Example Putnam Problem

Question 0. (2009, A3) Let d_n be the determinant of the $n \times n$ matrix whose entries, from left to right and then from top to bottom, are $\cos(1), \cos(2), \ldots, \cos(n^2)$. For example

$$d_3 = \det \begin{pmatrix} \cos(1) & \cos(2) & \cos(3) \\ \cos(4) & \cos(5) & \cos(6) \\ \cos(7) & \cos(8) & \cos(9) \end{pmatrix}.$$

The arguments are always in radians and not degrees. Evaluate $\lim_{n \to \infty} d_n$.

Previous Related Putnam Problems

Question 1. (AB2) Let A and B be different $n \times n$ matrices with real entries. If $A^3 = B^3$ and $A^2B = B^2A$, can $A^2 + B^2$ be invertible?

Question 2. (Modified AB2) Alan and Barbara play a game in which they take turns filling entries of an initially empty 2020×2020 array. Alan plays first. At each turn, a player chooses a real number and places it in a vacant entry. The game ends when all the entries are filled. Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if it is zero. Which player has a winning strategy?

Question 3. (AB2) Let A be the $n \times n$ matrix whose entry in the i^{th}-row and j^{th}-column is $\frac{1}{\min(i,j)}$ for $1 \leq i, j \leq n$. Compute $\det(A)$.

Question 4. (AB2) Let $S_1, S_2, \ldots, S_{2^n-1}$ be the non-empty subsets of $\{1, 2, \ldots, n\}$ in some order, and let M be the $(2^n - 1) \times (2^n - 1)$ matrix whose (i,j) entry is

$$m_{i,j} = \begin{cases} 0 & \text{if } S_i \cap S_j = \emptyset \\ 1 & \text{otherwise} \end{cases}.$$

Calculate the determinant of M.

Question 5. (AB3) What is the largest possible radius of a circle contained in a 4-dimensional hypercube of side length 1?

Question 6. (AB3) Let Q be an $n \times n$ real orthogonal matrix, and let $u \in \mathbb{R}^n$ be a unit column vector (that is, $u^T u = 1$). Let $P = I - 2uu^T$, where I is the $n \times n$ identity matrix. Show that if 1 is not an eigenvalue of Q, then 1 is an eigenvalue of PQ.

Question 7. (AB3) Let S be the set of all 2×2 real matrices

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

whose entries a, b, c, d (in that order) form an arithmetic progression. Find all matrices M in S for which there is some integer $k > 1$ such that M^k is also in S.

Question 8. (Modified AB4) Say that a polynomial with real coefficients in two variables x, y, is balanced if the average of the polynomial on each circle centred at the origin is 0. The balanced polynomials of degree at most 2021 form a vector space V over \mathbb{R}. Find the dimension of V.
Question 9. (AB4) Let A be a $2n \times 2n$ matrix, with entries chosen independently at random. Each entry is chosen to be 0 or 1, each with probability $\frac{1}{2}$. Find the expected value of $\det(A - A^t)$ (as a function of n), where A^t is the transpose of A.

Question 10. (AB4) For which positive integers n is there an $n \times n$ matrix with integer entries such that every dot product of a row with itself is even, which every dot product of two different rows is odd?

Question 11. (AB6) Let A be an $n \times n$ matrix of real numbers for some $n \geq 1$. For each positive integer k, let $A^{[k]}$ be the matrix obtained by raising each entry of A to the k^{th} power. Show that if $A^k = A^{[k]}$ for $k = 1, 2, \ldots, n + 1$, then $A^k = A^{[k]}$ for all $k \geq 1$.

Question 12. (AB6) Let n be a positive integer. Suppose that A, B, and M are $n \times n$ matrices with real entries such that $AM = MB$, and such that A and B have the same characteristic polynomial. Prove that $\det(A - MX) = \det(B - XM)$ for every $n \times n$ matrix X with real entries.