YorkU Putnam Training

September 28, 2021

Week 2: Pigenholes, Invariants, and Extremes
 Skoufranis

Important Concepts

1. Pigenhole Principle

- The Pigenhole principle states that if m and n are natural numbers with $m>n$, then if m objects (e.g. pigeons) are placed into n containers (e.g. pigeon holes), then at least one container must contain more than one item.
- Useful if you want to show that at least two numbers are equal when you have a list of m numbers from $\{1, \ldots, n\}$ with $m>n$.
- Useful if you want to show that at least two objects have the same property out of a list of properties.
- Useful in the following context: Given natural numbers m and n with $m>n$ and integers $\left\{a_{1}, \ldots, a_{m}\right\}$, there exists $i<j$ and k such that $a_{j}=a_{i}+k n$.

2. Invariants

- The idea is to pick an expression that is invariant (i.e. does not change) as something is done. This means that after a process is completed, the value expression can be determined.
- Some common invariants are: odd or even, the value of k such that a number is of the form $m n+k$ for some previously fixed n.

3. Extremes

- Pick an extreme and see what happens.
- Usually best coupled with trying to obtain a contradiction: if this extreme case happens then we get a contradiction.
- The extreme is often a best or worse case, or a maximal or minimal value.

