Linear Algebra, Quantum Information Theory, and Operator Algebras

Paul Skoufranis
York University

February 24, 2021

Simplified Quantum Mechanics via Linear Algebra

- The states of a quantum system are the vectors

$$
\mathcal{S}=\left\{\vec{v} \in \mathbb{C}^{n} \mid\|\vec{v}\|_{2}=1\right\}
$$

for some fixed n.

- Two states \vec{v} and \vec{w} are considered the same (modulo a phase shift) if there exists a $z \in \mathbb{C}$ such that $|z|=1$ and $\vec{v}=z \vec{w}$.
- Quantum mechanics was derived around the idea that observables of a quantum system are quantized in the sense that there will exists a basis of eigenstates $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ where the value of the observable for each state is a fixed number $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ respectively, and all other states are superpositions of the eigenstates.
- Thus observables are modelled by $A \in M_{n, n}(\mathbb{C})$ where \vec{v}_{k} is an eigenvector with eigenvalue λ_{k} for all k.
- Matrices do not necessarily commute \Longrightarrow uncertainty!

Valid Observables

- As

$$
\left\langle A \vec{v}_{k}, \vec{v}_{k}\right\rangle=\left\langle\lambda_{k} \vec{v}_{k}, \vec{v}_{k}\right\rangle=\lambda_{k}\left\|\vec{v}_{k}\right\|^{2}=\lambda_{k}
$$

it is extrapolated that the value of the observable A on the state $\vec{v} \in \mathcal{S}$ is $\langle A \vec{v}, \vec{v}\rangle$.

- As observed values should be real, we require A to be self-adjoint:

$$
\begin{aligned}
\left\langle A^{*} \vec{v}, \vec{w}\right\rangle & =\frac{1}{4} \sum_{k=1}^{4} i^{k}\left\langle A^{*}\left(\vec{v}+i^{k} \vec{w}\right), \vec{v}+i^{k} \vec{w}\right\rangle \\
& =\frac{1}{4} \sum_{k=1}^{4} i^{k}\left\langle\vec{v}+i^{k} \vec{w}, A\left(\vec{v}+i^{k} \vec{w}\right)\right\rangle \\
& =\frac{1}{4} \sum_{k=1}^{4} i^{k} \overline{\left\langle A\left(\vec{v}+i^{k} \vec{w}\right), \vec{v}+i^{k} \vec{w}\right\rangle} \\
& =\frac{1}{4} \sum_{k=1}^{4} i^{k}\left\langle A\left(\vec{v}+i^{k} \vec{w}\right), \vec{v}+i^{k} \vec{w}\right\rangle=\langle A \vec{v}, \vec{w}\rangle
\end{aligned}
$$

Spectral Theorem for Self-Adjoint Matrices

Conversely, if A is self-adjoint, then

$$
\lambda_{k}=\lambda_{k}\left\langle\vec{v}_{k}, \vec{v}_{k}\right\rangle=\left\langle\lambda_{k} \vec{v}_{k}, \vec{v}_{k}\right\rangle=\left\langle A \vec{v}_{k}, \vec{v}_{k}\right\rangle=\left\langle\vec{v}_{k}, A \vec{v}_{k}\right\rangle=\left\langle\vec{v}_{k}, \lambda_{k} \vec{v}_{k}\right\rangle=\overline{\lambda_{k}}
$$

so $\lambda_{k} \in \mathbb{R}$ for all k.

Theorem (Spectral Theorem for Self-Adjoint Matrices)

Let $A \in M_{n, n}(\mathbb{C})$. Then the following are equivalent:
(1) A is self-adjoint.
(2) There exists an orthonormal basis of eigenvectors of A corresponding to real eigenvalues.
(3) There exists a unitary matrix $U \in M_{n, n}(\mathbb{C})$ and a diagonal matrix $D \in M_{n, n}(\mathbb{R})$ such that $A=U D U^{*}$.

For observables, the eigenstates are an orthonormal basis for \mathbb{C}^{n}.

Superposition of Eigenstates

If $\vec{v} \in \mathcal{S}$, then there exists $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{C}$ such that

$$
\vec{v}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n} .
$$

Note

$$
\langle A \vec{v}, \vec{v}\rangle=\sum_{k=1}^{n} \sum_{j=1}^{n} a_{k} \bar{a}_{j}\left\langle A \vec{v}_{k}, \vec{v}_{j}\right\rangle=\sum_{k=1}^{n} \sum_{j=1}^{n} a_{k} \bar{a}_{j} \lambda_{k}\left\langle\vec{v}_{k}, \vec{v}_{j}\right\rangle=\sum_{k=1}^{n}\left|a_{k}\right|^{2} \lambda_{k} .
$$

As $\left\|\vec{v}_{2}\right\|=1$, we have by a similar computation that

$$
\sum_{k=1}^{n}\left|a_{k}\right|^{2}=1
$$

Thus we view \vec{v} to be the state which is in the eigenstate \vec{v}_{k} with probability $p_{k}=\left|a_{k}\right|^{2}$ for all k.

Traces and Density Matrices

Definition

Given a matrix $B=\left[b_{i, j}\right] \in M_{m, m}(\mathbb{C})$, the trace of B is

$$
\operatorname{Tr}_{m}(B)=\sum_{k=1}^{m} b_{k, k}
$$

- Note if $B \in M_{m, n}(\mathbb{C})$ and $C \in M_{n, m}(\mathbb{C})$, then $\operatorname{Tr}_{m}(B C)=\operatorname{Tr}_{n}(C B)$.
- Thinking of $\vec{v} \in \mathcal{S}$ as a column vector

$$
\langle A \vec{v}, \vec{v}\rangle=\operatorname{Tr}_{1}\left(\vec{v}^{*} A \vec{v}\right)=\operatorname{Tr}_{n}\left(A\left(\vec{v} \vec{v}^{*}\right)\right) .
$$

- We call $\vec{v} \vec{v}^{*} \in M_{n, n}(\mathbb{C})$ the density matrix of the state \vec{v}.
- Note $\operatorname{Tr}_{n}\left(\vec{v} \vec{v}^{*}\right)=\operatorname{Tr}_{1}\left(\vec{v}^{*} \vec{v}\right)=\|\vec{v}\|_{2}^{2}=1,\left(\vec{v} \vec{v}^{*}\right)^{*}=\vec{v} \vec{v}^{*}$, and if \vec{w} is an eigenvector for $\vec{v} \vec{v}^{*}$ with eigenvalue λ,

$$
\lambda\langle\vec{w}, \vec{w}\rangle=\left\langle\vec{v} \vec{v}^{*} \vec{w}, \vec{w}\right\rangle=\langle\langle\vec{w}, \vec{v}\rangle \vec{v}, \vec{w}\rangle=|\langle\vec{w}, \vec{v}\rangle|^{2} \geq 0 .
$$

Hence $\vec{v} \vec{v}^{*}$ is a positive matrix (i.e. positive semi-definite) of trace 1.

Quantum Channels

A quantum channel is a communication channel that can transmit quantum information. Such channels are important in quantum computing where a qubit (a two-dimensional quantum system) is used in place of a bit.

To proceed mathematically, quantum information is encoded via the density matrices of quantum states. Then quantum channels are precisely the functions $\Phi: M_{n, n}(\mathbb{C}) \rightarrow M_{m, m}(\mathbb{C})$ such that

- Φ preserves the trace: $\operatorname{Tr}_{m}(\Phi(A))=\operatorname{Tr}_{n}(A)$ for all $A \in M_{n, n}(\mathbb{C})$,
- Φ is positive: $\Phi(A)$ is positive for all positive $A \in M_{n, n}(\mathbb{C})$,
- Φ is linear, and
- Φ is completely positive.

To summarize, quantum channels are completely positive, trace-preserving linear maps.

Completely Positive Maps

Note for all $d, n \in \mathbb{N}$ that $M_{d, d}\left(M_{n, n}(\mathbb{C})\right) \cong M_{d n, d n}(\mathbb{C})$.

Definition

A linear map $\Phi: M_{n, n}(\mathbb{C}) \rightarrow M_{m, m}(\mathbb{C})$ is said to be completely positive if for every $d \in \mathbb{N}$ the map $\Phi_{d}: M_{d, d}\left(M_{n, n}(\mathbb{C})\right) \rightarrow M_{d, d}\left(M_{m, m}(\mathbb{C})\right)$ defined by

$$
\Phi_{d}\left(\left[A_{i, j}\right]\right)=\left[\Phi\left(A_{i, j}\right)\right]
$$

is a positive map.

Examples of Positive Maps

- Define $\Phi: M_{n, n}(\mathbb{C}) \rightarrow M_{n, n}(\mathbb{C})$ by $\Phi(A)=A^{T}$. As

$$
\Phi\left(A^{*} A\right)=\left(A^{*} A\right)^{T}=A^{T}\left(A^{*}\right)^{T}=A^{T}\left(A^{T}\right)^{*}
$$

we see that Φ is positive.

- Define $\Phi: M_{n, n}(\mathbb{C}) \rightarrow \mathbb{C}$ by $\Phi(A)=\operatorname{Tr}_{n}(A)$. Then Φ is positive as $\operatorname{Tr}_{n}(A)$ will be the sum of the eigenvalues of A (counting algebraic multiplicity).
- Define $\Phi: M_{n, n}(\mathbb{C}) \rightarrow M_{n, n}(\mathbb{C})$ by

$$
\Phi\left(\left[a_{i, j}\right]\right)=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

Then Φ is positive as a positive matrix must have positive entries along the diagonal and a diagonal matrix is positive if and only if the entries along the diagonal are positive.

Transpose and Complete Positivity

Define $\Phi: M_{2,2}(\mathbb{C}) \rightarrow M_{2,2}(\mathbb{C})$ by $\Phi(A)=A^{T}$. Then Φ is not completely positive. Indeed consider

$$
A=\left[\begin{array}{ll}
{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]} & {\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]} \\
{\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]} & {\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]}
\end{array}\right] \cong\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] .
$$

Clearly A is self-adjoint with eigenvalues $0,0,0$, and 2 , so A is positive. However

$$
\left.\Phi_{2}(A)=\left[\begin{array}{ll}
{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]} & {\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]} \\
{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]}
\end{array}\right]\left[\begin{array}{llll}
0 & 0 \\
0 & 1
\end{array}\right]\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

which has eigenvalues $1,1,1$, and -1 and thus is not positive.

Trace and Complete Positivity

Define $\Phi: M_{n, n}(\mathbb{C}) \rightarrow \mathbb{C}$ by $\Phi(A)=\operatorname{Tr}_{n}(A)$. Then Φ is completely positive. Indeed let $A=\left[A_{i, j}\right] \in M_{d, d}\left(M_{n, n}(\mathbb{C})\right)$ be positive. Then for all $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{C}^{d}$ we have

$$
\left\langle\Phi_{d}(A) \vec{x}, \vec{x}\right\rangle=\sum_{i, j=1}^{d} \operatorname{Tr}_{n}\left(A_{i, j}\right) x_{j} \overline{x_{i}}=\operatorname{Tr}_{n}\left(\sum_{i, j=1}^{d} \overline{x_{i}} A_{i, j} x_{j}\right) .
$$

However, writing $A=B^{*} B$ we see that

$$
\sum_{i, j=1}^{d} \overline{x_{i}} A_{i, j} x_{j}=\left[\begin{array}{c}
x_{1} I_{n} \\
\vdots \\
x_{d} I_{n}
\end{array}\right]^{*} A\left[\begin{array}{c}
x_{1} I_{n} \\
\vdots \\
x_{d} I_{n}
\end{array}\right]=\left(B\left[\begin{array}{c}
x_{1} I_{n} \\
\vdots \\
x_{d} I_{n}
\end{array}\right]\right)^{*}\left(B\left[\begin{array}{c}
x_{1} I_{n} \\
\vdots \\
x_{d} I_{n}
\end{array}\right]\right)
$$

is a positive matrix. Therefore, as Tr_{n} is positive, $\left\langle\Phi_{d}(A) \vec{x}, \vec{x}\right\rangle \geq 0$. Hence $\Phi_{d}(A)$ is positive.

Trace and Complete Positivity

For a fixed positive matrix $B \in M_{n, n}(\mathbb{C})$, define $\Phi_{B}: M_{n, n}(\mathbb{C}) \rightarrow \mathbb{C}$ by $\Phi_{B}(A)=\operatorname{Tr}_{n}(A B)$. Then Φ_{B} is completely positive. Indeed, as B is positive, we can write $B=C^{*} C$ for some $C \in M_{n, n}(\mathbb{C})$. Then for all positive $A=\left[A_{i, j}\right] \in M_{d, d}\left(M_{n, n}(\mathbb{C})\right)$ we have that

$$
\left(\Phi_{B}\right)_{d}(A)=\left[\operatorname{Tr}_{n}\left(C^{*} C A_{i, j}\right)\right]=\left[\operatorname{Tr}_{n}\left(C A_{i, j} C^{*}\right)\right]=\left(\operatorname{Tr}_{n}\right)_{d}\left(S A S^{*}\right)
$$

where

$$
S=\operatorname{diag}(C, C, \ldots, C)
$$

As A is positive, we can write $A=T^{*} T$ for some $T \in M_{d, d}\left(M_{n, n}(\mathbb{C})\right)$ so

$$
S A S^{*}=(S T)(S T)^{*}
$$

is positive. Therefore, as Tr_{n} is completely positive, $\left(\Phi_{B}\right)_{d}(A)$ is positive.
Thus 'positive' observables define completely positive maps on the density matrices.

Diagonals and Complete Positivity

Define $\Phi: M_{n, n}(\mathbb{C}) \rightarrow M_{n, n}(\mathbb{C})$ by

$$
\Phi\left(\left[a_{i, j}\right]\right)=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right) .
$$

Then Φ is completely positive. Indeed let $A=\left[A_{i, j}\right]_{i, j} \in M_{d, d}\left(M_{n, n}(\mathbb{C})\right)$ be positive. Write $A_{i, j}=\left[a_{i, j, p, q}\right]_{p, q}$. Then

$$
\left.\Phi_{d}(A)=\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
a_{1,1,1,1} & & 0 \\
& \ddots & \\
0 & & a_{1,1, n, n}
\end{array}\right]} & \ldots & {\left[\begin{array}{ccc}
a_{1, d, 1,1} & & 0 \\
& \ddots & \\
0 & & a_{1, d, n, n}
\end{array}\right]} \\
{\left[\begin{array}{ccc}
a_{d, 1,1,1} & & 0 \\
0 & \ddots & \\
0 & & a_{d, 1, n, n}
\end{array}\right]} & \ldots &
\end{array} \begin{array}{ccc}
a_{d, d, 1,1} & & 0 \\
0 & \ddots & \\
0 & & a_{d, d, n, n}
\end{array}\right]\right]
$$

Diagonals and Complete Positivity

Reordering the basis (which is conjugating by a unitary and thus preserves positivity), we obtain that $\Phi_{d}(A)$ is positive if and only if

$$
C=\operatorname{diag}\left(\left[\begin{array}{ccc}
a_{1,1,1,1} & \cdots & a_{1, d, 1,1} \\
\vdots & & \vdots \\
a_{d, 1,1,1} & \cdots & a_{d, d, 1,1}
\end{array}\right], \cdots,\left[\begin{array}{ccc}
a_{1,1, n, n} & \cdots & a_{1, d, n, n} \\
\vdots & & \vdots \\
a_{d, 1, n, n} & \cdots & a_{d, d, n, n}
\end{array}\right]\right)
$$

is positive. By conjugating A by the same unitary matrix, we get that $T=\left[\left[a_{i, j, p, q}\right]_{p, q}\right]_{i, j}$ is positive. As each diagonal entry in C is a diagonal minor of T and thus positive, we quickly check that C is positive.

Quantum to Classical

For the remainder of the talk, we will use E to denote the expectation onto the diagonal map; that is, $E: M_{n, n}(\mathbb{C}) \rightarrow M_{n, n}(\mathbb{C})$ is defined by

$$
E\left(\left[a_{i, j}\right]\right)=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right) .
$$

The expectation map is of interest as it takes matrices (quantum information) and produces commuting matrices (classical information).

Question

Given a self-adjoint $A \in M_{n, n}(\mathbb{R})$, can we determine the possible values of $E(A)$ based on the eigenvalues of A ?

To be specific, if $D=\operatorname{diag}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $x_{1}, x_{2}, \ldots x_{n} \in \mathbb{R}$, then every self-adjoint matrix with eigenvalues $x_{1}, x_{2}, \ldots x_{n}$ is of the form $U D U^{*}$ for some unitary matrix $U \in M_{n, n}(\mathbb{C})$. So what is

$$
\left\{E\left(U D U^{*}\right) \mid U \in M_{n, n}(\mathbb{C}) \text { a unitary }\right\} ?
$$

Expectations to Doubly Stochastic Matrices

Fix $x_{1}, x_{2}, \ldots x_{n} \in \mathbb{R}$ with $x_{1} \geq x_{2} \geq \cdots \geq x_{n}$ and $D=\operatorname{diag}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Let $U=\left[u_{i, j}\right]$ and suppose $E\left(U D U^{*}\right)=\operatorname{diag}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. As

$$
U D U^{*}=\left[\sum_{k=1}^{n} u_{i, k} x_{k} \overline{u_{j, k}}\right]
$$

we see that

$$
y_{i}=\sum_{k=1}^{n}\left|u_{i, k}\right|^{2} x_{k}
$$

for all i. Thus if

$$
S=\left[\left|u_{i, j}\right|^{2}\right], \quad \vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}, \quad \text { and } \quad \vec{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}
$$

we have $S \vec{x}=\vec{y}$. Moreover, the sum of any row or column of S is 1 as U is a unitary matrix. Such a matrix is an example of a doubly stochastic matrix.

Doubly Stochastic Matrices to Majorization

Note

$$
\sum_{i=1}^{n} y_{i}=\sum_{i=1}^{n} \sum_{k=1}^{n}\left|u_{i, k}\right|^{2} x_{k}=\sum_{k=1}^{n} \sum_{i=1}^{n}\left|u_{i, k}\right|^{2} x_{k}=\sum_{k=1}^{n} x_{k}
$$

(i.e. $\left.\operatorname{Tr}\left(E\left(U D U^{*}\right)\right)=\operatorname{Tr}(D)\right)$. For distinct $i_{1}, i_{2}, \ldots, i_{\ell} \in\{1,2, \ldots, n\}$,

$$
\sum_{p=1}^{\ell} y_{i_{p}}=\sum_{p=1}^{\ell} \sum_{k=1}^{n}\left|u_{i_{p}, k}\right|^{2} x_{k} \leq \sum_{k=1}^{\ell} x_{k}
$$

Definition

Given $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $\vec{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$, it is said that \vec{x} majorizes \vec{y}, denoted $\vec{y} \prec \vec{x}$, if

- $\sum_{k=1}^{n} y_{k}=\sum_{k=1}^{n} x_{k}$, and
- for all I,
$\max \left\{\sum_{p=1}^{\ell} y_{i_{p}} \mid i_{1}, \ldots, i_{\ell} \in\{1,2, \ldots, n\}\right.$ distinct $\} \leq \max \left\{\sum_{p=1}^{\ell} x_{i_{p}} \mid i_{1}, \ldots, i_{\ell} \in\{1,2, \ldots, n\}\right.$ distinct $\}$.

Majorization to Permutation Majorization

Suppose $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $\vec{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ with

$$
\vec{y} \prec \vec{x}, \quad x_{1} \geq x_{2} \geq \cdots \geq x_{n} \quad \text { and } \quad y_{1} \geq y_{2} \geq \cdots \geq y_{n} .
$$

As $\vec{y} \prec \vec{x}, x_{1} \geq y_{1}$ and if $x_{k}=y_{k}$ for all $1 \leq k<\ell$, then $x_{\ell} \geq y_{\ell}$. Let p be the first index where $x_{p}>y_{p}$. As $\sum_{k=1}^{n} x_{k}=\sum_{k=1}^{n} y_{k}$, there exists a first index q where $x_{q}<y_{q}$. So $x_{p}>y_{p} \geq y_{q}>x_{q}$. Choose $\theta \in[0,2 \pi]$ such that if

$$
x_{p}^{\prime}=\cos ^{2}(\theta) x_{p}+\sin ^{2}(\theta) x_{q} \quad \text { and } \quad x_{q}^{\prime}=\sin ^{2}(\theta) x_{p}+\cos ^{2}(\theta) x_{q}
$$

then either $x_{p}^{\prime}=y_{p}$ and $x_{q}^{\prime}<y_{q}$, or $x_{p}^{\prime}>y_{p}$ and $x_{q}^{\prime}=y_{q}$. As

$$
x_{p}^{\prime}+x_{q}^{\prime}=x_{p}+x_{q}
$$

and $x_{k} \geq y_{k}$ for all $p<k<q$, if $x_{k}^{\prime}=x_{k}$ for all $k \neq p, q$, then

$$
\left(y_{1}, y_{2}, \ldots, y_{n}\right) \prec\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right) \prec\left(x_{1}, x_{2}, \ldots, x_{n}\right) .
$$

Permutation Majorization to Expectations

Repeating, we get a chain

$$
\vec{y}=\vec{x}_{r} \prec \vec{x}_{r-1} \prec \cdots \prec \vec{x}_{1} \prec \vec{x}_{0}=\vec{x}
$$

where \vec{x}_{k} and \vec{x}_{k+1} differ in only two entries in the above way and the pairs of entries differ from all other pairs of $\left(\vec{x}_{\ell}, \vec{x}_{\ell+1}\right)$. With the notation above, if

$$
U_{1}=\cos (\theta) E_{p, p}-\sin (\theta) E_{p, q}+\sin (\theta) E_{q, p}+\cos (\theta) E_{q, q}+\sum_{\substack{k=1 \\ k \neq p, q}}^{n} E_{k, k}
$$

then the diagonal entries of $U_{1} \operatorname{diag}\left(x_{1}, x_{2}, \ldots, x_{n}\right) U_{1}^{*}$ are \vec{x}_{1}. This can be repeated with each progressive unitary U_{k} not disturbing the previously 'corrected' diagonal entries in lieu of new off-diagonal entries so that when we take the product of the U_{k} we get a unitary U such that

$$
E\left(U D U^{*}\right)=\operatorname{diag}\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

Schur-Horn Theorem

Theorem (Schur-Horn Theorem; 1923, 1954, etc.)

Let $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $\vec{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. The following are equivalent:

- If $D=\operatorname{diag}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, there exists a unitary $U \in M_{n, n}(\mathbb{R})$ such that

$$
E\left(U D U^{*}\right)=\operatorname{diag}\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

- There exists a doubly stochastic matrix $A \in M_{n, n}(\mathbb{R})$ such that $A \vec{x}=\vec{y}$.
- $\vec{y} \prec \vec{x}$.
- There exists a chain

$$
\vec{y}=\vec{x}_{r} \prec \vec{x}_{r-1} \prec \cdots \prec \vec{x}_{1} \prec \vec{x}_{0}=\vec{x}
$$

where \vec{x}_{k} and \vec{x}_{k+1} differ in only two entries in the above way and the pairs of entries differ from all other pairs of $\left(\vec{x}_{\ell}, \vec{x}_{\ell+1}\right)$.

Convex Hull of Unitary Orbit

Convexity is important in functional analysis. Given $A \in M_{n, n}(\mathbb{C})$, let

$$
\operatorname{conv}(\mathcal{U}(A))=\left\{\sum_{k=1}^{m} t_{k} U_{k} A U_{k}^{*} \left\lvert\, \begin{array}{c}
U_{1}, U_{2}, \ldots, U_{m} \in M_{n, n}(\mathbb{C}) \text { unitaries, } \\
t_{1}, t_{2}, \ldots, t_{m} \in(0,1), \text {, and } \\
t_{1}+t_{2}+\cdots+t_{m}=1
\end{array}\right.\right\} .
$$

If $A=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in M_{n, n}(\mathbb{R})$, if $B=\operatorname{diag}\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is the above matrix, and $U_{k}=\left[u_{i, j, k}\right]$ then

$$
\vec{b}=\left(\sum_{k=1}^{m} t_{k}\left[\left|u_{i, j, k}\right|^{2}\right]\right) \vec{a},
$$

so $\vec{b} \prec \vec{a}$. Conversely, by using the chain of majorizations, and
$\left[\begin{array}{cc}x_{p}^{\prime} & 0 \\ 0 & x_{q}^{\prime}\end{array}\right]=\cos ^{2}(\theta)\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}x_{p} & 0 \\ 0 & x_{q}\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\sin ^{2}(\theta)\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}x_{p} & 0 \\ 0 & x_{q}\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
if $\vec{b} \prec \vec{a}$ then $\operatorname{diag}\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \operatorname{conv}\left(\mathcal{U}\left(\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)\right)$.

Convex Hulls and Density Matrices

Theorem

Let $A, B \in M_{n, n}(\mathbb{C})$ be self-adjoint. Then the following are equivalent:

- The eigenvalues of B are majorized by the eigenvalues of A.
- $B \in \operatorname{conv}(\mathcal{U}(A))$.

Let $P=\operatorname{diag}(1,0,0, \ldots, 0) \in M_{n, n}(\mathbb{R})$. Note if $B=M_{n, n}(\mathbb{C})$, then $B \prec P$ if and only if $\operatorname{Tr}(B)=1$ and B is positive. Thus for any positive matrix B of trace 1 we can write

$$
B=\sum_{k=1}^{m} t_{k} U_{k} P U_{k}^{*}
$$

If $\vec{u}_{1}, \ldots, \vec{u}_{m}$ are the first rows of U_{1}, \ldots, U_{m} respectively, then

$$
B=\sum_{k=1}^{m} t_{k} \vec{u}_{k} \vec{u}_{k}^{*}
$$

Thus B represents the density matrix of a superposition of states!

To Infinity and Beyond

- A Hilbert space is an inner product space that is complete (i.e. every Cauchy sequence converges) with respect to the norm

$$
\|\vec{x}\|=\sqrt{\langle\vec{x}, \vec{x}\rangle} .
$$

- Given a Hilbert space \mathcal{H}, an orthonormal basis is a maximal orthonormal set.
- Every Hilbert space with an infinitely countable orthonormal basis is isomorphic to

$$
\ell_{2}=\left\{\left.\left(x_{n}\right)_{n \geq 1}\left|\sum_{n=1}^{\infty}\right| x_{n}\right|^{2}<\infty\right\} .
$$

- If $L_{2}[0,1]$ is the square-integrable 'functions' on $[0,1]$, then $L_{2}[0,1] \cong \ell_{2}$.

Bounded Linear Maps

- Given two Hilbert spaces \mathcal{H} and \mathcal{K}, the bounded linear maps from \mathcal{H} to \mathcal{K}, denoted $\mathcal{B}(\mathcal{H}, \mathcal{K})$, are all linear maps $T: \mathcal{H} \rightarrow \mathcal{K}$ such that

$$
\|T\|=\sup \left\{\|T(\vec{x})\|_{\mathcal{K}} \mid \vec{x} \in \mathcal{H},\|\vec{x}\|_{\mathcal{H}} \leq 1\right\}<\infty .
$$

- If $T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, then there exists a $T^{*} \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that

$$
\left\langle T^{*}(\vec{x}), \vec{y}\right\rangle_{\mathcal{H}}=\langle\vec{x}, T(\vec{y})\rangle_{\mathcal{K}}
$$

for all $\vec{x} \in \mathcal{K}$ and $\vec{y} \in \mathcal{H}$.

- A C^{*}-algebra is a norm-closed subalgebra \mathfrak{A} of $\mathcal{B}(\mathcal{H})$ such that if $A \in \mathfrak{A}$ then $A^{*} \in \mathfrak{A}$.
- An $A \in \mathfrak{A}$ is positive if $A=B^{*} B$ for some $B \in \mathfrak{A}$; equivalently $\langle A \vec{x}, \vec{x}\rangle_{\mathcal{H}} \geq 0$ for all $\vec{x} \in \mathcal{H}$.
- A I_{1} factor is a unital C*-algebra with a faithful tracial state, trivial centre, and is closed in the weak operator topology.

Schur-Horn Theorem in I_{1} Factors

Theorem (Ravichandran; preprint 2012)

Let \mathfrak{M} be a type I_{1} factor, let \mathcal{A} be a $M A S A$ in \mathfrak{M}, and let $E_{\mathcal{A}}: \mathfrak{M} \rightarrow \mathcal{A}$ denote the normal conditional expectation. Given self-adjoint elements $T \in \mathfrak{M}$ and $S \in \mathcal{A}$, the following are equivalent:
(1) $S \prec T$,
(2) there exists an element $R \in \overline{\mathcal{U}}(T)$ such that $E_{\mathcal{A}}(R)=S$.

Theorem (Kennedy, Skoufranis; 2015)

Let \mathfrak{M} be a type I_{1} factor, let \mathcal{A} be a $M A S A$ in \mathfrak{M}, and let $E_{\mathcal{A}}: \mathfrak{M} \rightarrow \mathcal{A}$ denote the normal conditional expectation. Given elements $T \in \mathfrak{M}$ and $S \in \mathcal{A}$, the following are equivalent:
(1) $S \prec_{w} T$,
(2) there exists an element $R \in \mathfrak{M}$ with $\sigma_{R}=\sigma_{T}$ such that $E_{\mathcal{A}}(R)=S$. In addition, the above is logically equivalent to Ravichandran's result.

Closed Convex Hull of Unitary Orbits in C*-Algebras

Let \mathfrak{A} be a unital C^{*}-algebra and let $\mathcal{T}(\mathfrak{A})$ denote all 'unbounded traces'; that is, all maps $\tau: \mathfrak{A}_{+} \rightarrow[0, \infty]$ such that

- $\tau(T+S)=\tau(T)+\tau(S)$ for all $T, S \in \mathfrak{A}_{+}$,
- $\tau(\alpha T)=\alpha \tau(T)$ for all $T \in \mathfrak{A}_{+}$and $\alpha \in \mathbb{R}_{+}(0 \cdot \infty=0)$,
- $\tau\left(X^{*} X\right)=\tau\left(X X^{*}\right)$ for all $X \in \mathfrak{A}$, and
- τ is lower semicontinuous.

Theorem (Ng, Robert, Skoufranis; 2018)

Let \mathfrak{A} be a unital C^{*}-algebra and let $T, S \in \mathfrak{A}$ be self-adjoint. The following are equivalent:

- $S \in \overline{\operatorname{conv}}(\mathcal{U}(T))$.
- $\tau\left((S-\alpha)_{+}\right) \leq \tau\left((T-\alpha)_{+}\right)$and $\tau\left((-S-\alpha)_{+}\right) \leq \tau\left((-T-\alpha)_{+}\right)$for all $\tau \in \mathcal{T}(\mathfrak{A})$ and $\alpha \in \mathbb{R}$.

Courses to Take

Undergraduate:

- MATH 2022: Linear Algebra II
- MATH 3001: Analysis II
- MATH 4011: Metric Spaces
- MATH 4012: Lebesgue Measure Theory
- PHYS 4010: Quantum Mechanics
- EECS 4141: Introduction to Quantum Computing?

Graduate:

- MATH 6280: Measure Theory
- MATH 6450: Topology
- MATH 6461: Functional Analysis I
- MATH 6462: Functional Analysis II
- PHYS 5000: Quantum Mechanics I

Thanks for Listening!

