Important Concepts

1. **Functions**
 - A function $f : X \to Y$ is *injective/one-to-one* if whenever $x_1, x_2 \in X$ and $f(x_1) = f(x_2)$ then $x_1 = x_2$.
 - A function $f : X \to Y$ is *surjective/onto* if for all $y \in Y$ there exists an $x \in X$ such that $f(x) = y$.

2. **Polynomials**
 - If $f(x)$ and $g(x)$ are polynomials with coefficients in a field \mathbb{F}, then there exists unique polynomials $q(x)$ and $r(x)$ with coefficients in \mathbb{F} such that $f(x) = q(x)g(x) + r(x)$ where the degree of $r(x)$ is less than the degree of $g(x)$. It is said that $g(x)$ divides $f(x)$ if and only if $r(x) = 0$.
 - If $p(x)$ is a polynomial over a field \mathbb{F} and $a \in \mathbb{F}$, then $p(a) = 0$ if and only if $x - a$ divides p.
 - If $p(x)$ and $q(x)$ are polynomials of degree at most n with coefficients in a field \mathbb{F} that agree at $n + 1$ distinct points in \mathbb{F}, then $p = q$.
 - (Rational Root Theorem) If $p(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ where $a_0, a_1, \ldots, a_n \in \mathbb{Z}$ and $a_n \neq 0$, then if a rational number $r = \frac{a}{b}$ with $\gcd(b, c) = 1$ is a root of $p(x)$, then $b|a_0$ and $c|a_n$.
 - (Gauss’ Lemma) A polynomial $p(x)$ with integer coefficients is a product of two non-constant polynomials with integer coefficients if and only if $p(x)$ is a product of two non-constant polynomials with rational coefficients.
 - (Eisenstein Irreducibility Criterion) Let $p(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ where $a_0, a_1, \ldots, a_n \in \mathbb{Z}$ and $a_n \neq 0$. If there exists a prime number q such that q does not divide a_n, q^2 does not divide a_0, and q divides a_j for all $j \in \{1, \ldots, n-1\}$, then $p(x)$ is not divisible by any non-constant polynomial with rational coefficients.
 - (Fundamental Theorem of Algebra) Consider the complex polynomial $p(z) = a_nz^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$ where $a_0, a_1, \ldots, a_n \in \mathbb{C}$ and $a_n \neq 0$. Then $p(z) = a_n(z - r_1)(z - r_2)\cdots(z - r_n)$ where $r_1, \ldots, r_n \in \mathbb{C}$.

3. **Algebra**
 - (Binomial Theorem) For all natural numbers n and elements x, y such that $xy = yx$, $(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}$.
 - A group is a set G together with an operation $\cdot : G \times G \to G$ such that:
 1. (i) for all $a, b, c \in G$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$,
 2. (ii) there exists a (unique) element $e \in G$ such that $a \cdot e = a = e \cdot a$ for all $a \in G$, and
 3. (iii) for each $a \in G$ there exists a $b \in G$ (denoted a^{-1}) such that $a \cdot b = e = b \cdot a$.
 - Give a group G, the order of an element $g \in G$ is the smallest natural number n (possibly including 0) such that $g^n = e$, provided such a number exists.
 - A finite group is a group with a finite number of elements. If $n = |G|$ is the number of elements in a group G, then $g^n = e$ for all $g \in G$.
 - A subgroup of a group G is a set $H \subseteq G$ that is a group with the same operations as G; that is, $H \subseteq G$ and $h_1 \cdot h_2 \in H$ for all $h_1, h_2 \in H$, and $h^{-1} \in H$ for all $h \in H$.
 - If H is a subgroup of a group G with a finite number of elements, then $|H|$ divides $|G|$.
 - A group is said to be *abelian* if $a \cdot b = b \cdot a$ for all $a, b \in G$.
 - Every finite abelian group is of the form $(\mathbb{Z}/n_1\mathbb{Z}) \times (\mathbb{Z}/n_2\mathbb{Z}) \times \cdots \times (\mathbb{Z}/n_m\mathbb{Z})$ for some natural number m, n_1, \ldots, n_m.