Important Concepts

1. Continuity
 - A function \(f : (a, b) \to \mathbb{R} \) is continuous at a point \(c \in (a, b) \) if for all \(\varepsilon > 0 \) there exists a \(\delta > 0 \) such that if \(x \in (a, b) \) and \(|x - c| < \delta \) then \(|f(x) - f(c)| < \varepsilon \).
 - If \(f \) is continuous at a point \(x_0 \) and \(f(x_0) > 0 \), there exists an \(\varepsilon > 0 \) such that \(f(x) > 0 \) for all \(x \in (x_0 - \varepsilon, x_0 + \varepsilon) \).

2. Derivatives
 - A function \(f : (a, b) \to \mathbb{R} \) is said to be differentiable at a point \(c \in (a, b) \) if \(\lim_{x \to c} \frac{f(x) - f(c)}{x - c} \) exists. If the limit exists, the value of the limit is denoted \(f'(c) \).
 - If a function \(f \) is differentiable at a point \(c \), then \(f \) is continuous at \(c \).
 - (Product Rule) \((fg)'(x) = f'(x)g(x) + f(x)g'(x) \) provided the derivatives make sense.
 - (Quotient Rule) \(\left(\frac{f}{g} \right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \) provided this makes sense.
 - (Chain Rule) \((f \circ g)'(x) = f'(g(x))g'(x) \) provided this makes sense.

3. The Value Theorems
 - (Intermediate Value Theorem) If \(f : [a, b] \to \mathbb{R} \) is continuous on \([a, b]\) and either \(f(a) < c < f(b) \) or \(f(b) < c < f(a) \), then there exists a \(d \in (a, b) \) such that \(f(d) = c \).
 - (Extreme Value Theorem) If \(f : [a, b] \to \mathbb{R} \) is continuous on \([a, b]\), then there exists \(x_1, x_2 \in [a, b] \) such that \(f(x_1) \leq f(x) \leq f(x_2) \) for all \(x \in [a, b] \). Furthermore, if \(f \) is differentiable on \([a, b]\) and for \(k = 1 \) or \(k = 2 \) we have that \(x_k \in (a, b) \), then \(f'(x_k) = 0 \).
 - (Mean Value Theorem) If \(f : [a, b] \to \mathbb{R} \) is continuous on \([a, b]\) and differentiable on \((a, b)\), then there exists a \(c \in (a, b) \) such that \(f'(c) = \frac{f(b) - f(a)}{b - a} \).

4. Taylor’s Theorem
 - Let \(k \geq 1 \) be an integer and let \(f : \mathbb{R} \to \mathbb{R} \) be \(k \) times differentiable at a point \(a \in \mathbb{R} \). Then there exists a function \(h_k : \mathbb{R} \to \mathbb{R} \) such that
 \[
 f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(k)}(a)}{k!}(x - a)^k + h_k(x)(x - a)^k.
 \]
 where \(\lim_{x \to a} h_k(x) = 0 \).
 - Let \(k \geq 1 \) be an integer and let \(f : \mathbb{R} \to \mathbb{R} \) be \(k \) times continuously differentiable at a point \(a \in \mathbb{R} \). Then there exists a point \(c \) in the open interval between \(x \) and \(a \) so that
 \[
 f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(k-1)}(a)}{(k-1)!}(x - a)^{k-1} + \frac{f^{(k)}(c)}{k!}(x - a)^k.
 \]

5. Convexity
 - A function \(f : [a, b] \to \mathbb{R} \) is said to be convex if \(tf(x) + (1 - t)y \leq f(tx + (1 - t)y) \) for all \(x, y \in [a, b] \) and \(t \in [0, 1] \) (that is, the graph of \(f \) from \(x \) to \(y \) lies below the line from \((x, f(x)) \) to \((y, f(y)) \)).
 - If \(f : [a, b] \to \mathbb{R} \) is convex, then for all \(x_1, \ldots, x_n \in [a, b] \) and \(t_1, \ldots, t_n \in [0, 1] \) with \(t_1 + t_2 + \cdots + t_n = 1 \), we have that \(f(t_1 x_1 + \cdots + t_n x_n) \leq t_1 f(x_1) + \cdots + t_n f(x_n) \). The case \(t_k = \frac{1}{n} \) for all \(n \) is known as Jessen’s Inequality.
 - A continuous function \(f : [a, b] \to \mathbb{R} \) that is differentiable on \((a, b)\) is convex if and only if \(f''(x) \geq 0 \) for all \(x \in (a, b) \).