Example Putnam Problem

Question 0. (2009, B1) Show that ever positive rational number can be written as a quotient of products of factorials of (not necessarily distinct) primes. For example,

\[\frac{10}{9} = \frac{2! \times 5!}{3! \times 3! \times 3!}. \]

Select Previous Related Putnam Problems

Question 1. (Modified AB1) For positive integers \(n \), let the number \(c(n) \) be determined by the rules

\[c(1) = 1, \quad c(2n) = c(n), \quad \text{and} \quad c(2n+1) = (-1)^n c(n). \]

Find the value of

\[\sum_{n=1}^{2021} c(n)c(n+2). \]

Question 2. (AB1) Denote by \(\mathbb{Z}^2 \) the set of all points \((x, y)\) in the plane with integer coordinates. For each integer \(n \geq 0 \), let \(P_n \) be the subset of \(\mathbb{Z}^2 \) consisting of the point \((0, 0)\) together with all points \((x, y)\) such that \(x^2 + y^2 = 2^k \) for some integer \(k \leq n \). Determine, as a function of \(n \), the number of four-point subsets of \(P_n \) whose elements are the vertices of a square.

Question 3. (AB1) Show that every positive integer is a sum of one or more numbers of the form \(2^r 3^s \) where \(r \) and \(s \) are non-negative integers and no summand divides another. (For example, 23 = 9 + 8 + 6).

Question 4. (AB2) Let \(k \) and \(n \) be integers with \(1 \leq k < n \). Alice and Bob play a game with \(k \) pegs in a line of \(n \) holes. At the beginning of the game, the pegs occupy the \(k \) leftmost holes. A legal move consists of moving a single peg to any vacant hole that is further to the right. The players alternate moves, with Alice playing first. The game ends when the pegs are in the \(k \) rightmost holes, so whoever is next to play cannot move and therefore loses. For what values of \(n \) and \(k \) does Alice have a winning strategy?

Question 5. (AB2) Let \(k \) be a non-negative integer. Evaluate

\[\sum_{j=0}^{k} 2^{k-j} \binom{k+j}{j}. \]

Question 6. (Modified AB2) Let \(a_0 = 1, \ a_1 = 2, \) and \(a_n = 4a_{n-1} - a_{n-2} \) for \(n \geq 2 \). Find an odd prime factor of \(a_{2020} \).

Question 7. (Modified AB2) Given a list of positive integers 1, 2, 3, 4, . . . , take the first three numbers 1, 2, 3 and their sum 6 and cross all four numbers off the list. Repeat with the three smallest remaining numbers 4, 5, 7 and their sum 16. Continue in this way, crossing off the three smallest remaining numbers and their sum, and consider the sequence of sums produced: 6, 16, 27, 36, Prove or disprove that there is some number in the sequence whose base 10 representation ends with 2021.

Question 8. (AB3) Call a subset \(S \) of \(\{1, 2, . . . , n\} \) mediocre if it has the following property: Whenever \(a \) and \(b \) are elements of \(S \) whose average is an integer, that average is also an element of \(S \). Let \(A(n) \) be the number of mediocre subsets of \(\{1, 2, . . . , n\} \). [For instance, every subset of \(\{1, 2, 3\} \) except \(\{1, 3\} \) is mediocre, so \(A(3) = 7 \).] Find all positive integers \(n \) such that \(A(n+2) - 2A(n+1) + A(n) = 1 \).