v}_{k}, \vec{v}_{k} \rangle = \langle \vec{v}_{k}, A \vec{v}_{k} \rangle = \langle \vec{v}_{k}, \lambda_{k} \vec{v}_{k} \rangle = \overline{\lambda_{k}}$$

so $\lambda_k \in \mathbb{R}$ for all k.

Theorem (Spectral Theorem for Self-Adjoint Matrices)

Let $A \in M_{n,n}(\mathbb{C})$. Then the following are equivalent:

- A is self-adjoint.
- There exists an orthonormal basis of eigenvectors of A corresponding to real eigenvalues.
- So There exists a unitary matrix $U \in M_{n,n}(\mathbb{C})$ and a diagonal matrix $D \in M_{n,n}(\mathbb{R})$ such that $A = UDU^*$.

For observables, the eigenstates are an orthonormal basis for \mathbb{C}^n .

Superposition of Eigenstates

If $ec{v} \in \mathcal{S}$, then there exists $a_1, a_2, \ldots, a_n \in \mathbb{C}$ such that

$$\vec{v}=a_1\vec{v}_1+a_2\vec{v}_2+\cdots+a_n\vec{v}_n.$$

Note

$$\langle A\vec{v},\vec{v}\rangle = \sum_{k=1}^{n} \sum_{j=1}^{n} a_k \overline{a_j} \langle A\vec{v_k},\vec{v_j}\rangle = \sum_{k=1}^{n} \sum_{j=1}^{n} a_k \overline{a_j} \lambda_k \langle \vec{v_k},\vec{v_j}\rangle = \sum_{k=1}^{n} |a_k|^2 \lambda_k.$$

As $\|\vec{v}_2\| = 1$, we have by a similar computation that

$$\sum_{k=1}^{n} |a_k|^2 = 1.$$

Thus we view \vec{v} to be the state which is in the eigenstate \vec{v}_k with probability $p_k = |a_k|^2$ for all k.

Traces and Density Matrices

Definition

Given a matrix $B = [b_{i,j}] \in M_{m,m}(\mathbb{C})$, the *trace of B* is

$$\operatorname{Tr}_m(B) = \sum_{k=1}^m b_{k,k}.$$

Note if B ∈ M_{m,n}(ℂ) and C ∈ M_{n,m}(ℂ), then Tr_m(BC) = Tr_n(CB).
Thinking of v ∈ S as a column vector

$$\langle A\vec{v},\vec{v}\rangle = \mathrm{Tr}_1(\vec{v}^*A\vec{v}) = \mathrm{Tr}_n(A(\vec{v}\vec{v}^*)).$$

- We call $\vec{v}\vec{v}^* \in M_{n,n}(\mathbb{C})$ the density matrix of the state \vec{v} .
- Note $\operatorname{Tr}_n(\vec{v}\vec{v}^*) = \operatorname{Tr}_1(\vec{v}^*\vec{v}) = \|\vec{v}\|_2^2 = 1$, $(\vec{v}\vec{v}^*)^* = \vec{v}\vec{v}^*$, and if \vec{w} is an eigenvector for $\vec{v}\vec{v}^*$ with eigenvalue λ ,

$$\lambda \langle \vec{w}, \vec{w} \rangle = \langle \vec{v} \vec{v}^* \vec{w}, \vec{w} \rangle = \langle \langle \vec{w}, \vec{v} \rangle \vec{v}, \vec{w} \rangle = |\langle \vec{w}, \vec{v} \rangle|^2 \ge 0.$$

Hence $\vec{v}\vec{v}^*$ is a positive matrix (i.e. positive semi-definite) of trace 1.

A *quantum channel* is a communication channel that can transmit quantum information. Such channels are important in quantum computing where a *qubit* (a two-dimensional quantum system) is used in place of a bit.

To proceed mathematically, quantum information is encoded via the density matrices of quantum states. Then quantum channels are precisely the functions $\Phi: M_{n,n}(\mathbb{C}) \to M_{m,m}(\mathbb{C})$ such that

- Φ preserves the trace: $\operatorname{Tr}_m(\Phi(A)) = \operatorname{Tr}_n(A)$ for all $A \in M_{n,n}(\mathbb{C})$,
- Φ is positive: $\Phi(A)$ is positive for all positive $A \in M_{n,n}(\mathbb{C})$,
- Φ is linear, and
- Φ is completely positive.

To summarize, quantum channels are completely positive, trace-preserving linear maps.

Note for all $d, n \in \mathbb{N}$ that $M_{d,d}(M_{n,n}(\mathbb{C})) \cong M_{dn,dn}(\mathbb{C})$.

Definition

A linear map $\Phi: M_{n,n}(\mathbb{C}) \to M_{m,m}(\mathbb{C})$ is said to be *completely positive* if for every $d \in \mathbb{N}$ the map $\Phi_d: M_{d,d}(M_{n,n}(\mathbb{C})) \to M_{d,d}(M_{m,m}(\mathbb{C}))$ defined by

$$\Phi_d([A_{i,j}]) = [\Phi(A_{i,j})]$$

is a positive map.

Examples of Positive Maps

• Define
$$\Phi: M_{n,n}(\mathbb{C}) \to M_{n,n}(\mathbb{C})$$
 by $\Phi(A) = A^T$. As
 $\Phi(A^*A) = (A^*A)^T = A^T(A^*)^T = A^T(A^T)^*$

we see that Φ is positive.

 Define Φ : M_{n,n}(ℂ) → ℂ by Φ(A) = Tr_n(A). Then Φ is positive as Tr_n(A) will be the sum of the eigenvalues of A (counting algebraic multiplicity).

• Define
$$\Phi: M_{n,n}(\mathbb{C}) o M_{n,n}(\mathbb{C})$$
 by

$$\Phi([a_{i,j}]) = \operatorname{diag}(a_1, a_2, \ldots, a_n).$$

Then Φ is positive as a positive matrix must have positive entries along the diagonal and a diagonal matrix is positive if and only if the entries along the diagonal are positive.

9/28

Transpose and Complete Positivity

Define $\Phi: M_{2,2}(\mathbb{C}) \to M_{2,2}(\mathbb{C})$ by $\Phi(A) = A^T$. Then Φ is not completely positive. Indeed consider

$$A = \begin{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} & \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} & \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix} \cong \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Clearly A is self-adjoint with eigenvalues 0, 0, 0, and 2, so A is positive. However

$$\Phi_2(A) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \cong \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

which has eigenvalues 1, 1, 1, and -1 and thus is not positive.

.

Trace and Complete Positivity

Define $\Phi: M_{n,n}(\mathbb{C}) \to \mathbb{C}$ by $\Phi(A) = \operatorname{Tr}_n(A)$. Then Φ is completely positive. Indeed let $A = [A_{i,j}] \in M_{d,d}(M_{n,n}(\mathbb{C}))$ be positive. Then for all $\vec{x} = (x_1, x_2, \dots, x_d) \in \mathbb{C}^d$ we have

$$\langle \Phi_d(A) \vec{x}, \vec{x} \rangle = \sum_{i,j=1}^d \operatorname{Tr}_n(A_{i,j}) x_j \overline{x_i} = \operatorname{Tr}_n\left(\sum_{i,j=1}^d \overline{x_i} A_{i,j} x_j\right).$$

However, writing $A = B^*B$ we see that

$$\sum_{i,j=1}^{d} \overline{x_i} A_{i,j} x_j = \begin{bmatrix} x_1 I_n \\ \vdots \\ x_d I_n \end{bmatrix}^* A \begin{bmatrix} x_1 I_n \\ \vdots \\ x_d I_n \end{bmatrix} = \left(B \begin{bmatrix} x_1 I_n \\ \vdots \\ x_d I_n \end{bmatrix} \right)^* \left(B \begin{bmatrix} x_1 I_n \\ \vdots \\ x_d I_n \end{bmatrix} \right)$$

is a positive matrix. Therefore, as Tr_n is positive, $\langle \Phi_d(A)\vec{x}, \vec{x} \rangle \geq 0$. Hence $\Phi_d(A)$ is positive.

Trace and Complete Positivity

For a fixed positive matrix $B \in M_{n,n}(\mathbb{C})$, define $\Phi_B : M_{n,n}(\mathbb{C}) \to \mathbb{C}$ by $\Phi_B(A) = \operatorname{Tr}_n(AB)$. Then Φ_B is completely positive. Indeed, as B is positive, we can write $B = C^*C$ for some $C \in M_{n,n}(\mathbb{C})$. Then for all positive $A = [A_{i,j}] \in M_{d,d}(M_{n,n}(\mathbb{C}))$ we have that

$$(\Phi_B)_d(A) = [\operatorname{Tr}_n(C^*CA_{i,j})] = [\operatorname{Tr}_n(CA_{i,j}C^*)] = (\operatorname{Tr}_n)_d(SAS^*)$$

where

$$S = \operatorname{diag}(C, C, \ldots, C).$$

As A is positive, we can write $A = T^*T$ for some $T \in M_{d,d}(M_{n,n}(\mathbb{C}))$ so

$$SAS^* = (ST)(ST)^*$$

is positive. Therefore, as Tr_n is completely positive, $(\Phi_B)_d(A)$ is positive.

Thus 'positive' observables define completely positive maps on the density matrices.

Paul Skoufranis (YorkU)

Completely Positive Map Between Matrices

Diagonals and Complete Positivity

Define $\Phi: M_{n,n}(\mathbb{C}) \to M_{n,n}(\mathbb{C})$ by

$$\Phi([a_{i,j}]) = \operatorname{diag}(a_1, a_2, \ldots, a_n).$$

Then Φ is completely positive. Indeed let $A = [A_{i,j}]_{i,j} \in M_{d,d}(M_{n,n}(\mathbb{C}))$ be positive. Write $A_{i,j} = [a_{i,j,p,q}]_{p,q}$. Then

$$\Phi_{d}(A) = \begin{bmatrix} a_{1,1,1,1} & 0 \\ & \ddots & \\ 0 & a_{1,1,n,n} \end{bmatrix} & \cdots & \begin{bmatrix} a_{1,d,1,1} & 0 \\ & \ddots & \\ 0 & a_{1,d,n,n} \end{bmatrix} \\ \vdots & & \vdots \\ \begin{bmatrix} a_{d,1,1,1} & 0 \\ & \ddots & \\ 0 & a_{d,1,n,n} \end{bmatrix} & \cdots & \begin{bmatrix} a_{d,d,1,1} & 0 \\ & \ddots & \\ 0 & & a_{d,d,n,n} \end{bmatrix} \end{bmatrix}$$

13/28

Reordering the basis (which is conjugating by a unitary and thus preserves positivity), we obtain that $\Phi_d(A)$ is positive if and only if

$$C = \operatorname{diag} \left(\begin{bmatrix} a_{1,1,1,1} & \cdots & a_{1,d,1,1} \\ \vdots & & \vdots \\ a_{d,1,1,1} & \cdots & a_{d,d,1,1} \end{bmatrix}, \dots, \begin{bmatrix} a_{1,1,n,n} & \cdots & a_{1,d,n,n} \\ \vdots & & \vdots \\ a_{d,1,n,n} & \cdots & a_{d,d,n,n} \end{bmatrix} \right)$$

is positive. By conjugating A by the same unitary matrix, we get that $T = [[a_{i,j,p,q}]_{p,q}]_{i,j}$ is positive. As each diagonal entry in C is a diagonal minor of T and thus positive, we quickly check that C is positive.

14 / 28

Quantum to Classical

For the remainder of the talk, we will use E to denote the *expectation* onto the diagonal map; that is, $E: M_{n,n}(\mathbb{C}) \to M_{n,n}(\mathbb{C})$ is defined by

$$E([a_{i,j}]) = \operatorname{diag}(a_1, a_2, \ldots, a_n).$$

The expectation map is of interest as it takes matrices (quantum information) and produces commuting matrices (classical information).

Question

Given a self-adjoint $A \in M_{n,n}(\mathbb{R})$, can we determine the possible values of E(A) based on the eigenvalues of A?

To be specific, if $D = \text{diag}(x_1, x_2, \ldots, x_n)$ with $x_1, x_2, \ldots, x_n \in \mathbb{R}$, then every self-adjoint matrix with eigenvalues x_1, x_2, \ldots, x_n is of the form UDU^* for some unitary matrix $U \in M_{n,n}(\mathbb{C})$. So what is

 $\{E(UDU^*) \mid U \in M_{n,n}(\mathbb{C}) \text{ a unitary}\}?$

Expectations to Doubly Stochastic Matrices

Fix $x_1, x_2, \ldots x_n \in \mathbb{R}$ with $x_1 \ge x_2 \ge \cdots \ge x_n$ and $D = \text{diag}(x_1, x_2, \ldots, x_n)$. Let $U = [u_{i,j}]$ and suppose $E(UDU^*) = \text{diag}(y_1, y_2, \ldots, y_n)$. As

$$UDU^* = \left[\sum_{k=1}^n u_{i,k} x_k \overline{u_{j,k}}\right],$$

we see that

$$y_i = \sum_{k=1}^{n} |u_{i,k}|^2 x_k$$

for all *i*. Thus if

$$S = [|u_{i,j}|^2], \quad \vec{x} = (x_1, x_2, \dots, x_n)^T, \text{ and } \vec{y} = (y_1, y_2, \dots, y_n)^T$$

we have $S\vec{x} = \vec{y}$. Moreover, the sum of any row or column of S is 1 as U is a unitary matrix. Such a matrix is an example of a *doubly stochastic* matrix.

Paul Skoufranis (YorkU)

Doubly Stochastic Matrices to Majorization

Note

(i.e.

$$\sum_{i=1}^{n} y_{i} = \sum_{i=1}^{n} \sum_{k=1}^{n} |u_{i,k}|^{2} x_{k} = \sum_{k=1}^{n} \sum_{i=1}^{n} |u_{i,k}|^{2} x_{k} = \sum_{k=1}^{n} x_{k}$$
$$\operatorname{Tr}(E(UDU^{*})) = \operatorname{Tr}(D)). \text{ For distinct } i_{1}, i_{2}, \dots, i_{\ell} \in \{1, 2, \dots, n\},$$

$$\sum_{p=1}^{\ell} y_{i_p} = \sum_{p=1}^{\ell} \sum_{k=1}^{n} |u_{i_p,k}|^2 x_k \le \sum_{k=1}^{\ell} x_k.$$

Definition

Given $\vec{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ and $\vec{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$, it is said that \vec{x} majorizes \vec{y} , denoted $\vec{y} \prec \vec{x}$, if

•
$$\sum_{k=1}^{n} y_k = \sum_{k=1}^{n} x_k$$
, and

• for all *I*,

$$\max\left\{\sum_{p=1}^{\ell} y_{i_p} \left| i_1, ..., i_{\ell} \in \{1, 2, ..., n\} \text{ distinct} \right\} \le \max\left\{\sum_{p=1}^{\ell} x_{i_p} \left| i_1, ..., i_{\ell} \in \{1, 2, ..., n\} \text{ distinct} \right\}.$$

Majorization to Permutation Majorization

Suppose
$$ec{x}=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$$
 and $ec{y}=(y_1,y_2,\ldots,y_n)\in\mathbb{R}^n$ with

$$ec{y}\precec{x}, \qquad x_1\geq x_2\geq\cdots\geq x_n \qquad ext{and} \qquad y_1\geq y_2\geq\cdots\geq y_n.$$

As $\vec{y} \prec \vec{x}$, $x_1 \ge y_1$ and if $x_k = y_k$ for all $1 \le k < \ell$, then $x_\ell \ge y_\ell$. Let p be the first index where $x_p > y_p$. As $\sum_{k=1}^n x_k = \sum_{k=1}^n y_k$, there exists a first index q where $x_q < y_q$. So $x_p > y_p \ge y_q > x_q$. Choose $\theta \in [0, 2\pi]$ such that if

$$x'_p = \cos^2(\theta)x_p + \sin^2(\theta)x_q$$
 and $x'_q = \sin^2(\theta)x_p + \cos^2(\theta)x_q$
then either $x'_p = y_p$ and $x'_q < y_q$, or $x'_p > y_p$ and $x'_q = y_q$. As

$$x'_p + x'_q = x_p + x_q$$

and $x_k \geq y_k$ for all p < k < q, if $x'_k = x_k$ for all $k \neq p, q$, then

$$(y_1, y_2, \ldots, y_n) \prec (x'_1, x'_2, \ldots, x'_n) \prec (x_1, x_2, \ldots, x_n).$$

Permutation Majorization to Expectations

Repeating, we get a chain

$$\vec{y} = \vec{x}_r \prec \vec{x}_{r-1} \prec \cdots \prec \vec{x}_1 \prec \vec{x}_0 = \vec{x}$$

where \vec{x}_k and \vec{x}_{k+1} differ in only two entries in the above way and the pairs of entries differ from all other pairs of $(\vec{x}_{\ell}, \vec{x}_{\ell+1})$. With the notation above, if

$$U_1 = \cos(\theta)E_{p,p} - \sin(\theta)E_{p,q} + \sin(\theta)E_{q,p} + \cos(\theta)E_{q,q} + \sum_{\substack{k=1\\k\neq p,q}}^n E_{k,k},$$

then the diagonal entries of $U_1 \operatorname{diag}(x_1, x_2, \ldots, x_n) U_1^*$ are $\vec{x_1}$. This can be repeated with each progressive unitary U_k not disturbing the previously 'corrected' diagonal entries in lieu of new off-diagonal entries so that when we take the product of the U_k we get a unitary U such that

$$E(UDU^*) = \operatorname{diag}(y_1, y_2, \ldots, y_n).$$

Schur-Horn Theorem

Theorem (Schur-Horn Theorem; 1923, 1954, etc.)

Let $\vec{x} = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ and $\vec{y} = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$. The following are equivalent:

• If $D = \text{diag}(x_1, x_2, \dots, x_n)$, there exists a unitary $U \in M_{n,n}(\mathbb{R})$ such that

$$E(UDU^*) = \operatorname{diag}(y_1, y_2, \ldots, y_n).$$

- There exists a doubly stochastic matrix $A \in M_{n,n}(\mathbb{R})$ such that $A\vec{x} = \vec{y}$.
- $\vec{y} \prec \vec{x}$.
- There exists a chain

$$\vec{y} = \vec{x}_r \prec \vec{x}_{r-1} \prec \cdots \prec \vec{x}_1 \prec \vec{x}_0 = \vec{x}$$

where \vec{x}_k and \vec{x}_{k+1} differ in only two entries in the above way and the pairs of entries differ from all other pairs of $(\vec{x}_{\ell}, \vec{x}_{\ell+1})$.

Convex Hull of Unitary Orbit

Convexity is important in functional analysis. Given $A \in M_{n,n}(\mathbb{C})$, let

$$\operatorname{conv}(\mathcal{U}(A)) = \left\{ \left. \sum_{k=1}^{m} t_k U_k A U_k^* \right| \left. \begin{array}{c} U_1, U_2, \dots, U_m \in \mathcal{M}_{n,n}(\mathbb{C}) \text{ unitaries,} \\ t_1, t_2, \dots, t_m \in (0,1), \text{ and} \\ t_1 + t_2 + \dots + t_m = 1 \end{array} \right\} \right\}$$

If $A = \text{diag}(a_1, a_2, \dots, a_n) \in M_{n,n}(\mathbb{R})$, if $B = \text{diag}(b_1, b_2, \dots, b_n)$ is the above matrix, and $U_k = [u_{i,j,k}]$ then

$$\vec{b} = \left(\sum_{k=1}^m t_k[|u_{i,j,k}|^2]\right)\vec{a},$$

so $ec{b}\precec{a}$. Conversely, by using the chain of majorizations, and

$$\begin{bmatrix} x'_p & 0\\ 0 & x'_q \end{bmatrix} = \cos^2(\theta) \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_p & 0\\ 0 & x_q \end{bmatrix} \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} + \sin^2(\theta) \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_p & 0\\ 0 & x_q \end{bmatrix} \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}$$

if $\vec{b} \prec \vec{a}$ then diag $(b_1, b_2, \dots, b_n) \in \operatorname{conv}(\mathcal{U}(\operatorname{diag}(a_1, a_2, \dots, a_n))).$

Convex Hulls and Density Matrices

Theorem

Let $A, B \in M_{n,n}(\mathbb{C})$ be self-adjoint. Then the following are equivalent:

- The eigenvalues of B are majorized by the eigenvalues of A.
- $B \in \operatorname{conv}(\mathcal{U}(A)).$

Let $P = \text{diag}(1, 0, 0, ..., 0) \in M_{n,n}(\mathbb{R})$. Note if $B = M_{n,n}(\mathbb{C})$, then $B \prec P$ if and only if Tr(B) = 1 and B is positive. Thus for any positive matrix B of trace 1 we can write

$$B=\sum_{k=1}^m t_k U_k P U_k^*.$$

If $ec{u}_1,\ldots,ec{u}_m$ are the first rows of U_1,\ldots,U_m respectively, then

$$B = \sum_{k=1}^{m} t_k \vec{u}_k \vec{u}_k^*$$

Thus B represents the density matrix of a superposition of states!

Paul Skoufranis (YorkU)

To Infinity and Beyond

• A *Hilbert space* is an inner product space that is complete (i.e. every Cauchy sequence converges) with respect to the norm

$$\|\vec{x}\| = \sqrt{\langle \vec{x}, \vec{x} \rangle}.$$

- Given a Hilbert space \mathcal{H} , an *orthonormal basis* is a maximal orthonormal set.
- Every Hilbert space with an infinitely countable orthonormal basis is isomorphic to

$$\ell_2 = \left\{ (x_n)_{n\geq 1} \left| \sum_{n=1}^{\infty} |x_n|^2 < \infty \right\}.$$

• If $L_2[0,1]$ is the square-integrable 'functions' on [0,1], then $L_2[0,1] \cong \ell_2$.

Bounded Linear Maps

Given two Hilbert spaces *H* and *K*, the bounded linear maps from *H* to *K*, denoted *B*(*H*,*K*), are all linear maps *T* : *H* → *K* such that

$$\|T\| = \sup \{\|T(\vec{x})\|_{\mathcal{K}} \mid \vec{x} \in \mathcal{H}, \|\vec{x}\|_{\mathcal{H}} \leq 1\} < \infty.$$

• If $T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, then there exists a $T^* \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that

$$\langle T^*(\vec{x}), \vec{y} \rangle_{\mathcal{H}} = \langle \vec{x}, T(\vec{y}) \rangle_{\mathcal{K}}$$

for all $\vec{x} \in \mathcal{K}$ and $\vec{y} \in \mathcal{H}$.

- A *C*^{*}-algebra is a norm-closed subalgebra \mathfrak{A} of $\mathcal{B}(\mathcal{H})$ such that if $A \in \mathfrak{A}$ then $A^* \in \mathfrak{A}$.
- An $A \in \mathfrak{A}$ is *positive* if $A = B^*B$ for some $B \in \mathfrak{A}$; equivalently $\langle A\vec{x}, \vec{x} \rangle_{\mathcal{H}} \ge 0$ for all $\vec{x} \in \mathcal{H}$.
- A *II*₁ *factor* is a unital C*-algebra with a faithful tracial state, trivial centre, and is closed in the weak operator topology.

Theorem (Ravichandran; preprint 2012)

Let \mathfrak{M} be a type II_1 factor, let \mathcal{A} be a MASA in \mathfrak{M} , and let $E_{\mathcal{A}} : \mathfrak{M} \to \mathcal{A}$ denote the normal conditional expectation. Given self-adjoint elements $T \in \mathfrak{M}$ and $S \in \mathcal{A}$, the following are equivalent:

 $S \prec T,$

2 there exists an element $R \in \overline{\mathcal{U}}(T)$ such that $E_{\mathcal{A}}(R) = S$.

Theorem (Kennedy, Skoufranis; 2015)

Let \mathfrak{M} be a type II_1 factor, let \mathcal{A} be a MASA in \mathfrak{M} , and let $E_{\mathcal{A}} : \mathfrak{M} \to \mathcal{A}$ denote the normal conditional expectation. Given elements $T \in \mathfrak{M}$ and $S \in \mathcal{A}$, the following are equivalent:

 $I S \prec_w T,$

2 there exists an element $R \in \mathfrak{M}$ with $\sigma_R = \sigma_T$ such that $E_A(R) = S$.

In addition, the above is logically equivalent to Ravichandran's result.

Closed Convex Hull of Unitary Orbits in C*-Algebras

Let \mathfrak{A} be a unital C*-algebra and let $\mathcal{T}(\mathfrak{A})$ denote all 'unbounded traces'; that is, all maps $\tau : \mathfrak{A}_+ \to [0, \infty]$ such that

•
$$\tau(T+S) = \tau(T) + \tau(S)$$
 for all $T, S \in \mathfrak{A}_+$

• $\tau(\alpha T) = \alpha \tau(T)$ for all $T \in \mathfrak{A}_+$ and $\alpha \in \mathbb{R}_+$ $(0 \cdot \infty = 0)$,

•
$$au(X^*X) = au(XX^*)$$
 for all $X \in \mathfrak{A}$, and

• τ is lower semicontinuous.

Theorem (Ng, Robert, Skoufranis; 2018)

Let \mathfrak{A} be a unital C^* -algebra and let $T, S \in \mathfrak{A}$ be self-adjoint. The following are equivalent:

- $S \in \overline{\operatorname{conv}}(\mathcal{U}(T)).$
- $\tau((S \alpha)_+) \leq \tau((T \alpha)_+)$ and $\tau((-S \alpha)_+) \leq \tau((-T \alpha)_+)$ for all $\tau \in \mathcal{T}(\mathfrak{A})$ and $\alpha \in \mathbb{R}$.

Courses to Take

Undergraduate:

- MATH 2022: Linear Algebra II
- MATH 3001: Analysis II
- MATH 4011: Metric Spaces
- MATH 4012: Lebesgue Measure Theory
- PHYS 4010: Quantum Mechanics
- EECS 4141: Introduction to Quantum Computing?

Graduate:

- MATH 6280: Measure Theory
- MATH 6450: Topology
- MATH 6461: Functional Analysis I
- MATH 6462: Functional Analysis II
- PHYS 5000: Quantum Mechanics I

Thanks for Listening!

28 / 28