Important Concepts

Given two integers \(n \) and \(m \), write \(n \mid m \) if \(n \) divides \(m \); that is, there exists another integer \(k \) such that \(nk = m \).

1. **Prime Numbers**
 - A natural number \(p \) is prime if \(p \neq 1 \) and the only natural numbers that divide \(p \) are 1 and \(p \).
 - (Prime Factorization) If \(n \neq 1 \) is a natural number, there is exactly one way to write \(n = p_1^{a_1} \cdots p_m^{a_m} \) where \(p_1, \ldots, p_m \) are prime numbers and \(a_1, \ldots, a_n \) are natural numbers.

2. **Greatest Common Divisor**
 - Given two natural numbers \(n \) and \(m \), the greatest common divisor of \(n \) and \(m \), denoted \(\gcd(n, m) \), is the largest natural number \(d \) such that \(d \mid n \) and \(d \mid m \), and the least common multiple of \(n \) and \(m \), denoted \(\text{lcm}(m, n) \), is the smallest (non-zero) natural number \(d \) such that \(n \mid d \) and \(m \mid d \).
 - (Euclidean Algorithm) Given two natural numbers \(n \) and \(m \), there exists integers \(s \) and \(t \) so that \(sn + tm = \gcd(n, m) \).
 - (Legendre Formula) Let \(p \) be a prime number and \(n \) be a positive integer. The largest power of \(p \) that divides \(n! \) is \(p^m \) where
 \[
 m = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \cdots
 \]

3. **Modular Arithmetic**
 - Let \(n \) be a positive integer. Two integers \(m \) and \(k \) are said to be congruent modulo \(n \), written \(m \equiv k \mod n \) if \(n \mid (m - k) \).
 - Suppose \(m_1 \equiv m_2 \mod n \) and \(k_1 \equiv k_2 \mod n \). Then \(m_1 + k_1 \equiv m_2 + k_2 \mod n \) and \(m_1k_1 \equiv m_2k_2 \mod n \).
 - Often we use \(\mathbb{Z}/n\mathbb{Z} \) to denote \(\{0, 1, 2, \ldots, n - 1\} \) where arithmetic is done modulo \(n \).
 - (Wilson’s Theorem) If \(p \) is a prime number, then \((p - 1)! = -1 \mod p \).
 - (Fermat’s Little Theorem) If \(p \) is a prime number, then for any integer \(n \) such that \(n \neq 0 \mod p \), we have that \(n^{p-1} = 1 \mod p \). In particular, \(n^p = n \mod p \) for all natural numbers \(n \).
 - (Chinese Remainder Theorem) Let \(k \) be a positive integer and \(n_1, \ldots, n_k \) be positive integers such that \(\gcd(n_i, n_j) = 1 \) for all \(i, j \in \{1, \ldots, k\} \) with \(i \neq j \). For any selection of integers \(a_1, \ldots, a_k \) the system of congruences
 \[
 \begin{align*}
 x & \equiv a_1 \mod n_1 \\
 x & \equiv a_2 \mod n_2 \\
 & \quad \vdots \\
 x & \equiv a_k \mod n_k
 \end{align*}
 \]
 has an infinite number of integer solutions, and a unique solution in \(\{1, 2, \ldots, n_1n_2\cdots n_k\} \).

4. **Euler Totient Function**
 - The Euler (pronounced ‘oiler’) totient function (also called the Euler phi function) is the function \(\varphi : \mathbb{N} \to \mathbb{N} \) such that for each \(n \in \mathbb{N} \), \(\varphi(n) \) is the number of elements \(k \in \{1, \ldots, n\} \) such that \(\gcd(k, n) = 1 \).
 - If \(n, m \in \mathbb{N} \) and \(\gcd(m, n) = 1 \), then \(\varphi(mn) = \varphi(m)\varphi(n) \).
• For all $n \in \mathbb{N}$,
 \[\varphi(n) = n \prod_{ \substack{p \text{ prime} \backslash n} } \left(1 - \frac{1}{p} \right). \]

• For all $n \in \mathbb{N}$,
 \[\sum_{d \text{ such that } d|n} \varphi(d) = n. \]

• (Euler’s Theorem) If $m, n \in \mathbb{N}$ and $\gcd(m, n) = 1$, then $m^{\varphi(n)} \equiv 1 \pmod{n}$.