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Preface:
These are the first edition of these lecture notes for MATH 3001 (Real
Analysis II). Consequently, there may be several typographical errors,
missing exposition on necessary background, and more advance topics for
which there will not be time in class to cover. Future iterations of these
notes will hopefully be fairly self-contained provided one has the necessary
background. If you come across any typos, errors, omissions, or unclear
explanations, please feel free to contact me so that I may continually
improve these notes.
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Motivation for this Course

Analysis is the mathematics of approximation. The most simple object in
analysis, the limit, says roughly that a sequence (an)n≥1 converges to L
provided if you go out far enough (i.e. n ≥ N), then an is approximately L
(i.e. |an − L| < ε for a fixed threshold ε > 0). The idea of using ε-N and ε-δ
to approximate objects as seen in previous courses may at first seem abstract,
but are simple once one gets used to them and can be used to understand a
plethora of analytical results.

Analysis is in stark contrast with other subjects, such as algebra. In
algebra, one can only perform an operation a finite number of times. For
example, one can only add a finite number of vectors in a vector space.
However, with analysis, one can ‘add’ an infinite number of vectors by taking
a limit of all of the finite sums. This leads to the concept of series that
extends beyond real numbers to all vectors in vector spaces and thus, most
importantly, continuous functions.

Series are incredibly useful not only for their abilities to add an infinite
number of elements, but for their ability to approximate solutions. For
example, to understand the behaviour of a vibrating string, the diffusion
of heat, or quantum physics, one must understand the solutions to various
differential equations. For quantum physics, the basic differential equation
governing the behaviour of subatomic particles is the famous Schrödiner’s
equation. To understand the solutions to these differential equations, one
must understand the basic solutions and then one can approximate all
solutions via (potentially infinite) sums of these base solutions.

As an understanding of series of functions is vital for solving a vast
number of problems in mathematics, physics, and beyond, this course will
delve into an in-depth and rigorous study of series of functions. It is essential
that the results stated in this course are precise and the proofs are complete
as some of the biggest plunders in the history of mathematics came from
mathematicians claiming a series of functions converged in a certain sense
only for others to realizes decades or centuries later that this was not the
case. Consequently, this course will focus on the various ways a series of
functions can converge along with the pathological bad behaviours when
series of functions converge in the incorrect way. Time permitting, we will
look at some of the numerous applications of convergent series of functions.
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Chapter 1

Series of Complex Numbers

Before we can delve into the study of series of functions and various ways
these series can converge, it is important to first understand the behaviours
and various ways series of scalars can converge. After all, a series of functions
is a function of series of scalars. Thus thus chapter will thus focus on the
various ways a series of scalars can converge, what can go right and wrong
when one tries to rearrange the terms of a series, and how one can develop
the exponential function.

As it is important for later chapters, we will not only deal with series of
real numbers, but series of complex numbers. In particular, a reader that is
unfamiliar or uncomfortable with complex numbers should refer to Appendix
A for the basic and necessary facts.

1.1 Sequences of Complex Numbers

As a series will be a limit of finite sums, it is first useful to formally recall
the definition of a limit. Since we will be dealing with complex numbers
throughout the course, we will quickly generalize the basic properties of
limits of sequences of real numbers seen in a previous course to the complex
setting.

Definition 1.1.1. A sequence (zn)n≥1 of complex numbers is said to converge
to a complex number L if for all ε > 0 there exists an N ∈ N such that
|zn−L| < ε for all n ≥ N . The complex number L is called a limit of (zn)n≥1
and is denoted by limn→∞ zn.

The sequence (zn)n≥1 is said to diverge if (zn)n≥1 does not converge to
any complex number.

Similarly to the definition for convergent sequences of real numbers, the
‘less than ε” in Definition 1.1.1 can be replaced by “less than or equal to ε”.
As a reminder on how this works, consider the following.

3



4 CHAPTER 1. SERIES OF COMPLEX NUMBERS

Lemma 1.1.2. Let (zn)n≥1 be a sequence of complex numbers and let L ∈ C.
Then (zn)n≥1 converges to L if and only if for all ε > 0 there exists an N ∈ N
such that |zn − L| ≤ ε for all n ≥ N .

Proof. Suppose (zn)n≥1 converges to L. To see the statement in the lemma
is true, let ε > 0 be arbitrary. Since (zn)n≥1 converges to L, Definition 1.1.1
implies there exists an N ∈ N such that |zn − L| < ε for all n ≥ N . As this
implies |zn − L| ≤ ε for all n ≥ N and as ε > 0 was arbitrary, one direction
of the proof is complete.

For the other direction, assume for all ε > 0 there exists an N ∈ N such
that |zn−L| ≤ ε for all n ≥ N . To see that (zn)n≥1 converges to L, let ε > 0
be arbitrary. Let ε0 = ε

2 . Since ε0 > 0, the assumptions of this direction
imply that there exists an N ∈ N such that |zn − L| ≤ ε0 for all n ≥ N .
Hence |zn − L| ≤ ε0 < ε for all n ≥ N . As ε > 0 was arbitrary, (zn)n≥1
converges to L by Definition 1.1.1.

Remark 1.1.3. As the proof of Lemma 1.1.2 shows, when discussing con-
vergence of sequences, one may always replace ε with any positive constant
multiple of ε. Indeed the assumption “for all ε > 0” is the same as “for all ε
such that kε > 0” provided k > 0.

The convergence of a sequence of complex numbers is very similar to the
convergence of a sequence of real numbers. In particular, the following shows
that a sequence of complex numbers converges if and only if two sequences
of real numbers converge!

Lemma 1.1.4. Let (zn)n≥1 be a sequence of complex numbers and let L ∈ C.
Then (zn)n≥1 converges to L if and only if (Re(zn))n≥1 and (Im(zn))n≥1
converge to Re(L) and Im(L) respectively.

Proof. Suppose (zn)n≥1 converges to L. To prove that (Re(zn))n≥1 and
(Im(zn))n≥1 converge to Re(L) and Im(L) respectively, let ε > 0 be arbitrary.
Since (zn)n≥1 converges to L there exists an N ∈ N such that |zn − L| < ε
for all n ≥ N . Hence for all n ≥ N we have that

|Re(zn)− Re(L)| ≤ |zn − L| < ε

and
|Im(zn)− Im(L)| ≤ |zn − L| < ε.

Therefore, as ε > 0 was arbitrary, (Re(zn))n≥1 and (Im(zn))n≥1 converge to
Re(L) and Im(L) respectively.

Conversely, suppose (Re(zn))n≥1 and (Im(zn))n≥1 converge to Re(L) and
Im(L) respectively. To see that (zn)n≥1 converges to L, let ε > 0 be arbitrary.
Since (Re(zn))n≥1 converges to Re(L), there exists an N1 ∈ N such that

|Re(zn)− Re(L)| < 1√
2
ε

c©For use through and only available at pskoufra.info.yorku.ca.



1.1. SEQUENCES OF COMPLEX NUMBERS 5

for all n ≥ N1. Similarly, since (Im(zn))n≥1 converges to Im(L), there exists
an N2 ∈ N such that

|Im(zn)− Im(L)| < 1√
2
ε

for all n ≥ N2. Let N = max{N1, N2}. Hence for all n ≥ N , the above
implies that

|zn − L| =
√

(Re(zn)− Re(L))2 + (Im(zn)− Im(L))2

<

√( 1√
2
ε

)2
+
( 1√

2
ε

)2

=
√

1
2ε

2 + 1
2ε

2

=
√
ε2 = ε.

Therefore, as ε > 0 was arbitrary, (zn)n≥1 converges to L.

Lemma 1.1.4 allows one to quickly translate many results from convergent
sequences of real numbers to the complex setting with ease.

Corollary 1.1.5. Let L,K ∈ C and let (zn)n≥1 be a sequence of complex
numbers. If L and K are limits of (zn)n≥1, then L = K.

Proof. One quick way to prove this corollary is Lemma 1.1.4. Indeed if L
and K are limits of (zn)n≥1, then Lemma 1.1.4 implies Re(L) and Re(K)
are limits of (Re(zn))n≥1 and Im(L) and Im(K) are limits of (Im(zn))n≥1.
Hence the corresponding result for sequences of real numbers implies that
Re(L) = Re(K) and Im(L) = Im(K), so L = K as desired.

Alternatively, it is not difficult to adapt the proof of the corresponding
result for real sequences to complex sequences. Indeed the modified proof is
below.

Suppose that L 6= K. Therefore, if

ε = |L−K|2 ,

then ε > 0. Since L is a limit of (zn)n≥1, Definition 1.1.1 implies that there
exists an N1 ∈ N such that |zn − L| < ε for all n ≥ N1. Similarly, since K is
a limit of (zn)n≥1, Definition 1.1.1 implies that there exists an N2 ∈ N such
that |zn −K| < ε for all n ≥ N2.

Let N = max{N1, N2}. Therefore, the above implies |zN − L| < ε and
|zN −K| < ε so

|L−K| ≤ |L− zn|+ |zn −K| < ε+ ε = 2ε = |L−K|.

Since this is clearly a contradiction, it must be the case that L = K.

c©For use through and only available at pskoufra.info.yorku.ca.



6 CHAPTER 1. SERIES OF COMPLEX NUMBERS

Corollary 1.1.6. If (zn)n≥1 is a convergent sequence of complex numbers,
then (zn)n≥1 is bounded; that is,

sup({|zn| | n ∈ N}) <∞.

Proof. One quick way to prove this corollary is Lemma 1.1.4. Indeed if (zn)n≥1
converges to L, then Lemma 1.1.4 implies (Re(zn))n≥1 and (Im(zn))n≥1
converge to Re(L) and Im(L) respectively. Since convergent sequences of
real numbers are bounded, there exists M1 > 0 and M2 > 0 such that
|Re(zn)| ≤M1 and |Im(zn)| ≤M2 for all n ∈ N. Hence for all n ∈ N.

|zn| =
√

(Re(zn))2 + (Im(zn))2 ≤
√
M2

1 +M2
2 .

Consequently, (zn)n≥1 is bounded.
Alternatively, it is not difficult to adapt the proof of the corresponding

result for real sequences to complex sequences. Indeed the modified proof is
below.

Suppose (zn)n≥1 converges to L. Let ε = 1. By Definition 1.1.1, there
exists an N ∈ N such that |zn − L| < ε = 1 for all n ≥ N . Hence the reverse
triangle inequality implies for all n ≥ N that

||zn| − |L|| ≤ |zn − L| < 1

and thus |zn| < |L|+ 1 for all n ≥ N .
Let

M = max({|z1|, |z2|, . . . , |zN−1|, L+ 1}).

ClearlyM ∈ R andM ≥ 0. Moreover |zn| ≤M for all n < N by construction.
Furthermore, the above implies that |zn| < |L|+1 ≤M for all n ≥ N . Hence
|zn| ≤M for all n ∈ N. Therefore (zn)n≥1 is bounded.

It is also possible to use Lemma 1.1.4 and the corresponding results
for convergent sequences of real numbers to prove the following. However,
proving the following result directly is both simpler and more instructive in
ε-N arguments. Thus we only prove the following directly

Corollary 1.1.7. Let L,K ∈ C and let (zn)n≥1 and (wn)n≥1 be sequences of
complex numbers that converge to L and K respectively. Then the following
are true:

a) (zn + wn)n≥1 converges to L+K.

b) (znwn)n≥1 converges to LK.

c) (αzn)n≥1 converges to αL.

d) If L 6= 0 and zn 6= 0 for all n ∈ N,
(

1
zn

)
n≥1

converges to 1
L .

c©For use through and only available at pskoufra.info.yorku.ca.



1.1. SEQUENCES OF COMPLEX NUMBERS 7

e) (zn)n≥1 converges to L.

f) (|zn|)n≥1 converges to |L|.

Proof. To see that part a) is true, let ε > 0 be arbitrary. Since (zn)n≥1
converges to L, there exists an N1 ∈ N such that |zn−L| < ε

2 for all n ≥ N1.
Similarly, since (wn)n≥1 converges to K, there exists an N2 ∈ N such that
|wn−K| < ε

2 for all n ≥ N2. Let N = max{N1, N2}. Thus for all n ≥ N we
have that

|(zn + wn)− (L+K)| ≤ |zn − L|+ |wn −K| <
ε

2 + ε

2 = ε.

Therefore, since ε > 0 was arbitrary, (zn + wn)n≥1 converges to L+K.
To see that part b) is true, let ε > 0 be arbitrary. By Corollary 1.1.6

there exists an M > 0 such that |zn| ≤ M for all n ∈ N. Since (zn)n≥1
converges to L, there exists an N1 ∈ N such that

|zn − L| <
ε

2(|K|+ 1)

for all n ≥ N1. Similarly, since (wn)n≥1 converges to K, there exists an
N2 ∈ N such that

|wn −K| <
ε

2(M + 1)
for all n ≥ N2. Let N = max{N1, N2}. Thus for all n ≥ N we have that

|znwn − LK| = |znwn − znK + znK − LK|
≤ |znwn − znK|+ |znK − LK|
= |zn||wn −K|+ |zn − L||K|

≤M ε

2(M + 1) + ε

2(|K|+ 1) |K|

<
ε

2 + ε

2 = ε

Therefore, since ε > 0 was arbitrary, (znwn)n≥1 converges to LK.
Next, note part c) follows directly from part b) using the constant

sequence (α)n≥1 in place of (wn)n≥1.
To see that part d) is true, first note since (zn)n≥1 converges to L and since

L 6= 0 and thus |L| 6= 0 that there exists an N1 ∈ N such that |zn − L| < |L|
2

for all n ≥ N1. Hence the reverse triangle inequality implies for all n ≥ N1
that

|L| − |zn| <
|L|
2

and thus |L|2 < |zn| for all n ≥ N1. Therefore 1
|zn| ≤

2
|L| for all n ≥ N1.

To see that
(

1
zn

)
n≥1

converges to 1
L , let ε > 0 be arbitrary. Since

|L| 6= 0 and since (zn)n≥1 converges to L, there exists an N2 ∈ N such that

c©For use through and only available at pskoufra.info.yorku.ca.



8 CHAPTER 1. SERIES OF COMPLEX NUMBERS

|zn − L| < |L|2
2 ε for all n ≥ N2. Let N = max{N1, N2}. Hence for all n ≥ N

we have that ∣∣∣∣ 1
zn
− 1
L

∣∣∣∣ =
∣∣∣∣L− znznL

∣∣∣∣
= |L− zn|

1
|zn|

1
|L|

<

(
|L|2

2 ε

)( 2
|L|

) 1
|L|

= ε.

Therefore, as ε > 0 was arbitrary,
(

1
zn

)
n≥1

converges to 1
L .

To see that part e) is true, note by Lemma 1.1.4 that if (zn)n≥1 converges
to L, then (Re(zn))n≥1 and (Im(zn))n≥1 converge to Re(L) and Im(L) re-
spectively. Hence part c) implies that (−Im(zn))n≥1 converge to −Im(L).
Hence, by the definition of the complex conjugate, Lemma 1.1.4 implies
(zn)n≥1 converges to L as desired.

Finally, to see that part f) is true, let ε > 0 be arbitrary. Since (zn)n≥1
converges to L, there exists an N ∈ N such that |zn − L| < ε for all n ≥ N .
Therefore for all n ≥ N we have by the reverse triangle inequality that

||zn| − |L|| ≤ |zn − L| < ε.

Therefore, as ε > 0 was arbitrary, (|zn|)n≥1 converges to |L|.

One difficulty in verifying that a sequence of complex numbers converges
is that one must first guess the limit and then prove the limit is indeed the
limit. As with sequences of real numbers, there is an alternative property of
a sequence that is easier to check and is equivalent to convergence.

Definition 1.1.8. A sequence (zn)n≥1 of complex numbers is said to be
Cauchy if for all ε > 0 there exists an N ∈ N such that |zn − zm| < ε for all
n,m ≥ N .

Of course, by the same arguments as used in Lemma 1.1.2, one can easily
replace the “less than ε” with “less than or equal to ε” in Definition 1.1.8.

As with the real numbers, the complex numbers are complete:

Theorem 1.1.9. A sequence of complex numbers converges if and only if it
is Cauchy.

Proof. Let (zn)n≥1 be a sequence of complex numbers. Suppose (zn)n≥1
converges to a complex number L. To see that (zn)n≥1 is Cauchy, let ε > 0
be arbitrary. Since (zn)n≥1 converges to L, there exists an N ∈ N such that
|zn − L| < ε

2 for all n ≥ N . Therefore, for all n,m ≥ N we have that

|zn − zm| = |zn − L+ L− zm| ≤ |zn − L|+ |L− zm| <
ε

2 + ε

2 = ε.

c©For use through and only available at pskoufra.info.yorku.ca.



1.2. CONVERGENCE OF SERIES 9

Therefore, as ε > 0 was arbitrary, (zn)n≥1 is Cauchy.
Conversely, suppose (zn)n≥1 is Cauchy. To see that (zn)n≥1 converges,

we first claim that (Re(zn))n≥1 and (Im(zn))n≥1 are Cauchy sequences of
real numbers. To see this, let ε > 0 be arbitrary. Since (zn)n≥1 is Cauchy,
there exists an N ∈ N such that |zn − zm| < ε for all n,m ≥ N . Thus for all
n,m ≥ N , we have that

|Re(zn)− Re(zm)| = |Re(zn − zm)| ≤ |zn − zm| < ε

and
|Im(zn)− Im(zm)| = |Im(zn − zm)| ≤ |zn − zm| < ε.

Therefore, as ε > 0 was arbitrary, (Re(zn))n≥1 and (Im(zn))n≥1 are Cauchy
sequences of real numbers.

Since every Cauchy sequence of real numbers converges, there exists a, b ∈
R such that (Re(zn))n≥1 and (Im(zn))n≥1 converge to a and b respectively.
Hence (zn)n≥1 converges to a+ bi by Lemma 1.1.4.

1.2 Convergence of Series
With our understanding of convergent sequences of complex numbers, we can
turn our attention to convergent series of complex numbers. In particular, a
convergent series of complex numbers is just a particular form of convergent
sequence of complex numbers.

Definition 1.2.1. Let (zn)n≥1 be a sequence of complex numbers and for
each N ∈ N let SN =

∑N
k=1 zk. The series

∑∞
n=1 zn is said to converge to

L ∈ C, denoted
∑∞
n=1 zn = L, if the sequence (SN )N≥1 converges to L. The

term SN is called the N th partial sum of the series.
The series

∑∞
n=1 zn is said to diverge if the sequence (SN )N≥1 diverges.

Remark 1.2.2. When trying to determine whether or not a series converges,
the size of the “first few” terms of the series do not matter. To be specific,∑∞
n=1 zn converges if and only if

∑∞
n=K zn converges for some K > 1 in which

case
∑∞
n=1 zn =

∑K−1
n=1 zn +

∑∞
n=K zn. To see this, note the partial sums

of the first series are partial sums for the second series plus
∑K−1
n=1 zn and

adding a constant to a sequence does not affect whether or not the sequence
converges. We call

∑∞
n=K zn a tail of the series so, when using this fact in

the future, we will state “only the tail of the series matters”.

It is useful to begin our study of convergent series of complex numbers
with a very important exampled. Throughout these notes, the convention
z0 = 1 for all z ∈ C will be used.

Example 1.2.3. Let z ∈ C be such that |z| < 1. We claim that
∞∑
n=0

zn = 1
1− z .

c©For use through and only available at pskoufra.info.yorku.ca.



10 CHAPTER 1. SERIES OF COMPLEX NUMBERS

To see this, let N ∈ N be arbitrary. Notice that the N th partial sum is

SN =
N∑
k=0

zk

so

zSN =
N+1∑
k=1

zk.

Hence zSN − SN = zN+1 − 1 so

SN = zN+1 − 1
z − 1

since z 6= 1. Therefore, since
∣∣∣zN+1

∣∣∣ = |z|N+1 is easily seen to converge to 0
as N tends to infinity as |z| < 1, we see that limN→∞ z

N+1 = 0 so

lim
N→∞

SN = lim
N→∞

zN+1 − 1
z − 1 = 0− 1

z − 1 = 1
1− z .

Thus
∑∞
n=0 z

n = 1
1−z . This series is called a geometric series.

Unsurprisingly, convergent series of complex numbers behave well in
regards to addition and scalar multiplication as convergent sequences behave
well due to Lemma 1.1.7.

Lemma 1.2.4. Let
∑∞
n=1 zn and

∑∞
n=1wn be convergent series of complex

numbers. Then
∑∞
n=1 zn + wn converges and

∞∑
n=1

zn + wn =
∞∑
n=1

zn +
∞∑
n=1

wn.

Moreover, for all α ∈ C, the series
∑∞
n=1 αzn converges and

∞∑
n=1

αzn = α
∞∑
n=1

zn.

Proof. For all N ∈ N, consider the N th partial sums

SN =
N∑
k=1

zk, TN =
N∑
k=1

wk,

RN =
N∑
k=1

zk + wk, and UN =
N∑
k=1

αzk.

Since
∑∞
n=1 zn and

∑∞
n=1wn converge, we know that (SN )N≥1 and (TN )N≥1

converge and

lim
N→∞

SN =
∞∑
n=1

zn and lim
N→∞

Tn =
∞∑
n=1

wn.

c©For use through and only available at pskoufra.info.yorku.ca.



1.2. CONVERGENCE OF SERIES 11

Since RN = SN + TN and Un = αSN , Lemma 1.1.7 implies (RN )N≥1 and
(UN )N≥1 converge and

lim
N→∞

RN = lim
N→∞

SN + lim
N→∞

TN and

lim
N→∞

UN = α lim
N→∞

SN .

Hence
∑∞
n=1 zn + wn and

∑∞
n=1 αzn converge and

∞∑
n=1

zn + wn =
∞∑
n=1

zn +
∞∑
n=1

wn and

∞∑
n=1

αzn = α
∞∑
n=1

zn

as desired.

Like with convergent sequences of complex numbers, one can test whether
a series of complex numbers converges via an alternate criterion that bypasses
the need for determining and verifying a specific limit.

Theorem 1.2.5 (Cauchy Criterion). A series
∑∞
n=1 zn converges if and

only if for all ε > 0 there exists an N ∈ N such that |
∑m
k=N zk| < ε for all

m ≥ N .

Proof. For each N ∈ N, let SN =
∑N
k=1 zk.

Suppose
∑∞
n=1 zn converges. To see the desired statement holds, let

ε > 0 be arbitrary. Since
∑∞
n=1 zn converges, (SN )N≥1 converges and thus

is Cauchy by Theorem 1.1.9. Hence there exists an N0 ∈ N such that
|Sm − Sk| < ε for all m, k ≥ N0. Therefore, if N = N0 + 1, we see for all
m ≥ N > N0 that

∣∣∣∣∣
m∑

k=N
zk

∣∣∣∣∣ =
∣∣∣∣∣
m∑
k=1

zk −
N−1∑
k=1

zk

∣∣∣∣∣ = |Sm − SN−1| < ε.

Therefore, since ε > 0 was arbitrary, the desired statement from the theorem
holds.

Conversely, suppose for all ε > 0 there exists an N ∈ N such that
|
∑m
k=N zk| < ε for all m ≥ N . We claim that (SN )N≥1 is Cauchy. To see

that (SN )N≥1 is Cauchy, let ε > 0 be arbitrary. By the assumption of this
direction of the proof, there exists an N ∈ N such that |

∑m
k=N zk| < ε

2 for all
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12 CHAPTER 1. SERIES OF COMPLEX NUMBERS

m ≥ N . Hence, for all n ≥ m ≥ N , we see that

|Sn − Sm| =
∣∣∣∣∣
n∑
k=1

zk −
m∑
k=1

zk

∣∣∣∣∣
=
∣∣∣∣∣
n∑

k=N
zk −

m∑
k=N

zk

∣∣∣∣∣ cancel the first (N − 1) terms

≤
∣∣∣∣∣
n∑

k=N
zk

∣∣∣∣∣+
∣∣∣∣∣
m∑

k=N
zk

∣∣∣∣∣
<
ε

2 + ε

2 = ε.

Therefore, as ε > 0 was arbitrary, (SN )N≥1 is Cauchy.
Since (SN )N≥1 is Cauchy, (SN )N≥1 converges by Theorem 1.1.9. Hence∑∞

n=1 zn converges by definition.

Immediately the Cauchy Criterion (Theorem 1.2.5) can be used to show
a required property for series to converge.

Corollary 1.2.6. If a series
∑∞
n=1 zn of complex numbers converge, then

limn→∞ zn = 0.

Proof. Let ε > 0 be arbitrary. By the Cauchy Criterion (Theorem 1.2.5)
there exists an N ∈ N such that∣∣∣∣∣

m∑
k=N

zk

∣∣∣∣∣ < ε

2

for all m ≥ N . Therefore, for all n ≥ N + 1 we have n, n− 1 ≥ N so that

|zn| =
∣∣∣∣∣
n∑

k=N
zk −

n−1∑
k=N

zk

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑

k=N
zk

∣∣∣∣∣+
∣∣∣∣∣
n−1∑
k=N

zk

∣∣∣∣∣ < ε

2 + ε

2 = ε.

Therefore, as ε > 0 was arbitrary, limn→∞ zn = 0.

Remark 1.2.7. It is important to point out that the converse of Corollary
1.2.6 is false; that is, there exist sequences (zn)n≥1 of complex numbers such
that limn→∞ zn = 0 but

∑∞
n=1 zn does not converge. Some examples of this

will be pointed out shortly (see Corollary 1.2.15).

Using Corollary 1.2.6, we can complete Example 1.2.3.

Example 1.2.8. Let z ∈ C be such that |z| ≥ 1. We claim that the geometric
series

∑∞
n=0 z

n does not converge. To see this, note that |zn − 0| = |z|n for
all n ∈ N so either limn→∞ |zn − 0| diverges to infinity or is equal to 1. In
either case, (zn)n≥1 does not converge to 0 as n tends to infinity, so Corollary
1.2.6 implies

∑∞
n=0 z

n cannot converge.

c©For use through and only available at pskoufra.info.yorku.ca.



1.2. CONVERGENCE OF SERIES 13

Although the Cauchy Criterion (Theorem 1.2.5) helps us with a theoretical
tool for determining when a series of complex numbers converges, it is still
quite difficult to use. To aid us in our ability to determine whether or not a
series converges, let us deal with the specific case of series of non-negative
real numbers.

Theorem 1.2.9. Let (an)n≥1 be a sequence of real numbers with an ≥ 0 for
all n ∈ N. The series

∑∞
n=1 an converges if and only if there exists an M ∈ R

such that
∑N
k=1 ak ≤ M for all N ∈ N. Moreover, if

∑N
k=1 ak ≤ M for all

N ∈ N, then
∑∞
n=1 an ≤M .

Finally, if
∑∞
n=1 an converges, then for all ε > 0 there exists a N0 ∈ N

such that
∑∞
k=N ak < ε for all N > N0.

Proof. For every N ∈ N, let SN =
∑N
k=1 ak. Since aN+1 ≥ 0 for all N ∈ N,

we see that

SN+1 =
N+1∑
k=1

ak = aN+1 +
N∑
k=1

ak = aN+1 + SN ≥ SN .

Hence (SN )N≥1 is a non-decreasing sequence of real numbers. Therefore, the
Monotone Convergence Theorem implies (SN )N≥1 converges if and only if
(SN )N≥1 is bounded. Moreover, as any upper bound of (SN )N≥1 must be
greater than or equal to limN→∞ SN , the first part of the statement is true.

To see the second part of the statement is true, let ε > 0 be arbitrary.
By the Cauchy Criterion (Theorem 1.2.5), there exists an N0 ∈ N such that

m∑
k=N0

ak =

∣∣∣∣∣∣
m∑

k=N0

ak

∣∣∣∣∣∣ < ε.

Hence, by taking the limit asm tends to infinity, we obtain that
∑∞
k=N0 ak < ε.

Since
∑∞
k=N ak converges as only the tail matters, and since clearly the partial

sums of
∑∞
k=N ak are bounded above by the partial sums of

∑∞
k=N0 ak for

all N ≥ N0, the result follows.

Using the idea that it should be easier to determine when series of non-
negative real numbers converge, we consider the following idea of converting
a series of complex numbers into a series of non-negative real numbers.

Definition 1.2.10. A series
∑∞
n=1 zn of complex numbers is said to converge

absolutely if
∑∞
n=1 |zn| converges.

Clearly a series of non-negative real numbers converges if and only if the
series converges absolutely by definition. Fortunately, we are in luck as the
important direction holds for series of complex numbers thereby allowing us
an alternate way to verify certain series of complex numbers converge.
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14 CHAPTER 1. SERIES OF COMPLEX NUMBERS

Theorem 1.2.11. If
∑∞
n=1 zn is an absolutely convergent series of complex

numbers, then
∑∞
n=1 zn converges. Moreover∣∣∣∣∣

∞∑
n=1

zn

∣∣∣∣∣ ≤
∞∑
n=1
|zn|.

Proof. To see that
∑∞
n=1 zn converges, let ε > 0 be arbitrary. Since

∑∞
n=1 zn

converges absolutely, we know that
∑∞
n=1 |zn| converges. Hence the Cauchy

Criterion (Theorem 1.2.5) implies there exists an N ∈ N such that∣∣∣∣∣
m∑

k=N
|zk|

∣∣∣∣∣ < ε

for all m ≥ N . Hence for all m ≥ N we have that∣∣∣∣∣
m∑

k=N
zk

∣∣∣∣∣ ≤
m∑

k=N
|zk| =

∣∣∣∣∣
m∑

k=N
|zk|

∣∣∣∣∣ < ε.

Therefore, as ε > 0 was arbitrary, the Cauchy Criterion (Theorem 1.2.5)
implies

∑∞
n=1 zn converges.

Moreover, by Corollary 1.1.7 part (f), we see that∣∣∣∣∣
∞∑
n=1

zn

∣∣∣∣∣ = lim
N→∞

∣∣∣∣∣
N∑
k=1

zk

∣∣∣∣∣ ≤ lim inf
N→∞

N∑
k=1
|zk| =

∞∑
n=1
|zn|

as desired.

Remark 1.2.12. It is important to point out that the converse of Theorem
1.2.11 is false; that is, there exist series

∑∞
n=1 zn of complex numbers such

that
∑∞
n=1 zn converges but

∑∞
n=1 zn does not converge absolutely. Some

examples of this will be pointed out shortly (see Example 1.2.23).

Since absolutely convergent series converge, it is useful to develop a
collection of ‘tests’ that will aid us in determining whether a series of non-
negative real numbers converges (thereby aiding in determining whether a
series of complex numbers converges absolutely).

Theorem 1.2.13 (Comparison Test). Let (an)n≥1 and (bn)n≥1 be se-
quences of real numbers such that 0 ≤ an ≤ bn for all n ∈ N. Then

a) If
∑∞
n=1 bn converges, then

∑∞
n=1 an converges.

b) If
∑∞
n=1 an diverges, then

∑∞
n=1 bn diverges.

Proof. As these two statements are contrapositives of each other, it suffices
to prove the first statement. To see that the first statement is true, suppose∑∞
n=1 bn converges. Hence Theorem 1.2.9 implies that there exists an M ∈ R
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1.2. CONVERGENCE OF SERIES 15

such that
∑N
k=1 bk ≤M for all N ∈ N. Since 0 ≤ an ≤ bn for all n ∈ N, we

obtain for all N ∈ N that
N∑
k=1

ak ≤
N∑
k=1

bk ≤M.

Hence Theorem 1.2.9 implies
∑∞
n=1 an converges.

Theorem 1.2.14 (Integral Test). If f : [1,∞) → [0,∞) be a non-
increasing function and an = f(n) for all n ∈ N, then

∑∞
n=1 an converges if

and only if
∫∞

1 f(x) dx converges.

Proof. Using the definition of Riemann sums, it is not difficult to see for all
N ∈ N that

N∑
k=2

ak ≤
∫ N

1
f(x) dx ≤

N∑
k=1

ak.

Therefore, since f is non-increasing and non-negative and thus an ≥ 0 for all
n ∈ N, we see that {

N∑
k=1

ak

∣∣∣∣∣ N ∈ N
}

is bounded if and only if {∫ b

1
f(x) dx

∣∣∣∣∣ b ≥ 1
}

is bounded. Hence the result follows from Theorem 1.2.9 and the analogous
result for improper integrals of non-increasing non-negative functions.

The Integral Test (Theorem 1.2.14) is quite useful when determining
whether series related to nice functions converge.

Corollary 1.2.15. The series
∑∞
n=1

1
np converges if and only if p > 1.

Proof. First, consider the case p ≤ 0. In this case the sequence
(

1
np

)
n≥1

does
not converge to zero and thus

∑∞
n=1

1
np does not converge by Corollary 1.2.6.

Otherwise p > 0. Notice that the function f : [1,∞)→ (0,∞) defined by
f(x) = 1

xp is well-defined. Moreover, since f ′(x) = −p
xp+1 < 0 for all x ∈ [1,∞),

we obtain that f is non-decreasing. Furthermore, notice for all b > 1 that∫ b

1
f(x) dx =

ln(b) if p = 1
1
p−1 −

1
(p−1)bp−1 if p 6= 1

.

Hence we easily see that

lim
b→∞

∫ b

1
f(x) dx

exists if and only if p > 1 as desired.
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16 CHAPTER 1. SERIES OF COMPLEX NUMBERS

Remark 1.2.16. Note Corollary 1.2.15 immediately implies that
∑∞
n=1

1
n

diverges. Therefore, since limn→∞
1
n = 0, we have an example to show that

the converse of Corollary 1.2.6 is false.

Of course, with the convergence of these series, one fundamental question
would be:

Question 1.2.17. What are the values of
∑∞
n=1

1
np for all p > 1?

Of course, the proof of the Integral Test (Theorem 1.2.14) can be used
to show that ∫ ∞

1

1
xp
dx ≤

∞∑
n=1

1
np
≤ 1

1p +
∫ ∞

1

1
xp
dx,

so
1

p− 1 ≤
∞∑
n=1

1
np
≤ 1 + 1

p− 1 = p

p− 1 ,

but this is rather wide interval.
Using our knowledge of convergent series, we can also construct the

following test to aid us in determine when some series converge.

Theorem 1.2.18 (Ratio Test). Let (an)n≥1 be a sequence of real numbers
such that an > 0 for all n ∈ N. Suppose r = limn→∞

an+1
an

exists. Then:

a)
∑∞
n=1 an converges if r < 1.

b)
∑∞
n=1 an diverges if r > 1.

Proof. First suppose r < 1. Our goal for this direction is to show that the
tail of the series is bounded above by a convergent geometric series.

Let ε = 1−r
2 > 0. Since r = limn→∞

an+1
an

, there exists an K ∈ N such
that ∣∣∣∣ak+1

ak
− r

∣∣∣∣ < ε

for all k ≥ K. Therefore

ak+1
ak

< r + ε = r + 1− r
2 = 1 + r

2

for all k ≥ K so
ak+1 <

(1 + r

2

)
ak

for all k ≥ K. A simple induction argument then implies

ak ≤
(1 + r

2

)k−K
aK
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1.2. CONVERGENCE OF SERIES 17

for all k ≥ K. Notice since 1+r
2 < 1+1

2 = 1 that the geometric series

∞∑
n=1

(1 + r

2

)n
converges by Example 1.2.3. Thus

∞∑
n=K

(1 + r

2

)k−K
aK

converges so
∑∞
n=K an converges by the Comparison Test (Theorem 1.2.13).

Hence
∑∞
n=1 an converges as only the tail of the series matters.

Now suppose r > 1. Our goal for this direction is to show that the tail of
the series is bounded below by a divergent geometric series.

Let ε = r−1
2 > 0. Since r = limn→∞

an+1
an

, there exists an K ∈ N such
that ∣∣∣∣ak+1

ak
− r

∣∣∣∣ < ε

for all k ≥ K. Therefore

ak+1
ak

> r − ε = r − r − 1
2 = r + 1

2

for all k ≥ K so

ak+1 >

(1 + r

2

)
ak

for all k ≥ K. A simple induction argument then implies

ak ≥
(1 + r

2

)k−K
aK

for all k ≥ K. Notice since 1+r
2 > 1+1

2 = 1 that the geometric series

∞∑
n=1

(1 + r

2

)n
diverges by Example 1.2.8. Thus

∞∑
n=K

(1 + r

2

)k−K
aK

diverges (since aK 6= 0) so
∑∞
n=K an diverges by the Comparison Test

(Theorem 1.2.13). Hence
∑∞
n=1 an diverges as only the tail of the series

matters.
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18 CHAPTER 1. SERIES OF COMPLEX NUMBERS

Remark 1.2.19. In the context of the Ratio Test (Theorem 1.2.18), when
r = 1 we obtain no information since we cannot bound the ratio away from
1 in either direction to obtain a comparison. In fact, when r = 1, the series
could converge or diverge. In particular, by Corollary 1.2.15, we know that
the series ∞∑

n=1

1
n2 and

∞∑
n=1

1
n

converge and diverge respectively, but both have r = 1.

Using the Ratio Test (Theorem 1.2.18), we can prove a vital series
converges.

Example 1.2.20. We claim that the series
∑∞
n=0

1
n!z

n converges absolutely
for all z ∈ C. To see this, fix z ∈ C and for all n ∈ N let

an =
∣∣∣∣ 1
n!z

n

∣∣∣∣ = |z|
n

n! .

Note for all n ∈ N that∣∣∣∣an+1
an

∣∣∣∣ =
∣∣∣∣∣ |z|n+1

(n+ 1)!
n!
|z|n+1

∣∣∣∣∣ = |z|
n+ 1 .

Since
lim
n→∞

∣∣∣∣an+1
an

∣∣∣∣ = lim
n→∞

|z|
n+ 1 = 0,

we obtain that
∑∞
n=1 an converges by the Ratio Test (Theorem 1.2.18) and

thus
∑∞
n=0

1
n!z

n converges absolutely for all z ∈ C.

A sometimes useful alternative to the Ratio Test (Theorem 1.2.18) is the
following, which is proved in a similar manner.

Theorem 1.2.21 (Root Test). Let (an)n≥1 be a sequence of real numbers
such that an > 0 for all n ∈ N. Suppose r = limn→∞ n

√
an exists. Then:

a)
∑∞
n=1 an converges if r < 1.

b)
∑∞
n=1 an diverges if r > 1.

Proof. First suppose r < 1. Our goal for this direction is to show that the
tail of the series is bounded above by a convergent geometric series.

Let ε = 1−r
2 > 0. Since r = limn→∞ n

√
an, there exists an K ∈ N such

that
| k
√
ak − r| < ε

for all k ≥ K. Therefore

k
√
ak < r + ε = r + 1− r

2 = 1 + r

2
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1.2. CONVERGENCE OF SERIES 19

for all k ≥ K so

ak <

(1 + r

2

)k
for all k ≥ K. Notice since 1+r

2 < 1+1
2 = 1 that the geometric series

∞∑
n=K

(1 + r

2

)n
converges by Example 1.2.3 so

∑∞
n=K an converges by the Comparison Test

(Theorem 1.2.13). Hence
∑∞
n=1 an converges as only the tail of the series

matters.
Now suppose r > 1. Our goal for this direction is to show that the tail of

the series is bounded below by a divergent geometric series.
Let ε = r−1

2 > 0. Since r = limn→∞ n
√
an, there exists an K ∈ N such

that
| k
√
ak − r| < ε

for all k ≥ K. Therefore

k
√
ak > r − ε = r − r − 1

2 = r + 1
2

for all k ≥ K so

ak >

(1 + r

2

)k
for all k ≥ K. Notice since 1+r

2 > 1+1
2 = 1 that the geometric series

∞∑
n=1

(1 + r

2

)n
diverges by Example 1.2.8 so

∑∞
n=K an diverges by the Comparison Test

(Theorem 1.2.13). Hence
∑∞
n=1 an diverges as only the tail of the series

matters.

Of course, there are other ways to ensure that a series converges. One
method for obtaining a convergent series is the following.

Theorem 1.2.22 (Alternating Series Test (Leibniz’s Theorem)). Let
(an)n≥1 be a non-increasing sequence of non-negative real numbers such that
limn→∞ an = 0. Then

∑∞
n=1(−1)n+1an converges.

Proof. For each N ∈ N, let SN =
∑N
k=1(−1)k+1ak. First, we claim for all

N ∈ N that
S2N ≤ S2N+2 ≤ S2N+3 ≤ S2N+1.
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To see the first inequality, notice since (an)n≥1 is a non-increasing sequence
of non-negative real numbers that a2N+1 − a2N+2 ≥ 0 for all N ∈ N so

S2N ≤ (a2N+1 − a2N+2) + S2N

= (−1)(2N+1)+1a2N+1 + (−1)(2N+2)+1a2N+2 +
2N∑
k=1

ak

=
2N+2∑
n=1

(−1)k+1ak = S2N+2.

Similarly, since (an)n≥1 is a non-increasing sequence of non-negative real
numbers that a2N+3 − a2N+2 ≤ 0 for all N ∈ N so

S2N+3 =
2N+3∑
n=1

(−1)k+1ak

= (−1)(2N+3)+1a2N+3 + (−1)(2N+2)+1a2N+2 +
2N+1∑
k=1

ak

= (a2N+3 − a2N+2) + S2N+1 ≤ S2N+1.

Finally, since a2N+3 ≥ 0, we obtain that

S2N+2 =
2N+2∑
k=1

ak ≤ a2N+3 +
2N+2∑
k=1

ak =
2N+3∑
k=1

ak = S2N+3

as desired.
Notice the inequality proved in the above claim shows that (S2N )N≥1 is

a non-decreasing sequence and (S2N+1)N≥1 is non-increasing sequence both
of which are bounded below by S2 and bounded above by S1. Hence the
Monotone Converge Theorem implies (S2N )N≥1 and (S2N+1)N≥1 converge.

Let
L = lim

N→∞
S2N and K = lim

N→∞
S2N+1.

Notice that

K − L = lim
N→∞

S2N+1 − S2N = lim
N→∞

2N+1∑
k=1

ak −
2N∑
k=1

ak = lim
N→∞

a2N+1 = 0.

Hence L = K. Therefore, since (S2N )N≥1 and (S2N+1)N≥1 both converge
to L, (SN )N≥1 converges to L. Therefore

∑∞
n=1(−1)n+1an converges by

definition.

The Alternating Series Test (Theorem 1.2.22) is a quick way to construct
series that converge but do not converge absolutely.
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Example 1.2.23. We claim that the series
∑∞
n=1

(−1)n+1

n converges but
does not converge absolutely. To see that this series converges, note that
limn→∞

1
n = 0. Hence the Alternating Series Test (Theorem 1.2.22) implies

that
∑∞
n=1

(−1)n+1

n . However, since

∞∑
n=1

∣∣∣∣∣(−1)n+1

n

∣∣∣∣∣ =
∞∑
n=1

1
n

diverges by Corollary 1.2.15,
∑∞
n=1

(−1)n+1

n does not converge absolutely.

It is useful to have a name for such series.

Definition 1.2.24. A series
∑∞
n=1 zn of complex numbers is said to converge

conditionally if
∑∞
n=1 zn converges but does not converge absolutely.

Of course, one natural question we can ask is:

Question 1.2.25. What are the values of
∑∞
n=1

(−1)n+1

n ?

In an attempt to solve this question, consider the following: Let

S =
∞∑
n=1

(−1)n+1

n
.

Notice that

S = 1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + 1

7 −
1
8 + · · ·

=
(

1− 1
2

)
− 1

4 +
(1

3 −
1
6

)
− 1

8 +
(1

5 −
1
10

)
− 1

12 + · · ·

= 1
2 −

1
4 + 1

6 −
1
8 + 1

10 −
1
12 + · · ·

= 1
2

(
1− 1

2 + 1
3 −

1
4 + 1

5 −
1
6 + 1

7 −
1
8 + · · ·

)
= 1

2S.

Therefore S = 0. However, notice that

S =
(

1− 1
2

)
+
(1

3 −
1
4

)
+
(1

5 −
1
6

)
+
(1

7 −
1
8

)
+ · · ·

≥ 1
2 + 0 + 0 + · · · = 1

2 .

How is this possible? Did we just break mathematics?
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1.3 Rearrangements of Series
The issue with the above computation is that when we were trying to evaluate
S, we rearranged the order of the terms in the series. This may seem valid
in the sense that if we are adding up a only finite number of scalars, then
we know we can rearrange the order of the terms in the sum due to the
associative and commutative properties of addition. However, in Definition
1.2.1, the partial sums are formed by adding up the terms of the series
in a very specific order and then taking the limit of the partial sums. By
rearranging the terms in an infinite series, we are in a sense transforming
the series as we are changing the partial sums and thereby modifying the
value the partial sums converges to. In fact, when dealing with a conditional
convergent series, we can reorder the series to make the value of the series
anything we want!
Theorem 1.3.1. Let

∑∞
n=1 an be a conditionally convergent series of real

numbers. For any L ∈ R there exists a bijection σ : N → N such that∑∞
n=1 aσ(n) = L.

Proof. For each n ∈ N, let

a+
n =

{
an if an ≥ 0
0 if an < 0

and a−n =
{

0 if an ≥ 0
an if an < 0

.

Hence for all n ∈ N

an = a+
n + a−n and |an| = a+

n − a−n .

If both
∑∞
n=1 a

+
n and

∑∞
n=1 a

−
n converged, then

∑∞
n=1 |an| would converge

since
N∑
k=1
|ak| =

N∑
k=1

a+
k −

N∑
k=1

a−k

for all N ≥ 1. However, since
∑∞
n=1 |an| does not converge, it must be

the case that least one of
∑∞
n=1 a

+
n and

∑∞
n=1 a

−
n diverges. Moreover, since∑∞

n=1 an converges and
N∑
k=1

ak =
N∑
k=1

a+
k +

N∑
k=1

a−k

for all N ∈ N, if one of
∑∞
n=1 a

+
n and

∑∞
n=1 a

−
n converged then both would

need to converge thereby contradicting what was just demonstrated. Hence
both

∑∞
n=1 a

+
n and

∑∞
n=1 a

−
n diverge.

Let (pn)n≥1 denote sequence of all non-negative terms from (an)n≥1 listed
in the same order they appear, and let (qn)n≥1 denote sequence of all negative
terms from (an)n≥1 listed in the same order they appear. Since

∞∑
n=1

pn and
∞∑
n=1

qn
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diverge by what was demonstrated above, Theorem 1.2.9 implies that

sup
({

N∑
k=1

pk

∣∣∣∣∣ N ∈ N
})

=∞ and inf
({

N∑
k=1

qk

∣∣∣∣∣ N ∈ N
})

= −∞.

Fix L ∈ R. To find a bijection σ : N → N so that
∑∞
n=1 aσ(n) = L, our

goal is to add pks up to the point where we obtain a number just larger than
L, then add (thereby decreasing the value) qks up to the point where we
obtain a number just smaller than L, then add pks up to the point where we
obtain a number just larger than L, then add (thereby decreasing the value)
qks up to the point where we obtain a number just smaller than L, and so
on. This procedure will create a rearrangement of the series so that partial
sums will be within an of L for some increasingly large n. Therefore since∑∞
n=1 an converges so limn→∞ an = 0 by Corollary 1.2.6, this rearrangement

will converge to L. Hopefully that is clear as the formal write-up as seen
below is rather technical and possibly not illuminating.

First note since the above supremum is infinity that there exists an N ∈ N
such that

N∑
k=1

pk > L.

Choose N1 ∈ N to be the smallest N ∈ N such that
∑N
k=1 pk > L. Therefore,

since pk ≥ 0 for all k ∈ N, this implies that
N1∑
k=1

pk > L ≥
N∑
k=1

pk

for all N < N1. Let

T1 =
N1∑
k=1

pk

and note 0 < T1 − L.
Next, since the above infimum is negative infinity, there exists N ∈ N

such that
N∑
k=1

qk < L− T1.

Choose M1 ∈ N to be the smallest N ∈ N such that
∑N
k=1 qk < L − T1.

Therefore, since qk ≤ 0 for all k ∈ N, this implies that
M1∑
k=1

qk < L− T1 ≤
N∑
k=1

qk

for all N < M1. Let

R1 =
M1∑
k=1

qk.
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Note the above inequalities imply that

0 < L− T1 −R1 = (L− T1)−R1 ≤
M1−1∑
k=1

qk −
M1∑
k=1

qk = −qM1 .

Next, since the above supremum is infinity that there exists an N ∈ N
such that

N∑
k=N1+1

pk > L− T1 −R1.

ChooseN2 ∈ N to be the smallestN ∈ N such thatN > N1 and
∑N
k=N1+1 pk >

L− T1 −R1. Therefore, since pk ≥ 0 for all k ∈ N, this implies that

N2∑
k=N1+1

pk > L− T1 −R1 ≥
N∑

k=N1+1
pk.

for all N ∈ {N1 + 1, . . . , N2 − 1}. Let

T2 =
N2∑

k=N1+1
pk.

Notice that the above inequalities and the fact that pk ≥ 0 for all k ∈ N
imply that

0 ≤ L− T1 −R1 −
N∑

k=N1+1
pk ≤ L− T1 −R1 ≤ −qM1

for all N ∈ {N1 + 1, . . . , N2 − 1} and

0 < T2 − (L− T1 −R1) ≤
N2∑

k=N1+1
pk −

N2−1∑
k=N1+1

pk = pN2 .

Once more for clarity, since T1 +R1 + T2−L > 0 and the above infimum
is negative infinity, there exists an N ∈ N such that

N∑
k=M1+1

qk < L− T1 −R1 − T2.

Choose M2 ∈ N to be the smallest N ∈ N such that N > M1 and∑N
k=M1+1 qk < L − T1 − R1 − T2. Therefore, since qk ≤ 0 for all k ∈ N,

this implies that

M2∑
k=M1+1

qk < L− T1 −R1 − T2 ≤
N∑

k=M1+1
qk.
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for all N ∈ {M1 + 1, . . . ,M2 − 1}. Let

R2 =
M2∑

k=M1+1
qk.

Notice that the above inequalities and the fact that qk ≤ 0 for all k ∈ N
imply that

0 ≥ L− T1 −R1 − T2 −
N∑

k=M1+1
qk ≥ L− T1 −R1 − T2 > −pN2

for all N ∈ {M1 + 1, . . . ,M2 − 1} and

0 < (L− T1 −R1 − T2)−R2 ≤
M2−1∑

k=M1+1
qk −

M2∑
k=M1+1

qk = −qM2 .

By repeating this procedure, there exist strictly increasing sequences
(Nj)j≥1 and (Mj)j≥1 so that if

Tj =
Nj∑

k=Nj−1+1
pk and Rj =

Mj∑
k=Mj−1+1

qk,

then for all ` ≥ 1 we have that

0 ≤ L−
∑̀
j=1

(Tj +Rj)−
N∑

k=Nj+1
pk ≤ −qM`

for all N ∈ {N` + 1, . . . , N`+1 − 1},

0 < −L+ T`+1 +
∑̀
j=1

(Tj +Rj) ≤ pN`+1 ,

and

0 ≥ L− T`+1 −
∑̀
j=1

(Tj +Rj)−
N∑

k=Mj+1
qk > −pN`+1

for all N ∈ {M` + 1, . . . ,M`+1 − 1}, and

0 < L−
`+1∑
j=1

(Tj +Rj) ≤ −qM`+1 .

Since (Nj)j≥1 and (Mj)j≥1 are strictly increasing sequences, we see that

p1, . . . , pN1 , q1, . . . , qM1 , pN1+1, . . . , pN2 , qM1+1, . . . , qM2 ,

pN2+1, . . . , pN3 , qM2+1, . . . , qM3 , . . .
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is a rearrangement of
∑∞
n=1 an. Moreover, by construction, the partial sums

of this rearrangement are within either pN` or −qM`
of L for progressively

large ` at ever step of the construction. Since
∑∞
n=1 an converges, Corollary

1.2.6 implies that limn→∞ an = 0. Therefore limn→∞ pn = limn→∞ qn = 0,
so the partial sums of this rearrangement converge to L as desired.

The main appeal of absolutely convergent series over conditionally con-
vergent series is the dichotomy between the following and Theorem 1.3.1.
Theorem 1.3.2. Let

∑∞
n=1 zn be an absolutely convergent series of complex

numbers. For all bijections σ : N → N, the series
∑∞
n=1 zσ(n) converges

absolutely and
∑∞
n=1 zσ(n) =

∑∞
n=1 zn.

Proof. Let L =
∑∞
n=1 zn and fix a bijection σ : N→ N. For all N ∈ N, let

SN =
N∑
k=1

zk and TN =
N∑
k=1

zσ(k).

To see that (TN )N≥1 converges to L, let ε > 0 be arbitrary. Since
L =

∑∞
n=1 zn, there exists an N1 ∈ N such that

|SN − L| <
ε

2
for all N ≥ N1. Moreover, since

∑∞
n=1 zn converges absolutely, Theorem

1.2.9 implies there exists an N2 ∈ N such that
∞∑
k=N
|zk| <

ε

2

for all N ≥ N2.
Let N0 = max{N1, N2}. Since σ : N→ N is a bijection, there exists an

M0 ∈ N such that

{1, 2, . . . , N0} ⊆ {σ(j) | j ∈ {1, . . . ,M0}}.

Therefore, for all M ≥M0 we see that

|TM − SN0 | =

∣∣∣∣∣∣
M∑
k=1

zσ(k) −
N0∑
k=1

zk

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∑

k∈σ({1,...,M})
and k/∈{1,...,N0}

zk

∣∣∣∣∣∣∣∣∣
i.e. we made M so large
to contain the first N0

terms of the initial series

≤
∑

k∈σ({1,...,M})
and k/∈{1,...,N0}

|zk|

≤
∞∑

k=N0+1
|zk| <

ε

2 .
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Hence, for all M ≥M0 we see that

|TM − L| ≤ |TM − SN0 |+ |SN0 − L| <
ε

2 + ε

2 = ε.

Therefore, since ε > 0 was arbitrary,
∑∞
n=1 zσ(n) converges to L.

To see that
∑∞
n=1 zσ(n) converges absolutely, note since

∑∞
n=1 zn converges

absolutely that
∑∞
n=1 |zn| converges and thus

∑∞
n=1 |zσ(n)| converges by the

first part of the proof. Hence
∑∞
n=1 zσ(n) converges absolutely.

1.4 Double Indexed Series

Given that rearranging series may or may not change the value of the series
based on the type of convergence, perhaps it is useful to ponder other similar
situations that may arise. One such situation is when dealing with a sum
over two indices. To be specific, given zn,m ∈ C for all n,m ∈ N, is

∞∑
n=1

∞∑
m=1

zn,m =
∞∑
m=1

∞∑
n=1

zn,m?

For those that have taken multivariate calculus, this is very reminiscent of
Fubini’s Theorem that lets one exchange the order of a double integral for
continuous functions.

To understand our question for sums, note that

∞∑
n=1

∞∑
m=1

zn,m = lim
N→∞

N∑
n=1

∞∑
m=1

zn,m

= lim
N→∞

N∑
n=1

lim
M→∞

M∑
m=1

zn,m

= lim
N→∞

lim
M→∞

N∑
n=1

M∑
m=1

zn,m.

whereas

∞∑
m=1

∞∑
n=1

zn,m = lim
M→∞

M∑
m=1

∞∑
n=1

zn,m

= lim
M→∞

M∑
m=1

lim
N→∞

N∑
n=1

zn,m

= lim
M→∞

lim
N→∞

M∑
m=1

N∑
n=1

zn,m.

Thus is it always possible to interchange the limits? No!
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Example 1.4.1. For all n,m ∈ N, let

zn,m =


1 if n = m

−1 if n = m+ 1
0 otherwise

.

Notice that
∑∞
n=1 zn,m = 0 for all m ∈ N since the sequence (zn,m)n≥1 always

contains a single −1 followed by a single 1 and all other terms are 0. However
notice that

∞∑
m=1

zn,m =
{

0 if n ≥ 2
1 if n = 1

since the sequence (z1,m)m≥1 is the sequence (1, 0, 0, . . .) whereas for n ≥ 2
the sequence (zn,m)m≥1 always contains a single −1 followed by a single 1
and all other terms are 0. Hence

∞∑
n=1

∞∑
m=1

zn,m = 1

whereas
∞∑
m=1

∞∑
n=1

zn,m = 0

so
∞∑
n=1

∞∑
m=1

zn,m 6=
∞∑
m=1

∞∑
n=1

zn,m.

As we will see via the following two results, this example is only possible
since zn,m takes both positive and negative values and

∞∑
m=1

∞∑
n=1
|zn,m| =

∞∑
m=1

2

does not converge.

For certain series, we do not run into the same pathological behaviour as
Example 1.4.1. In particular, like with Section 1.2, for series of non-negative
real numbers, things work out as beautifully as possible.

Theorem 1.4.2 (Tonelli’s Theorem for Sums). For all n,m ∈ N, let
an,m ≥ 0. The following are equivalent:

i)
∑∞
n=1 an,m converges for all m ∈ N and

∑∞
m=1

∑∞
n=1 an,m converges.

ii)
∑∞
m=1 an,m converges for all n ∈ N and

∑∞
n=1

∑∞
m=1 an,m converges.

iii) S = sup
({∑N

n=1
∑M
m=1 an,m | N,M ∈ N

})
<∞.
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Moreover, in the case that one and thus all of the above are true, we have
∞∑
m=1

∞∑
n=1

an,m =
∞∑
n=1

∞∑
m=1

an,m = S.

Proof. Only the equivalence of (ii) and (iii) will be demonstrated as the
equivalence of (i) and (iii) is nearly identical.

Suppose that (ii) holds and let

L =
∞∑
n=1

∞∑
m=1

an,m.

Since
∑∞
m=1 an,m ≥ 0 for all n ∈ N as an,m ≥ 0 for all n,m ∈ N, we see if

SN =
N∑
n=1

∞∑
m=1

an,m

for all N ∈ N, then (SN )n≥1 is a non-decreasing sequence of partial sums
that converge to L so

N∑
n=1

∞∑
m=1

an,m ≤ L

for all N ∈ N. Similarly, since an,m ≥ 0 for all n,m ∈ N we see that

M∑
m=1

an,m ≤
∞∑
m=1

an,m

for all M,n ∈ N so
N∑
n=1

M∑
m=1

an,m ≤
N∑
n=1

∞∑
m=1

an,m ≤ L

for all N,M ∈ N. Hence S ≤ L <∞ so (iii) holds.
Conversely, suppose that (iii) holds. Since

M∑
m=1

an,m ≤ S

for all n,M ∈ N, Theorem 1.2.9 implies that
∑∞
m=1 an,m converges for all

n ∈ N. To see that
∑∞
n=1

∑∞
m=1 an,m converges, fix N ∈ N and consider the

partial sum

SN =
N∑
n=1

∞∑
m=1

an,m.

Notice for all M ∈ N that
N∑
n=1

M∑
m=1

an,m ≤ S.
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Hence

SN =
N∑
n=1

lim
M→∞

M∑
m=1

an,m

= lim
M→∞

N∑
n=1

M∑
m=1

an,m (since the sum over n is finite)

≤ S.

Therefore, since
∑∞
m=1 an,m ≥ 0 for all n ∈ N, Theorem 1.2.9 implies that∑∞

n=1
∑∞
m=1 an,m converges and

L =
∞∑
n=1

∞∑
m=1

an,m ≤ S.

Hence, as we have shown that S ≤ L and L ≤ S when (ii) and (iii) are true,
the result follows.

Returning to series of complex numbers, again the key to being able to
‘rearrange’ doubly indexed series is absolute convergence.

Theorem 1.4.3 (Fubini’s Theorem for Sums). For all n,m ∈ N, let
zn,m ∈ C. Suppose that either

•
∑∞
n=1 |zn,m| converges for all m ∈ N, and

•
∑∞
m=1

∑∞
n=1 |zn,m| converges

or

•
∑∞
m=1 |zn,m| converges for all n ∈ N, and

•
∑∞
n=1

∑∞
m=1 |zn,m| converges.

Then

a)
∑∞
n=1 zn,k and

∑∞
m=1 zk,m converge absolutely for all k ∈ N,

b)
∑∞
m=1 (

∑∞
n=1 zn,m) and

∑∞
n=1 (

∑∞
m=1 zn,m) converge absolutely, and

c)
∑∞
m=1

∑∞
n=1 zn,m =

∑∞
n=1

∑∞
m=1 zn,m.

Proof. Note that if either conditions hold, then Tonelli’s Theorem (Theorem
1.4.2) implies that

•
∑∞
n=1 |zn,m| converges for all m ∈ N,

•
∑∞
m=1 |zn,m| converges for all n ∈ N, and

•
∑∞
m=1

∑∞
n=1 |zn,m| =

∑∞
n=1

∑∞
m=1 |zn,m| <∞.
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Hence a) is clearly true. Moreover, Theorem 1.2.11 then implies that

∞∑
m=1

∣∣∣∣∣
∞∑
n=1

zn,m

∣∣∣∣∣ ≤
∞∑
m=1

∞∑
n=1
|zn,m| <∞

and

∞∑
n=1

∣∣∣∣∣
∞∑
m=1

zn,m

∣∣∣∣∣ ≤
∞∑
n=1

∞∑
m=1
|zn,m| <∞,

so Theorem 1.2.9 implies b) is true.
To see that c) is true, note by part b) that

L1 =
∞∑
m=1

∞∑
n=1

zn,m and L2 =
∞∑
n=1

∞∑
m=1

zn,m

exist. To see that L1 = L2, let ε > 0 be arbitrary. Since

∞∑
m=1

∞∑
n=1
|zn,m| <∞,

Theorem 1.2.9 implies that there exists an M0 ∈ N such that

∞∑
m=M0+1

∞∑
n=1
|zn,m| <

ε

4 .

Similarly, since

∞∑
n=1

∞∑
m=1
|zn,m| <∞,

Theorem 1.2.9 implies that there exists an N0 ∈ N such that

∞∑
n=N0+1

∞∑
m=1
|zn,m| <

ε

4 .
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Now notice that∣∣∣∣∣∣L1 −
M0∑
m=1

N0∑
n=1

zn,m

∣∣∣∣∣∣
=

∣∣∣∣∣∣
 ∞∑
m=M0+1

∞∑
n=1

zn,m

+

 M0∑
m=1

∞∑
n=1

zn,m −
M0∑
m=1

N0∑
n=1

zn,m

∣∣∣∣∣∣ value of series is value of
tail plus first few terms

≤

∣∣∣∣∣∣
∞∑

m=M0+1

∞∑
n=1

zn,m

∣∣∣∣∣∣+
∣∣∣∣∣∣
M0∑
m=1

∞∑
n=1

zn,m −
M0∑
m=1

N0∑
n=1

zn,m

∣∣∣∣∣∣ triangle inequality

=

∣∣∣∣∣∣
∞∑

m=M0+1

∞∑
n=1

zn,m

∣∣∣∣∣∣+
∣∣∣∣∣∣
M0∑
m=1

 ∞∑
n=1

zn,m −
N0∑
n=1

zn,m

∣∣∣∣∣∣ finite sum

=

∣∣∣∣∣∣
∞∑

m=M0+1

∞∑
n=1

zn,m

∣∣∣∣∣∣+
∣∣∣∣∣∣
M0∑
m=1

∞∑
n=N0+1

zn,m

∣∣∣∣∣∣ value of series is value of
tail plus first few terms

≤
∞∑

m=M0+1

∣∣∣∣∣
∞∑
n=1

zn,m

∣∣∣∣∣+
M0∑
m=1

∣∣∣∣∣∣
∞∑

n=N0+1
zn,m

∣∣∣∣∣∣ Theorem 1.2.9 and finite sum

≤
∞∑

m=M0+1

∞∑
n=1
|zn,m|+

M0∑
m=1

∞∑
n=N0+1

|zn,m| finite sum and Theorem 1.2.9

=
∞∑

m=M0+1

∞∑
n=1
|zn,m|+

∞∑
n=N0+1

M0∑
m=1
|zn,m| finite sum

≤
∞∑

m=M0+1

∞∑
n=1
|zn,m|+

∞∑
n=N0+1

∞∑
m=1
|zn,m| Theorem 1.2.9

<
ε

4 + ε

4 = ε

2 .

A similar argument reversing the roles of n and m show that∣∣∣∣∣∣L2 −
M0∑
m=1

N0∑
n=1

zn,m

∣∣∣∣∣∣ =

∣∣∣∣∣∣L2 −
N0∑
n=1

M0∑
m=1

zn,m

∣∣∣∣∣∣ < ε

2 .

Hence

|L1 − L2| ≤

∣∣∣∣∣∣L1 −
M0∑
m=1

N0∑
n=1

zn,m

∣∣∣∣∣∣+
∣∣∣∣∣∣
M0∑
m=1

N0∑
n=1

zn,m − L2

∣∣∣∣∣∣ < ε

2 + ε

2 = ε.

Therefore, as ε > 0 was arbitrary, |L1−L2| = 0. Thus L1 = L2 as desired.

1.5 The Complex Exponential
Using our knowledge of absolutely convergent series and doubly indexed
series, we can derive the complex exponential function along with many of its
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well-known properties. Said function will be of vital importance in Chapter
3. In particular, it should be pointed out that the results of this section also
apply to the real exponential function and provide one of the most rigorous
methods for constructing it and deriving its properties. Finally, it is possible
to generalize this definition to object other than complex numbers, such as
matrices. However, to do so requires technology from MATH 4011.

Definition 1.5.1. For z ∈ C, the complex exponential of z, denoted ez, is

ez =
∞∑
n=0

1
n!z

n.

Recall from Example 1.2.20 that
∑∞
n=0

1
n!z

n converges absolutely and so
ez is well-defined for all z ∈ C. Also note that if a ∈ R then ea ∈ R and that
if a > 0, then

ea =
∞∑
n=0

1
n!a

n > 0.

Finally, it is elementary to see that

e0 =
∞∑
n=0

1
n!0

n = 1.

Using just Definition 1.5.1 along with our knowledge of series, we can
demonstrate that the complex exponential function does behave like an
exponential function.

Theorem 1.5.2. For all z, w ∈ C,

ez+w = ezew.

Proof. Fix z, w ∈ C and for all n,m ∈ N, let

zn,m =


1
m!

1
(n−m)!z

n−mwm if n ≥ m
0 otherwise

.

Notice for all m ∈ N that
∞∑
n=0
|zn,m| =

∞∑
n=m

1
m!

1
(n−m)! |z|

n−m|w|m

=
∞∑
k=0

1
m!

1
k! |z|

k|w|m

= 1
m! |w|

m
∞∑
k=0

1
k! |z|

k

= 1
m! |w|

me|z| <∞
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34 CHAPTER 1. SERIES OF COMPLEX NUMBERS

and
∞∑
m=0

∞∑
n=0
|zn,m| =

∞∑
m=0

1
m! |w|

me|z|

= e|z|
∞∑
m=0

1
m! |w|

m

= e|z|e|w| <∞.

Therefore, we can apply Fubini’s Theorem (Theorem 1.4.3) to obtain that

ez+w =
∞∑
n=0

1
n! (z + w)n

=
∞∑
n=0

n∑
m=0

1
n!

(
n

m

)
zn−mwm

=
∞∑
n=0

n∑
m=0

1
n!

n!
m!((n−m)!)z

n−mwm

=
∞∑
n=0

n∑
m=0

1
m!

1
(n−m)!z

n−mwk

=
∞∑
m=0

∞∑
n=m

1
m!

1
(n−m)!z

n−mwm by Fubini’s Theorem

=
∞∑
m=0

∞∑
k=0

1
m!

1
k!z

kwm

=
∞∑
m=0

1
m!w

mez

= ezew

as desired.

Using Theorem 1.5.2 and some ingenuity, other essential properties of
the complex exponential function can be demonstrated.

Corollary 1.5.3. For all z ∈ C, ez 6= 0. Moreover e−z = 1
ez for all z ∈ C.

Finally ex > 0 for all x ∈ R.

Proof. Let z ∈ C be arbitrary. By Theorem 1.5.2 we see that

1 = e0 = ez+(−z) = eze−z.

Hence ez 6= 0 and e−z = 1
ez as desired.

Now let x ∈ R be arbitrary. If x = 0, then ex = 1 > 0. Next, x > 0, then
clearly

ex =
∞∑
n=0

1
n!x

n > 0
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1.5. THE COMPLEX EXPONENTIAL 35

being the sum of positive terms. Finally, if x < 0, then ex = 1
e−x > 0 as

desired.

Proposition 1.5.4. For all z ∈ C, ez = ez.

Proof. Let z ∈ C be arbitrary. By Corollary 1.1.7, we obtain that

ez = lim
N→∞

N∑
k=0

1
k!z

k

= lim
N→∞

N∑
k=0

1
k!z

k

= lim
N→∞

N∑
k=0

1
k!z

k

= ez

as desired.

Our next result should not be a surprise to those that have studied
complex numbers and Euler’s formula.

Corollary 1.5.5. For all θ ∈ R, |eiθ| = 1.

Proof. Let θ ∈ C be arbitrary. Then

|eiθ|2 = eiθeiθ

= eiθe−iθ by Proposition 1.5.4
= eiθ+(−iθ) by Theorem 1.5.2
= e0 = 1.

Hence |eiθ| = 1 as desired.

In fact, the best way to obtain Euler’s Formula is to define it to be true
and derive from the definition all of the desired properties of the resulting
functions.

Definition 1.5.6. For all θ ∈ R, the cosine and sine of θ, denoted cos(θ)
and sin(θ) respectively, are

cos(θ) = Re
(
eiθ
)

= eiθ + e−iθ

2 and sin(θ) = Im
(
eiθ
)

= eiθ − e−iθ

2i .

Note cos(θ), sin(θ) ∈ R for all θ ∈ R.

Using the above definition, we obtain many of the base results of the
cosine and sine functions, along with Euler’s Formula.
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36 CHAPTER 1. SERIES OF COMPLEX NUMBERS

Corollary 1.5.7. The following are true:

a) (Euler’s Formula) eiθ = cos(θ) + i sin(θ) for all θ ∈ R.

b) cos2(θ) + sin2(θ) = 1 for all θ ∈ R.

c) cos(x) =
∑∞
n=0

(−1)n
(2n)! x

2n for all x ∈ R with the series converging abso-
lutely.

d) sin(x) =
∑∞
n=0

(−1)n
(2n+1)!x

2n+1 for all x ∈ R with the series converging
absolutely.

e) cos(0) = 1 and sin(0) = 0.

f) cos(−θ) = cos(θ) and sin(−θ) = − sin(θ) for all θ ∈ R.

g) cos(θ + ϕ) = cos(θ) cos(ϕ)− sin(θ) sin(ϕ) for all θ, ϕ ∈ R.

h) sin(θ + ϕ) = sin(θ) cos(ϕ) + cos(θ) sin(ϕ) for all θ, ϕ ∈ R.

Proof. Since cos(θ) = Re(eiθ) and sin(θ) = Im(eiθ), a) trivially follows.
To see that b) is true, note by Corollary 1.5.5 that for all θ ∈ R

1 =
∣∣∣eiθ∣∣∣2 = | cos(θ) + i sin(θ)|2 = cos2(θ) + sin2(θ)

as desired.
To see that c) and d) are true, fix x ∈ R. We will first show the series

converge absolutely. For all n ∈ N, let

an = (−1)n

(2n)! x
2n and bn = (−1)n

(2n+ 1)!x
2n+1.

Since

lim
n→∞

∣∣∣∣an+1
an

∣∣∣∣ = lim
n→∞

x2n+2

(2n+ 2)!
(2n)!
x2n = lim

n→∞
x2

(2n+ 2)(2n+ 1) = 0

and

lim
n→∞

∣∣∣∣bn+1
bn

∣∣∣∣ = lim
n→∞

x2n+3

(2n+ 3)!
(2n+ 1)!
x2n+1 = lim

n→∞
x2

(2n+ 3)(2n+ 2) = 0,

the Ratio Test (Theorem 1.2.18) implies that both series converge absolutely.
To see the series converge to cos(x) and sin(x) respectively, notice since

ik =


1 if k ≡ 0 mod 4
i if k ≡ 1 mod 4
−1 if k ≡ 2 mod 4
−i if k ≡ 3 mod 4
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1.5. THE COMPLEX EXPONENTIAL 37

that

cos(x) + i sin(x) = eix

= lim
N→∞

4N−1∑
k=0

1
k! (ix)k

= lim
N→∞

2N−1∑
k=0

(−1)k

(2k)! x
2k + i

2N−1∑
k=0

(−1)k

(2k + 1)!x
2k+1

=
∞∑
n=0

(−1)n

(2n)! x
2n + i

∞∑
n=0

(−1)n

(2n+ 1)!x
2n+1.

Therefore, by equating the real and imaginary parts, c) and d) follow.
Note e) clearly follows from c) and d). To see that f) holds, notice that

cos(−θ) =
∞∑
n=0

(−1)n

(2n)! (−θ)2n =
∞∑
n=0

(−1)n

(2n)! θ
2n = cos(θ)

and

sin(−θ) =
∞∑
n=0

(−1)n

(2n+ 1)!(−θ)
2n+1 =

∞∑
n=0

(−1) (−1)n

(2n+ 1)!θ
2n+1 = − sin(θ)

as desired.
To see that g) and h) hold, let θ, ϕ ∈ R be arbitrary. Then

cos(θ + ϕ) + i sin(θ + ϕ)
= ei(θ+ϕ)

= eiθeiϕ by Theorem 1.5.2
= (cos(θ) + i sin(θ))(cos(ϕ) + i sin(ϕ))
= (cos(θ) cos(ϕ)− sin(θ) sin(ϕ)) + i(cos(θ) sin(ϕ) + sin(θ) cos(ϕ)).

Therefore, by equating the real and imaginary parts, g) and h) follow.

Using the above, we obtain most of the essential elementary facts about
cosine and sine. However, how do we obtain the traditional ‘special angle’
values of cosine and sine? Of course, if we could obtain cos(π) = −1 and
sin(π) = 0, or cos(π2 ) = 0 and sin(π2 ) = 1, we could use Corollary 1.5.7 parts
b), f), g), and h) to obtain all of the special angles. However, how do we
obtain the above values? Moreover, can we obtain the usual facts about the
continuity and derivatives of the exponential and trigonometric functions?
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Chapter 2

Series of Functions

As seen in Chapter 1, for every x ∈ R the numbers ex, cos(x), and sin(x)
can all be defined via absolutely convergent series. In particular,

ex =
∞∑
n=0

1
n!x

n,

cos(x) =
∞∑
n=0

(−1)n

(2n)! x
2n, and

sin(x) =
∞∑
n=0

(−1)n

(2n+ 1)!x
2n+1.

Viewing each of ex, cos(x), and sin(x) as a function of x yields each function
as an infinite series of functions (namely polynomials) in x. In this chapter,
we will focus on some of the fundamental problems surrounding series of
functions.

To begin, we know (but should show based on the above definitions) that
cosine, sine, and the exponential functions are all continuous, differentiable
functions. However, is it true that a series of continuous functions is continu-
ous? Is it true that a series of differentiable functions is differentiable? If so,
is the derivative of the series the infinite sum of the derivatives? Moreover,
if we want to integrate a series of functions, can we integrate them term-by-
term? Finally can we approximate every continuous function with a series
or sequence of ‘nicer’ functions? If so, how can we find these approximating
functions?

Understanding these behaviours and what can and cannot be done is
essential to applying these results to various real-world applications. Thus
we will delve into a precise, in-depth discussion of these questions in this
chapter. In particular, we will show what results are true and give several
examples illustrating the irredeemable behaviour if assumptions are dropped.

39



40 CHAPTER 2. SERIES OF FUNCTIONS

2.1 Continuity of Complex-Valued Functions
In order to discuss series of continuous functions, it is useful to recall the
notion of a continuous function. We do so in the situation of functions on
the complex numbers for use later in the course.

Definition 2.1.1. Let Ω ⊆ C. A function f : Ω→ C is said to be continuous
at a point w ∈ Ω if for all ε > 0 there exists a δ > 0 such that if z ∈ Ω and
|z − w| < δ then |f(z)− f(w)| < ε.

Moreover, f is said to be continuous on Ω if f is continuous at every
point in Ω.

Remark 2.1.2. Again, just as Lemma 1.1.2 shows that the ‘< ε’ in the
definition of a limit of a sequence can be replaced with ‘≤ ε’, one can replace
one or both of ‘< δ’ and ‘< ε’ with ‘≤ δ’ and ‘≤ ε’ respectively in Definition
2.1.1 without modifying the notion of continuity.

Unsurprisingly, the notion of continuity for continuous functions on the
complex numbers can also be characterized via limits of convergent sequences.

Lemma 2.1.3. Let Ω ⊆ C, let w ∈ Ω, and let f : Ω → C. Then f is
continuous at w if and only if whenever (zn)n≥1 is a sequence in Ω that
converge to w, we have limn→∞ f(zn) = f(w).

Proof. First suppose f is continuous at w. To see the desired result is
true, let (zn)n≥1 be a sequence in Ω that converge to w. To see that
limn→∞ f(zn) = f(w), let ε > 0 be arbitrary. Since f is continuous at w,
there exists a δ > 0 such that if z ∈ Ω and |z−w| < δ then |f(z)−f(w)| < ε.
Since (zn)n≥1 converges to w, there exists an N ∈ N such that |zn−w| < δ for
all n ≥ N . Hence for all n ≥ N we have that |zn−w| < δ so |f(zn)−f(w)| < ε.
Therefore, since ε > 0 was arbitrary, limn→∞ f(zn) = f(w).

Conversely, suppose that f is not continuous at w. Therefore there exists
an ε0 > 0 such that for all δ > 0 there exists an z ∈ Ω such that |z − w| < δ
but |f(z) − f(w)| ≥ ε0. Hence for all n ∈ N there exists a zn ∈ Ω such
that |zn − w| < 1

n but |f(zn)− f(w)| ≥ ε0. Thus (zn)n≥1 is a sequence in Ω
that converges to w such that (f(zn))n≥1 does not converge to f(w) since
|f(zn)− f(w)| ≥ ε0 for all n ∈ N so Definition 1.1.1 fails for ε = ε0.

Consequently, a composition of continuous functions is continuous.

Proposition 2.1.4. Let Ω ⊆ C, let z0 ∈ Ω, let f : Ω → C, and let g :
Range(f)→ C. If f is continuous at z0 and g is continuous at f(z0), then
g ◦ f is continuous at z0.

Proof. Let (zn)n≥1 be an arbitrary sequence in Ω that converges to z0. Since f
is continuous at z0 and (zn)n≥1 converges to z0, (fn(z0))n≥1 converges to f(z0)
by Lemma 2.1.3. Similarly, since g is continuous at f(z0) and (fn(z0))n≥1
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2.1. CONTINUITY OF COMPLEX-VALUED FUNCTIONS 41

converges to f(z0), (g(f(zn)))n≥1 converges to g(f(z0)) by Lemma 2.1.3.
Therefore, since (zn)n≥1 was arbitrary, Lemma 2.1.3 implies that g ◦ f is
continuous at z0.

In addition, the following shows that the set of continuous functions
on the complex numbers is a vector subspace of the vector space of all
complex-valued functions.

Lemma 2.1.5. Let Ω ⊆ C and let f : Ω→ C and g : Ω→ C be continuous
functions. Then the following are true:

a) The function f + g : Ω→ C defined by

(f + g)(z) = f(z) + g(z)

for all z ∈ Ω is continuous.

b) The function fg : Ω→ C defined by

(fg)(z) = f(z)g(z)

for all z ∈ Ω is continuous.

c) For all α ∈ C, the function αf : Ω→ C defined by

(αf)(z) = αf(z)

for all z ∈ Ω is continuous.

d) If f(z) 6= 0 for all z ∈ Ω, the function 1
f : Ω→ C defined by( 1

f

)
(z) = 1

f(z)

for all z ∈ Ω is continuous.

e) The function f : Ω→ C defined by

f(z) = f(z)

for all z ∈ Ω is continuous.

f) The function |f | : Ω→ C defined by

|f |(z) = |f(z)|

for all z ∈ Ω is continuous.

Proof. This immediately follows from Lemma 2.1.3 by using Corollary 1.1.7.
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42 CHAPTER 2. SERIES OF FUNCTIONS

As with complex numbers, the ability to take the real and imaginary part
of complex-valued functions is important.

Definition 2.1.6. Let Ω ⊆ C and let f : Ω → C. The real and imaginary
parts of f are the functions Re(f), Im(f) : Ω→ R respectively where

(Re(f))(x) = Re(f(x)) = f(x) + f(x)
2 and

(Im(f))(x) = Im(f(x)) = f(x)− f(x)
2i

for all x ∈ Ω.

Notice if f : Ω→ C, then f = Re(f) + iIm(f). Moreover

Re(f) = f + f

2 and Im(f) = f − f
2i

Thus Lemma 2.1.5 implies the following.

Lemma 2.1.7. Let Ω ⊆ C and let f : Ω→ C. Then f is continuous if and
only if Re(f) and Im(f) are continuous real-valued functions.

Proof. If Re(f) and Im(f) are continuous, then = Re(f) + iIm(f) is contin-
uous by Lemma 2.1.5, parts a) and c).

Similarly, if f is continuous, then

Re(f) = f + f

2 and Im(f) = f − f
2i

are continuous by Lemma 2.1.5, parts a), c), and e).

2.2 Continuity of Series of Functions
With our reminders of continuous functions out of the way, let us examine
the question of whether a series of continuous functions is continuous. To
answer this question we note since a series is a limit of its partial sums that
a series of functions is a limit of a sequences of functions. Consequently, it is
necessary to discuss limits of sequences of functions and whether a limit of
continuous functions is continuous. We begin with the most obvious way to
define the limit of a function and its corresponding restriction to a series of
functions.

Definition 2.2.1. Let Ω ⊆ C. A sequence (fn)n≥1 of complex-valued
functions on Ω is said to converge pointwise on Ω to f : Ω→ C if

f(z) = lim
n→∞

fn(z)

for all z ∈ Ω.
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Definition 2.2.2. Let Ω ⊆ C and for each n ∈ N, let fn : Ω → C. The
series

∑∞
n=1 fn is said to converge pointwise on Ω if

∑∞
n=1 fn(z) converges

for each z ∈ Ω. Moreover the function f : Ω→ C defined by

f(z) =
∞∑
n=1

fn(z)

for all z ∈ C is called the (pointwise) sum of (fn)n≥1 and is denoted by∑∞
n=1 fn.

Unfortunately, pointwise limits are not the limits we are looking for as a
pointwise limit of continuous functions is not continuous. Thus a pointwise
convergent series of continuous functions need not be continuous.

Example 2.2.3. For each n ∈ N, define fn : [0, 1]→ [0, 1] by f1(x) = x and,
for n ≥ 2,

fn(x) = xn − xn−1

for all x ∈ [0, 1]. Clearly (fn)n≥1 is a sequence of continuous functions on
[0, 1].

We claim the series
∑∞
n=1 fn converges pointwise on [0, 1] to the function

f : [0, 1]→ [0, 1] defined by

f(x) =
{

0 if x ∈ [0, 1)
1 if x = 1

.

As f is clearly not continuous at x = 1, this provides an example of a
series of continuous functions that converges pointwise to a function that is
discontinuous at a point.

To see the above, for each N ∈ N let SN =
∑N
k=1 fk. Notice that

Sn(x) = xN for all N ∈ N. Note if x = 1 then

lim
N→∞

SN (x) = lim
N→∞

1N = 1

whereas if x ∈ [0, 1) then

lim
N→∞

SN (x) = lim
N→∞

xN = 0.

Hence the example is complete. Note this also show that there exists a
sequence (namely (xn)n≥1) of continuous functions that converge pointwise
to a function that is discontinuous at a point.

In order to rectify this situation, we simply need to require a stronger
form of limit of functions.
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44 CHAPTER 2. SERIES OF FUNCTIONS

Definition 2.2.4. Let Ω ⊆ C. A sequence (fn)n≥1 of complex-valued
functions on Ω is said to converge uniformly on Ω to f : Ω → C if for all
ε > 0 there exists an N ∈ N such that if n ≥ N then |fn(z)− f(z)| ≤ ε for
all z ∈ Ω; that is,

sup({|fn(z)− f(z)| | z ∈ Ω}) ≤ ε

for all n ≥ N .

Again, using arguments similar to those used in Lemma 1.1.2 the ‘≤ ε’
in the Definition 2.2.4 can be replaced with ‘< ε’.

Remark 2.2.5. The notion of uniform convergence of sequences of functions
can be rephrased in an analogous way to how the convergence of sequences of
complex numbers was defined. Indeed instead of using the absolute value as
a notion of distance, if F(Ω) denotes the set of all bounded complex-valued
functions on a set Ω ⊆ C, one can define a distance function (or metric)
d : F(Ω)×F(Ω)→ [0,∞) by

d(f, g) = sup({|f(z)− g(z)| | z ∈ Ω})

for all f, g ∈ F(Ω). Then a sequence (fn)n≥1 in F(Ω) converges uniformly
to f ∈ F(Ω) if for all ε > 0 there exists an N ∈ N such that d(fn, f) < ε for
all n ≥ N . This notion of a distance function and convergence of sequences
with respect to a distance function can be further generalized. But that is a
topic for a future course (i.e. MATH 4011 - Analysis IIIA: Metric Spaces).

Remark 2.2.6. It is important to point out the difference between pointwise
convergence and uniform convergence. The main difference is, given an ε > 0,
pointwise convergence simply lets us find for each z ∈ Ω an NZ ∈ N that
depends on z such that |fn(z)− f(z)| ≤ ε for all n ≥ NZ whereas uniform
convergence lets us find an N ∈ N that works for every z ∈ Ω; that is,
|fn(z) − f(z)| ≤ ε for all n ≥ N and z ∈ Ω. More elegantly said uniform
convergence lets us find one N to rule all Nz; that is

N = sup({Nz | z ∈ Ω}) <∞.

Note this clearly implies if a sequence of functions converges uniformly to
f , then they converge pointwise to f . However, if a sequence of functions
converges pointwise, it need not converge uniformly as the following example
shows.

Example 2.2.7. Recall from Example 2.2.3 that if fn : [0, 1] → [0, 1] is
defined by fn(x) = xn for all x ∈ [0, 1] and n ∈ N, the sequence (fn)n≥1
converges pointwise to f : [0, 1]→ [0, 1] defined by

f(x) =
{

0 if x ∈ [0, 1)
1 if x = 1

.
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We claim that (fn)n≥1 does not converge uniformly to f on [0, 1]. To see
this, let ε = 1

2 > 0. Suppose there exists an N ∈ N such that |fn(x)−f(x)| <
1
2 for all n ≥ N and x ∈ [0, 1]. Since fN is continuous at 1, there exists a
δ > 0 such that if x ∈ [0, 1] and |x−1| < δ, then |fN (x)−fN (1)| < 1

2 . Hence,
for any x0 ∈

(
1− δ

2 , 1
)
we have that

|xN0 − 1| = |fN (x)− fN (1)| < 1
2

whereas the above implies that

|xN0 | = |xN0 − f(x0)| < 1
2 .

Since the first implies xN0 ∈
(

1
2 ,

3
2

)
whereas the second implies xN0 ∈

(
−1

2 ,
1
2

)
,

we have a contradiction. Hence (fn)n≥1 does not converge uniformly to f on
[0, 1].

However, the only pathology in the above example surrounds the value
of the functions at x = 1.

Example 2.2.8. Fix b ∈ [0, 1) and consider the functions fn : [0, b]→ [0, b]
is defined by fn(x) = xn for all x ∈ [0, b] and n ∈ N. We claim that (fn)n≥1
converge uniformly to 0 (the zero function) on [0, b]. To see this, let ε > 0 be
arbitrary. Since limn→∞ b

n = 0, there exists an N ∈ N such that |bn| < ε for
all n ≥ N . Hence for all x ∈ [0, b] and n ≥ N we see that

|fn(x)− 0| = xn ≤ bn < ε.

Therefore, as ε > 0 was arbitrary, (fn)n≥1 converge uniformly to 0 on [0, b].

As promised, the following result shows continuity behaves properly when
uniform limits are used. It is also useful to point out that the proof of the
following result is a very common and incredibly useful argument in analysis
known as a three-ε argument.

Theorem 2.2.9. Let Ω ⊆ C, let w ∈ Ω, and let (fn)n≥1 be a sequence of
complex-valued functions on Ω that converge uniformly on Ω to f : Ω→ C.
If each fn is continuous at w, then f is continuous at w.

Consequently, a uniform limit of continuous functions is continuous!

Proof. To see that f is continuous at w, let ε > 0 be arbitrary. Since (fn)n≥1
converges to f uniformly on Ω, there exists an N ∈ N such that

|fn(z)− f(z)| < ε

3
for all n ≥ N and z ∈ Ω. Since fN is continuous at w, there exists a δ > 0
such that if z ∈ Ω and |z − w| < δ, then

|fN (z)− fN (w)| < ε

3 .
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Hence, for all z ∈ Ω such that |z − w| < δ, we have

|f(z)− f(w)| ≤ |f(z)− fN (z)|+ |fN (z)− fN (w)|+ |fN (w)− f(w)|

<
ε

3 + ε

3 + ε

3 = ε

(where the first and last terms are less than ε
3 by uniform convergence and

the middle term is less than ε
3 by continuity of fN ). Therefore, as ε > 0 was

arbitrary, f is continuous at w.

To further emphasize the benefits of uniformly convergent continuous
functions, we desire an analogue of ‘every convergent sequence is bounded’.
To do so, we define the following notion of boundedness for a sequence of
functions.

Definition 2.2.10. Let Ω ⊆ C and let (fn)n≥1 be a sequence of complex-
valued functions on Ω. It is said that (fn)n≥1 is uniformly bounded on Ω if
there exists an M ∈ R such that

|fn(z)| ≤M

for all z ∈ Ω and n ∈ N.

Proposition 2.2.11. Let I be a bounded closed interval in R and let (fn)n≥1
be a sequence of complex-valued continuous functions on I that converge
uniformly on I to f : I → C. Then (fn)n≥1 is uniformly bounded.

Proof. Since I is a closed interval, the Extreme Value Theorem implies there
exists an Mn ∈ N such that

|fn(x)| ≤Mn

for all x ∈ I. Moreover, since (fn)n≥1 converge uniformly to f on I, Theorem
2.2.9 implies that f is continuous on I. Hence the Extreme Value Theorem
implies there exists an M0 ∈ R such that |f(x)| ≤M0 for all x ∈ I.

Since (fn)n≥1 converges uniformly to f on I, there exists an N such that

|fn(x)− f(x)| ≤ 1

for all n ≥ N and x ∈ I and thus

|fn(x)| ≤M0 + 1

for all n ≥ N and x ∈ I. Therefore, if

M = max{M0 + 1,M1,M2, . . . ,MN},

then
|fn(x)| ≤M

for all x ∈ I and n ∈ N. Hence (fn)n≥1 is uniformly bounded.
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Moreover, uniform convergence behaves well with respect to the operations
of addition and scalar multiplication. The proofs of these facts are similar to
the proof of Corollary 1.1.7 once combined with Proposition 2.2.11.

Proposition 2.2.12. Let I be a bounded closed interval in R and let (fn)n≥1
and (gn)n≥1 be sequences of complex-valued continuous functions on I that
converge uniformly on I to f : I → C and g : I → C respectively. Then the
following are true:

a) (fn + gn)n≥1 converges uniformly to f + g on I.

b) (fngn)n≥1 converges uniformly to fg on I.

c) If (αn)n≥1 is a sequence of complex numbers that converges to α ∈ C,
then (αnfn)n≥1 converges uniformly to αf on I.

d)
(
fn
)
n≥1

converges uniformly to f on I.

Proof. Exercise.

As Theorem 2.2.9 shows that uniform convergence is the limit we are
looking for in order to preserve continuity of functions, we now discuss
uniform convergence in the context of series.

Definition 2.2.13. Let Ω ⊆ C and let (fn)n≥1 be a sequence of complex-
valued functions on Ω. For each N ∈ N, define SN : Ω→ C by

SN (z) =
N∑
k=1

fk(z).

The series
∑∞
n=1 fn is said to converge uniformly on Ω to a function f : Ω→ C

if (SN )N≥1 converges uniformly to f on Ω.

Corollary 2.2.14. Let Ω ⊆ C and let (fn)n≥1 be a sequence of continuous
complex-valued functions on Ω. If the series

∑∞
n=1 fn converges uniformly

on Ω to a function f : Ω→ C, then f is continuous.

Proof. Since fn is continuous for all n ∈ N, the partial sums of
∑∞
n=1 fn are

continuous by Lemma 2.1.5. Hence f is continuous by Theorem 2.2.9 being
the uniform limit of continuous functions.

The simplest way to verify many series of functions converges uniformly is
the following ‘test’, which should remind the reader of absolutely convergence
of series of scalars. In particular, the following result shows that if a series of
functions ‘uniformly converges pointwise absolutely’, then the series converges
uniformly.
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Theorem 2.2.15 (Weierstrass M-Test). Let Ω ⊆ C and let (fn)n≥1 be a
sequence of complex-valued functions on Ω. For each n ∈ N suppose

0 ≤Mn = sup({|fn(z)| | z ∈ Ω}) <∞.

Furthermore, suppose
∑∞
n=1Mn converges. Then

∑∞
n=1 fn(z) converges ab-

solutely for all z ∈ Ω and if f : Ω→ C is defined by

f(z) =
∞∑
n=1

fn(z)

for all z ∈ Ω, then
∑∞
n=1 fn converges uniformly to f .

Proof. To see that
∑∞
n=1 fn(z) converges absolutely for all z ∈ Ω, note for

all z ∈ Ω that
|fn(z)| ≤Mn.

Since
∑∞
n=1Mn converges,

∑∞
n=1 fn(z) converges absolutely for all z ∈ Ω by

the Comparison Test (Theorem 1.2.13).
To see that

∑∞
n=1 fn converges uniformly to f , let ε > 0 be arbitrary.

Since
∑∞
n=1Mn converges, Theorem 1.2.9 implies there exists an N0 ∈ N

such that ∞∑
n=N0

Mn < ε.

Hence for all N ≥ N0 and z ∈ Ω, we see that∣∣∣∣∣
N∑
k=1

fk(z)−
∞∑
k=1

fk(z)
∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

k=N+1
fk(z)

∣∣∣∣∣∣
≤

∞∑
k=N+1

|fk(z)| Theorem 1.2.11

≤
∞∑

k=N+1
Mk assumptions

≤
∞∑

k=N0

Mk < ε.

Therefore, since ε > 0 was arbitrary,
∑∞
n=1 fn converges uniformly to f .

To demonstrate the power of the Weierstrass M-Test (Theorem 2.2.15),
we demonstrate the following series of functions from Chapter 1 converge
uniformly and thus define continuous functions.

Example 2.2.16. For each n ∈ N ∪ {0}, let fn : C→ C be defined by

fn(z) = 1
n!z

n
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for all z ∈ C. Clearly each fn is a continuous function such that
∑∞
n=0 fn(z) =

ez for all z ∈ C.
For each M ∈ N, let ΩM = {z ∈ C | |z| ≤M}. Since

|fn(z)| ≤ 1
n!M

n

for all z ∈ ΩM , and since
∑∞
n=0

1
n!M

n < ∞ by Example 1.2.20, the Weier-
strass M-Test (Theorem 2.2.15) implies that

ez =
∞∑
n=0

fn(z)

is continuous on ΩM . Since M ∈ N was arbitrary, ez is a continuous function
on
⋃∞
M=1 ΩM = C.

Example 2.2.17. Consider the function f : R→ C defined by

f(x) = eix

for all x ∈ R. Since f is the restriction to R of a continuous function on C
by Example 2.2.16, we obtain that f is continuous on R. Since

(Re(f))(x) = cos(x) and (Im(f))(x) = sin(x)

for all x ∈ R, we obtain that cos and sin are continuous functions by Lemma
2.1.7.

2.3 Continuous, Nowhere Differentiable Functions
Now that we know a pointwise series of continuous functions need not be
continuous and a uniform series of continuous functions is continuous, we turn
our attention to differentiability of series of differentiable functions. Since a
differentiable function is automatically continuous, we know a pointwise limit
of differentiable functions need not be differentiable. However, is a uniform
convergent series of differentiable functions differentiable?

It turns out that the answer to this question is no. In particular, in
this section we will give a family of examples of uniformly convergent series
of differentiable functions that are continuous but not differentiable at any
point in R! Such function are said to be nowhere differentiable.

Before we get to the example of a uniformly convergent series of dif-
ferentiable functions that is nowhere differentiable, we will use simply the
Weierstrass M-Test (Theorem 2.2.15) to construct a continuous but nowhere
differentiable function thereby motivating the procedure we will use for the
primary examples of this section. To construct this example, we require the
following.
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Definition 2.3.1. A function f : R→ R is said to be periodic with period
c > 0 if f(x+ c) = f(x) for all x ∈ R.

Remark 2.3.2. Fix a, b ∈ R with a < b. Note for each x ∈ R there exists a
unique yx ∈ [a, b) and nx ∈ Z such that

x = yx + (b− a)nx.

Therefore, if f : [a, b) → R, and we define g : R → R by g(x) = f(yx) for
all x ∈ R where yx is as above, then g is periodic with period b − a and
g(x) = f(x) for all x ∈ [a, b]. We call g the periodic extension of f .

Let us now construct our first continuous but nowhere differentiable
function.

Example 2.3.3. Let h : [−1, 1] → [0, 1] be defined by h(x) = |x| for all
x ∈ [−1, 1]. Since h(−1) = h(1), we can define the periodic extension
g : R→ [0, 1] of h and g is a continuous function with period 2. A portion of
the graph of g can be seen in the following figure.

For any n ∈ Z, it is not difficult to see that g is a line on [n, n + 1] with
either slope 1 or −1. In addition, we claim for all x, y ∈ R that

|g(x)− g(y)| ≤ |x− y|.

To see this, first note if |x− y| ≥ 2 then

|g(x)− g(y)| ≤ |g(x)|+ |g(y)| ≤ 1 + 1 = 2 ≤ |x− y|.

Otherwise, if |x − y| < 2, since g is 2-periodic, we can assume that x, y ∈
[−1, 1]. Therefore

|g(x)− g(y)| = ||x| − |y|| ≤ |x− y|
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by the reverse triangle inequality. Hence the claim has been demonstrated.
For all n ∈ N and x ∈ R, notice that

∣∣∣∣(3
4

)n
g (4nx)

∣∣∣∣ ≤ (3
4

)n
.

Therefore, since g is a continuous function and the geometric series

∞∑
n=0

(3
4

)n

converges, the Weierstrass M-Test (Theorem 2.2.15) implies that the function
f : R→ R defined by

f(x) =
∞∑
n=0

(3
4

)n
g (4nx)

for all x ∈ R exists, is continuous, and this sum converges uniformly.
To get an idea of what the graph of f looks like, the following is a portion

of the graph of g(x) + 3
4g (4x)

and the following is a portion of the graph of g(x) + 3
4g (4x) + 9

16g(16x).
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To see that f is nowhere differentiable, fix x0 ∈ R. To show that f is not
differentiable at x0, we will show that

lim
h→∞

∣∣∣∣f(x0 + h)− f(x0)
h

∣∣∣∣
does not exist by constructing a sequence (hm)m≥1 of non-zero numbers such
that limm→∞ hm = 0 yet

lim
m→∞

∣∣∣∣f(x0 + hm)− f(x0)
hm

∣∣∣∣ =∞.

For all m ∈ N, notice that
[
4mx0 − 1

2 , 4
mx0 + 1

2

]
has length 1. Therefore,

only one of
(
4mx0 − 1

2 , 4
mx0

)
and

(
4mx0, 4mx0 + 1

2

)
can contain an integer.

Let

hm =


1
24−m if

(
4mx0, 4mx0 + 1

2

)
∩ Z = ∅

−1
24−m if

(
4mx0 − 1

2 , 4
mx0

)
∩ Z = ∅

To obtain a lower bound on
∣∣∣f(x0+hm)−f(x0)

hm

∣∣∣, for all n,m ∈ N let

Dn,m =
∣∣∣∣g (4n(x0 + hm))− g (4nx0)

hm

∣∣∣∣ .
Let us compute some estimates on the value of Dn,m depending on the
relative sizes of m and n.

Case 1: n > m. In this case, notice that

4n(x0 + hm) = 4nx0 ±
1
24n−m.
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Since n > m, 1
24n−m is an integer multiple of 2. Therefore, since g has period

2, we see that
g (4n(x0 + hm)) = g (4nx0)

and thus Dn,m = 0 in this case.
Case 2: n = m. In this case, we see that

4n(x0 + hm) = 4nx0 ±
1
2 .

Therefore, since hm was chosen so that there are no integers strictly between
4nx0 and 4n(x0 + hm), we obtain that g is a line with slope 1 or −1 between
4nx0 and 4n(x0 + hm). Hence

Dn,m =
∣∣∣∣g (4n(x0 + hm))− g (4nx0)

hm

∣∣∣∣ = |4
n(x0 + hm)− 4nx0|

|hm|
=

1
2

1
24−n

= 4n.

Case 3: n < m. In this case, since |g(x)| ≤ 1 for all x ∈ R, we see that

Dn,m =
∣∣∣∣g (4n(x0 + hm))− g (4nx0)

hm

∣∣∣∣ ≤ |4n(x0 + hm)− 4nx0|
|hm|

=
1
24n−m
1
24−m

= 4n.

Using the above three cases, we see for all m ∈ N that∣∣∣∣f(x0 + hm)− f(x0)
hm

∣∣∣∣ =
∣∣∣∣∣
∞∑
n=0

(3
4

)n g (4n(x0 + hm))− g (4nx0)
hm

∣∣∣∣∣
=
∣∣∣∣∣
m∑
n=0

(3
4

)n g (4n(x0 + hm))− g (4nx0)
hm

∣∣∣∣∣
≥
(3

4

)m
Dm,m −

m−1∑
n=0

(3
4

)n
Dn,m

≥
(3

4

)m
4m −

m−1∑
n=0

(3
4

)n
4n

= 3m −
m−1∑
n=0

3n

= 3m − 3m − 1
3− 1

= 3m + 1
2 .

Therefore
lim
m→∞

∣∣∣∣f(x0 + hm)− f(x0)
hm

∣∣∣∣ =∞,

so f cannot be differentiable at x0. Therefore, since x0 was arbitrary, f is
continuous but nowhere differentiable.
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With the above example of a continuous but nowhere differentiable
function, we return to our primary example of the section of a family
of uniformly convergent series of differentiable functions that are nowhere
differentiable. These famous examples were first demonstrated by Weierstrass
in 1872.

The only tools we need to construct this family of functions is the
Weierstrass M-Test (Theorem 2.2.15), the elementary properties of cosine
and sine from Corollary 1.5.7, and knowledge about the derivatives of cosine
and sine. The last of these three requirements will be shown in Example 2.6.6.
Thus, for logical consistency, perhaps this examples should be discussed after
Example 2.6.6. However, for educational purposes, it is best to introduce
this example now in order to motivate the subsequent sections and enhance
the previous section (and it is expected the reader is already familiar with
the derivatives of the basic trigonometric functions and thus will excuse this
minor logical gap).

Example 2.3.4 (Weierstrass, 1872). Fix a, b ∈ R such that a is a positive
odd integer, 0 < b < 1, and ab > 1 + 3

2π (e.g. a = 13 and b = 1
2). For all

n ∈ N and x ∈ R, notice that

|bn cos(πanx)| ≤ bn.

Therefore, since x 7→ bn cos(πanx) is a continuous function and the geometric
series

∑∞
n=0 b

n converges since 0 < b < 1, the Weierstrass M-Test (Theorem
2.2.15) implies that the function W : R→ R defined by

W (x) =
∞∑
n=0

bn cos(πanx)

for all x ∈ R exists, is continuous, and this sum converges uniformly. The
function W is known as a Weierstrass function.

To get an idea of what the graph of W looks like, the following is a
portion of the graph of

∑1
n=0 b

n cos(πanx) when a = 13 and b = 1
2
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and the following is a portion of the graphs of
∑10
n=0 b

n cos(πanx) when
a = 13 and b = 1

2 .
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We claim that althoughW is continuous and a uniform limit of (infinitely)
differentiable functions, W is not differentiable at any point in R. This then
completes the claim that there are uniformly convergent series of differentiable
functions that are nowhere differentiable.

To see that W is nowhere differentiable, fix x0 ∈ R. To show that W is
not differentiable at x0, we will show that

lim
x→x0

∣∣∣∣W (x)−W (x0)
x− x0

∣∣∣∣
does not exist by constructing a sequence (xm)m≥1 of real numbers such that
xm 6= x0 for all m, limm→∞ xm = x0, and

lim
m→∞

∣∣∣∣W (xm)−W (x0)
xm − x0

∣∣∣∣ =∞.

For all m ∈ N, notice that the interval
[
amx0 + 1

2 , a
mx0 + 3

2

)
has length

exactly 1 and therefore there exists a unique integer

`m ∈ Z ∩
[
amx0 + 1

2 , a
mx0 + 3

2

)
.

Notice this implies
1
2 ≤ `m − a

mx0 <
3
2 .

Since 0 < b < 1 and ab > 1 + 3
2π, we know that a > 1. Hence if xm = `m

am we
have that

1
2am ≤ xm − x0 <

3
2am

and thus xm > x0. Moreover, since limm→∞
1

2am = 0 = limm→∞
3

2am , the
above inequality and the Squeeze Theorem imply that limm→∞ xm = x0.
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Next notice for all m ∈ N that

W (xm)−W (x0)
xm − x0

= 1
xm − x0

∞∑
n=0

bn cos(πanxm)− 1
xm − x0

∞∑
n=0

bn cos(πanx0)

= 1
xm − x0

(
m−1∑
n=0

bn cos(πanxm) +
∞∑
n=m

bn cos(πanxm)
)

− 1
xm − x0

(
m−1∑
n=0

bn cos(πanx0) +
∞∑
n=m

bn cos(πanx0)
)

only the tails matter

= 1
xm − x0

m−1∑
n=0

bn (cos(πanxm)− cos(πanx0))

+ 1
xm − x0

∞∑
n=m

bn (cos(πanxm)− cos(πanx0)) adding finite and
convergent series.

For each m ∈ N, let

Pm = 1
xm − x0

m−1∑
n=0

bn (cos(πanxm)− cos(πanx0))

Sm = 1
xm − x0

∞∑
n=m

bn (cos(πanxm)− cos(πanx0)) ,

which are (uniformly) convergent series since W (xm) and W (x0) converge
uniformly such that

W (xm)−W (x0)
xm − x0

= Pm + Sm.

We desire bounds on |Pm| and |Sm|.
Bound for |Pm|: Since the derivative of cosine is negative sine, the Mean

Value Theorem implies for all n ∈ {0, 1, . . . ,m − 1} there exists a cn,m
between πanxm and πanx0 such that

∣∣∣∣cos(πanxm)− cos(πanx0)
πanxm − πanx0

∣∣∣∣ = |− sin(cn,m)| = |sin(cn,m)| .
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Therefore, since | sin(x)| ≤ 1 for all x ∈ R, we obtain that

|Pm| ≤
m−1∑
n=0

bn
∣∣∣∣cos(πanxm)− cos(πanx0)

xm − x0

∣∣∣∣
=

m−1∑
n=0

bnπan
∣∣∣∣cos(πanxm)− cos(πanx0)

πanxm − πanx0

∣∣∣∣
≤

m−1∑
n=0

bnπan

= π
(ab)m − 1
ab− 1 < π

(ab)m

ab− 1 .

Bound for |Sm|: We will consider (−1)`mSm. For a fixed n ≥ m, notice
that

πanxm = πan−m`m.

However, since a is an odd integer, we see that πan−m`m is an odd integer
multiple of π when `m is odd and πan−m`m is an even integer multiple of π
when `m is even. Hence

(−1)`m cos(πanxm) = 1.

Moreover, since
sin(πanxm) = sin(πan−m`m) = 0

as πan−m`m is an integer multiple of π, we see that

cos(πanx0 − πanxm) = cos(πanx0) cos(πanxm) + sin(πanx0) sin(πanxm)
= cos(πanx0)(−1)`m + sin(πanx0)(0)
= (−1)`m cos(πanx0).

Therefore, since the above holds for all n ≥ m, we obtain that

(−1)`mSm =
∞∑
n=m

bn
(−1)`m cos(πanxm)− (−1)`m cos(πanx0)

xm − x0

=
∞∑
n=m

bn
1− cos(πanx0 − πanxm)

xm − x0

=
∞∑
n=m

bn
1− cos(πan−m(amx0 − `m))

xm − x0
.

Notice since 1
2 ≤ `m − a

mx0 <
3
2 that

cos(πam−m(amx0 − `m)) ≤ 0.
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Moreover, we know that

1− cos(πan−m(amx0 − `m)) ≥ 0

for all n > m. Finally, since xm > x0 for all m ∈ N, all terms in the above
series expression for (−1)`mSm(x) are non-negative. Hence (−1)`mSm(x) is
at least the first term in the series so

(−1)`mSm ≥ bm
1− cos(π(amx0 − `m))

xm − x0

≥ bm 1
xm − x0

≥ bm 1
3

2am
since 3

2am≥xm−x0

≥ 2
3a

mbm.

Hence |Sm(x)| ≥ 2
3a

mbm.
Using the above two bounds, we obtain for all m ∈ N that∣∣∣∣W (xm)−W (x0)

xm − x0

∣∣∣∣ = |Pm + Sm|

≥ |Sm| − |Pm| by the reverse triangle inequality

≥ 2
3a

mbm − π (ab)m

ab− 1

= (ab)m
(2

3 −
π

ab− 1

)
.

However, since ab > 1 + 3
2π, we see that 2

3 −
π

ab−1 > 0 and thus

lim inf
m→∞

∣∣∣∣W (xm)−W (x0)
xm − x0

∣∣∣∣ ≥ lim inf
m→∞

(ab)m
(2

3 −
π

ab− 1

)
=∞.

Hence W cannot be differentiable at x0. Therefore, since x0 was arbitrary,
W is continuous but nowhere differentiable.

2.4 Integration of Series of Functions

The existence of the Weierstrass functions puts the idea that series of dif-
ferentiable functions can be differentiable into great jeopardy. To rectify
this situation, we ignore this question and turn to integration. This may
seem odd to the reader in that the natural progression of calculus is to first
introduce derivatives and then more onto integration since differentiation
is easier computationally than integration. It turns out that integration
actually behaves better than integration and we will be able to get at the

c©For use through and only available at pskoufra.info.yorku.ca.



60 CHAPTER 2. SERIES OF FUNCTIONS

desired differentiation results via integration and the Fundamental Theorem
of Calculus. In addition, integration behaves far better in regards to limits of
continuous functions than differentiation does. Well, except for the following
examples that is (but of course these examples are with respect to pointwise
convergence, which we know is not the right type of convergence to look at).

Example 2.4.1. We claim that there exists a sequence (fn)n≥1 of real-
valued continuous functions on [0, 1] that converge pointwise to a continuous
function f : [0, 1]→ R such that∫ 1

0
f(x) dx 6= lim

n→∞

∫ 1

0
fn(x) dx.

To see this, for each n ∈ N, let fn : [0, 1]→ R be defined by

fn(x) =


2n2x if 0 ≤ x ≤ 1

2n
2n− 2n2x if 1

2n ≤ x ≤
1
n

0 if 1
n ≤ x ≤ 1

.

In particular, the graph of fn creates an isosceles triangle with base
[
0, 1

n

]
with height n, and otherwise is 0. Thus fn continuous and∫ 1

0
fn(x) dx = 1

2

for all n ∈ N.
We claim that (fn)n≥1 converges pointwise to 0 on [0, 1]. This will

complete the example since∫ 1

0
0 dx = 0 6= 1

2 = lim
n→∞

∫ 1

0
fn(x) dx.

To see (fn)n≥1 converges pointwise to 0, let x ∈ [0, 1] be arbitrary. If
x = 0, then since fn(0) = 0 for all n ∈ N we clearly see that (fn(x))n≥1
converges to 0. Otherwise, assume x > 0. Since limn→∞

1
n = 0, there exists

an N ∈ N such that 1
n < x for all n ≥ N . Thus the definition of fn implies

that fn(x) = 0 for all n ≥ N and thus (fn(x))n≥1 converges to 0.

Example 2.4.2. We claim that there exists a sequence (fn)n≥1 of real-valued
Riemann integrable functions on [0, 1] that converge pointwise to a function
f : [0, 1]→ R that is bounded but not Riemann integrable. To see this, recall
that Q is a countable set. Hence we can write Q ∩ [0, 1] = {rn | n ∈ N}.
Define fn : [0, 1]→ [0, 1] by

fn(x) =
{

1 if x ∈ {r1, r2, . . . , rn}
0 otherwise
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for all x ∈ [0, 1] and define f : [0, 1]→ [0, 1] by

f(x) =
{

1 if x ∈ Q ∩ [0, 1]
0 otherwise

.

We claim that (fn)n≥1 converges pointwise to f . To see this, we note
that fn(x) = 0 = f(x) for all x ∈ [0, 1] \Q. Otherwise, if x ∈ Q ∩ [0, 1], then
x = rN for some N ∈ N and fn(x) = 1 = f(x) for all n ≥ N . Hence (fn)n≥1
converges pointwise to f .

Next, we claim that fn is Riemann integrable for all n ∈ N. To see this,
fix n ∈ N and let ε > 0 be arbitrary. Let Pε be the partition of [0, 1] formed
by taking the end points of the open intervals of length ε

n centred at each
rk for k ≤ n. For any interval in P that does not contain an rk for k ≤ n,
the maximal and minimal values of fn on this interval are both 0. Moreover,
the interval of P containing an rk with k ≤ n is of length at most ε

n and the
difference between the maximal and minimal values of fn on this interval is
at most 1. Therefore, as there are n possible rk for k ≤ n, we obtain that

U(fn,Pε)− L(fn,Pε) ≤ n(1− 0) ε
n

= ε.

Therefore, as ε > 0 was arbitrary, fn is Riemann integrable for all n ∈ N.
However, notice for any partition of [0, 1] that

U(f,P) = 1 and L(f,P) = 0.

Hence f is not integrable. Therefore, the example is complete.

Remark 2.4.3. Example 2.4.1 is pathological for any conceivable notion of
integral one would want to work with that models the area under a curve.
However, Example 2.4.2 is more a pathology of the Riemann integral in that
the function that is 1 on the rationals and 0 on the irrationals is not Riemann
integral even through the rational numbers are quite ‘meagre’ with respect to
the irrational numbers. In particular, there are ways to extend the Riemann
integral to a better notion that will remove this pathology. However, that is
a topic for MATH 4012.

Of course the real problem with the above two examples is that pointwise
convergence generally yields no analytical information about the limit func-
tion. As we have seen with continuity, it is uniform convergence we should
consider in analysis. The following results further emphasizes this point.

Theorem 2.4.4. Let (fn)n≥1 be a sequence of real-valued, Riemann inte-
grable functions on a closed interval [a, b]. If (fn)n≥1 converges uniformly on
[a, b] to f : [a, b]→ R, then f is Riemann integrable and∫ b

a
f(x) dx = lim

n→∞

∫ b

a
fn(x) dx.
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Proof. To see that f is Riemann integrable, let ε > 0 be arbitrary. Since
(fn)n≥1 converges to f uniformly, there exists an N ∈ N such that

|fN (x)− f(x)| < ε

4(b− a)

for all x ∈ [a, b]. Therefore

fN (x)− ε

4(b− a) < f(x) < fN (x) + ε

4(b− a)

for all x ∈ [a, b].
Since fN is Riemann integrable, there exists a partition P of [a, b] such

that
U(fN ,P)− L(fN ,P) < ε

2 .

Write P = {tk}`k=0 where a = t0 < t1 < · · · < t` = b. Then, if

Mk = sup ({fN (x) | x ∈ [tk−1tk]}) and
mk = inf ({fN (x) | x ∈ [tk−1tk]}) ,

we know by the definition of the upper and lower Riemann sums that

U(fN ,P) =
∑̀
k=1

Mk(tk − tk−1) and L(fN ,P) =
∑̀
k=1

mk(tk − tk−1).

Notice for all x ∈ [tk−1, tk] that

mk−
ε

4(b− a) ≤ fN (x)− ε

4(b− a) < f(x) < fN (x)+ ε

4(b− a) ≤Mk+
ε

4(b− a) .

Therefore

U(f,P) ≤
∑̀
k=1

(
Mk + ε

4(b− a)

)
(tk − tk−1)

=
∑̀
k=1

Mk(tk − tk−1) +
∑̀
k=1

ε

4(b− a)(tk − tk−1)

= U(fN ,P) + ε

4
and

L(f,P) ≥
∑̀
k=1

(
mk −

ε

4(b− a)

)
(tk − tk−1)

=
∑̀
k=1

mk(tk − tk−1)−
∑̀
k=1

ε

4(b− a)(tk − tk−1)

= L(fN ,P)− ε

4 .
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Hence

U(f,P)− L(f,P) ≤
(
U(fN ,P) + ε

4

)
−
(
L(fN ,P)− ε

4

)
= (U(fN ,P)− L(fN ,P)) + ε

2
<
ε

2 + ε

2 = ε.

Therefore, since ε > 0 was arbitrary, f is Riemann integrable.
To see that ∫ b

a
f(x) dx = lim

n→∞

∫ b

a
fn(x) dx,

let ε > 0 be arbitrary. Since (fn)n≥1 converges to f uniformly, there exists
an N ∈ N such that

|fn(x)− f(x)| < ε

b− a
for all n ≥ N and x ∈ [a, b]. Therefore, for all n ≥ N we have∣∣∣∣∣

∫ b

a
fn(x) dx−

∫ b

a
f(x)

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a
fn(x)− f(x) dx

∣∣∣∣∣
≤
∫ b

a
|fn(x)− f(x)| dx

≤
∫ b

a

ε

b− a
dx

since |fn(x)−f(x)|< ε
b−a

for all x∈[a,b]

= ε.

Therefore, since ε > 0 was arbitrary, the result is complete.

Theorem 2.4.4 immediately allows us to integrate uniformly convergent
series of Riemann integrable functions term-by-term!

Corollary 2.4.5. Let (fn)n≥1 be a sequence of real-valued Riemann integrable
functions on [a, b]. If

∑∞
n=1 fn converges uniformly to f : [a, b]→ R, then f

is Riemann integrable and∫ b

a
f(x) dx =

∞∑
n=1

∫ b

a
fn(x) dx.

Proof. For each N ∈ N, let define SN : [a, b]→ R by

SN (x) =
N∑
k=1

fk(x)

for all x ∈ [a, b]. Since fn is Riemann integrable for all n, SN is Riemann
integrable. Moreover, since (SN )n≥1 converges uniformly to f by assumption,
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Theorem 2.4.4 implies that f is Riemann integrable and∫ b

a
f(x) dx = lim

N→∞

∫ b

a
SN (x) dx

= lim
N→∞

∫ b

a

N∑
k=1

fk(x) dx

= lim
N→∞

N∑
k=1

∫ b

a
fk(x) dx

=
∞∑
n=1

∫ b

a
fn(x) dx

as desired.

Remark 2.4.6. Using Corollary 2.4.5, we can obtain some new series of
functions and potentially find the values of some of the series of real numbers
from Chapter 1. Indeed, for any 0 < b < 1, since

|xn| ≤ bn

for all x ∈ [−b, b] and all n ∈ N, and since
∑∞
n=1 b

n converges, the Weierstrass
M-Test (Theorem 2.2.15) implies that

1
1− x =

∞∑
n=0

xn

with the convergence being uniform on [−b, b]. Hence Corollary 2.4.5 implies
that

− ln(1− x) =
∫ x

0

1
1− r dr

=
∞∑
n=0

∫ x

0
rn dr

=
∞∑
n=0

1
n+ 1x

n+1

=
∞∑
n=1

1
n
xn

for all x ∈ [−b, b]. As this holds for all b ∈ (0, 1), we have that

− ln(1− x) =
∞∑
n=1

1
n
xn

for all x ∈ (−1, 1).

c©For use through and only available at pskoufra.info.yorku.ca.



2.5. DIFFERENTIATION OF SERIES OF FUNCTIONS 65

Of course, this does not let us evaluate
∞∑
n=1

1
n

(−1)n

(after all, this series only converges conditionally and can be rearranged to
obtain any value). However, one may be tempted to try a similar idea to
compute

∑∞
n=1

1
n2x

n for any x ∈ (−1, 1) and then take a limit as x tends to
1 to obtain the value of ∞∑

n=1

1
n2 .

Indeed, we note the above series implies that

− ln(1− x)
x

=
∞∑
n=1

1
n
xn−1.

In addition, we can again use the Weierstrass M-Test (Theorem 2.2.15) to
show that this series converges uniformly on any closed subinterval of (0, 1)
and thus obtain by Corollary 2.4.5 that

∞∑
n=1

1
n2 (bn − an) =

∞∑
n=1

∫ b

a

1
n
xn−1 dx =

∫ b

a
− ln(1− x)

x
dx

for all 0 < a < b < 1. This clearly poses some problems in that :

1. What is the value of this integral?

2. Can we actually take the limit as a tends to 0 and b tends to 1? After
all, we have seen exchanging limits is problematic.

3. We have yet to actually define the natural logarithm.

Of course, the last question is the easiest to solve once we obtain some
information about differentiation of series.

2.5 Differentiation of Series of Functions
Of course, as Example 2.3.4 shows, there exist uniformly convergent series of
(infinitely) differentiable functions that are nowhere differentiable. However,
some simple additional requirements can be added to resolve this problem.
To be specific, provided the partial sums of the derivatives are Riemann
integrable and converge uniformly, the series will be differentiable and the
derivative can be obtained by summing the derivatives of the individual
terms in the series. To obtain this result, we simply prove the following
result pertaining to limits of differentiable functions.

Throughout these notes, given a closed interval [a, b] and a function
f : [a, b] → R, we say that f is differentiable on [a, b] if f is continuous on
[a, b] and differentiable on (a, b).
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Theorem 2.5.1. Let (fn)n≥1 be a sequence of real-valued differentiable
functions on a closed interval [a, b] that converge pointwise to a function
f : [a, b]→ R. If

• f ′n is Riemann integrable (e.g. continuous) for all n ∈ N, and

• (f ′n)n≥1 converges uniformly on [a, b] to a continuous function g :
[a, b]→ R,

then f is differentiable on [a, b] and f ′ = g; that is, (f ′n)n≥1 converges
uniformly to f ′ on [a, b].

Proof. Notice for all x ∈ [a, b] that

f(x) = lim
n→∞

fn(x) since (fn)n≥1 converges pointwise to f

= lim
n→∞

∫ x

a
f ′n(r) dr by the Fundamental Theorem of Calculus

=
∫ x

a
g(r) dr since Theorem 2.4.4 and since

(fn)n≥1 converges uniformly to g.

Therefore, by the Fundamental Theorem of Calculus, f is differentiable on
[a, b] and f ′ = g. Hence (f ′n)n≥1 converges uniformly to f ′ on [a, b].

Of course, we immediately obtain the analogue for series.

Corollary 2.5.2. Let (fn)n≥1 be a sequence of real-valued differentiable
functions on [a, b]. If

•
∑∞
n=1 fn(x) converges for all x ∈ [a, b],

• f ′n is Riemann integrable (e.g. continuous) for all n ∈ N, and

•
∑∞
n=1 f

′
n converges uniformly on [a, b] to a continuous function g :

[a, b]→ R,

then the function f : [a, b]→ R defined by

f(x) =
∞∑
n=1

fn(x)

for all x ∈ [a, b] is differentiable and

∞∑
n=1

f ′n

converges uniformly to f ′ on [a, b].
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Proof. For all N ∈ N, define SN : [a, b]→ R by

SN (x) =
n∑
k=1

fk(x)

for all x ∈ [a, b]. By the first assumption, (SN )n≥1 converges pointwise to f .
Moreover, by the second assumption

S′N =
N∑
k=1

f ′k

is Riemann integrable on [a, b] for all N ∈ N and, by the third assumption,
(S′N )N≥1 converges uniformly to a continuous function on [a, b], Theorem
2.5.1 implies that f is differentiable and

∞∑
n=1

f ′n

converges uniformly to f ′ on [a, b].

Of course the challenge in using Corollary 2.5.2 is the requirement that
the series of derivatives converges uniformly, but again we can often bypass
this issue by using the Weierstrass M-Test (Theorem 2.2.15).

Before moving on to using and examples of Corollary 2.5.2, it is useful to
note the following two things.

Remark 2.5.3. Corollary 2.5.2 is not in contradiction with the Weierstrass
functions being nowhere differentiable in Example 2.3.4. Indeed, recall if
a, b ∈ R with a a positive odd integer, 0 < b < 1 and ab > 1 + 3

2π, then if we
define W : R→ R by

W (x) =
∞∑
n=0

bn cos(πanx)

for all x ∈ R, then the above series converges uniformly so W is continuous,
but W is nowhere differentiable. The reason Corollary 2.5.2 does not apply
here is that if fn(x) = bn cos(πanx) for all x ∈ R and n ∈ N, then

f ′n(x) = −π(ab)n sin(πanx)

is Riemann integrable, but

f ′n (1) = −π(ab)n sin
(
πan

2

)
= (−1)

a+1
2 (ab)n

for all n ∈ N so
∞∑
n=0

f ′n

(1
2

)
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diverges since ab > 1. In fact, Corollary 2.5.2 can be used to show that

∞∑
n=0
−π(ab)n sin(πanx)

does not converge uniformly on any closed interval of R with positive length.

Remark 2.5.4. Another natural question in regards to Theorem 2.5.1 (and
thus Corollary 2.5.2) is that, if we knew the uniform limit f of the sequence
of functions happened to be differentiable, does the limit of the sequence of
derivatives converge to f ′? Unfortunately, we obtain a quick answer of no
based on the following example.

We claim that there exists a sequence (fn)n≥1 of real-valued continuously
differentiable functions on a closed interval [a, b] that converge uniformly to
a continuously differentiable function f : [a, b]→ R, but

f ′(x) 6= lim
n→∞

f ′n(x)

for some x ∈ [a, b].
To see this, for each n ∈ N let fn : [−π, π]→ R be defined by

fn(x) = 1
n

sin(nx)

for all x ∈ [−π, π]. Since

|fn(x)| ≤ 1
n
| sin(nx)| ≤ 1

n

for all x ∈ [−π, π] and n ∈ N, and since limn→∞
1
n = 0, we see that (fn)n≥1

converges uniformly to 0. However f = 0 is a continuously differentiable
function with derivative 0 and

f ′n(x) = cos(nx)

for all x ∈ [−π, π] and n ∈ N, so

lim
n→∞

f ′n(0) = lim
n→∞

cos(0) = 1 6= f ′(0).

Hence the example is complete.

Of course the above example requires knowledge of the derivatives of
cosine and sine, which we have yet to demonstrate with the definitions
provided in Chapter 1. It is about time we rectify this delay.
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2.6 Power Series

Using Corollary 2.5.2 we can now finally complete our construction of the
exponential, cosine, and sine functions by describing their derivatives. As
all three of these functions have a very specific form, it is useful for other
applications to describe a larger collection of functions and derive their
properties.

Definition 2.6.1. Given c ∈ R, a power series centred at c is any series of
the form

∞∑
n=0

an(x− c)n

where x is a real variable and (an)n≥0 is a sequence of real numbers.

Often we take c = 0 when discussing power series as any results that can
be done at c = 0 can be translated to an arbitrary c. However, we will prove
the following at an arbitrary c without the need to translate.

Theorem 2.6.2. Let (an)n≥0 be a sequence of real numbers and let c ∈ R.
Suppose x0 ∈ R \ {c} is such that

∞∑
n=0

an(x0 − c)n

converges. Then for any r ∈ R with 0 < r < |x0 − c|, the series of functions
in x

∞∑
n=0

an(x− c)n and
∞∑
n=1

nan(x− c)n−1

converge uniformly and absolutely on [c− r, c+ r].
Moreover, if f : [c− r, c+ r]→ R is defined by

f(x) =
∞∑
n=0

an(x− c)n

for all x ∈ [c− r, c+ r], then f is differentiable on [c− r, c+ r] with

f ′(x) =
∞∑
n=1

nan(x− c)n−1

for all x ∈ (c− r, c+ r).

Proof. For each n ∈ N ∪ {0}, let fn : R→ R and gn : R→ R be defined by

fn(x) = an(x− c)n and gn(x) = nan(x− c)n−1
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for all x ∈ R. Our goal is to use the Weierstrass M-Test (Theorem 2.2.15) to
show that

∑∞
n=0 fn and

∑∞
n=0 gn converge absolutely, uniformly, and define

continuous functions.
To begin, notice since

∞∑
n=0

an(x0 − c)n

converges, Corollary 1.2.6 implies that

lim
n→∞

an(x0 − c)n = 0.

Hence, by Corollary 1.1.6 implies there exists an M > 0 such that

|an(x0 − c)n| ≤M.

Therefore, we have for all n ∈ N ∪ {0} and x ∈ [c− r, c+ r] that

|an(x− c)n| = |an(x0 − c)n|
∣∣∣∣ (x− c)n

(x− c0)n

∣∣∣∣ ≤M (
r

|x0 − c|

)n
.

Therefore, since 0 ≤ r < |x0 − c|, we know that the geometric series
∞∑
n=0

M

(
r

|x0 − c|

)n
converges. Hence, since fn is continuous for all n ∈ N ∪ {0}, the Weierstrass
M-Test (Theorem 2.2.15) implies that

∑∞
n=0 fn converges uniformly and

absolutely to f on [c− r, c+ r] and f is continuous on [c− r, c+ r].
To obtain a similar result for

∑∞
n=0 gn, first we claim that if r0 = r

|x0−c|
then ∞∑

n=0
Mnrn−1

0

converges. To see this, if bn = Mnrn0 for all n ∈ N, then∣∣∣∣bn+1
bn

∣∣∣∣ = M(n+ 1)|r0|n

Mn|r0|n−1 = n+ 1
n
|r0|.

Hence
lim
n→∞

∣∣∣∣bn+1
bn

∣∣∣∣ = |r0|.

Therefore, since |r0| < 1 since 0 ≤ r < |x0 − c|, we obtain that
∑∞
n=0Mnrn0

converges by the Ratio Test (Theorem 1.2.18).
Now notice for all n ∈ N and x ∈ [c− r, c+ r] that

|nan(x− c)n−1| = n|an(x0 − c)n−1|
∣∣∣∣∣ (x− c)n−1

(x− c0)n−1

∣∣∣∣∣ ≤ nM
(

r

|x0 − c|

)n−1
.
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Since ∞∑
n=1

Mn

(
r

|x0 − c|

)n−1

converges and since gn is continuous for all n ∈ N ∪ {0}, the Weierstrass
M-Test (Theorem 2.2.15) implies that

∑∞
n=0 gn converges uniformly and

absolutely to a continuous function g on [c− r, c+ r].
Finally, since

∑∞
n=0 fn converges pointwise to f , since f ′n = gn is continu-

ous (and thus Riemann integrable) for all n ∈ N ∪ {0}, and since
∑∞
n=0 f

′
n =∑∞

n=1 gn converges uniformly to a continuous function on [c− r, c+ r], Theo-
rem 2.5.1 implies that f is differentiable on [c− r, c+ r] and

f ′(x) =
∞∑
n=0

f ′n(x) =
∞∑
n=1

gn(x) =
∞∑
n=1

nan(x− c)n−1

for all x ∈ (c− r, c+ r) as desired.

Remark 2.6.3. Given c ∈ C and a sequence (an)n≥0 of complex numbers is
not difficult to verify that the first part of the proof of Theorem 2.6.2 works
for the complex power series

∞∑
n=0

an(z − c)n and
∞∑
n=1

ann(z − c)n−1

where the interval [c − r, c + r] is replaced with a closed disk of radius r
centred at c. The second part of Theorem 2.6.2 concerning the second power
series is the derivative of the first power series is true, but more complicated
to prove since we would need to discuss the derivatives of functions on the
complex plane and since we cannot use Theorem 2.5.1 in its present form
as the proof relies heavily on the Fundamental Theorem of Calculus. The
details of these results are best left for a complex analysis course (see MATH
3410).

With Theorem 2.6.2 in hand, we can immediately obtain some new
convergent series.

Example 2.6.4. Recall for all x ∈ (−1, 1), the geometric series
∑∞
n=0 x

n

converges to the function
f(x) = 1

1− x
Hence Theorem 2.6.2 implies that f ′(x) =

∑∞
n=1 nx

n−1. Hence
∞∑
n=1

nxn = xf ′(x) = x

(1− x)2 .

Therefore
∞∑
n=1

n

2n =
1
2(

1− 1
2

)2 = 2.
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Of course, Theorem 2.6.2 finally allows us to completely prove the re-
maining properties of the exponential, cosine, and sine functions that we
desired.

Corollary 2.6.5. Consider the function f : R→ (0,∞) defined by

f(x) = ex

for all x ∈ R. Then f is differentiable on its domain and f ′(x) = f(x) for
all x ∈ R. Moreover, f is strictly increasing, bijective function.

The inverse of f is the function ln : (0,∞) → R and is called the
natural logarithm. The natural logarithm is differentiable on its domain with
ln′(x) = 1

x for all x ∈ R.

Proof. Since

f(x) =
∞∑
n=0

1
n!x

n

for all x ∈ R, Theorem 2.6.2 implies that f is differentiable on any closed
interval centred at 0 (and thus differentiable on R) with

f ′(x) =
∞∑
n=1

n
1
n!x

n−1 =
∞∑
n=1

1
(n− 1)!x

n−1 = ex

as desired.
Notice that

f ′(x) = ex > 0

for all x ∈ R by Corollary 1.5.3. Therefore, by Corollary 1.5.3 and a result
from MATH 2001, f is a strictly increasing continuous function from R to
(0,∞) and thus has a differentiable inverse ln : (0,∞) → R. Moreover, by
another result from MATH 2001, if x ∈ (0,∞) and ln(x) = y, then x = ey

and
ln′(x) = 1

f ′(y) = 1
ey

= 1
x

as desired.

Example 2.6.6. Since Corollary 1.5.7 proved that

cos(x) =
∞∑
n=0

(−1)n

(2n)! x
2n and sin(x) =

∞∑
n=0

(−1)n

(2n+ 1)!x
2n+1

for all x ∈ R, Theorem 2.6.2 implies that cos and sin are differentiable with

sin′(x) =
∞∑
n=0

(2n+ 1) (−1)n

(2n+ 1)!x
2n =

∞∑
n=0

(−1)n

(2n)! x
2n = cos(x)
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and

cos′(x) =
∞∑
n=0

2n(−1)n

(2n)! x
2n−1

=
∞∑
n=1

(−1)n

(2n− 1)!x
2n−1

=
∞∑
m=0

(−1)m+1

(2m+ 1)!x
2m+1

= −
∞∑
m=0

(−1)m

(2m+ 1)!x
2m+1

= − sin(x)

just as we knew to be true!

Remark 2.6.7. Using Example 2.6.6 together with Corollary 1.5.7, one can
derive the known properties of cos and sin. In particular, since for x ∈ (0, 1)
we know

1
(4n+ 1)!x

4n+1 − 1
(4n+ 3)!x

4n+3 > 0

for all n ≥ 2, we obtain that

sin(x) =
∞∑
n=0

(−1)n

(2n+ 1)!x
2n+1 ≥ x− 1

6x
3 > 0.

Hence cos′(x) < 0 for all x ∈ (0, 1), so cosine is a decreasing function on
(0, 1). Moreover, since sin′(x) = cos(x), which must be positive on some
interval around 0, sine must be increasing on (0, c) for some c > 0. Thus,
the coupling cos′(x) = − sin(x) and sin′(x) = cos(x) imply that cosine must
have a first root larger than 0, which is what we call π2 . From there, we can
derive all the special angles for cosine and sine via Corollary 1.5.7, show
the function eiθ draws out a circle in the complex plane as θ moves from 0
to 2π, and that the area of the circle is π via integrals and trigonometric
substitution. That is, our most basic understanding of trigonometry is a
bi-product of series of functions!

When discussing power series, it is useful to keep track of the largest
interval that Theorem 2.6.2 applies on in order to know where we can take the
derivatives term-wise. We can encapsulate this information in the following.

Definition 2.6.8. Let (an)n≥0 be a sequence of real numbers and let c ∈ R.
The radius of convergence of the power series

∑∞
n=0 an(x− c)n is

R = sup
{
|x0 − c| | x0 ∈ R,

∞∑
n=0

an(x0 − c)n converges
}
.
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Remark 2.6.9. Let R be the radius of convergence of
∞∑
n=0

an(x− c)n.

Clearly R ∈ [0,∞] by definition. Moreover, by Theorem 2.6.2, we know that∑∞
n=0 an(x0− c)n converges, then so too must

∑∞
n=0 an(x− c)n for all x such

that |x− c| < |x0− c|. Therefore, if x ∈ (c−R, c+R), then
∑∞
n=0 an(x− c)n

converges by Theorem 2.6.2. Moreover if x /∈ [c−R, c+R], then |x−c| > R so∑∞
n=0 an(x− c)n must diverge by the definition of the radius of convergences.

However when x = c−R or x = c+R, we do not have any information on
whether

∑∞
n=0 an(x− c)n converges as the following example shows.

Example 2.6.10. For x ∈ R, consider the series
∞∑
n=1

1
n
xn.

Since limn→∞
1
nx

n exists and is zero if and only if x ∈ [−1, 1], the above
series can converge only if x ∈ [−1, 1] by Corollary 1.2.6. Moreover, since

∞∑ 1
n

(−1)n

converges by Example 1.2.23, the radius of convergence of this power series
around 0 is 1. Moreover this series converges when x = −1 whereas, when
x = 1,

∞∑
n=1

1
n
xn =

∞∑
n=1

1
n

does not converge by Corollary 1.2.15. Thus a power series may or may not
converge at the boundary points of its radius of convergence.

2.7 Taylor’s Theorem
By Theorem 2.6.2 we know that a power series is differentiable inside its
radius of convergence. The following theorem extends this and informs us of
the derivatives at specific points!
Theorem 2.7.1 (Taylor’s Theorem). Let (an)n≥0 be a sequence of real
numbers and let c ∈ R. Suppose the power series

f(x) =
∞∑
n=0

an(x− c)n

has radius of convergence R > 0. Then f is infinitely differentiable on
(c−R, c+R) and

an = f (n)(c)
n!

for all n ∈ N.
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Proof. We claim that for each m ∈ N ∪ {0} that f is m-times differentiable
on (c−R, c+R) with

f (m)(x) =
∞∑
n=m

n!
(n−m)!an(x− c)n−m

for all x ∈ (c−R, c+R). To prove this claim, we will proceed by induction.
Clearly the case m = 0 follows by the assumptions of the theorem. For the
inductive step, if

f (m)(x) =
∞∑
n=m

n!
(n−m)!an(x− c)n−m

for all x ∈ (c−R, c+R), then since this power series has radius of convergence
R, by considering every closed interval centred at c of radius less than R,
Theorem 2.6.2 implies that f (m) is differentiable on (c−R, c+R) with

f (m+1)(x) =
∞∑
n=m

(n−m) n!
(n−m)!an(x− c)n−m−1

=
∞∑

n=m+1

n!
(n−m− 1)!an(x− c)n−m−1

for all x ∈ (c−R, c+R). Hence the claim is complete.
Since c ∈ (c−R, c+R), the above implies that

f (m)(c) = m!
(m−m)!am = (m!)am

for all m ∈ N thereby completing the proof.

Taylor’s Theorem (Theorem 2.7.1) also enables us to show that any
function that has a power series expansion at a point has a unique power
series expansion!

Corollary 2.7.2. Let (an)n≥0 and (bn)n≥0 be sequences of real numbers and
let c ∈ R. If there exists an R > 0 such that

∞∑
n=0

an(x− c)n and
∞∑
n=0

bn(x− c)n

converge and are equal on (c−R, c+R), then an = bn for all n ∈ N ∪ {0}.

Proof. Define f, g : (c−R, c+R)→ R by

f(x) =
∞∑
n=0

an(x− c)n and g(x) =
∞∑
n=0

bn(x− c)n
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for all x ∈ (c−R, c+R). Hence Taylor’s Theorem (Theorem 2.7.1) implies
that f and g are infinitely differentiable with

an = f (n)(c)
n! and bn = g(n)(c)

n!
for all n ∈ N∪{0}. Therefore, since f = g on (c−R, c+R), this implies that

an = f (n)(c)
n! = g(n)(c)

n! = bn

for all n ∈ N ∪ {0} as desired.

With the above results, we can finally turn our attention to attempting
to approximate continuous functions with ‘nicer’ functions. Power series
are one such approximation as if we can attempt to write any continuous
function as an infinite series of polynomials and this can be quite useful in
various situations and applications. Of course Taylor’s Theorem (Theorem
2.7.1) tells us that only infinitely differentiable functions have power series.
However, for infinitely differentiable functions, Taylor’s Theorem (Theorem
2.7.1) tells us exactly what power series can approximate a function and
Corollary 2.7.2 shows there is at most one power series that approximates
a function. However, we still have yet to answer the question: “Given an
infinitely differentiable function f and a point c ∈ R, does the power series of

∞∑
n=0

f (n)(c)
n! (x− c)n

always have a non-zero radius of convergence?”
Unfortunately, no:

Example 2.7.3. Consider the function f : R→ R defined by

f(x) =

0 if x = 0
e−

1
x2 if x 6= 0

for all x ∈ R. Since

lim
x→0

∣∣∣∣∣∣e
− 1
x2

xn

∣∣∣∣∣∣ = lim
x→∞

e−x
2

1
xn

= lim
x→∞

xn

ex2 = 0

by a few applications of L’Höpital’s rule, it can be verified that f is infinitely
differentiable at 0 with f (n)(0) = 0 for all n ∈ N. Since f(x) 6= 0 for all
x ∈ R \ {0} by Corollary 1.5.3, we see that

f(x) =
∞∑
n=0

f (n)(0)
n! xn

only at x = 0.
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2.8 Weierstrass Approximation Theorem
As the previous section shows, we appear to be out of luck in approximating
continuous functions with their power series since it can only possibly work
for infinitely differentiable functions and Example 2.7.3 shows that there are
infinitely differentiable functions for which the power series only converges
at a single point. However, given an infinitely differentiable function f , the
power series of f at a point is only one specific possible approximation of f .
Are there other approximations of continuous functions using polynomials
and, if so, how can we compute them?

The main goal of this section is to show that every continuous function on
a closed interval can be ‘uniformly’ approximated by polynomials. Hence, de-
pending on the proof of this result, there may be hope of explicitly describing
a polynomial approximations of any continuous function! The main theorem
of this section, the Weierstrass Approximation Theorem (Theorem 2.8.6),
can be demonstrated using some interesting ideas. The first requirement
to prove the Weierstrass Approximation Theorem is the following stronger
notion of continuity.

Definition 2.8.1. Let I ⊆ R be an interval. A function f : I → C is said to
be uniformly continuous on I if for all ε > 0 there exists a δ > 0 such that if
x, y ∈ I and |x− y| < δ then |f(x)− f(y)| < ε.

Remark 2.8.2. Note the difference between Definitions 2.1.1 and 2.8.1 is
that for a fixed ε, δ > 0 need only work for a given point in Definition 2.1.1
whereas, for uniformly continuous functions, Definition 2.8.1 enforces that
the same δ works for all points in the interval. That is, for uniform continuity,
there is one δ to rule them all!

The above is more desirable than simple continuity in that having a δ
that works for the whole interval seems far more powerful than at a single
point. Unfortunately, not every continuous function is uniformly continuous
as the following example shows.

Example 2.8.3. We claim that if f : R → R is defined by f(x) = x2 for
all x ∈ R, then Definition 2.8.1 fails for ε = 2 and thus f is not uniformly
continuous. To see this, let δ > 0 be arbitrary. Choose n ∈ N such that
1
n < δ and let xn = n and yn = n+ 1

n . Then |xn − yn| <
1
n < δ yet

|f(xn)− f(yn)| =
∣∣∣∣∣n2 −

(
n+ 1

n

)2
∣∣∣∣∣ = 2 + 1

n2 ≥ 2.

Hence f is not uniformly continuous on R.

The above shows that x2 is not uniformly continuous on all of R since x2

grows too quickly as x tends to infinity. Consequently, one may ask, “Are
things much nicer if we restrict to finite intervals?” For closed intervals, yes!

c©For use through and only available at pskoufra.info.yorku.ca.



78 CHAPTER 2. SERIES OF FUNCTIONS

Theorem 2.8.4. Let a, b ∈ R be such that a < b. If f : [a, b] → C is
continuous, then f is uniformly continuous.

Proof. Let f : [a, b] → C be continuous. Suppose to the contrary that f
is not uniformly continuous. Hence there exists an ε > 0 such that for all
δ > 0 there exists x, y ∈ [a, b] such that |x − y| < δ and |f(x) − f(y)| ≥ ε.
Therefore, for each n ∈ N there exist xn, yn ∈ [a, b] with |xn − yn| < 1

n and
|f(xn)− f(yn)| ≥ ε.

Since [a, b] is closed and bounded, the Bolzano-Weierstrass Theorem
implies there exists a subsequence (xkn)n≥1 of (xn)n≥1 that converges to
some number L ∈ [a, b]. Since f is continuous, there exists an N1 ∈ N such
that |f(xkn)− f(L)| < ε

2 for all n ≥ N1.
Consider the subsequence (ykn)n≥1 of (yn)n≥1. Notice for all n ∈ N that

|ykn − L| ≤ |ykn − xkn |+ |xkn − L| ≤
1
kn

+ |xkn − L| ≤
1
n

+ |xkn − L|.

Therefore, since limn→∞ |xkn − L| = 0 and limn→∞
1
n = 0, we obtain that

limn→∞ ykn = L. Since f is continuous this implies that there exists an
N2 ∈ N such that |f(ykn)− f(L)| < ε

2 for all n ≥ N2.
Notice if N = max{N1, N2}, then the above implies that

|f(xkN )− f(ykN )| ≤ |f(xkN )− f(L)|+ |f(L)− f(ykN )| < ε

2 + ε

2 = ε

thereby contradicting the fact that |f(xkN ) − f(ykN )| ≥ ε. Hence f is
uniformly continuous on [a, b].

The only other ingredient required before the proof of the Weierstrass
Approximation Theorem (Theorem 2.8.6) is the following technical lemma.

Lemma 2.8.5. If x ∈ [−1, 1] and n ∈ N, then

(1− x2)n ≥ 1− nx2.

Proof. Clearly it suffices to consider x ∈ [0, 1] as (1− (−x)2)n = (1− x2)n
and 1− n(−x)2 = 1− nx2 for all x ∈ [−1, 1].

Consider the functions f, g : [0, 1]→ R defined by

f(x) = (1− x2)n and g(x) = 1− nx2

for all x ∈ [0, 1]. Clearly f(0) = 1 = g(0). Furthermore, f and g are
differentiable with

f ′(x) = n(1− x2)n−1(−2x) and g′(x) = −2nx.

Since −2nx ≤ 0 and 0 ≤ 1−x2 ≤ 1 for all x ∈ [0, 1], we see that f ′(x) ≥ g′(x)
for all x ∈ [0, 1]. Hence it follows that f(x) ≥ g(x) for all x ∈ [0, 1].
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Onto the main attraction!

Theorem 2.8.6 (Weierstrass Approximation Theorem). Let a, b ∈ R
be such that a < b. If f : [a, b]→ R is continuous, then there exists a sequence
(pn)n≥1 of polynomials that converge uniformly to f on [a, b]; that is, for all
ε > 0 there exists a polynomial p such that

|p(x)− f(x)| < ε

for all x ∈ [a, b].

Proof. To begin, for simplicity in the more complicated arguments, we desire
to reduce to the case that a = 0 and b = 1. Indeed suppose we have proved
the result when a = 0 and b = 1. Let f : [a, b]→ R be an arbitrary continuous
function and let ε > 0 be arbitrary. Define the function g : [0, 1]→ R by

g(x) = f(a+ (b− a)x)

for all x ∈ [0, 1]. Clearly g is continuous. Thus, by our assumptions, there
exists a polynomial q such that

|q(x)− g(x)| < ε

for all x ∈ [0, 1]. If we define

p(x) = q

(
x− a
b− a

)
for all x ∈ R, then p is also a polynomial. We claim that |p(x)− f(x)| < ε
for all x ∈ [a, b]. To see this, notice if x0 ∈ [a, b], then y0 = x0−a

b−a ∈ [0, 1] and
x0 = a+ (b− a)y0 so

|p(x0)− f(x0)| =
∣∣∣∣q (x0 − a

b− a

)
− f(a+ (b− a)y0)

∣∣∣∣ = |q(y0)− g(y0)| < ε.

Therefore, since x ∈ [a, b] and ε > 0 were arbitrary, the argument is complete.
Hence it suffices to prove the theorem in the case a = 0 and b = 1.

Next, for simplicity in the more complicated arguments, we desire to
further reduce to the case that f(0) = f(1) = 0. Indeed suppose we have
proved the result for all continuous functions that vanish at 0 and at 1. Let
f : [0, 1]→ R be an arbitrary continuous function and let ε > 0 be arbitrary.
Define the function g : [0, 1]→ R by

g(x) = f(x)− (f(0) + (f(1)− f(0))x)

for all x ∈ [0, 1]. Clearly g is continuous since f is continuous. Moreover,
it is elementary to verify that g(0) = g(1) = 0. Thus, by our assumptions,
there exists a polynomial q such that

|q(x)− g(x)| < ε
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for all x ∈ [0, 1]. If we define

p(x) = q(x) + (f(0) + (f(1)− f(0))x)

for all x ∈ R, then p is also a polynomial. Notice that

|p(x)− f(x)| = |q(x) + (f(0) + (f(1)− f(0))x)− f(x)| = |q(x)− g(x)| < ε

for all x ∈ [0, 1]. Therefore, as ε > 0 was arbitrary, the argument is complete.
Hence it suffices to prove the theorem in the case a = 0, b = 1, and
f(0) = f(1) = 0.

To obtain the desired result in the case that a = 0, b = 1, and f(0) =
f(1) = 0, let us first discuss some motivation for the proof. What we will
do is construct a sequence of non-negative polynomials with integrals 1 on
[−1, 1] that will have ‘most of their weight’ at 0. We will then average
or ‘convolve’ f against these polynomials at various points to obtain new
polynomials that will approximate the value of f at each point uniformly
over [−1, 1].

To begin the proof, let ε > 0 be arbitrary. First note since f is continuous
on [0, 1] and f(0) = f(1) = 0 that we can extend f to a continuous function
on R by defining f(x) = 0 for all x ∈ (−∞, 0) ∪ (1,∞). Since f is then
continuous on [−2, 2], f is uniformly continuous on [−2, 2] by Theorem 2.8.4.
Therefore, by decreasing the δ in the definition of uniform continuity if
needed, exists a 0 < δ < 1 such that if x ∈ [−1, 1] and |t| < δ then

|f(x+ t)− f(x)| < 1
2ε.

With the above set-up, we embark on constructing the polynomials
approximates of f . First, we need some specific polynomials that will aid in
constructing the appropriate polynomials to approximate f . Notice for each
n ∈ N that ∫ 1

−1
(1− x2)n dx > 0

as (1 − x2)n > 0 for all x ∈ (−1, 1). Hence for each n ∈ N there exists a
cn > 0 such that

cn

∫ 1

−1
(1− x2)n dx = 1.
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Therefore, by Lemma 2.8.5,

1
cn

=
∫ 1

−1
(1− x2)n dx

= 2
∫ 1

0
(1− x2)n dx

≥ 2
∫ 1√

n

0
(1− x2)n dx

≥ 2
∫ 1√

n

0
1− nx2 dx

= 2
(
x− n

3x
3
)∣∣∣∣ 1√

n

x=0

= 4
3
√
n
≥ 1√

n

and thus 0 < cn ≤
√
n for all n ∈ N.

For each n ∈ N define qn : R→ R by

qn(x) = cn(1− x2)n

for all x ∈ R. Thus each qn is a polynomial, qn(x) ≥ 0 for all x ∈ [−1, 1], and

∫ 1

−1
qn(x) dx = 1

by the definition of cn. Moreover, notice by the definition of qn that if
x ∈ [−1,−δ] ∪ [δ, 1], then

qn(x) = cn(1− x2)n ≤ cn(1− δ2)n ≤
√
n(1− δ2)n

since qn is decreasing on [δ, 1] and increasing on [−1,−δ].

To add in the visual understanding of what an arbitrary qn looks like,
below is the graph of q2:
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and the graph of q100.

Using the sequence of polynomials (qn)n≥1, we can now finally construct
the polynomial approximates of f . For each n ∈ N, define the “convolution
of qn and f” to be the function qn ∗ f : [0, 1]→ R defined by

(qn ∗ f)(x) =
∫ 1

−1
qn(t)f(x− t) dt

for all x ∈ [0, 1]. Clearly qn ∗ f is a well-defined function since qn is a
polynomials, any translate of f is continuous, and the product of Riemann
integrable functions is Riemann integrable. Moreover, since most of the
weight of qn is at t = 0, the value of (qn ∗ f)(x) should be close to the value
of f(x). We will make this formal in a moment.
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For now, we first claim qn ∗ f are all polynomials. To see this, note

(qn ∗ f)(x) =
∫ 1

−1
qn(t)f(x− t) dt

=
∫ x

x−1
qn(t)f(x− t) dt f is 0 on [0, 1]c

=
∫ 0

1
(−1)qn(x− u)f(u) du substitute u = x− t

=
∫ 1

0
qn(x− u)f(u) du

However, note that qn(x − u) is a polynomial in x with coefficients being
continuous functions in u and thus qn(x− u)f(u) is a polynomial in x with
coefficients being continuous functions in u. Hence integrating qn(x− u)f(u)
with respect to u can be performed by integrating the coefficients of the
polynomial in x with respect to u thereby resulting in a polynomial in x.
Hence qn ∗ f is a polynomial on [0, 1].

Finally, we claim that if n is large enough then |(qn ∗f)(x)−f(x)| < ε for
all x ∈ [0, 1]. To see this, first note since f is continuous on [−2, 2] that the
Extreme Value Theorem implies there exists an M > 0 such that |f(x)| ≤M
for all x ∈ [−2, 2]. Therefore, if x ∈ [0, 1], we see that

|(qn ∗ f)(x)− f(x)|

=
∣∣∣∣∫ 1

−1
qn(t)f(x− t) dt− f(x)

∣∣∣∣
=
∣∣∣∣∫ 1

−1
qn(t)f(x− t) dt− f(x)

∫ 1

−1
qn(t) dt

∣∣∣∣ as
∫ 1

−1
qn(x) dx = 1

=
∣∣∣∣∫ 1

−1
(f(x− t)− f(x))qn(t) dt

∣∣∣∣
≤
∫ 1

−1
|f(x− t)− f(x)|qn(t) dt as qn(x) ≥ 0 on [−1, 1]

=
∫

[−1,−δ]∪[δ,1]
|f(x− t)− f(x)|qn(t) dt+

∫ δ

−δ
|f(x− t)− f(x)|qn(t) dt

≤
∫

[−1,−δ]∪[δ,1]
2M
√
n(1− δ2)n dt+

∫ δ

−δ

ε

2qn(t) dt

≤ 4
√
nM(1− δ2)n(1− δ) + ε

2

∫ 1

−1
qn(t) dt

= 4
√
nM(1− δ2)n(1− δ) + ε

2 .

Therefore, as 0 < 1− δ2 < 1 so

lim
n→∞

4
√
nM(1− δ2)n(1− δ) = 0,
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we see that for sufficiently large n that ‖(qn ∗ f)− f‖∞ < ε. Hence, as ε > 0
was arbitrary, the result follows.

The Weierstrass Approximation Theorem (Theorem 2.8.6) is great in that
if one can prove a result/property for polynomials that passes through uniform
limits, one can extend the result to all continuous functions. Moreover, a
careful analysis of the proof of the Weierstrass Approximation Theorem
yields an explicit description of polynomial approximates to any continuous
function f ; namely f ∗ qn (modulo the simplifications done at the start of
the proof).

Unfortunately, the polynomials f ∗qn are not necessarily easy to compute.
Indeed the first challenge is finding explicit descriptions of cn for all n ∈ N.
Of course, we know that

1
cn

=
∫ 1

−1
(1− x2)n dx

and we can easily integrate any polynomial, but the formula for the precise
value of cn may not be nice (actually, it turns out that cn = (2n+1)!!

2((2n)!!) where
n!! is take the product of every other natural number starting at n and going
down until 1 or 2). Then one needs to compute

(f ∗ qn)(x) =
∫ 1

−1
f(x− t)qn(t) dt

which means integrating f against a complicated polynomial. Generally to
compute the values of ∫ 1

−1
tnf(x− t) dt,

one would want to apply integration by parts several times (if f was n-times
differentiable), which can be lengthy and potentially messy, and then one
would need to take a linear combination of these polynomial integrands based
on an expansion of qn to get f ∗ qn.

So, although in theory when given a continuous function f on a closed
interval we have explicit descriptions of polynomials that uniformly approxi-
mate f , the descriptions of these polynomials are nasty and the ability to
compute these polynomials is not a simple task. Wouldn’t it be far nicer if we
could do such approximations with simple to compute and easily described
polynomials?
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Chapter 3

Series of Trigonometric
Polynomials

It turns out that there is an approximation of continuous functions we
can do that is simple to compute and easy to describe. The one caveat is
that this approximation requires us to replace polynomials with series of
‘trigonometric polynomials’, known as Fourier series (pronounced fuor-ree-
ay). The trigonometric polynomials are loosely the linear combinations of
cosine and sine functions of integer frequencies. On the surface trigonometric
functions may appear more difficult to work with, but there are numerous
applications where working with trigonometric functions makes sense.

In fact, the original idea for approximating with trigonometric polynomials
stems from physics and the solutions to specific differential equations. The
simplest occurrence from physics in this direction is the idea of simple
harmonic motion. In this system, a mass m is placed on a horizontal
frictionless surface and is attached to a horizontal ideal spring which is fixed
to a wall and the mass is set to oscillate. If x(t) denotes the position of the
mass at time t, then simple mechanics imply that

mx′′(t) = −kx(t)

where k is Hooke’s spring constant. It is not difficult to verify that cos(ωt)
and sin(ωt) are solutions to this equation provided we choose

ω =

√
k

m
.

In fact, elementary dimension theory implies that every solution to this
differential equation is a linear combination of cos(ωt) and sin(ωt). It is not
difficult to verify that every such solution has the form cos(ωt+ t0) and thus
has a graph in a wave shape.

Much later in physics, it was the idea that particles have wave-like
properties that led to wave-particle duality and the notion of the wave
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equation in Quantum Mechanics. In 1925, Schrödinger use these and other
ideas from physics to derive the wave equation of a particle, work for which
he was later awarded the Noble Prize in Physics in 1933. In its simplest
one-spacial dimensional form, the wave function Ψ(x, t) assigns a complex
number to each point x at time t and satisfies the differential equation

− }2

2m
∂2Ψ(x, t)
∂x2 + V (x)Ψ(x, t) = i}

∂Ψ(x, t)
∂t

where } is Planck’s reduced constant (Planck’s constant divided by 2π), m
the mass, and V (x) a potential function at the point x. As noted above,
both Ψ and this differential equations involved complex numbers, which was
highly questionable in physics as one expects all observable values to be real
numbers. Indeed, even Schrödinger stated, “What is unpleasant here, and
indeed directly to be objected to, is the use of complex numbers.”

However, due to Euler’s formula, complex exponentials immediately allow
us to combine cosine and sine functions of the same frequencies thereby
allowing a unified approach to waves. Indeed, in the case that V (x) = 0, we
claim that

Ψ(x, t) = Aeikx−iωt

is a solution to Schrödinger’s equation where A is a (complex) constant.
Indeed, (provided we can differentiate complex exponentials like real expo-
nentials), we see that

− }2

2m
∂2Ψ(x, t)
∂x2 = − }2

2m(ik)2Aeikx−iωt = }2k2

2m Aeikx−iωt

i}
∂Ψ(x, t)
∂t

= i}(−iω)Aeikx−iωt = }ωAeikx−iωt,

so, provided

ω = }k2

2m ,

we indeed have a solution to Schrödinger’s equation. Moreover, dimension
theory says these are the only solutions.

As solutions to more advanced versions of Schrödinger’s equation can
be obtained by approximating with linear combinations of these basic so-
lutions, and as Schrödinger’s equation is our basis for understanding much
of chemistry and physics, the use of complex numbers in both the equation
and solutions means nature works with complex numbers, not real ones! For
us, the use of complex numbers is desirable in that mathematics, both pure
and applied, becomes more elegant with their use. Thus we will use complex
numbers throughout this chapter to obtain the desired approximations by
trigonometric polynomials.

The motivation for why such approximations are expected in mathematics
follows from linear algebra and orthogonal projections. Once the basic
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facts of these approximations are obtained, we will turn to the idea of
convolution and the properties of qn used in the proof of the Weierstrass
Approximation Theorem (Theorem 2.8.6). If we can construct functions
with similar properties to qn using trigonometric functions and develop an
analogue of the ‘convolution’ used in the Weierstrass Approximation Theorem,
then hopefully we have convergences of these approximations. However, we
need to pay particular attention to the form of convergence as lack of rigour
in these arguments lead to some of the biggest plunders in mathematics!

3.1 Motivation for Fourier Series
To begin our study of Fourier series, we turn to the basic structures and
underlying linear algebra to motivate our constructions. A reader that has
yet to study abstract linear algebra should have the ability to comprehend
this section without more complicated linear algebra, whereas the reader
familiar with linear algebra can process the more difficult results near the
end of the section with ease. We begin with some basic definitions that will
be used throughout this chapter.

There are many different types and ways to view Fourier series. The
version we will be working with (which is probably the simplest) involves
the following set.

Definition 3.1.1. The unit circle (or 1-torus) is the set

T = {z ∈ C | |z| = 1} =
{
eiθ | θ ∈ (−π, π]

}
.

Remark 3.1.2. The reason we want to consider T is that the functions we
will want to be working with, namely cos(nx) and sin(nx) for n ∈ N, are
2π-periodic (i.e. f(x+ 2πm) = f(x) for all x ∈ R and m ∈ Z). Since given
any 2π-periodic function f we know for any x ∈ R that f is constant on

{x+ 2πm | m ∈ Z},

we can view f as a function g on T by defining

g(eix) = f(x)

for all x ∈ R. This identification creates a bijection between the 2π-periodic
functions and the functions on T. There are many benefits of working with
T such as T is a closed and bounded (and thus compact) subset of C.

It should be pointed out that we will often identify (−π, π] with T via the
map x 7→ eix. Note when we do this, there are some particular behaviours
with respect to convergence. Notice that although

(
−π + 1

n

)
n≥1

is a sequence
in (−π, π] which converges to −π /∈ (−π, π], working in T we see that

lim
n→∞

ei(−π+ 1
n) = e−iπ = eiπ
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and π ∈ (−π, π]. Thus, when using (−π, π] for T, we are actually equating −π
and π in terms of all possible convergences. Furthermore, given x ∈ (−π, π]
and t ∈ R, it is possible that x+ t /∈ (−π, π]. However, we can think of x+ t
as ei(x+t) which will then reduce to an element of (−π, π], namely x+t+2πm
where m is the unique integer such that x+ t+ 2πm ∈ (−π, π]. Thus we can
think of T as (−π, π] with these particular topological behaviours.

Furthermore, we could repeat these same ideas using [0, 2π) in place of
(−π, π]. If we do this, then we would be working with the real numbers
modulo 2π. The important part of R is this continuous loop of angles.

As we will be working with functions on T, it is useful to introduce some
notation about various sets of functions. As we will be working with integrals
of complex-valued functions, we point the interested reader to Appendix B
where such integrals are defined by taking the appropriate linear combination
of their real and imaginary parts (and, by doing so, all main results for
Riemann integrals extended to this setting). In particular, the most general
functions we will be working with in this chapter are the following.

Notation 3.1.3. The Riemann integrable functions on T is the set

RI(T) = {f : (−π, π]→ C | f is bounded and Riemann integrable}.

Remark 3.1.4. Although the above definition defines elements of RI(T) as
functions on (−π, π], by the ideas of Remark 3.1.2 we can also view elements
of RI(T) as functions on T, or as 2π-periodic functions on R. Thus, given
f ∈ RI(T), we can make sense of f(z) for all z ∈ T and f(x) for all x ∈ R.
Typically we will use the latter.

Of course, 2π-periodic continuous functions our are main focus, which
we can view via the following.

Notation 3.1.5. The complex-valued continuous functions on T are denoted
by C(T).

Remark 3.1.6. Again, as per Remark 3.1.2, elements of C(T) can be viewed
as 2π-periodic functions on R in which case C(T) becomes the set of all
continuous 2π-periodic functions on R. If we want to view T = (−π, π], then
by the idea of identifying −π and π in Remark 3.1.2, we see that

C(T) =
{
f : (−π, π]→ C

∣∣∣∣ f continuous and lim
x↘−π

f(x) = f(π)
}
.

Note clearly C(T) ⊆ RI(T).

It is now time that we describe the functions we hope to approximate
elements of C(T) (or possibly RI(T)) by.
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Definition 3.1.7. The set of trigonometric polynomials on T is the set

T (T) =


n∑

k=−n
cke

ikx

∣∣∣∣∣∣ n ∈ N, ck ∈ C for all k


viewed as a subset of C(T).

If n ∈ N, the set of trigonometric polynomials on T of degree at most n
is the set

Tn(T) =


n∑

k=−n
cke

ikx

∣∣∣∣∣∣ ck ∈ C for all k


(i.e. a polynomial of degree at most n is a linear combination of powers of
(eix)k and (e−ix)k for k ∈ {0, 1, . . . , n}).

A reader at this point may be confused as our initial motivation was to
approximate elements of C(T) by linear combinations of cos(nx) and sin(nx)
for n ∈ N. The following shows that the trigonometric polynomials are
indeed the functions we are looking for. In particular, note the complex
number description of the trigonometric polynomials is more elegant than
the following description.

Lemma 3.1.8. For all n ∈ N

Tn(T) =
{

n∑
k=0

ak cos(kx) + bk sin(kx)
∣∣∣∣∣ ak, bk ∈ C for all k

}

as subsets of functions in C(T).

Proof. Let

Tn =
{

n∑
k=0

ak cos(kx) + bk sin(kx)
∣∣∣∣∣ ak, bk ∈ C for all k

}
.

To see that Tn(T) ⊆ Tn, notice for all (ck)nk=−n ⊆ C that

n∑
k=−n

cke
ikx

=
n∑

k=−n
ck (cos(kx) + i sin(kx))

= c0 +
n∑
k=1

ck (cos(kx) + i sin(kx)) + c−k (cos(−kx) + i sin(−kx))

= c0 cos(0x) +
n∑
k=1

(ck + c−k) cos(kx) + i(ck − c−k) sin(kx) ∈ Tn.
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Hence Tn(T) ⊆ Tn.
For the reverse inclusion, notice for all (ak)nk=0, (bk)nk=0 ⊆ C that

n∑
k=0

ak cos(kx) + bk sin(kx)

= a0 +
n∑
k=1

ak

(
eikx + e−ikx

2

)
+ bk

(
eikx − e−ikx

2

)

= a0e
i0x +

n∑
k=1

ak + bk
2 eikx + ak − bk

2 e−ikx ∈ Tn(T).

Hence Tn ⊆ Tn(T) thereby completing the proof.

If we are going to approximate a function f ∈ C(T) using trigonomet-
ric polynomials, one idea for finding such approximations is to find the
trigonometric polynomial that is ‘closest’ to f . Of course T (T) is an infinite
dimensional vector space and thus it might be better to find the elements
of Tn(T) that are ‘closest’ to f for each n ∈ N. To do so, we need to define
what we mean by ‘closest’. This of course means we need some notion of
distance. This is thus where our course intersects linear algebra in that we
can import some notions of distance and, more important, orthogonality into
this context. These notions will revolve around the following object.

Definition 3.1.9. The inner product on RI(T) is the function 〈 ·, · 〉 :
RI(T)×RI(T)→ C defined by

〈f, g〉 = 1
2π

∫ π

−π
f(x)g(x) dx

for all f, g ∈ RI(T).

Remark 3.1.10. As the complex conjugate and products of elements of
RI(T) remain elements ofRI(T), the inner product onRI(T) is well-defined.
Moreover, the reason we added a 1

2π in front of the integral is so that if 1
represents the constant function that takes the value 1 at each point in T,
then

〈1, 1〉 = 1
2π

∫ π

−π
1 dx = 1.

Thus the 1
2π in front of the integral acts as a normalization. This will be

explored further shortly.
However, the above inner product on RI(T) is not an inner product on

RI(T) in the sense of linear algebra since if f : T→ C is defined by

f(x) =
{

1 if x = 1
0 if x 6= 1
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for all x ∈ T, then f 6= 0 but 〈f, f〉 = 0. Thus the reason we call this an
inner product is that it shares all but this property with inner products and
is indeed an inner product if we reduce to C(T). (Moreover, if one ‘corrects’
RI(T), then this will be indeed an inner product. However, that is a topic
for MATH 4012).

Proposition 3.1.11. The inner product on RI(T) has the following prop-
erties:

a) 〈0, 0〉 = 0.

b) 〈f, f〉 ≥ 0 for all f ∈ RI(T).

c) If f ∈ C(T) and 〈f, f〉 = 0, then f = 0.

d) 〈α1f1 + α2f2, g〉 = α1〈f1, g〉 + α2〈f2, g〉 for all f1, f2, g ∈ RI(T) and
α1, α2 ∈ C.

e) 〈g, α1f1 + α2f2〉 = α1〈g, f1〉 + α2〈g, f2〉 for all f1, f2, g ∈ RI(T) and
α1, α2 ∈ C.

f) 〈f, g〉 = 〈g, f〉 for all f, g ∈ RI(T).

Proof. Clearly a) is true. To see that b) is true, note for all f ∈ RI(T) that

〈f, f〉 = 1
2π

∫ π

−π
|f(x)|2 dx ≥ 0

since |f(x)|2 ≥ 0 for all x ∈ T.
To see that c) is true, let f ∈ C(T) be such that 〈f, f〉 = 0. Then

1
2π

∫ π

−π
|f(x)|2 dx = 0.

Since f is continuous and thus |f |2 is continuous, this implies by MATH
2001 that |f(x)|2 = 0 for all x ∈ T and thus f = 0 as desired.

To see that d) is true, let f1, f2, g ∈ RI(T) and α1, α2 ∈ C be arbitrary.
Then

〈α1f1 + α2f2, g〉 = 1
2π

∫ π

−π
(α1f1(x) + α2f2(x))g(x) dx

= 1
2π

∫ π

−π
α1f1(x)g(x) + α2f2(x)g(x) dx

= α1

( 1
2π

∫ π

−π
f1(x)g(x) dx

)
+ α2

( 1
2π

∫ π

−π
f2(x)g(x) dx

)
= α1〈f1, g〉+ α2〈f2, g〉

where the third equality comes from the fact that the integral is linear. Hence
d) holds.
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To see that e) is true, one can construct a proof using the same ideas as
the proof of part d) or notice for all f1, f2, g ∈ RI(T) and α1, α2 ∈ C that
parts d) and f) imply that

〈g, α1f1 + α2f2〉 = 〈α1f1 + α2f2, g〉 by f)
= α1〈f1, g〉+ α2〈f2, g〉 by d)
= α1〈f1, g〉+ α2〈f2, g〉 by complex conjugates
= α1〈g, f1〉+ α2〈g, f2〉 by f).

Thus it suffices to prove f).
To see that f) is true, notice for all f, g ∈ RI(T) that

〈f, g〉 = 1
2π

∫ π

−π
f(x)g(x) dx

= 1
2π

∫ π

−π
f(x)g(x) dx

= 1
2π

∫ π

−π
g(x)f(x) dx

= 〈g, f〉

as desired.

As remarked earlier, Proposition 3.1.11 shows that the inner product on
RI(T) is indeed an inner product on C(T). Using the same idea from linear
algebra, we obtain a notion of a length.

Definition 3.1.12. The length of an element f ∈ RI(T), denoted ‖f‖2, is
defined to be

‖f‖2 =
√
〈f, f〉 =

( 1
2π

∫ π

−π
|f(x)|2 dx

) 1
2
≥ 0.

It is elementary to see that ‖f‖2 is well-defined and non-negative for all
f ∈ RI(T). To show that this notion of a length has the properties one
would expect of a length function (i.e. properties similar to the absolute
value of complex numbers), we first need to prove the following.

Theorem 3.1.13 (Cauchy-Schwarz Inequality). For all f, g ∈ RI(T),

|〈f, g〉| ≤ ‖f‖2 ‖g‖2 .

Proof 1 (Linear Algebra Techniques with a Complication). In this first proof,
we will present the classical proof of the Cauchy-Schwarz Inequality from
linear algebra. However, there is a slight complication in that we are not
quite working with an inner product on RI(T).
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First, we claim that if ‖f‖2 = 0, then 〈f, g〉 = 0 and thus the inequality
hold. The best way to see this uses technology from MATH 4012. In
particular, if

‖f‖22 = 1
2π

∫ π

−π
|f(x)|2 dx = 0,

then it must be true that f(x) = 0 for “almost every x ∈ T” so f(x)g(x) = 0
“almost every x ∈ T” and thus

|〈f, g〉| =
∣∣∣∣ 1
2π

∫ π

−π
f(x)g(x) dx

∣∣∣∣ =
∣∣∣∣ 1
2π

∫ π

−π
0 dx

∣∣∣∣ = 0 ≤ ‖f‖2 ‖g‖2 .

Of course, the above is easily seen to be true when f ∈ C(T). Moreover, if
f ∈ RI(T), then f is “almost continuous” (see Lemma 3.3.8).

To prove this directly without further technology requires us to delve deep
into Riemann sum computations that we outline here. Indeed if ‖f‖2 = 0,
then for any ε > 0 there exists a partition P of [−π, π] such that U(|f |2,P) <
ε. This means for each interval in P that either the length of the interval ‘is
small’ or |f(x)|2 is ‘small’ on the interval. This can be used to show that
U(|f |,P) < C(ε+

√
ε) for some constant C depending only on f (i.e. for the

intervals of ‘small’ length we use the fact that f is bounded to keep the upper
Riemann sum ‘small’, and on the other intervals knowing |f(x)|2 is ‘small’
on the interval implies |f(x)| is ‘small’ on the interval). Therefore, since
g ∈ RI(T), g is bounded so U(|fg|,P) < CM(ε+

√
ε) for some constant M

depending on g. Therefore, since∣∣∣∣∫ π

−π
f(x)g(x) dx

∣∣∣∣ ≤ ∫ π

−π
|f(x)g(x)| dx ≤ U(|fg|,P) < CM(ε+

√
ε),

we obtain that 〈f, g〉 = 0. The details are left as an exercise.
Therefore, if ‖f‖2 = 0, then 〈f, g〉 = 0 and thus the inequality hold.

By using similar arguments or Proposition 3.1.11 part f), if ‖g‖2 = 0, then
〈f, g〉 = 0 and thus the inequality hold. Therefore, to complete the proof, we
may assume that ‖f‖2 6= 0 and ‖g‖2 6= 0.

Choose z ∈ C with |z| = 1 such that

〈zf, g〉 = z〈f, g〉 = |〈f, g〉|

(that is, if 〈f, g〉 = reiθ for r ≥ 0 and θ ∈ [0, 2π), then take z = e−iθ). Notice
by Proposition 3.1.11 that for all t ∈ R

0 ≤ 〈zf + tg, zf + tg〉
= |z|2〈f, f〉+ tz〈g, f〉+ tz〈f, g〉+ t2〈g, g〉
= 〈f, f〉+ 2t|〈f, g〉|+ t2〈g, g〉.

By substituting
t0 = −|〈f, g〉|

〈g, g〉
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which is well-defined as 〈g, g〉 = ‖g‖22 6= 0, we obtain that

0 ≤ 〈f, f〉 − 2 |〈f, g〉|
2

〈g, g〉
+ |〈f, g〉|

2

〈g, g〉
= 〈f, f〉 − |〈f, g〉|

2

〈g, g〉
.

By rearranging, we obtain that

|〈f, g〉|2 ≤ 〈f, f〉〈g, g〉,

which then implies the desired inequality by taking square roots.

Proof 2 (Direct Proof). We will provide a direct proof of the Cauchy-Schwarz
Inequality that is specific to RI(T).

First notice for all z, w ∈ C and r ∈ R with r > 0 that

0 ≤ (r|z| − r−1|w|)2 ≤ r2|z|2 − 2|z||w|+ r−2|w|2

so
|zw| = |z||w| = |z||w| = |zw| ≤ 1

2
(
r2|z|2 + r−2|w|2

)
.

Therefore, for all f, g ∈ RI(T) and for all r ∈ R with r > 0, we have that

|〈f, g〉| =
∣∣∣∣ 1
2π

∫ π

−π
f(x)g(x) dx

∣∣∣∣
≤ 1

2π

∫ π

−π

∣∣∣f(x)g(x)
∣∣∣ dx

≤ 1
2π

∫ π

−π

1
2r

2|f(x)|2 + 1
2r
−2|g(x)|2 dx

= 1
2
(
r2 ‖f‖22 + r−2 ‖g‖22

)
.

To see that the above yields the desired inequality, we will consider a few
cases. First, if ‖g‖2 = 0, then by sending r to 0 from above we obtain that

|〈f, g〉| = 0 ≤ ‖f‖2 ‖g‖2
as desired. Similarly, if ‖f‖2 = 0, then by sending r to infinity we obtain
that

|〈f, g〉| = 0 ≤ ‖f‖2 ‖g‖2
as desired. Finally, if ‖f‖2 6= 0 and ‖g‖2 6= 0, then by setting

r =
√
‖g‖2
‖f‖2

∈ (0,∞)

we obtain that

|〈f, g〉| ≤ 1
2

(
‖g‖2
‖f‖2

‖f‖2 + ‖f‖2
‖g‖2

‖g‖2
)

= ‖f‖2 ‖g‖2

as desired.
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Using the Cauchy-Scwarz Inequality (Theorem 3.1.13), we can demon-
strate this length function has the desired properties.

Proposition 3.1.14. The length function on RI(T) has the following prop-
erties:

a) ‖f‖2 ≥ 0 for all f ∈ RI(T).

b) If f ∈ C(T) and ‖f‖2 = 0, then f = 0.

c) ‖αf‖2 = |α| ‖f‖2 for all f ∈ RI(T) and α ∈ C.

d) (Triangle Inequality) ‖f + g‖2 ≤ ‖f‖2 + ‖g‖2 for all f, g ∈ RI(T).

Proof. Clearly a) and b) follow from Proposition 3.1.11 parts b) and c). To
see that c) is true, notice for all f ∈ RI(T) and α ∈ C that

‖αf‖2 =
√
〈αf, αf〉 definition

=
√
αα〈f, f〉 by Proposition 3.1.11 parts d) and e)

=
√
|α|2〈f, f〉

= |α| ‖f‖2

as desired.
To see that d) is true, notice for all f, g ∈ RI(T) that

‖f + g‖22
= 〈f + g, f + g〉
= 〈f, f〉+ 〈f, g〉+ 〈g, f〉+ 〈g, g〉 by Proposition 3.1.11 parts d) and e)
= ‖f‖22 + 〈f, g〉+ 〈f, g〉+ ‖g‖22 by Proposition 3.1.11 part f)
= ‖f‖22 + 2Re(〈f, g〉) + ‖g‖22
≤ ‖f‖22 + 2|〈f, g〉|+ ‖g‖22
≤ ‖f‖22 + 2 ‖f‖22 ‖g‖

2
2 + ‖g‖22 by Cauchy-Schwarz (Theoremm 3.1.13)

= (‖f‖2 + ‖g‖2)2 .

Therefore, by taking the square roots of both sides, the Triangle Inequality
has been demonstrated.

Now that we have a length function on RI(T), we can ask the following
question, “Given f ∈ RI(T) and n ∈ N, how can we find the element
p ∈ Tn(T) such that ‖f − p‖2 is as small as possible?” Linear algebra
dictates that this element p can be computed by taking the ‘orthogonal
projection’ of f onto Tn(T). Thus we review this technology.
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Definition 3.1.15. A non-empty set S ⊆ RI(T) is said to be an orthonormal
set if for all f, g ∈ S we have

〈f, g〉 =
{

0 if f 6= g

1 if f = g
.

Luckily, there are natural orthonormal sets that span the trigonometric
polynomials. Indeed consider the following.

Notation 3.1.16. For each n ∈ Z, let en : T → C denote the function
defined by

en(x) = einx

for all x ∈ T.

Theorem 3.1.17. Let

B = {en | n ∈ Z} ⊆ T (T).

Then B is an orthonormal set in RI(T).

Proof. First, notice for all n ∈ Z that

〈en, en〉 = 1
2π

∫ π

−π
einxeinx dx

= 1
2π

∫ π

−π
einxe−inx dx

= 1
2π

∫ π

−π
einx−inx dx

= 1
2π

∫ π

−π
e0 dx

= 1
2π

∫ π

−π
1 dx = 1.
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Moreover, for all n,m ∈ Z with n 6= m, we see that

〈en, em〉 = 1
2π

∫ π

−π
einxeimx dx

= 1
2π

∫ π

−π
einxe−imx dx

= 1
2π

∫ π

−π
ei(n−m)x dx

= 1
2π

( 1
i(n−m)e

i(n−m)x
)∣∣∣∣π
x=−π

= 1
2π

1
i(n−m)

(
ei(n−m)π − ei(n−m)(−π)

)
= 1

2π
1

i(n−m) (cos((n−m)π) + i sin((n−m)π))

− 1
2π

1
i(n−m) (cos(−(n−m)π) + i sin(−(n−m)π))

= 1
2π

1
i(n−m) (cos((n−m)π) + 0i− cos((n−m)π)− 0i)

= 0.

Hence B is an orthonormal set in RI(T).

Once one has an orthogonal spanning set for a finite dimensional subspace,
one can easily construct the orthogonal projection onto said subspace. In
our context, this reduces to the following.

Theorem 3.1.18. For each n ∈ N define Pn : RI(T)→ Tn(T) by

Pn(f) =
n∑

k=−n
〈f, ek〉ek

for all f ∈ RI(T). Then the following hold:

a) Pn(α1f1 + α2f2) = α1Pn(f1) + α2Pn(f2) for all f1, f2 ∈ RI(T) and
α1, α2 ∈ C.

b) Pn(f) = f for all f ∈ Tn(T).

c) 〈f − Pn(f), p〉 = 0 for all f ∈ RI(T) and p ∈ Tn(T).

d) For all f ∈ RI(T),

‖f − Pn(f)‖2 ≤ inf {‖f − p‖2 | p ∈ Tn(T)} .

Moreover, if p ∈ Tn(T) and ‖f − p‖2 = ‖f − Pn(f)‖2, then p = Pn(f).

That is, Pn is the orthogonal projection of RI(T) onto Tn(T).
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Proof. To see that a) is true, notice by Proposition 3.1.11 parts d) and e)
that for all f1, f2 ∈ RI(T) and α1, α2 ∈ C

Pn(α1f1 + α2f2) =
n∑

k=−n
〈α1f1 + α2f2, ek〉 ek

=
n∑

k=−n
α1〈f1, ek〉ek + α2〈f2, ek〉ek

= α1Pn(f1) + α2Pn(f2)

as desired.
To see that b) is true, let f ∈ Tn(T) be arbitrary. Thus there exists

(cj)nj=−n ∈ C such that

f =
n∑

j=−n
cjej .

Therefore

Pn(f) =
n∑

k=−n

〈
n∑

j=−n
cjej , ek

〉
ek

=
n∑

k=−n

n∑
j=−n

cj 〈ej , ek〉 ek by Propositon 3.1.11 part d)

=
n∑

k=−n
ck 〈ek, ek〉 ek by Theorem 3.1.17

=
n∑

k=−n
ckek by Theorem 3.1.17

= f

as desired.
To see that c) is true, fix f ∈ RI(T) and let p ∈ Tn(T) be arbitrary.

Thus there exists (cj)nj=−n ∈ C such that

p =
n∑

j=−n
cjej .
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Therefore, by similar arguments to those used in part b), we see that

〈f − Pn(f), p〉 = 〈f, p〉 − 〈Pn(f), p〉

=
〈
f,

n∑
j=−n

cjej

〉
−
〈

n∑
k=−n

〈f, ek〉ek,
n∑

j=−n
cjej

〉

=
n∑

j=−n
cj〈f, ej〉 −

n∑
j=−n

n∑
k=−n

〈f, ek〉cj〈ek, ej〉

=
n∑

j=−n
cj〈f, ej〉 −

n∑
j=−n

〈f, ej〉cj

= 0

as desired.
Finally, to see that d) is true, let p ∈ Tn(T) be arbitrary. Then

‖f − p‖22 = ‖(f − Pn(f)) + (Pn(f)− p)‖22
= 〈(f − Pn(f)) + (Pn(f)− p), (f − Pn(f)) + (Pn(f)− p)〉
= 〈(f − Pn(f)), (f − Pn(f))〉+ 〈(f − Pn(f)), (Pn(f)− p)〉

+ 〈(Pn(f)− p), (f − Pn(f))〉+ 〈(Pn(f)− p), (Pn(f)− p)〉
= ‖f − Pn(f)‖22 + 0 + 0 + ‖Pn(f)− p‖22
≥ ‖f − Pn(f)‖22

where the fourth equality comes from part c) and the fact that Pn(f) −
p ∈ Tn(T). Hence the desired inequality holds. Moreover, if ‖f − p‖2 =
‖f − Pn(f)‖2, the above computation implies that ‖Pn(f)− p‖2 = 0 and thus
Pn(f) = p by Proposition 3.1.14 part b) since Pn(f), p ∈ Tn(T) ⊆ C(T).

3.2 Basics of Fourier Series
Section 3.1 shows that given an f ∈ RI(T) and n ∈ N, the element of Tn(T)
that is closest to f is Pn(f). Thus, if we desire to approximate f using
trigonometric polynomials, it is natural to consider the sequence (Pn(f))n≥1
for our approximations. The questions that remain are, “In what way do we
desire to approximate f with (Pn(f))n≥1 and will this work?”

In order to proceed with these questions, it is useful to analyze the specific
form of Pn(f) and note that the sequence (Pn(f))n≥1 can be expressed in a
nice way.

Definition 3.2.1. Let f ∈ RI(T) and let n ∈ Z. The nth Fourier coefficient
of f , denoted f̂(n), is

f̂(n) = 〈f, en〉 = 1
2π

∫ π

−π
f(x)e−inx dx.
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Definition 3.2.2. Let f ∈ RI(T) and let n ∈ N. The nth partial Fourier
series of f , is the orthogonal projection of f onto Tn(T) from Theorem 3.1.18;
that is,

Pn(f) =
n∑

k=−n
〈f, ek〉ek =

n∑
k=−n

f̂(k)ek =
n∑

k=−n
f̂(k)eikx.

As the above expressions show, (Pn(f))n≥1 is quite a nice sequence being
the sequence of partial sums of a series of functions. For terminology, we
define the following.

Definition 3.2.3. Let f ∈ RI(T). The Fourier series of f , denoted F(f),
is the series of functions

F(f) =
∞∑

k=−∞
f̂(k)eikx.

Remark 3.2.4. With the above out of the way, we can turn our attention to
our main question of this chapter, “Given an f ∈ RI(T), does F(f) converge
to f and in which sense does it converge?”

It is useful to point our that if f, g ∈ RI(T) are such that f and g differ
at exactly one point, then the above definitions shows

f̂(n) = 1
2π

∫ π

−π
f(x)e−inx dx = 1

2π

∫ π

−π
g(x)e−inx dx = ĝ(n)

for all n ∈ bZ. Hence F(f) = F(g). Therefore, we cannot hope that
F(f)(x) = f(x) for every x ∈ T since changing the value of f at a single
point does not change F(f).

Luckily, if f ∈ C(T) we need not worry about the above example as we
cannot change the value of f at a single point at remain in C(T). Moreover,
since Pn(f) ∈ Tn(T) ⊆ C(T), we can indeed ask that F(f) is equal to f
since F(f) will be a series of continuous functions and thus could equal f .
However, as Example 2.2.3 shows, a pointwise convergent series of continuous
functions need not be continuous. So we are left with the following questions:

Question 3.2.5. If f ∈ C(T), does F(f) converge uniformly and, if so, does
it converge uniformly to f?

Question 3.2.6. If f ∈ C(T), is F(f)(x) = f(x) for all x ∈ T?

Of course, a positive answer to Question 3.2.5 implies a positive answer
to Question 3.2.6. In order to try and answer these questions, it is useful
to develop the basic properties and look at some examples of Fourier series.
We begin with the following.
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Example 3.2.7. For m ∈ N and (ck)mk=−m ∈ C, consider the trigonometric
polynomial

p(x) =
m∑

j=−m
cje

ijx

for all x ∈ T. Notice for all n ∈ N that

p̂(n) =
〈

m∑
j=−m

cjej , en

〉
=

m∑
j=−m

cj〈ej , en〉 =
{
cn if |n| ≤ m
0 otherwise

.

Hence for all n ≥ m we have that Pn(p) = p (this can also be seen by
Theorem 3.1.18 part b)) and thus F(p) = p.

Example 3.2.8. For m ∈ N, let f, g : T→ R by defined by

f(x) = cos(mx) and g(x) = sin(mx)

for all x ∈ T. Therefore, since f = 1
2(em + e−m) and g = 1

2i(em − e−m) are
trigonometric polynomials, Example 3.2.7 implies that

f̂(n) =


1
2 if n = m
1
2 if n = −m
0 otherwise

and ĝ(n) =


1
2i if n = m

− 1
2i if n = −m

0 otherwise
.

Hence, for all n ≥ m, we see that

Pn(f) = 1
2em + 1

2e−m = f and Pn(g) = 1
2iem −

1
2ie−m = g.

Hence F(f) = f and F(g) = g.

Example 3.2.8 has wider reaching implications in that if f : T→ R, we
would hope that we could express F(f) as a series of real functions instead
of complex exponentials. This would be of particular interest to several
applications in physics and applied mathematics. In order to do so, we desire
some further properties of the Fourier coefficients. In particular, we desired
to know how the Fourier coefficients behave under certain operations. In
addition to the standard operations, the following will also be of use to us.

Definition 3.2.9. For each f ∈ RI(T), the complex conjugate of f is the
function f : T→ C defined by f(x) = f(x) for all x ∈ T.

Definition 3.2.10. For each f ∈ RI(T) and y ∈ R, the translation of f
by y is the function fy : T → C defined by fy(x) = f(x − y) for all x ∈ T
(where, by x− y we mean x− y mod 2π).

Definition 3.2.11. For each f ∈ RI(T), the inversion of f is the function
f̌ : T→ C defined by f̌(x) = f(−x) for all x ∈ T.
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Proposition 3.2.12. For all f, g ∈ RI(T), the following hold:

a) ̂(f + g)(n) = f̂(n) + ĝ(n) for all n ∈ Z. Hence F(f + g) = F(f) + F(g).

b) ̂(αf)(n) = αf̂(n) for all α ∈ C and n ∈ Z. Hence F(αf) = αF(f).

c) f̂(n) = f̂(−n) for all n ∈ Z.

d) f̂y(n) = e−inyf̂(n) for all y ∈ R and n ∈ Z.

e) ̂̌f(n) = f̂(−n) for all n ∈ Z.

f) |f̂(n)| ≤ 1
2π
∫ π
−π |f(x)| dx for all n ∈ Z.

Proof. Clearly a) and b) follow trivially by the linearity of the integral.
To see that c) is true, notice for all f ∈ RI(T) that

f̂(n) = 1
2π

∫ π

−π
f(x)e−inx dx

= 1
2π

∫ π

−π
f(x)einx dx

= 1
2π

∫ π

−π
f(x)einx dx

= f̂(−n)

as desired.
To see that d) is true, notice for all f ∈ RI(T) and y ∈ R that

f̂y(n) = 1
2π

∫ π

−π
fy(x)e−inx dx

= 1
2π

∫ π

−π
f(x− y)e−inx dx

= 1
2π

∫ π−y

−π−y
f(t)e−in(y+t) dt substitute t = x− y

= 1
2π

∫ π

−π
f(t)e−in(y+t) dt 2π-periodic

= 1
2π

∫ π

−π
f(t)e−inye−int dt

= 1
2πe

−iny
∫ π

−π
f(t)e−int dt

= e−inyf̂(n)

as desired.
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To see that e) is true, notice for all f ∈ RI(T) that

̂̌
f(n) = 1

2π

∫ π

−π
f̌(x)e−inx dx

= 1
2π

∫ π

−π
f(−x)e−inx dx

= 1
2π

∫ −π
π

f(t)e−in(−t)(−1) dt substitute t = −x

= 1
2π

∫ π

−π
f(t)e−i(−n)t dt

= f̂(−n)

as desired.
Finally, to see that f) is true, notice that

|f̂(n)| =
∣∣∣∣ 1
2π

∫ π

−π
f(x)e−inx dx

∣∣∣∣ ≤ 1
2π

∫ π

−π

∣∣∣f(x)e−inx
∣∣∣ dx = 1

2π

∫ π

−π
|f(x)| dx

as desired.

Remark 3.2.13. Note that nothing has been said about the Fourier coeffi-
cients of a product of two elements in RI(T). In particular, “if f, g ∈ RI(T),
is it true that

(̂fg)(n) = f̂(n)ĝ(n)

for all n ∈ Z?” It turns out this answer is no! After all, integrals often do
not behave well with respect to products. For example, if f(x) = x for all
x ∈ (−π, π], then

(f̂(0))2 =
( 1

2π

∫ π

−π
f(x) dx

)2
= 02 = 0

whereas

(̂f2)(0) = 1
2π

∫ π

−π
x2 dx = 1

2π

(1
3x

3
)∣∣∣∣π
x=−π

= π2

3 6= (f̂(0))2.

First, using Proposition 3.2.12, we immediately obtain the real-valued
version of Fourier series often used in physics and applied mathematics.

Theorem 3.2.14. Let f ∈ RI(T) be real-valued. For each n ∈ N ∪ {0}, let

an = 1
π

∫ π

−π
f(x) cos(nx) dx and bn = 1

π

∫ π

−π
f(x) sin(nx) dx.

Then the following hold:

a) an, bn ∈ R for all n ∈ N ∪ {0} and b0 = 0,
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b) Pn(f)(x) = 1
2a0 +

∑N
k=1 ak cos(kx) + bk sin(kx) for all n ∈ N and x ∈ T,

c) an = 2Re(f̂(n)) for all n ∈ N ∪ {0}, and

d) bn = −2Im(f̂(n)) for all n ∈ N.

In particular,

F(f) = 1
2a0 +

∞∑
k=1

ak cos(kx) + bk sin(kx).

Proof. It is elementary to see that ak, bk ∈ R for all k ∈ N ∪ {0} and that
bk = 0 (since sin(0x) = 0 for all x ∈ T. To see the desired formula for Pn(f),
note by part c) of Proposition 3.2.12 and the fact that f is real-valued (so
f = f) that

f̂(k) = f̂(k) = f̂(−k)

for all k ∈ Z. Hence f̂(0) = f̂(0), so f̂(0) ∈ R. Moreover, notice for all n ∈ N
and x ∈ T that

Pn(f)(x) =
n∑

k=−n
f̂(k)eikx

= f̂(0)e0 +
n∑
k=1

f̂(k)eikx + f̂(k)e−ikx

= f̂(0)e0 +
n∑
k=1

Re(f̂(k))
(
eikx + e−ikx

)
+ iIm(f̂(k))

(
eikx − e−ikx

)
= Re

(
f̂(0)

)
1 +

n∑
k=1

2Re(f̂(k)) cos(kx)− 2Im(f̂(k)) sin(kx).

However, since f is real-valued, we have for all k ∈ N ∪ {0} that

Re(f̂(k)) = Re
( 1

2π

∫ π

−π
f(x)e−ikx dx

)
= 1

2π

∫ π

−π
Re
(
f(x)e−ikx

)
dx

= 1
2π

∫ π

−π
f(x)Re

(
e−ikx

)
dx

= 1
2π

∫ π

−π
f(x) cos(kx) dx = ak

2
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and

Im(f̂(k)) = Im
( 1

2π

∫ π

−π
f(x)e−ikx dx

)
= 1

2π

∫ π

−π
Im
(
f(x)e−ikx

)
dx

= 1
2π

∫ π

−π
f(x)Im

(
e−ikx

)
dx

= 1
2π

∫ π

−π
f(x)(− sin(kx)) dx = −bk2 .

Hence

Pn(f)(x) = 1
2a0 +

N∑
k=1

ak cos(kx) + bk sin(kx)

for all n ∈ N and x ∈ T as desired. Moreover, the above computations show
the formulae for an and bn hold.

Remark 3.2.15. Recall from Example 2.3.4 that if a, b ∈ R with a a positive
integer, 0 < b < 1, and 4ab > 1 + 3

2π, then the Weierstrass function

W (x) =
∞∑
n=0

bn cos(πanx)

converged uniformly, was continuous, but was nowhere differentiable. As
the series definition for W is exactly the Fourier series of W by Theorem
3.2.14 (well, with πx instead of x − a simple change of variables rectifies
this), Fourier series can uniformly approximate even awful functions!

Using Proposition 3.2.12, it is about time we compute some Fourier series
of some functions that are not trigonometric polynomials. We start with the
simplest function.

Example 3.2.16. Define f : T→ C by f(x) = x for all x ∈ (−π, π]. Notice
that

f̂(0) = 1
2π

∫ π

−π
x dx = 0.

Moreover, if n ∈ Z \ {0}, then since

∫ π

−π
e−inx dx = 〈1, en〉 = 0,
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we obtain by using integration by parts that

2πf̂(n) =
∫ π

−π
xe−inx dx

=
(
− 1
in
xe−inx

)∣∣∣∣π
x=−π

−
∫ π

−π
− 1
in
e−inx dx

=
(
− 1
in
xe−inx

)∣∣∣∣π
x=−π

+ 0

= − 1
in
πe−inπ + 1

in
(−π)einπ

= − π
in

(
e−inπ + einπ

)
= πi

n
(2 cos(nπ))

= 2π
n

(−1)ni

since n ∈ Z. Hence f̂(n) = 1
n(−1)ni for all n ∈ Z \ {0}. Thus

F(f)(x) =
∞∑

n=−∞
n 6=0

1
n

(−1)nieinx.

However, since f is real-valued, by using Theorem 3.2.14, we see if

an = 2Re(f̂(n)) = 0 and bn = −2Im(f̂(n)) = 2
n

(−1)n+1

for all n ∈ Z, then

F(f)(x) =
∞∑
n=1

2
n

(−1)n+1 sin(nx).

Example 3.2.17. Define f : T→ C by f(x) = 1
4(x− π)2 for all x ∈ [0, 2π);

that is, as a function on [−π, π], f is the following:
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Thus f ∈ C(T).
Notice that

f̂(0) = 1
2π

∫ 2π

0

1
4(x− π)2 dx

= 1
2π

( 1
12(x− π)3

)∣∣∣∣2π
x=0

= 1
2π

( 1
12π

3 − 1
12(−π)3

)
= 1

2π
π3

6 = π2

12 .

Moreover, if n ∈ Z \ {0}, then, by using integration by parts, we obtain that

2πf̂(n) =
∫ 2π

0

1
4(x− π)2e−inx dx

=
(1

4(x− π)2 1
−in

e−inx
)∣∣∣∣2π
x=0
−
∫ 2π

0

1
2(x− π) 1

−in
e−inx dx

=
(1

4π
2 1
−in

1− 1
4(−π)2 1

−in
1
)

+
∫ 2π

0

1
2ni(x− π)e−inx dx

= 0 +
( 1

2ni(x− π) 1
−in

e−inx
)∣∣∣∣2π
x=0
−
∫ 2π

0

1
2ni

1
−in

e−inx dx

=
( 1

2n2 (x− π)e−inx
)∣∣∣∣2π
x=0
− 1

2n2

∫ 2π

0
e−inx dx

=
( 1

2n2π1− 1
2n2 (−π)1

)
+ 0

= π

n2 .
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Hence f̂(n) = 1
2n2 for all n ∈ Z \ {0}. Thus

F(f)(x) = π2

12 +
∞∑

n=−∞
n6=0

1
2n2 e

inx.

However, since f is real-valued, by using Theorem 3.2.14, we see if

an = 2Re(f̂(n)) = 1
n2 and bn = −2Im(f̂(n)) = 0

for all n ∈ Z, then

F(f)(x) = π2

12 +
∞∑
n=1

1
n2 cos(nx).

Remark 3.2.18. For a moment, suppose if f was as in Example 3.2.17 then
f(0) = F(f)(0). Thus we would have that

1
4(0− π)2 = π2

12 +
∞∑
n=1

1
n2 cos(n0).

So
π2

6 =
∞∑
n=1

1
n2 .

Therefore, if the answer to Question 3.2.6 is yes, we have an answer to one
case of Question 1.2.17.

To conclude this section, we note we can construct functions that have
pre-described Fourier series provided the desired Fourier coefficients are ‘nice’
enough. To do this, we first need the following.

Remark 3.2.19. It is necessary for us to discuss infinite series summed over
the integers. Note that this discussion was avoided in the above discussion
of Fourier series since we were always taking the limits of the projections
onto Tn(T) and thus pairing −n with n for all n ∈ N. In the case of absolute
convergences, this causes absolutely no issues.

To begin this discussion, suppose (an)n∈Z is a sequence of non-negative
real numbers. To define ∞∑

n=−∞
an,

consider the bijection σ0 : N→ Z defined by

σ0(n) =


0 if n = 1
−n

2 if n is even
−n−1

2 if n is odd and n 6= 1
.
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We then define
L =

∞∑
n=1

aσ0(n)

provided the series converges. However, since this series converges absolutely,
Theorem 1.3.2 implies that we could replace σ0 with any bijection σ : N→ Z
and the resulting series would still converge to L. Hence we have a well-
defined notice of a convergent series of non-negative real numbers summed
over the integers. Moreover, it is also useful to note that

L = lim
N→∞

2N+1∑
n=1

aσ0(n) = lim
N→∞

N∑
n=−N

an

and Theorem 1.2.9 implies that
∑∞
n=−∞ an converges if and only if

sup
({∑

n∈F
an

∣∣∣∣∣ F ⊆ Z finite
})

<∞.

Therefore, if Ω ⊆ C and (fn)n∈Z are continuous functions on Ω such that
if

0 ≤Mn = sup({|fn(x)| | x ∈ Ω}) <∞

for all n ∈ Z then
∑∞
n=−∞Mn <∞, then the Weierstrass M-Test (Theorem

2.2.15) together with (using the real and imaginary parts and) the above
definitions imply that f : Ω→ C defined by

f(x) = lim
N→∞

2N+1∑
n=1

fσ0(n)(x)

for all x ∈ Ω is a well-defined continuous function on Ω. Moreover, the
Weierstrass M-Test implies the series converges uniformly on Ω. Finally,
the above argument also shows that we could replace σ0 with any bijection
σ : N→ Z and that

f(x) = lim
N→∞

2N+1∑
n=1

fσ0(n)(x) = lim
N→∞

N∑
n=−N

fn(x)

for all x ∈ Ω.

Proposition 3.2.20. Let (zn)n∈Z be complex numbers such that
∞∑

n=−∞
|zn| <∞.

Then the function f : T→ C defined by

f(x) =
∞∑

n=−∞
zne

inx
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for all x ∈ T is a well-defined element of C(T) such that

f̂(n) = zn

for all n ∈ Z. Moreover, the series description of f converges uniformly.

Proof. Since
sup({|zne−inx| | x ∈ Ω}) = |zn|

for all n ∈ Z and since
∑∞
n=−∞ |zn| <∞, Remark 3.2.19 implies that if we

define

f(x) =
∞∑

n=−∞
zne

inx

for all x ∈ T, then f is a well-defined element of C(T). Moreover, since the
above series converges uniformly by Remark 3.2.19, we obtain for all k ∈ Z
that

f̂(k) = 1
2π

∫ π

−π
f(x)e−ikx dx

= 1
2π

∫ π

−π

∞∑
n=−∞

zne
inxe−ikx dx

=
∞∑

n=−∞
zn

( 1
2π

∫ π

−π
einxe−ikx dx

)
by Corollary 2.4.5

= zn by Theorem 3.1.17

3.3 Convolutions

In the hopes of answering Questions 3.2.5 and 3.2.6, it is useful to revisit the
proof of the Weierstrass Approximation Theorem (Theorem 2.8.6). There, a
convolution (i.e. complicated multiplication) against certain fixed polyno-
mials was introduced in order to approximate our given function. The goal
of this section is to introduce the same idea in the context of Fourier series.
In fact, we will see that this convolution is the correct multiplication to use
so that the Fourier coefficients of a ‘product’ is the product of the Fourier
coefficients.

The convolution we will use throughout the chapter is the following.

Definition 3.3.1. Given f, g ∈ RI(T), the convolution of f and g is the
function f ∗ g : T→ C defined by

(f ∗ g)(x) = 1
2π

∫ π

−π
f(y)g(x− y) dy

for all x ∈ T.
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It is important to note that f ∗ g is well-defined since the translation and
product of elements of RI(T) are elements of RI(T). The most elementary
and useful example to see that this is the convolution we should be considering
is the following.

Example 3.3.2. Let f ∈ RI(T) and n ∈ Z be arbitrary. Then for all x ∈ T
we see that

(f ∗ en)(x) = 1
2π

∫ π

−π
f(y)ein(x−y) dy

= 1
2π

∫ π

−π
f(y)einxe−iny dy

= einx
1

2π

∫ π

−π
f(y)e−iny dy

= f̂(n)einx.

Hence f ∗ en = f̂(n)en.

Thus, in order to realize the partial Fourier series via convolutions,
it remains only to show that convolutions are linear in the second entry.
Consequently, let us examine the elementary properties of convolutions. In
order to facilitate the proofs of e) and f) in the following, we require Fubini’s
Theorem (Theorem C.1.1). At this time we can only prove Fubini’s Theorem
for continuous functions. Those that take MATH 4012 can upgrade parts e)
and f) later in their academic careers.

Proposition 3.3.3. For all f, g, h ∈ RI(T), the following properties hold:

a) f ∗ g = g ∗ f .

b) f ∗ (g + h) = (f ∗ g) + (f ∗ h).

c) (g + h) ∗ f = (g ∗ f) + (h ∗ f)

d) (cf) ∗ g = c(f ∗ g) = f ∗ (cg) for all c ∈ C.

e) (f ∗ g) ∗ h = f ∗ (g ∗ h) provided f, g, h ∈ C(T).

f) (̂f ∗ g)(n) = f̂(n)ĝ(n) provided f, g ∈ C(T).
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Proof. To see that a) is true, notice for all f, g ∈ RI(T) and x ∈ T that

(f ∗ g)(x) = 1
2π

∫ π

−π
f(y)g(x− y) dy

= 1
2π

∫ x−π

x+π
f(x− t)g(t)(−1) dt substitute t = x− y

= 1
2π

∫ x+π

x−π
f(x− t)g(t) dt

= 1
2π

∫ π

−π
f(x− t)g(t) dt 2π-perodicity

= (g ∗ f)(x).

Therefore, since x ∈ T was arbitrary, f ∗ g = g ∗ f .
To see that b) and c) are true, notice that c) will follow from b) due to

a). To see that b) is true, notice for all f, g, h ∈ RI(T) and x ∈ T that

(f ∗ (g + h))(x) = 1
2π

∫ π

−π
f(y)(g + h)(x− y) dy

= 1
2π

∫ π

−π
f(y)(g(x− y) + h(x− y)) dy

= 1
2π

∫ π

−π
f(y)g(x− y) + f(y)h(x− y) dy

= 1
2π

∫ π

−π
f(y)g(x− y) dy + 1

2π

∫ π

−π
f(y)h(x− y) dy

= (f ∗ g)(x) + (f ∗ h)(x).

Therefore, since x ∈ T was arbitrary, f ∗ (g + h) = (f ∗ g) + (f ∗ h).
To see that d) is true, notice by a) that it suffices to prove (cf)∗g = c(f∗g).

To see this, notice for all f, g ∈ RI(T), c ∈ C, and x ∈ T that

((cf) ∗ g)(x) = 1
2π

∫ π

−π
(cf)(y)g(x− y) dy

= 1
2π

∫ π

−π
cf(y)g(x− y) dy

= c
1

2π

∫ π

−π
f(y)g(x− y) dy

= c((f ∗ g)(x)).

Therefore, since x ∈ T was arbitrary, (cf) ∗ g = c(f ∗ g).
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To see that e) is true, notice for all f, g, h ∈ C(T) and x ∈ T that

((f ∗ g) ∗ h)(x)

= 1
2π

∫ π

−π
(f ∗ g)(y)h(x− y) dy

= 1
2π

∫ π

−π

( 1
2π

∫ π

−π
f(q)g(y − q) dq

)
h(x− y) dy

= 1
4π2

∫ π

−π

∫ π

−π
f(q)g(y − q)h(x− y) dq dy

= 1
4π2

∫ π

−π

∫ π

−π
f(q)g(y − q)h(x− y) dy dq by Fubini’s Theorem

= 1
4π2

∫ π

−π

∫ π−q

−π−q
f(q)g(t)h(x− (t+ q)) dt dq substitute t = y − q

= 1
4π2

∫ π

−π

∫ π

−π
f(q)g(t)h((x− q)− t)) dt dq 2π-perodicity

= 1
2π

∫ π

−π
f(q)

( 1
2π

∫ π

−π
g(t)h((x− q)− t)) dt

)
dq

= 1
2π

∫ π

−π
f(q)(g ∗ h)(x− q) dq

= (f ∗ (g ∗ h))(x).

Therefore, since x ∈ T was arbitrary, (f ∗ g) ∗ h = f ∗ (g ∗ h).
Finally, to see that f) is true, notice for all f, g ∈ C(T) and n ∈ Z that

(̂f ∗ g)(n) = 1
2π

∫ π

−π
(f ∗ g)(x)e−inx dx

= 1
2π

∫ π

−π

( 1
2π

∫ π

−π
f(y)g(x− y) dy

)
e−inx dx

= 1
4π2

∫ π

−π

∫ π

−π
f(y)g(x− y)e−inx dy dx

= 1
4π2

∫ π

−π

∫ π

−π
f(y)g(x− y)e−inx dx dy by Fubini’s Theorem

= 1
4π2

∫ π

−π

∫ π−y

−π−y
f(y)g(t)e−in(t+y) dt dy substitute t = x− y

= 1
4π2

∫ π

−π

∫ π

−π
f(y)e−inyg(t)e−int dt dy 2π-perodicity

= 1
2π

∫ π

−π
f(y)e−iny

( 1
2π

∫ π

−π
g(t)e−int dt

)
dy

= 1
2π

∫ π

−π
f(y)e−iny ĝ(n) dy

= f̂(n)ĝ(n)

as desired.
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Proposition 3.3.3 easily enables us to describe the convolution of any
element of RI(T) against a trigonometric polynomial.

Example 3.3.4. Let f ∈ RI(T) and let p ∈ Trig(T). Thus there exists an
n ∈ N and (ck)nk=−n ⊆ C such that

p(x) =
n∑

k=−n
cke

ikx

for all x ∈ T. Therefore, by Example 3.3.2 and Proposition 3.3.3, we have
that

(f ∗ p)(x) =
n∑

k=−n
ckf̂(k)eikx

for all x ∈ T.

Clearly in order to get the nth partial Fourier series, we need to consider
the following trigonometric polynomials.

Definition 3.3.5. For n ∈ N, the nth Dirichlet kernel (pronounced duh-ri-
klet), denote Dn, is the trigonometric polynomial defined by

Dn(x) =
n∑

k=−n
eikx

for all x ∈ T.

Corollary 3.3.6. For all f ∈ RI(T) and n ∈ N, f ∗Dn = Pn(f).

Proof. This immediately follows from Example 3.3.4 along with the defini-
tions of Dn and Pn(f).

Now that we have the Dirichlet kernels, it would be useful to better
understand these trigonometric polynomials. In particular, the following
lemma easily enables us to graph these functions.

Lemma 3.3.7. For all n ∈ N

Dn(x) =
sin
((
n+ 1

2

)
x
)

sin
(

1
2x
)

as a continuous function on T (i.e. the formula for Dn(0) should be inter-
preted as the limit as x tends to 0).
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Proof. Notice for all x ∈ T that

Dn(x) = e−inx
2n∑
k=0

eikx

= e−inx
2n∑
k=0

(eix)k

= e−inx
ei(2n+1)x − 1
eix − 1

= e−inx
ei(2n+1)x − 1

ei
1
2x(ei

1
2x − e−i

1
2x)

= e−i(n+ 1
2 )x ei(2n+1)x − 1

ei
1
2x − e−i

1
2x

= ei(n+ 1
2 )x − e−i(n+ 1

2 )x

ei
1
2x − e−i

1
2x

=
2i sin

((
n+ 1

2

)
x
)

2i sin
(

1
2x
)

=
sin
((
n+ 1

2

)
x
)

sin
(

1
2x
)

as desired.

Using Lemma 3.3.7, it is easy to graph Dn for all n ∈ N. In particular,
the graph of D3 is as follows:

The graph of D10 is as follows:
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Finally the graph of D50 is as follows:

As these graphs do not look too different than those of the functions used
in the proof of the Weierstrass Approximation Theorem (Theorem 2.8.6),
perhaps there is hope in solving Questions 3.2.5 and 3.2.6 in the same way!

Before we head in that direction, it is useful to obtain one more piece
of information about convolutions. In particular, we desire to prove that
f ∗ g is actually continuous for all f, g ∈ RI(T). This can be useful for us
when we want to consider the convolution of functions that do not include
the Dirichlet kernel. In order to obtain this fact, we need to be able to
‘approximate’ elements of RI(T) with elements from C(T) via the following.
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Lemma 3.3.8. Let f ∈ RI(T) and let M > 0 be such that |f(x)| ≤M for
all x ∈ T. There exists a sequence (gn)n≥1 of elements of C(T) such that

sup({|gn(x)| | x ∈ T}) ≤ 2M

for all n ∈ N and

lim
n→∞

1
2π

∫ π

−π
|f(x)− gn(x)| dx = 0.

Proof. To begin, we first claim that if f ∈ RI(T) is real-valued, then for any
ε > 0 there exists a g ∈ C(T) such that

sup({|g(x)| | x ∈ T}) ≤M

and
1

2π

∫ π

−π
|f(x)− g(x)| dx < ε.

This will be done by first approximating f with a step function, and then
correcting the step function to a continuous function by using very step line
segments.

To see the above claim is true, let ε > 0 be arbitrary. Since f ∈ RI(T)
is real-valued, there exists a partition P of T such that

U(f,P)− L(f,P) < επ.

Since P is a partition of T, we can write P = {tk}nk=0 where

−π = t0 < t1 < · · · < tn−1 < tn = π.

Therefore, if

Mk = sup({f(x) | x ∈ [tk−1tk]}) and mk = inf({f(x) | x ∈ [tk−1tk]}),

then

U(f,P)− L(f,P) =
n∑
k=1

(Mk −mk)(tk − tk−1).

Define the step function h : T→ R by

h(x) =
{
Mk if x ∈ [tk−1, tk) and k 6= n

Mn if x ∈ [tn−1tn]

for all x ∈ T. Then

sup({|h(x)| | x ∈ T}) = sup({Mk | k ∈ {1, . . . , n}}) ≤M
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by construction. Moreover

1
2π

∫ π

−π
|f(x)− h(x)| dx = 1

2π

n∑
k=1

∫ tk

tk−1
|f(x)− h(x)| dx

= 1
2π

n∑
k=1

∫ tk

tk−1
Mk − f(x) dx

≤ 1
2π

n∑
k=1

∫ tk

tk−1
Mk −mk dx

= 1
2π

n∑
k=1

(Mk −mk)(tk − tk−1)

= 1
2π (U(f,P)− L(f,P))

<
1

2π (επ) = ε

2 .

It remains only to correct h using steep line segments to obtain a continuous
function.

Let

δ = min
({

πε

4(M + 1)

}⋃{
tk − tk−1

2

∣∣∣∣ k ∈ {1, . . . , n}}) > 0.

Notice by our choice of δ that no two intervals of the form (tk − δ, tk + δ)
overlap. Equating tn = π with t0 = −π modulo 2π, define g : T→ R by

g(x) =

h(x) if x ∈ [tk−1 + δ, tk − δ]
(h(tk+δ)−h(tk−δ))(x−(tk−δ))

(tk+δ)−(tk−δ) + h(tk − δ) if x ∈ (tk − δ, tk + δ)

for all x ∈ T. By construction g ∈ C(T) and

sup({|g(x)| | x ∈ T}) ≤ sup({|h(x)| | x ∈ T}) ≤M.

Moreover

1
2π

∫ π

−π
|h(x)− g(x)| dx = 1

2π

n∑
k=1

∫ tk+δ

tk−δ
|h(x)− g(x)| dx

≤ 1
2π

n∑
k=1

∫ tk+δ

tk−δ
2M dx

= 1
2π4δM

<
1

2π4
(

πε

4(M + 1)

)
M <

ε

2 .

c©For use through and only available at pskoufra.info.yorku.ca.



3.3. CONVOLUTIONS 119

Therefore

1
2π

∫ π

−π
|f(x)− g(x)| dx ≤ 1

2π

∫ π

−π
|f(x)− h(x)|+ |h(x)− g(x)| dx

<
ε

2 + ε

2 = ε

thereby completing the proof of the claim.
To prove the statement in the lemma, let f ∈ RI(T) be arbitrary. By

letting f1 = Re(f) ∈ RI(T) and f2 = Im(f) ∈ RI(T), the above claim
implies that for every n ∈ N there exists gn,1, gn,2 ∈ C(T) such that

sup({|gn,j(x)| | x ∈ T}) ≤ sup({|fj(x)| | x ∈ T}) ≤M

for all n ∈ N and j ∈ {1, 2}, and

1
2π

∫ π

−π
|f(x)− gn,j(x)| dx < 1

2n

for n ∈ N and j ∈ {1, 2}. Therefore, if for each n ∈ N we define

gn = gn,1 + ign,2,

then gn ∈ C(T) for all n ∈ N,

sup({|gn(x)| | x ∈ T}) ≤ sup({|gn,1(x)|+ |gn,2(x)| | x ∈ T}) ≤ 2M

for all n ∈ N, and

1
2π

∫ π

−π
|f(x)− gn(x)| dx ≤ 1

2π

∫ π

−π
|f1(x)− gn,1(x)|+ |f2(x)− gn,2(x)| dx

<
1

2n + 1
2n = 1

n

so
lim
n→∞

1
2π

∫ π

−π
|f(x)− gn(x)| dx = 0

as desired.

Theorem 3.3.9. For all f, g ∈ RI(T), f ∗ g ∈ C(T).

Proof. To prove this result, we will first deal with the case that g ∈ C(T)
and then use Lemma 3.3.8 to improve the result to an arbitrary g ∈ RI(T).

To begin, suppose f ∈ RI(T) and g ∈ C(T). To see that f ∗ g is
continuous, we will show that f ∗ g is uniformly continuous on T. Thus let
ε > 0 be arbitrary. Since f ∈ RI(T),

M = 1
2π

∫ π

−π
|f(y)| dy <∞.
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Since g ∈ C(T), g is uniformly continuous on T by Theorem 2.8.4. Hence
there exists a δ > 0 such that if t1, t2 ∈ T and |t1− t2| < δ (view this distance
as modulo 2π), then |g(t1) − g(t1)| < ε

M+1 . Therefore, if x1, x2 ∈ T and
|x1−x2| < δ (modulo 2π), then for all y ∈ T we have |(x1−y)− (x2−y)| < δ
so

|(f ∗ g)(x1)− (f ∗ g)(x2)|

=
∣∣∣∣ 1
2π

∫ π

−π
f(y)g(x1 − y) dy − 1

2π

∫ π

−π
f(y)g(x2 − y) dy

∣∣∣∣
=
∣∣∣∣ 1
2π

∫ π

−π
f(y)(g(x1 − y)− g(x2 − y)) dy

∣∣∣∣
≤ 1

2π

∫ π

−π
|f(y)||g(x1 − y)− g(x2 − y)| dy

≤ 1
2π

∫ π

−π
|f(y)| ε

M + 1 dy

= ε

M + 1
1

2π

∫ π

−π
|f(y)| dy

= ε

M + 1M < ε.

Therefore, as ε > 0 was arbitrary, f ∗ g is uniformly continuous on T in the
case that g ∈ C(T).

To prove the arbitrary case, let f, g ∈ RI(T) be arbitrary. To see that
f ∗g is continuous on T, we will show that f ∗g is uniformly a uniformly limit
of continuous functions on T. To construct this sequence, note by Lemma
3.3.8 that exists a sequence (gn)n≥1 of elements of C(T) such that

lim
n→∞

1
2π

∫ π

−π
|g(x)− gn(x)| dx = 0.

Since gn ∈ C(T), by the first case of this proof we know that (f ∗ gn)n≥1 is a
sequence of continuous functions on T. Hence it suffices by Theorem 2.2.9 to
prove that (f ∗ gn)n≥1 converges uniformly to f ∗ g on T.

To see that (f ∗ gn)n≥1 converges uniformly to f ∗ g on T, let ε > 0 be
arbitrary. Since f ∈ RI(T), there exists an M ∈ R such that |f(x)| ≤M for
all x ∈ T. Moreover, since

lim
n→∞

1
2π

∫ π

−π
|g(x)− gn(x)| dx = 0

there exists an N ∈ N such that

lim
n→∞

1
2π

∫ π

−π
|g(x)− gn(x)| dx < ε

M + 1
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for all n ≥ N . Hence for all n ≥ N and x ∈ T, we have that

|(f ∗ g)(x)− (f ∗ gn)(x)|

=
∣∣∣∣ 1
2π

∫ π

−π
f(y)g(x− y) dy − 1

2π

∫ π

−π
f(y)gn(x− y) dy

∣∣∣∣
=
∣∣∣∣ 1
2π

∫ π

−π
f(y)(g(x− y)− gn(x− y)) dy

∣∣∣∣
≤ 1

2π

∫ π

−π
|f(y)||g(x− y)− gn(x− y|) dy

≤ 1
2π

∫ π

−π
M |g(x− y)− gn(x− y)| dy |f(y)| ≤M

= M

2π

∫ π

−π
|g(x− y)− gn(x− y)| dy

= M

2π

∫ x−π

x+π
|g(t)− gn(t)|(−1) dt substitute t = x− y

= M

2π

∫ x+π

x−π
|g(t)− gn(t)| dt

= M

2π

∫ π

−π
|g(t)− gn(t)| dt 2π-periodic

= M
ε

M + 1 < ε.

Therefore, as ε > 0 was arbitrary, (f ∗ gn)n≥1 converges uniformly to f ∗ g
on T thereby completing the proof.

Remark 3.3.10. Using the same ideas as in Theorem 3.3.9, it is possible
to extend parts e) and f) of Proposition 3.3.3. Indeed, the proof of Theorem
3.3.9 shows that we can replace any element of RI(T) in a convolution with
an element of C(T) from Lemma 3.3.8 and be uniformly close to the original
convolution based on a bound for the other function (which always exist
since we are dealing with RI(T)). Thus part e) of Proposition 3.3.3 can be
shown (with some technical details) to hold when RI(T) is replaced with
C(T) and part f) of Proposition 3.3.3 will also extend once we prove the
following. We will not provide a proof of these extensions of parts e) and f)
of Proposition 3.3.3 as we are focusing on C(T) and as we will not be using
them later in the course.

Lemma 3.3.11. Let f ∈ RI(T) and let (fn)n≥1 be a sequence of elements
of RI(T) such that

lim
n→∞

1
2π

∫ π

−π
|f(x)− fn(x)| dx = 0.

Then
lim
n→∞

sup
k∈Z

∣∣∣f̂(k)− f̂n(k)
∣∣∣ = 0.
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Proof. Notice for all n, k ∈ N that∣∣∣f̂(k)− f̂n(k)
∣∣∣ =

∣∣∣∣ 1
2π

∫ π

−π
f(x)e−ikx dx− 1

2π

∫ π

−π
fn(x)e−ikx dx

∣∣∣∣
=
∣∣∣∣ 1
2π

∫ π

−π
(f(x)− fn(x))e−ikx dx

∣∣∣∣
≤ 1

2π

∫ π

−π
|f(x)− fn(x)||e−ikx| dx

= 1
2π

∫ π

−π
|f(x)− fn(x)| dx.

Hence for all n ∈ N,

0 ≤ sup
k∈Z

∣∣∣f̂(k)− f̂n(k)
∣∣∣ ≤ 1

2π

∫ π

−π
|f(x)− fn(x)| dx.

Therefore, since
lim
n→∞

1
2π

∫ π

−π
|f(x)− fn(x)| dx = 0,

the result follows.

3.4 Summability Kernels

Now that we have a convolution description of the partial Fourier series
using the Dirichlet kernels, we turn our attention back to the Weierstrass
Approximation Theorem (Theorem 2.8.6). The proof of the Weierstrass Ap-
proximation Theorem showed that the convolutions of a continuous function
f against specific polynomials converged uniformly to f . Thus, if we desire
the same thing in the context of Fourier series, it should be enlightening to
see what properties these polynomials had.

Example 3.4.1. Recall the construction used in the Weierstrass Approx-
imation Theorem (Theorem 2.8.6) where for each n ∈ N we defined qn :
[−1, 1]→ R by

qn(x) = cn(1− x2)n

for all x ∈ [−1, 1] where

1
cn

=
∫ 1

−1
(1− x2)n dx.

By looking at the final computation in the proof of the Weierstrass Ap-
proximation Theorem, the key properties of qn needed to show that qn ∗ f
converged uniformly to f were

(I)
∫ 1
−1 qn(t) dt = 1,
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(II)
∫ 1
−1 |qn(t)| dt was bounded (in this case by 1 as qn(t) ≥ 0), and

(III) limn→∞
∫

[−1,−δ]∪[δ,1] |qn(t)| dt = 0 for all δ > 0.

Note that (III) was accomplished since for any δ we could make |qn(t)|
arbitrary small on [−1,−δ] ∪ [δ, 1] by letting n be sufficiently large.

Thus, if we are to repeat the proof of the Weierstrass Approximation
Theorem (Theorem 2.8.6) in this context, we desire similar properties for
functions on T. To describe such collections of functions, we define the
following.

Definition 3.4.2. A summability kernel is a sequence (kn)n≥1 of elements
of C(T) such that

(I) 1
2π
∫ π
−π kn(y) dy = 1 for all n ∈ N,

(II) there exists an M > 0 such that 1
2π
∫ π
−π |kn(y)| dy ≤M for all n ∈ N,

and

(III) limn→∞
1

2π
∫
δ≤|y|≤π |kn(y)| dy = 0 for all δ ∈ (0, π).

Repeating part of the proof of Weierstrass Approximation Theorem
(Theorem 2.8.6), we have the following.

Theorem 3.4.3. Let f ∈ RI(T) and let (kn)n≥1 be a summability kernel.
If x ∈ T is a point of continuity of f , then

lim
n→∞

(f ∗ kn)(x) = f(x).

Moreover, if I is a closed interval in T (e.g. I = T) and f is continuous at
each point in I, then (f ∗ kn)n≥1 converges uniformly to f on I.

Proof. To begin, fix f ∈ RI(T). Since f ∈ RI(T), there exists a K > 0 such
that

|f(x)| ≤ K

for all x ∈ T. Moreover, since (kn)n≥1 is a summability kernel, property (II)
of a summability kernel implies there exists an M > 0 such that

1
2π

∫ π

−π
|kn(x)| dx ≤M

for all n ∈ N.
To prove the first part of the theorem, suppose x ∈ T is a point of

continuity of f . To see that

lim
n→∞

(f ∗ kn)(x) = f(x),
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let ε > 0 be arbitrary. Since f is continuous at x, there exists a δ > 0 such
that if y ∈ (−δ,+δ), then

|f(x)− f(x− y)| < ε

2M .

Moreover, since (kn)n≥1 is a summability kernel, property (III) of a summa-
bility kernel implies there exists an N ∈ N such that if n ≥ N then

1
2π

∫
δ≤|y|≤π

|kn(y)| dy < ε

4K .

Hence, for all n ≥ N , we have that

|(f ∗ kn)(x)− f(x)|
= |(kn ∗ f)(x)− f(x)| by Proposition 3.3.3

=
∣∣∣∣ 1
2π

∫ π

−π
kn(y)f(x− y) dy − f(x)

∣∣∣∣
=
∣∣∣∣ 1
2π

∫ π

−π
kn(y)f(x− y) dy − f(x) 1

2π

∫ π

−π
kn(y) dy

∣∣∣∣ by (I)

=
∣∣∣∣ 1
2π

∫ π

−π
kn(y)(f(x− y)− f(x)) dy

∣∣∣∣
≤ 1

2π

∫ π

−π
|kn(y)||f(x− y)− f(x)| dy

= 1
2π

∫ δ

−δ
|kn(y)||f(x− y)− f(x)| dy

+ 1
2π

∫
δ≤|y|≤π

|kn(y)||f(x− y)− f(x)| dy

≤ 1
2π

∫ δ

−δ
|kn(y)| ε2M dy + 1

2π

∫
δ≤|y|≤π

|kn(y)|(2K) dy

≤ ε

2M
1

2π

∫ π

−π
|kn(y)| dy + (2K) 1

2π

∫
δ≤|y|≤π

|kn(y)| dy

≤ ε

2MM + (2K) ε

4K = ε.

Therefore, as ε > 0 was arbitrary, the proof of the first part of the theorem
is complete.

To see the second part of the theorem is true, we simply need to adapt
the above proof to show that given an ε > 0, the same N works for all x ∈ I.
Thus suppose f is continuous at each point of a closed interval I and fix
an ε > 0. Note Theorem 2.8.4 implies that f is uniformly continuous on I.
Therefore, if I = T then the δ chosen above for a single x can be chosen to
work for all x ∈ T and the same computation show that |(f∗kn)(x)−f(x)| < ε
for all n ≥ N and x ∈ T thereby completing the proof. If I 6= T, there is a
slight technicality we need to deal with.
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Since f is uniformly continuous on I, there a δ0 > 0 such that if y ∈
(−δ0, δ0) AND x− y ∈ I, then

|f(x)− f(x− y)| < ε

4M .

Let x1, x2 ∈ I be two endpoints of I. Since f is continuous at x1 and x2,
there exists δ1, δ2 > 0 such that for j ∈ {1, 2} if y ∈ (−δj , δj), then

|f(xj)− f(xj − y)| < ε

4M .

Let δ = min({δ0, δ1, δ2}) > 0. Therefore, if x ∈ I and y ∈ (−δ, δ), then either
x− y ∈ I so

|f(x)− f(x− y)| < ε

4M

or x− y /∈ I so x− y must be with δ of xj for some j ∈ {1, 2} so x is within
δ of the same xj so

|f(x)− f(x− y)| ≤ |f(x)− f(xj)|+ |f(xj)− f(x− y)| < ε

4M + ε

4M = ε

2M .

Hence the same computation used above shows that |(f ∗ kn)(x)− f(x)| < ε
for all n ≥ N and x ∈ T thereby completing the proof.

With Theorem 3.4.3 complete, the only thing that remains in order to
confirm a positive answer to Question 3.2.5 is to show that the Dirichlet
kernel is a summability kernel. Right?

Proposition 3.4.4. For all n ∈ N,

1
2π

∫ π

−π
Dn(x) dx = 1.

However
lim
n→∞

1
2π

∫ π

−π
|Dn(x)| dx =∞.

Proof. To see the first claim, notice by Theorem 3.1.17 that

1
2π

∫ π

−π
Dn(x) dx = 1

2π

∫ π

−π

n∑
k=−n

eikx dx

= 1
2π

n∑
k=−n

∫ π

−π
eikx dx = 1.
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To see the second claim, notice for all n ∈ N that

1
2π

∫ π

−π
|Dn(x)| dx

= 1
2π

∫ 2π

0
|Dn(x)| dx 2π-periodicity

= 1
2π

∫ 2π

0

∣∣∣∣∣∣
sin
((
n+ 1

2

)
x
)

sin
(

1
2x
)

∣∣∣∣∣∣ dx by Lemma 3.3.7

≥ 1
2π

∫ 2π

0

∣∣∣∣∣∣
sin
((
n+ 1

2

)
x
)

1
2x

∣∣∣∣∣∣ dx as | sin(x)| ≤ |x|

= 1
2π

∫ (2n+1)π

0

∣∣∣∣∣∣ sin(y)
1
2

1
n+ 1

2
y

∣∣∣∣∣∣
(

1
n+ 1

2

)
dy let y =

(
n+ 1

2

)
x

= 1
π

∫ (2n+1)π

0

∣∣∣∣sin(y)
y

∣∣∣∣ dy
= 1
π

2n∑
k=0

∫ π(k+1)

πk

| sin(y)|
y

dy

≥ 1
π

2n∑
k=0

∫ π(k+1)

πk

| sin(y)|
π(k + 1) dy

= 1
π

2n∑
k=0

2
π(k + 1) = 2

π2

2n∑
k=0

1
k + 1 .

Therefore, since
∑∞
k=1

1
k diverges, the result follows.

As Proposition 3.4.4 shows the Dirichlet kernel is not a summability
kernel, we are out of luck when it comes to applying Theorem 3.4.3 to show
that the Fourier series converges uniformly for any continuous function. Of
course, this does not show that Question 3.2.5 has a negative answer; just
that our approach does not work.

3.5 Fejér’s Kernel

Although we are out of luck in showing a positive answer to Question
3.2.5 using summability kernels, we can use summability kernels to obtain
important information about Fourier series. The idea on how we can proceed
is the following result that says it is much easier for the averages of a sequence
to converge than it is for the original sequence to converge.
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Lemma 3.5.1. Let (zn)n≥0 be a sequence of complex numbers that converges
to L ∈ C. For each n ∈ N, let

σn = z0 + z1 + z2 + · · ·+ zn
n+ 1 .

Then (σn)n≥1 converges to L.

Proof. To see that (σn)n≥1 converges to L, let ε > 0 be arbitrary. Since
(zn)n≥0 converges to L, (zn)n≥0 is bounded. Therefore there exists anM ∈ R
such that |zn| ≤ M for all n ∈ N. Moreover, since (zn)n≥0 converges to L,
there exists an N1 ∈ N such that

|zn − L| <
ε

2
for all n ≥ N1. Since

lim
n→∞

(|L|+M)N1
n+ 1 = 0,

there exists an N > N1 such that

(|L|+M)N1
n+ 1 <

ε

2

for all n ≥ N . Hence for all n ≥ N we have that

|L− σn| =
∣∣∣∣∣L− 1

n+ 1

n∑
k=0

zk

∣∣∣∣∣
=
∣∣∣∣∣ 1
n+ 1

n∑
k=0

L− zk

∣∣∣∣∣
≤ 1
n+ 1

n∑
k=0
|L− zk|

= 1
n+ 1

n∑
k=N1

|L− zk|+
1

n+ 1

N1−1∑
k=0
|L− zk|

≤ 1
n+ 1

n∑
k=N1

ε

2 + 1
n+ 1

N1−1∑
k=0

(|L|+M)

≤ n−N1
n+ 1

ε

2 + (|L|+M)N1
n+ 1

≤ ε

2 + ε

2 = ε.

Therefore, since ε > 0 was arbitrary, (σn)n≥1 converges to L as desired.

Remark 3.5.2. In light of Lemma 3.5.1, let us examine taking pointwise
averages of Fourier series in the hopes of obtaining more information about
convergence.
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To begin, let f ∈ RI(T) be arbitrary. If (Pn(f))n≥1 is going to converge
pointwise to f , then by Lemma 3.5.1 we must have that f is the pointwise
limit of

1
n+ 1

n∑
m=0

Pm(f) = 1
n+ 1

n∑
m=0

f ∗Dm = f ∗
(

1
n+ 1

n∑
m=0

Dm

)
.

Notice for all x ∈ T that

1
n+ 1

n∑
m=0

Dm(x) = 1
n+ 1

n∑
m=0

m∑
k=−m

eikx

= 1
n+ 1

n∑
k=−n

n∑
m=|k|

eikx

= 1
n+ 1

n∑
k=−n

(n− |k|+ 1)eikx

=
n∑

k=−n

(
1− |k|

n+ 1

)
eikx.

Thus we make the following definitions.

Definition 3.5.3. For n ∈ N, the nth Fejér kernel (pronounced fay-yer),
denote Fn, is the trigonometric polynomial defined by

Fn(x) = 1
n+ 1

n∑
k=0

Dk(x) =
n∑

k=−n

(
1− |k|

n+ 1

)
eikx

for all x ∈ T.

Definition 3.5.4. Let f ∈ RI(T) and let n ∈ N. The nth Cesàro sum of f
(pronounced suh-zaa-row), denoted σn(f), is

σn(f) = 1
n+ 1

n∑
k=0

Pk(f) = f ∗
(

1
n+ 1

n∑
k=0

Dk

)
= f ∗ Fn.

Thus for all x ∈ T,

σn(f)(x) =
n∑

k=−n

(
1− |k|

n+ 1

)
f̂(k)eikx.

As illustrated via Lemma 3.5.1, the reason to examine the Cesàro sums
is their relation to pointwise convergence of the Fourier series. In fact, we
have the following.
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Lemma 3.5.5. Let f ∈ RI(T). If x0 ∈ T and limn→∞ Pn(f)(x0) exists,
then limn→∞ σn(f)(x0) exists and

lim
n→∞

σn(f)(x0) = lim
n→∞

Pn(f)(x0).

Moreover, if I is a closed interval of T (e.g. I = T), g is a continuous
function on I, and (Pn(f))n≥1 converges uniformly to g on I, then (σn(f))n≥1
converges uniformly to g on I.

Proof. Note the first part of the lemma follows immediately from the second
part of the lemma by letting I = {x0}. Thus we will prove the second part
of the lemma. The proof will be achieved by modifying the proof of Lemma
3.5.1.

To see the second part of the lemma, suppose (Pn(f))n≥1 converges
uniformly to g ∈ C(T) on a closed interval I ⊆ T. Thus Proposition 2.2.11
implies there exists an M ∈ R such that

|Pn(f)(x)| ≤M

for all x ∈ I and n ∈ N.

Since (Pn(f))n≥1 converges uniformly to g on I, there exists an N1 ∈ N
such that

|Pn(f)(x)− g(x)| < ε

2

for all n ≥ N1 and x ∈ I. Since

lim
n→∞

(M0 +M)N1
n+ 1 = 0,

there exists an N > N1 such that

(M0 +M)N1
n+ 1 <

ε

2
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for all n ≥ N . Hence for all n ≥ N and x ∈ I we have that

|g(x)− σn(f)(x)|

=
∣∣∣∣∣g(x)− 1

n+ 1

n∑
k=0

Pk(f)(x)
∣∣∣∣∣

=
∣∣∣∣∣ 1
n+ 1

n∑
k=0

g(x)− Pk(f)(x)
∣∣∣∣∣

≤ 1
n+ 1

n∑
k=0
|g(x)− Pk(f)(x)|

= 1
n+ 1

n∑
k=N1

|g(x)− Pk(f)(x)|+ 1
n+ 1

N1−1∑
k=0
|g(x)− Pk(f)(x)|

≤ 1
n+ 1

n∑
k=N1

ε

2 + 1
n+ 1

N1−1∑
k=0

(M0 +M)

≤ n−N1
n+ 1

ε

2 + (M0 +M)N1
n+ 1

≤ ε

2 + ε

2 = ε.

Therefore, since ε > 0 was arbitrary, (σn(f))n≥1 converges uniformly to g on
I as desired.

Due to Lemma 3.5.5, perhaps we have a method for obtaining a negative
answer to Questions 3.2.5 and 3.2.6. Indeed if we can show that the Cesàro
sum do not converge in the appropriate sense, then the Fourier series do not
converge in the corresponding sense. This will not be the case as the Fejér
kernels are actually a summability kernel. To see this, we can repeat the
idea of Lemma 3.3.7 to obtain a formula for the Fejér kernels.

Lemma 3.5.6. For all n ∈ N

Fn(x) = 1
n+ 1

sin
(
n+1

2 x
)

sin
(
x
2
)

2

as a continuous function on T (i.e. the formula for Fn(0) should be interpreted
as the limit as x tends to 0).

Proof. To being, first notice for all x ∈ T that

sin2
(
x

2

)
=
(
ei
x
2 − e−i

x
2

2i

)2

= 1
2 −

1
4e

ix − 1
4e
−ix.
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Therefore

sin2
(
x

2

)
Fn(x)

=
(1

2 −
1
4e

ix − 1
4e
−ix
) n∑
k=−n

(
1− |k|

n+ 1

)
eikx

=
(1

2 −
1
4

(
1− 1

n+ 1

)
− 1

4

(
1− 1

n+ 1

))
e0

− 1
4

(
1− n

n+ 1

)
ei(n+1)x − 1

4

(
1− n

n+ 1

)
e−i(n+1)x

+
(1

2

(
1− n

n+ 1

)
− 1

4

(
1− n− 1

n

))
einx

+
(1

2

(
1− n

n+ 1

)
− 1

4

(
1− n− 1

n

))
e−inx

+
n−1∑
k=1

(1
2

(
1− k

n+ 1

)
− 1

4

(
1− k − 1

n+ 1

)
− 1

4

(
1− k + 1

n+ 1

))
eikx

+
n−1∑
k=1

(1
2

(
1− k

n+ 1

)
− 1

4

(
1− k − 1

n+ 1

)
− 1

4

(
1− k + 1

n+ 1

))
e−ikx

= 1
n+ 1

(1
2 −

1
4e

i(n+1)x − 1
4e
−i(n+1)x + 0 + 0

)
= 1
n+ 1 sin2

(
n+ 1

2 x

)
as desired.

Using Lemma 3.5.6, it is easy to graph Fn for all n ∈ N. In particular,
the graph of F3 is as follows:
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The graph of F10 is as follows:

Finally, the graph of F50 is as follows:

In particular, these graphs look far more like the graphs of the functions
used in the proof of the Weierstrass Approximation Theorem (Theorem
2.8.6). This is due to the fact we can prove the following.

Theorem 3.5.7. The Fejèr’s kernel has the following properties:

a) Fn(x) ≥ 0 for all x ∈ T.

b) Fn(−x) = Fn(x) for all x ∈ T.

c) 1
2π
∫ π
−π Fn(x) dx = 1.
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d) For all δ ∈ (0, π), limn→∞ sup ({|Fn(x)| | δ ≤ |x| ≤ π}) = 0.

Hence the Fejèr’s kernel is a summability kernel.

Proof. Clearly a) follows from Lemma 3.5.6. Moreover, by Lemma 3.5.6,

Fn(−x) = 1
n+ 1

sin
(
n+1

2 (−x)
)

sin
(

(−x)
2

)
2

= 1
n+ 1

− sin
(
n+1

2 x
)

− sin
(
x
2
)

2

= Fn(x)

for all x ∈ T so b) follows.
To see that c) is true, notice since for all k ∈ Z we know that

1
2π

∫ π

−π
eikx =

{
1 if k = 0
0 otherwise

that

1
2π

∫ π

−π
Fn(x) dx = 1

2π

∫ π

−π

n∑
k=−n

(
1− |k|

n+ 1

)
eikx dx

= 1
2π

n∑
k=−n

(
1− |k|

n+ 1

)∫ π

−π
eikx dx = 1.

To see that d) is true, let δ ∈ (0, π) be arbitrary. By Lemma 3.5.6, we
know that

0 ≤ Fn(x) ≤ 1
n+ 1

1
sin
(
x
2
)2

for all x ∈ T \ {0}. Therefore, since x 7→ sin(x2 ) is increasing on (δ, π), if
x ∈ T and δ ≤ |x| ≤ π, then

0 ≤ Fn(x) ≤ 1
n+ 1

1

sin
(
δ
2

)2 .

Hence

0 ≤
∫
δ≤|x|≤π

Fn(x) dx ≤
∫
δ≤|x|≤π

1
n+ 1

1

sin
(
δ
2

)2 dx ≤
2(π − δ)
n+ 1

1

sin
(
δ
2

)2 .

Therefore, since
lim
n→∞

2(π − δ)
n+ 1

1

sin
(
δ
2

)2 = 0

as δ is fixed, d) holds.
Finally, to see that (Fn)n≥1 is a summability kernel, note that property

(I) of Definition 3.4.2 follows from part c), property (II) of Definition 3.4.2
follows from parts a) and c), and property (iii) of Definition 3.4.2 follows
from part d). Hence (Fn)n≥1 is a summability kernel.
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Our knowledge of summability kernels immediately gives us some positive
results towards answering Questions 3.2.5 and 3.2.6 in the affirmative.

Theorem 3.5.8 (Fejér’s Theorem). Let f ∈ RI(T). If x ∈ T is a point
of continuity of f , then

lim
n→∞

σn(f)(x) = f(x).

Moreover, if I is a closed interval in T (e.g. I = T) and f is continuous on
I, then (σn(f))n≥1 converges uniformly to f on I.

Proof. The result immediately follows from Theorem 3.4.3 and Theorem
3.5.7.

Of course Fejér’s Theorem (Theorem 3.5.8 does not answer Questions
3.2.5 and 3.2.6 as we do not have the appropriate direction in Lemma 3.5.5.
However, Fejér’s Theorem can be used to obtain some additional knowledge
about Fourier coefficients.

Corollary 3.5.9. Let f ∈ RI(T). The following are true:

a) If x ∈ T is a point of continuity of f and f̂(n) = 0 for all n ∈ Z, then
f(x) = 0.

b) If f ∈ C(T) and f̂(n) = 0 for all n ∈ Z, then f = 0.

c) If f, g ∈ C(T) and f̂(n) = ĝ(n) for all n ∈ Z, then f = g.

Proof. To see that a) is true, let x ∈ T be a point of continuity of f and
suppose f̂(n) = 0 for all n ∈ Z. Then σn(f) = 0 for all n ∈ N by definition.
Therefore, since x is a point of continuity of f , Fejér’s Theorem (Theorem
3.5.8) implies that

f(x) = lim
n→∞

σn(f)(x) = 0

as desired.
Next, note that b) follows immediately from part a). Finally, to see that

c) is true, let f, g ∈ C(T) be such that f̂(n) = ĝ(n) for all n ∈ Z. Therefore,
h = f − g ∈ C(T) is such that

ĥ(n) = ̂(f − g)(n) = f̂(n)− ĝ(n) = 0

for all n ∈ Z. Hence part b) implies that h = 0 so f = g as desired.

In addition, Fejér’s Theorem (Theorem 3.5.8 allows us to prove that we
can get an affirmative answer to Question 3.2.5 if we replace the partial Fourier
series of a function with a different sequence of trigonometric polynomials.

Theorem 3.5.10. Every element of C(T) can be uniformly approximated by
trigonometric polynomials.
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Proof. Let f ∈ C(T) be arbitrary. Then (σn(f))n≥1 is a sequence of trigono-
metric polynomials that converge uniformly to f by Fejér’s Theorem (Theo-
rem 3.5.8). Hence the result follows.

Theorem 3.5.10 also lets us prove a fact that we would expect if we were
to have the convergence of the Fourier series of functions.

Theorem 3.5.11 (The Riemann-Lebesgue Lemma). If f ∈ RI(T),
then

lim
n→∞

f̂(n) = 0 and lim
n→−∞

f̂(n) = 0.

Proof. To see that the result is true, fix f ∈ RI(T) and let ε > 0 be arbitrary.
By Lemma 3.3.8, there exists a g ∈ C(T) such that

1
2π

∫ π

−π
|f(x)− g(x)| dx < ε

2 .

Therefore Proposition 3.2.12 implies that

|f̂(n)− ĝ(n)| = | ̂(f − g)(n)| ≤ 1
2π

∫ π

−π
|f(x)− g(x)| dx < ε

2

for all n ∈ Z.
By Theorem 3.5.10 there exists a p ∈ T (T) such that

|g(x)− p(x)| < ε

2

for all x ∈ T. Therefore, again by Proposition 3.2.12 implies that

|ĝ(n)− p̂(n)| = |̂(g − p)(n)| ≤ 1
2π

∫ π

−π
|g(x)− p(x)| dx ≤ 1

2π

∫ π

−π

ε

2 dx <
ε

2

for all n ∈ Z. However, p ∈ TN (T) for some N ∈ N so p̂(n) = 0 for all n ∈ Z
such that |n| ≥ N by Example 3.2.7. Hence for all n ∈ Z with |n| ≥ N , we
have that

|f̂(n)| ≤ |f̂(n)− ĝ(n)|+ |ĝ(n)− p̂(n)|+ |p̂(n)| < ε

2 + ε

2 + 0 = ε.

Therefore, since ε > 0 was arbitrary,

lim
n→∞

f̂(n) = 0 and lim
n→−∞

f̂(n) = 0

as desired.
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3.6 The Poisson Kernel

While we are on the topic of summability kernels, there is another kernel that
is quite important in complex analysis and certain applications in applied
mathematics.

Definition 3.6.1. For r ∈ [0, 1), the rth Poisson kernel (pronounced pwan-
ssawn), denoted Pr, is the series of trigonometric polynomials defined by

Pr(x) =
∞∑

n=−∞
r|n|einx

for all x ∈ T.

Remark 3.6.2. Note for all r ∈ [0, 1) that since

∞∑
n=−∞

r|n| <∞

by Example 1.2.3, Remark 3.2.19 implies that Pr is a well-defined element of
C(T) with the above series converging uniformly and absolutely on T and

P̂r(n) = r|n|

for all n ∈ Z.

Like with Fejér kernel, there is an alternative formula for the Poisson
kernel.

Lemma 3.6.3. For all r ∈ [0, 1)

Pr(x) = 1− r2

1− 2r cos(x) + r2 > 0

as a continuous function on T.

Proof. Fix r ∈ [0, 1) and let x ∈ T be arbitrary. Note when r = 0 the result
is trivial. Otherwise when r 6= 0 notice that

1−2r cos(x)+r2 = 1−r(eix+e−ix)+r2 = (1−reix)(1−re−ix) = |1−reix|2.

Hence, since r ∈ (0, 1) so
|reix| = r < 1,
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we see that |1 − reix|2 ≥ (1 − r)2 > 0 for all x ∈ T. Moreover, by Remark
3.6.2, we have that

(1− 2r cos(x) + r2)Pr(x)

= lim
N→∞

(1− r(eix + eix) + r2)
N∑

n=−N
r|n|einx

= lim
N→∞

(
(1 + r2)− r2 − r2

)
e0 − rN+1ei(N+1)x − rN+1e−i(N+1)x

+
(
(1 + r2)rN − rrN−1

)
eiNx +

(
(1 + r2)rN − rrN−1

)
e−iNx

+
N−1∑
n=1

(
(1 + r2)rn − r(rn+1)− r(rn−1)

)
einx

+
N−1∑
n=1

(
(1 + r2)rn − r(rn+1)− r(rn−1)

)
e−inx

= lim
N→∞

(1− r2)− rN+1ei(N+1)x − rN+1e−i(N+1)x + rN+2eiNx + rN+2e−iNx + 0 + 0

= (1− r2)

as r ∈ (0, 1). Hence

Pr(x) = 1− r2

1− 2r cos(x) + r2

for all x ∈ T. Moreover, as the both the numerator and denominator are
positive, Pr(x) > 0 for all x ∈ T as desired.

Using Lemma 3.6.3, it is easy to graph Pr for all r ∈ [0, 1). In particular,
the graph of P0.5 is as follows:

The graph of P0.9 is as follows:
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Finally, the graph of P0.99 is as follows:

It turns out that the Poisson kernel is a summability kernel in the sense
that if in the definition of a summability kernel (Definition 3.4.2) we replace
n ∈ N with n→∞ with [0, 1) and r → 1, the same properties hold!

Lemma 3.6.4. The Poisson kernel is a summability kernel.

Proof. To see that property (I) of Definition 3.4.2 holds, note since the Poisson
kernel converges uniformly by Remark 3.6.2 that its real and imaginary parts
converge uniformly. Hence Corollary 2.4.5 (together with considering the
real and imaginary parts) implies for all r ∈ [0, 1) that

1
2π

∫ π

−π
Pr(x) dx =

∞∑
n=−∞

1
2π

∫ π

−π
r|n|einx dx =

∞∑
n=−∞

1
2πr

|n|
∫ π

−π
einx dx = 1.
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Hence property (I) of Definition 3.4.2 holds. Moreover, since Pr(x) ≥ 0 for
x ∈ T and r ∈ [0, 1), property (II) of Definition 3.4.2 immediately holds.

To see that property (III) of Definition 3.4.2 holds, let δ ∈ (0, π) be
arbitrary. Since x 7→ cos(x) is decreasing on (δ, π], we obtain from Lemma
3.6.3 that

0 ≤ Pr(x) = 1− r2

1− 2r cos(x) + r2 ≤
1− r2

1− 2r cos(δ) + r2

for all δ ≤ |x| ≤ π and r ∈ [0, 1). Hence

1
2π

∫
δ≤|x|≤π

|Pr(x)| dx ≤ 1
2π

∫
δ≤|x|≤π

1− r2

1− 2r cos(δ) + r2 dx

= 2(π − δ)
2π

(
1− r2

1− 2r cos(δ) + r2

)
.

However, since

lim
r↗1

1− 2r cos(δ) + r2 = 2− 2 cos(δ) > 0

and limr↗1 1− r2 = 0, we obtain that

lim
r↗1

1
2π

∫
δ≤|x|≤π

|Pr(x)| dx = 0.

Therefore, as δ ∈ (0, π) was arbitrary, the Poisson kernel is a summability
kernel as desired.

In order to apply the fact that the Poisson kernel is a summability kernel
to obtain convergent series, we simply need to define the following.

Definition 3.6.5. Let f ∈ RI(T) and let r ∈ [0, 1). The rth Abel sum of f ,
denoted Ar(f), is

Ar(f) = f ∗ Pr.

A description of the Abel sums without the need for convolution is easy
to obtain.

Lemma 3.6.6. Let f ∈ RI(T) and let r ∈ [0, 1). Then for all x ∈ T,

Ar(f)(x) =
∞∑

n=−∞
r|n|f̂(n)einx.

Moreover
Âr(f)(n) = r|n|f̂(n)

for all n ∈ Z.
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Proof. Recall the Poisson kernel converges uniformly by Remark 3.6.2. There-
fore

∞∑
n=−∞

r|n|f(y)ein(x−y)

converges uniformly over y ∈ T for any x ∈ T since f ∈ R(T) is bounded.
Hence Corollary 2.4.5 (together with considering the real and imaginary
parts) implies for all r ∈ [0, 1) and x ∈ T that

Ar(f)(x) = (f ∗ Pr)(x)

= 1
2π

∫ π

−π
f(y)Pr(x− y) dy

= 1
2π

∫ π

−π

∞∑
n=−∞

r|n|f(y)ein(x−y) dy

=
∞∑

n=−∞
r|n|

( 1
2π

∫ π

−π
f(y)ein(x−y) dy

)

=
∞∑

n=−∞
r|n|f̂(n)einx by Example 3.3.2

thereby completing the first statement of the lemma.
To see that the second statement of the lemma is true, recall from the

Riemann-Lebesgue Lemma (Theorem 3.5.11) that

lim
n→∞

f̂(n) = 0 and lim
n→−∞

f̂(n) = 0.

Therefore, (f̂(n))n∈Z is bounded so there exists an M ∈ R such that∣∣∣f̂(n)
∣∣∣ ≤M

for all n ∈ Z. Hence for all r ∈ [0, 1)

∞∑
n=−∞

∣∣∣r|n|f̂(n)einθ
∣∣∣ ≤ ∞∑

n=−∞
Mr|n|

converges by Example 1.2.3. Therefore Proposition 3.2.20 implies that

Âr(f)(n) = r|n|f̂(n)

for all n ∈ Z as desired.

Of course, because the Poisson kernel is a summability kernel, we have
the following.
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Theorem 3.6.7. Let f ∈ RI(T). If x ∈ T is a point of continuity of f ,
then

lim
r↗1

Af (f)(x) = f(x).

Moreover, if I is a closed interval in T (e.g. I = T) and f is continuous on
I, then (Ar(f))r∈[0,1) converges uniformly to f on I as r tends to 1.

Proof. The result immediately follows from Theorem 3.4.3 and Lemma
3.6.4.

3.7 Failure of Fourier Series Convergence

With the above discussions complete, we arrive at the following which shows
our attempts to show a positive answer to Questions 3.2.5 and 3.2.6 were
folly. In fact, one of the biggest in mathematics was a mistaken proof that
answers to Questions 3.2.5 and 3.2.6 was yes!

Theorem 3.7.1. There exists a f ∈ C(T) such that F(f) diverges at a point.
Hence the Fourier series of f does not converge pointwise nor uniformly to
f on T.

Proof. To construct the desired function f , we will first look at a specific
element g of RI(T) whose Fourier series is not absolutely summable. We
will then use a series of translated partial Fourier of g to obtain f . This will
be done so that when we take a certain sequence of partial Fourier series
of f , each breaks into a bounded term plus a term involving the negative
integer terms of a partial Fourier of g which will be unbounded. This idea of
having only the negative integer terms of a partial Fourier series was derived
to breaking the inherit symmetry of having both n and −n in the definition
of partial Fourier series.

Consider the function g : T→ C defined by

g(x) =
{
i(π − x) if 0 < x ≤ π
i(−π − x) if − π < x < 0

for all x ∈ T (often g is called the sawtooth function due to its graph on R).
Notice if h : T→ C is defined by h(x) = x for all x ∈ (−π, π], then

g(x) = −ih(x− π)

for all x ∈ T. Hence Example 3.2.16 together with Proposition 3.2.12 implies
that

ĝ(n) = −ie−inπĥ(n) = −i(−1)n
( 1
n

(−1)ni
)

= 1
n
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for all n ∈ Z and ĝ(0) = 0. Thus

F(g) =
∑

n∈Z\{0}

1
n
einx

which clearly is not absolutely summable since
∑∞
n=1

1
n diverges.

For each N ∈ N, consider the N th partial Fourier series of g,

PN (g)(x) =
∑

1≤|n|≤N

1
n
einx.

One piece of information we will need for later use is the following.

Lemma 3.7.2. There exists a constant M ∈ R such that

|PN (g)(x)| ≤M

for all N ∈ N and x ∈ T (that is, (Pn(g))n≥1 is uniformly bounded).

Proof. We will use the Abel sums of g to obtain a bound for PN (g). For all
N ∈ N, let rN = 1− 1

N ∈ (0, 1). Then, for all x ∈ T, we have that

|PN (g)(x)−ArN (g)(x)|

=

∣∣∣∣∣∣∣∣
∑

1≤|n|≤N

1
n
einx −

∞∑
n=−∞
n 6=0

1
n
r
|n|
N einx

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

1≤|n|≤N

( 1
n
− r|n|N

1
n

)
einx

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

|n|≥N+1

1
n
r
|n|
N einx

∣∣∣∣∣∣
≤ 2

N∑
n=1

1
n

(1− rnN ) + 2
∞∑

n=N+1

1
n
rnN

≤ 2
N∑
n=1

(1− rnN ) + 2
∞∑

n=N+1

1
N
rnN

≤ 2
N∑
n=1

(1− rN ) + 2
N

∞∑
n=N+1

rnN

= 2N (1− rN ) + 2
N

rN+1
N

1− rN
≤ 2N (1− rN ) + 2

N

1
1− rN

= 2N
(

1−
(

1− 1
N

))
+ 2
N

1
1−

(
1− 1

N

) = 4.
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However, since |g(x)| ≤ π for all x ∈ T, we see for all x ∈ T and N ∈ N that

|ArN (g)(x)| =
∣∣∣∣ 1
2π

∫ π

−π
g(y)PrN (x− y) dy

∣∣∣∣
≤ 1

2π

∫ π

−π
|g(y)|PrN (x− y) dy as PrN (x− y) > 0

≤ 1
2π

∫ π

−π
πPrN (x− y) dy

≤ 1
2π

∫ π

−π
πPrN (y) dy translation and

inversion invariance

= π by summability
kernel properties.

Hence
|PN (g)(x)| ≤ 4 + π

for all x ∈ T and N ∈ N as desired.

For technical purposes in order to compute the partial sums of our desired
function f , for each N ∈ N let g̃N ∈ Tn(T) be defined by

g̃N (x) =
−1∑

n=−N

1
n
einx

for all x ∈ T.
One piece of information we will need for later use is the following.

Lemma 3.7.3. For all N ∈ N,

|g̃N (0)| ≥ ln(N).

Proof. Notice for all N ∈ N that

|g̃N (0)| =
N∑
n=1

1
n

≥
N−1∑
n=1

∫ n+1

n

1
x
dx

=
∫ N

1

1
x
dx = ln(N)

as desired.

To obtain construct f , we first need some translate of the functions we
have constructed above. For all N ∈ N, define hN : T→ C and h̃N : T→ C
by

hN (x) = ei(2N)xPN (g)(x) and h̃N (x) = ei(2N)xg̃N (x)
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for all x ∈ T. In particular, we see that

hN (x) =
∑

1≤|n|≤N

1
n
ei(2N+n)x ∈ T3N (T)

h̃N (x) =
−1∑

n=−N

1
n
ei(2N+n)x ∈ T2N−1(T).

Note if k ∈ N then e−ikx does not appear in the descriptions of hN and
h̃N . Moreover, by analyzing these formulae for hN and h̃N , we immediately
obtain the following piece of information we will need for later use.

Lemma 3.7.4. For all N ∈ N, if K ∈ N then

PK(hN ) =


0 if K < N

h̃N if K = 2N
hN if K ≥ 3N

.

For our final construction before defining f , for each k ∈ N let

Nk = 32k .

Thus
Nk+1 > 3Nk

for all k ∈ N.
Define f : T→ C by

f(x) =
∞∑
k=1

1
k2hNk(x)

for all x ∈ T. Since hN is a trigonometric polynomial for all N ∈ N and thus
an element of C(T), since∣∣∣∣ 1

k2hNk(x)
∣∣∣∣ =

∣∣∣∣ 1
k2 e

i(2Nk)xPNk(g)(x)
∣∣∣∣ ≤ 1

k2

∣∣∣ei(2Nk)x
∣∣∣ |PNk(g)(x)| ≤ 1

k2M

for all k ∈ N and x ∈ T, and since
∞∑
k=1

M

k2

converges, the Weierstrass M-Test (Theorem 2.2.15) (applied to the real and
imaginary parts) implies that f is well-define, the series defining f converges
uniformly and absolutely, and f ∈ C(T). Therefore, since

∞∑
k=1

1
k2hNk(y)Dn(x− y)
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converges uniformly over y ∈ T for any x ∈ T since Dn is continuous and
thus bounded, by Corollary 2.4.5 (applied to the real and imaginary parts)
for all n ∈ N we see that

Pn(f)(x) = (f ∗Dn)(x)

= 1
2π

∫ π

−π

( ∞∑
k=1

1
k2hNk(y)

)
Dn(x− y) dy

=
∞∑
k=1

1
2π

∫ π

−π

( 1
k2hNk(y)

)
Dn(x− y) dy

=
∞∑
k=1

1
k2Pn(hNk)(x).

for all x ∈ T. However, since Nk+1 > 3Nk for all k ∈ N, notice for all m ∈ N
that

|P2Nm(f)(0)| =
∣∣∣∣∣
∞∑
k=1

1
k2P2Nm(hNk)(0)

∣∣∣∣∣
=
∣∣∣∣∣
m∑
k=1

1
k2P2Nm(hNk)(0)

∣∣∣∣∣
=
∣∣∣∣∣ 1
m2 h̃Nm(0) +

m−1∑
k=1

1
k2hNk(0)

∣∣∣∣∣
≥ 1
m2 |h̃Nm(0)| −

m−1∑
k=1

1
k2 |hNk(0)|

≥ 1
m2 ln(Nm)−

m−1∑
k=1

1
k2M

≥ 1
m2 ln

(
32m

)
−
∞∑
k=1

1
k2M

≥ ln(3)2m

m2 −
∞∑
k=1

1
k2M.

Therefore, since
∞∑
k=1

1
k2M

converges and

lim
m→∞

ln(3)2m

m2 =∞,

we obtain that (PN (f)(0))N≥1 is not bounded and thus cannot possibly
converge to f(0).

c©For use through and only available at pskoufra.info.yorku.ca.



146 CHAPTER 3. SERIES OF TRIGONOMETRIC POLYNOMIALS

3.8 Instances of Uniform Convergence
As we have obtained negative answers to Questions 3.2.5 and 3.2.6, the best
we can hope for is to show specific but very general cases where the Fourier
series do converge uniformly or pointwise. In this section, we will look at
some subsets of C(T) on which the Fourier series converge uniformly. The
first such result follows from Proposition 3.2.20.

Corollary 3.8.1. If f ∈ C(T) is such that
∞∑

n=−∞
|f̂(n)| <∞,

then (Pn(f))n≥1 converges uniformly to f on T. Hence

f(x) = F(f)(x) =
∞∑

n=−∞
f̂(n)einx

for all x ∈ T.

Proof. Note by Proposition 3.2.20 that if we define g : T→ C by

g(x) =
∞∑

n=−∞
f̂(n)einx

for all x ∈ T, then g is a well-defined element of C(T) such that

ĝ(n) = f̂(n)

for all n ∈ Z. Hence the uniqueness of the Fourier coefficients (Corollary
3.5.9) implies that g = f . Moreover, since Proposition 3.2.20 implies the
series description of g converges uniformly to g on T, (Pn(f))n≥1 converges
uniformly to f on T as desired.

Using the above, we have an answer to specific case of Question 1.2.17.

Corollary 3.8.2.
∑∞
n=1

1
n2 = π2

6 .

Proof. Recall by Example 3.2.17 that if we define f : T → C by f(x) =
1
4(x− π)2 for all x ∈ [0, 2π), then

F(f)(x) = π2

12 +
∞∑

n=−∞
n6=0

1
2n2 e

inx = π2

12 +
∞∑
n=1

1
n2 cos(nx).

Since f ∈ C(T) and since
∞∑

n=−∞
|f̂(n)| <∞,
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Corollary 3.8.1 implies that

f(0) = π2

12 +
∞∑
n=1

1
n2 cos(n(0)) = π2

12 +
∞∑
n=1

1
n2 .

Therefore, since f(0) = π2

4 , we obtain that
∞∑
n=1

1
n2 = π2

4 −
π2

12 = π2

6

as desired.

Our other main way to obtain continuous functions whose Fourier series
converges uniformly on T is to consider the Cesàro sums. Indeed the following
theorem implies that given a function with sufficiently nice Fourier coefficients,
the Fourier series converges uniformly on T if and only if the Cesàro sum
converge uniformly on T. Since we know Cesàro sums converges uniformly
on T for any element of C(T) by Fejér’s Theorem (Theorem 3.5.8), we obtain
the uniform convergence of Fourier series in some settings.

Theorem 3.8.3 (Hardy’s Theorem). Let f ∈ RI(T) be such that

sup
{∣∣∣nf̂(n)

∣∣∣ | n ∈ Z
}
<∞.

If x0 ∈ T, then limn→∞ Pn(f)(x0) exists if and only if limn→∞ σn(f)(x0), in
which case

lim
n→∞

Pn(f)(x0) = lim
n→∞

σn(f)(x0).

Furthermore, if I is a closed interval of T and g is a continuous function
on I, then (Pn(f))n≥1 converges uniformly to g on I if and only if (σn(f))n≥1
converges uniformly to g on I.

Proof. As before, note the first part of the lemma follows immediately from
the second part of the lemma by letting I = {x0}. To see the second part
of the statement is true, note by Lemma 3.5.5 that if (Pn(f))n≥1 converges
uniformly to g on I then (σn(f))n≥1 converges uniformly to g on I.

For the converse statement, suppose (σn(f))n≥1 converges uniformly to
g on I. To see that (Pn(f))n≥1 converges uniformly to g on I, let ε > 0 be
arbitrary. Our goal will be to decompose Pn(f) into three terms, two which
involve σn′(f) for some n′ ∈ N, and one which can be made arbitrarily small
using the assumptions of the theorem. We begin with the required estimates
to manage this arbitrarily small term.

Since
sup

{∣∣∣nf̂(n)
∣∣∣ | n ∈ Z

}
<∞,

there exists an M1 ∈ R such that∣∣∣nf̂(n)
∣∣∣ ≤M1
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for all n ∈ Z. For each x ∈ R, let bxc denoting the greatest integer less than
or equal to x (i.e. the floor of x). Moreover, let

α = 1 + 1
6M1 + 1ε > 1.

Then for all n ∈ N we have that that∑
n<|k|≤bαnc

∣∣∣f̂(k)
∣∣∣ ≤ 2

∑
n<k≤bαnc

M1
k

≤ 2M1
n

(bαnc − n)

≤ 2M1
n

(α− 1)n

= 2M1(α− 1) < ε

3 .

Moreover, since α > 1, there exists an N0 ∈ N such that bαnc − n > 0 for
all n ≥ N0.

To return to the proof at hand, notice for all n ≥ N0 and x ∈ I that

Pn(f)(x)
=

∑
0≤|k|≤n

f̂(k)eikx

= 1
bαnc − n

∑
0≤|k|≤n

(bαnc − n) f̂(k)eikx

= 1
bαnc − n

∑
0≤|k|≤n

((bαnc+ 1− |k|)− (n+ 1− |k|)) f̂(k)eikx

= bαnc+ 1
bαnc − n

∑
0≤|k|≤n

(
1− |k|
bαnc+ 1

)
eikx

− n+ 1
bαnc − n

∑
0≤|k|≤n

(
1− |k|

n+ 1

)
f̂(k)eikx

= bαnc+ 1
bαnc − n

∑
0≤|k|≤n

(
1− |k|
bαnc+ 1

)
f̂(k)eikx − n+ 1

bαnc − n
σn(f)(x)

= bαnc+ 1
bαnc − n

∑
0≤|k|≤bαnc

(
1− |k|
bαnc+ 1

)
f̂(k)eikx

− bαnc+ 1
bαnc − n

∑
n<|k|≤bαnc

(
1− |k|
bαnc+ 1

)
f̂(k)eikx − n+ 1

bαnc − n
σn(f)(x)

= bαnc+ 1
bαnc − n

σbαnc(f)(x)− bαnc+ 1
bαnc − n

∑
n<|k|≤bαnc

(
1− |k|
bαnc+ 1

)
f̂(k)eikx

− n+ 1
bαnc − n

σn(f)(x).
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Since α > 1 and
α

α− 1 −
1

α− 1 = 1,

we have for all n ≥ N0 and x ∈ I that

|g(x)− Pn(f)(x)| ≤
∣∣∣∣ α

α− 1g(x)− bαnc+ 1
bαnc − n

σbαnc(f)(x)
∣∣∣∣

+

∣∣∣∣∣∣ bαnc+ 1
bαnc − n

∑
n<|k|≤bαnc

(
1− |k|
bαnc+ 1

)
f̂(k)eikx

∣∣∣∣∣∣
+
∣∣∣∣ 1
α− 1g(x)− n+ 1

bαnc − n
σn(f)(x)

∣∣∣∣ .
We will now show that each of these three terms can be made uniformly

small on I provided n is sufficiently large. Notice by our choice of α that for
all n ≥ N0 ∣∣∣∣∣∣ bαnc+ 1

bαnc − n
∑

n<|k|≤bαnc

(
1− |k|
bαnc+ 1

)
f̂(k)eikx

∣∣∣∣∣∣
≤ bαnc+ 1
bαnc − n

∑
n<|k|≤bαnc

(
1− |k|
bαnc+ 1

) ∣∣∣f̂(k)
∣∣∣

≤
∑

n<|k|≤bαnc

(bαnc+ 1− |k|
bαnc − n

) ∣∣∣f̂(k)
∣∣∣

≤
∑

n<|k|≤bαnc

∣∣∣f̂(k)
∣∣∣

≤ ε

3 .

To see the other two terms can be made uniformly small on I, note since

lim
n→∞

bαnc
n

= α,

that

lim
n→∞

bαnc+ 1
bαnc − n

= α

α− 1 and lim
n→∞

n+ 1
bαnc − n

= 1
α− 1 .

Therefore, since (σn(f))n≥1 converges uniformly to g on I,( bαnc+ 1
bαnc − n

σbαnc(f)
)
n≥1

and
(

n+ 1
bαnc − n

σn(f)
)
n≥1

converge uniformly to

α

α− 1g and 1
α− 1g
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respectively on I by Proposition 2.2.12. Thus there exists an N ∈ N such
that

∣∣∣∣ α

α− 1g(x)− bαnc+ 1
bαnc − n

σbαnc(f)(x)
∣∣∣∣ ≤ ε

3 and∣∣∣∣ 1
α− 1g(x)− n+ 1

bαnc − n
σn(f)(x)

∣∣∣∣ ≤ ε

3

for all n ≥ N and x ∈ I. Hence for all n ≥ N and x ∈ I, we have that

|g(x)− Pn(f)(x)| < ε

3 + ε

3 + ε

3 = ε.

Therefore, since ε > 0 was arbitrary, (Pn(f))n≥1 converges uniformly to g on
I as desired.

One important example that can be obtained from Hardy’s Theorem
(Theorem 3.8.3) is the following.

Corollary 3.8.4. Let f ∈ C(T) be continuously differentiable on T. Then
(Pn(f))n≥1 converges uniformly to f on T. Hence

f(x) = F(f)(x) =
∞∑

n=−∞
f̂(n)einx

for all x ∈ T.

Proof. Let f ∈ C(T) be continuously differentiable on T. Since (σn(f))n≥1
converges uniformly to f on T by Fejér’s Theorem (Theorem 3.5.8), it suffices
by Hardy’s Theorem (Theorem 3.8.3) to show that

sup
{∣∣∣nf̂(n)

∣∣∣ | n ∈ Z
}
<∞.

Notice that f ′ ∈ C(T) (i.e. the derivatives of 2π-periodic functions are
2π-periodic). Since f ′ is continuous on T, the Extreme Value Theorem
implies there exists an M ∈ R such that

|f ′(x)| ≤M

for all x ∈ T. Therefore, if n ∈ N \ {0} then, by using integration by parts,
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we see that∣∣∣2πf̂(n)
∣∣∣

=
∣∣∣∣∫ π

−π
f(x)e−inx dx

∣∣∣∣
=
∣∣∣∣∣
(
f(x) 1

−in
e−inx

)∣∣∣∣π
x=−π

−
∫ π

−π
f ′(x) 1

−in
e−inx dx

∣∣∣∣∣
=
∣∣∣∣ 1
in

∫ π

−π
f ′(x)e−inx dx

∣∣∣∣ 2π-periodic

≤ 1
n

∫ π

−π
|f ′(x)e−inx| dx

≤ 1
n

∫ π

−π
M dx

= 1
n

2πM.

Hence ∣∣∣f̂(n)
∣∣∣ ≤M 1

n

for all n ∈ N \ {0} thereby completing the proof.

3.9 Instances of Pointwise Convergence
By Theorem 3.7.1 we know there exists continuous functions for which
the Fourier series does not converge uniformly. Often for applications it is
sufficient that the Fourier series converges pointwise. Thus in this section, we
will analyze when the Fourier series converges pointwise. Instead of starting
with Fourier series, we will look at the Cesàro sums. This is due to the fact
that Hardy’s Theorem (Theorem 3.8.3) implies if the Cesàro sums converge
pointwise and the Fourier coefficients are sufficiently nice, then the Fourier
series converges pointwise.

The following is a very general result that shows the Cesàro sums converge
at a point provided a specific condition is met, which we will see happens in
a lot of cases.

Theorem 3.9.1 (Lebesgue’s Theorem). Let f ∈ RI(T), let x0 ∈ T, and
let L ∈ C. Suppose

lim
h↘0

1
h

∫ h

0

∣∣∣∣f(x0 + x) + f(x0 − x)
2 − L

∣∣∣∣ dx = 0.

Then limn→∞ σn(f)(x0) = L.

Proof. To prove this result, we will analyze |σn(f)(x0)− L| using integrals
and the Fejér kernels, and divide the integral into three parts each of which
we can show is small.
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To begin, we will introduce some notation. Define ϕ : T→ R by

ϕ(x) = f(x0 + x) + f(x0 − x)− 2L

for all x ∈ T, and define Φ : [0, π]→ [0,∞) by

Φ(h) =
∫ h

0
|ϕ(x)| dx

for all h ∈ [0, π]. Note ϕ ∈ RI(T) so Φ is well-defined. Moreover, by the
Fundamental Theorem of Calculus, Φ is differentiable on (0, π) with

Φ′(h) = |ϕ(h)|

for all h ∈ (0, π).
To proceed with the proof, let ε > 0 be arbitrary. Note that instead of

inputting the correct multiple of ε at each step in the proof, we will end
with a constant multiple of ε in our final bound on |σn(f)(x0)− L|, which is
sufficient.

By the assumptions of the theorem, we know that

lim
h↘0

1
h

Φ(h) = 0.

Moreover, by Lemma 3.5.6, we see for all n ∈ N and x ∈ T that

Fn(x) = 1
n+ 1

sin
((

n+1
2

)
x
)

sin
(
x
2
)

2

≤ 1
n+ 1


(
n+1

2

)
x

sin
(
x
2
)
2

= (n+ 1)
(

x
2

sin
(
x
2
))2

.

Therefore, since
lim
x→0

x
2

sin
(
x
2
) = 1

by the Fundamental Trigonometric Limit, there exists a δ > 0 such that

1
h

Φ(h) < ε for all h ∈ (0, δ] and

Fn(x) ≤ 2(n+ 1) for all x ∈ (−δ, δ) and n ∈ N.

By Theorem 3.5.7, there exists an N ∈ N such that if n ≥ N then 1
n < δ

and
0 ≤ Fn(x) < ε
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for all δ ≤ |x| ≤ π. Hence, by using properties from Theorem 3.5.7, for all
n ≥ N we have that

|σn(f)(x0)− L|
= |(Fn ∗ f)(x0)− L|

=
∣∣∣∣ 1
2π

∫ π

−π
Fn(y)f(x0 − y) dy − L

∣∣∣∣
=
∣∣∣∣ 1
2π

∫ π

0
Fn(y)f(x0 − y) dy + 1

2π

∫ 0

−π
Fn(y)f(x0 − y) dy − L

∣∣∣∣
=
∣∣∣∣ 1
2π

∫ π

0
Fn(y)f(x0 − y) dy + 1

2π

∫ 0

π
Fn(−t)f(x0 + t)(−1) dt− L

∣∣∣∣
=
∣∣∣∣ 1
2π

∫ π

0
Fn(y)f(x0 − y) dy + 1

2π

∫ π

0
Fn(t)f(x0 + t) dt− L

∣∣∣∣
=
∣∣∣∣ 1
2π

∫ π

0
Fn(y)(f(x0 − y) + f(x0 + y)) dy − L

∣∣∣∣
=
∣∣∣∣ 1
2π

∫ π

0
Fn(y)(f(x0 − y) + f(x0 + y)) dy − L

( 1
2π

∫ π

−π
Fn(y) dy

)∣∣∣∣
=
∣∣∣∣ 1
2π

∫ π

0
Fn(y)(f(x0 − y) + f(x0 + y)) dy − 2L

( 1
2π

∫ π

0
Fn(y) dy

)∣∣∣∣
=
∣∣∣∣ 1
2π

∫ π

0
Fn(y)(f(x0 − y) + f(x0 + y)− 2L) dy

∣∣∣∣
=
∣∣∣∣ 1
2π

∫ π

0
Fn(y)ϕ(y) dy

∣∣∣∣
≤ 1

2π

∫ π

0
Fn(y)|ϕ(y)| dy

= 1
2π

∫ 1
n

0
Fn(y)|ϕ(y)| dy + 1

2π

∫ δ

1
n

Fn(y)|ϕ(y)| dy + 1
2π

∫ π

δ
Fn(y)|ϕ(y)| dy.

To complete the proof it suffices to show that each of these three terms
are small for all n ≥ N . For the first term, notice since 1

n < δ for all n ≥ N
that

1
2π

∫ 1
n

0
Fn(y)|ϕ(y)| dy ≤ 1

2π

∫ 1
n

0
2(n+ 1)|ϕ(y)| dy

= n+ 1
π

Φ
( 1
n

)
≤ 2n

π
Φ
( 1
n

)
≤ 2
π

(
1
1
n

Φ
( 1
n

))

≤ 2
π
ε,
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which is just a constant multiple of ε. For the third term, notice that
1

2π

∫ π

δ
Fn(y)|ϕ(y)| dy ≤ 1

2π

∫ π

δ
ε|ϕ(y)| dy

≤ ε

2π

∫ π

0
|ϕ(y)| dy

= ε

2πΦ(π)

which is just a constant multiple of ε since Φ depends only on f and L which
are fixed. Finally, for the second term, since

sin
(
x

2

)
≥ x

π

for all x ∈ (0, π) by elementary calculus, Lemma 3.5.6 implies that

0 ≤ Fn(x) ≤ 1
n+ 1

1
sin2 (x

2
) ≤ π2

(n+ 1)x2

for all x ∈ (0, π) so

1
2π

∫ δ

1
n

Fn(y)|ϕ(y)| dy

≤ 1
2π

∫ δ

1
n

π2

(n+ 1)y2 |ϕ(y)| dy

=
∫ δ

1
n

π

2(n+ 1)y2 Φ′(y) dy

=
(

π

2(n+ 1)y2 Φ(y)
)∣∣∣∣δ
y= 1

n

−
∫ δ

1
n

− π

4(n+ 1)y3 Φ(y) dy

=

 π

2(n+ 1)δ2 Φ(δ)− π

2(n+ 1)
(

1
n

)2 Φ
( 1
n

)+
∫ δ

1
n

π

(n+ 1)y3 Φ(y) dy

≤
(

π

2(n+ 1)δ ε− 0
)

+
∫ δ

1
n

π

(n+ 1)y2 ε dy

= π

2(n+ 1)δ ε+
(
− π

(n+ 1)y ε
)∣∣∣∣δ
y= 1

n

= π

2(n+ 1)δ ε+
(
− π

(n+ 1)δ ε+ π

(n+ 1) 1
n

ε

)
= π

1 + 1
n

ε− π

2(n+ 1)δ ε

≤ π

1 + 1
n

ε

≤ πε.
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Therefore, combining these three estimates, we obtain that

|σn(f)(x0)− L| ≤ 2
π
ε+ πε+ ε

2πΦ(π)

=
( 2
π

+ π + 1
2πΦ(π)

)
ε.

Therefore, since 2
π + π+ 1

2πΦ(π) is a constant that does not depend on ε and
ε > 0 was arbitrary,

lim
n→∞

σn(f)(x0) = L

as desired.

To see a case where Lebesgue’s Theorem (Theorem 3.9.1) can be utilized,
we prove the following which allows us to handle jump discontinuities.

Corollary 3.9.2 (Fejér’s Theorem by Zygmund). Let f ∈ RI(T). If
x0 ∈ T, and

ωf (x0) = 1
2 lim
h↘0

f(x0 + h) + 1
2 lim
h↘0

f(x0 − h)

exists, then
lim
n→∞

σn(f)(x0) = ωf (x0).

Proof. To see that this result is true, we claim that

lim
h↘0

1
h

∫ h

0

∣∣∣∣f(x0 + x) + f(x0 − x)
2 − ωf (x0)

∣∣∣∣ dx = 0.

Once this is established, the result then follows from Lebesgue’s Theorem
(Theorem 3.9.1) with L = ωf (x0).

To see that the above claim is true, let ε > 0. Since

ωf (x0) = 1
2 lim
h↘0

f(x0 + h) + 1
2 lim
h↘0

f(x0 − h)

there exists an h0 ∈ (0,∞) such that if 0 < h ≤ h0, then∣∣∣∣f(x0 + h) + f(x0 − h)
2 − ωf (x0)

∣∣∣∣ ≤ ε.
Thus for all 0 < h ≤ h0 we have that

0 ≤ 1
h

∫ h

0

∣∣∣∣f(x0 + x) + f(x0 − x)
2 − ωf (x0)

∣∣∣∣ dx ≤ 1
h

∫ h

0
ε dx = 1

h
(hε) = ε.

Therefore, as ε > 0 was arbitrary, the claim and thus proof are complete.
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In order to use Lebesgue’s Theorem (Theorem 3.9.1) to show that the
Cesàro sums of f converge to f(x0) at various points x0, we want x0 to
satisfy the following condition.

Definition 3.9.3. Let f ∈ RI(T). A point x0 ∈ T is said to be a Lebesgue
point of f if

lim
h↘0

1
h

∫ h

0

∣∣∣∣f(x0 + x) + f(x0 − x)
2 − f(x0)

∣∣∣∣ dx = 0.

It turns out that given f ∈ RI(T) ‘most’ points are Lebesgue points.

Theorem 3.9.4. If f ∈ RI(T), then “almost every point” in T is a Lebesgue
point of f . Consequently, Lebesgue’s Theorem (Theorem 3.9.1) implies that

lim
n→∞

σn(f)(x0) = f(x0)

for “almost every” x0 ∈ T.

Proof. The proof of this theorem requires material from MATH 4012. It
may or may not be covered based on who is teaching MATH 4012.

Now let us return and see what we can prove about the pointwise con-
vergence of Fourier series without the need of Cesàro sums and Hardy’s
Theorem (Theorem 3.8.3). We start with the following.

Lemma 3.9.5. If f ∈ RI(T) is such that

∫ π

−π

∣∣∣∣f(x)
x

∣∣∣∣ dx <∞,
then limn→∞ Pn(f)(0) = 0.

Proof. Let f ∈ RI(T) be arbitrary. Using Lemma 3.3.7, notice for all n ∈ N
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that

Pn(f)(0) = (f ∗Dn)(0)

= 1
2π

∫ π

−π
f(y)Dn(−y) dy

= 1
2π

∫ π

−π
f(y)

sin
((
n+ 1

2

)
(−y)

)
sin
(

(−y)
2

) dy

= 1
2π

∫ π

−π
f(y)

− sin
((
n+ 1

2

)
y
)

− sin
(y

2
) dy

= 1
2π

∫ π

−π
f(y)

sin
((
n+ 1

2

)
y
)

sin
(y

2
) dy

= 1
2π

∫ π

−π
f(y)

sin(ny) cos
(y

2
)

+ cos(ny) sin
(y

2
)

sin
(y

2
) dy

= 1
2π

∫ π

−π
f(y)

sin(ny) cos
(y

2
)

sin
(y

2
) dy + 1

2π

∫ π

−π
f(y) cos (ny) dy

(where the integral can be split since both integrands are the product of a
Riemann integrable function against a continuous function and thus Riemann
integrable). We will show that

lim
n→∞

1
2π

∫ π

−π
f(y) cos (ny) dy = 0 and (3.1)

lim
n→∞

1
2π

∫ π

−π
f(y)

sin(ny) cos
(y

2
)

sin
(y

2
) dy = 0 (3.2)

thereby completing the proof.
To see that (3.1) is true, let f1 = Re(f) and f2 = Im(f). Therefore, for

all n ∈ N, we see that

1
2π

∫ π

−π
f(y) cos (ny) dy

= 1
2π

∫ π

−π
(f1(y) + if2(y)) cos (ny) dy

= 1
2π

∫ π

−π
f1(y) cos (ny) dy + i

2π

∫ π

−π
f2(y) cos (ny) dy

= 2Re
(
f̂1(n)

)
+ 2iRe

(
f̂2(n)

)
by Theorem 3.2.14 since f1 and f2 are real-valued. Therefore, since the
Riemann-Lebesgue Lemma (Theorem 3.5.11) implies that

lim
n→∞

f̂1(n) = 0 and lim
n→∞

f̂2(n) = 0,
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it follows that (3.1) is true.
To see that (3.2) is true, define g, g1, g2 : T→ C by

g(x) =
f(x) cos

(
x
2
)

sin
(
x
2
) , g1(x) =

f1(x) cos
(
x
2
)

sin
(
x
2
) , and g2(x) =

f2(x) cos
(
x
2
)

sin
(
x
2
)

for all x ∈ T. Clearly g1 = Re(g), g2 = Im(g), and

1
2π

∫ π

−π
f(y)

sin(ny) cos
(y

2
)

sin
(y

2
) dy

= 1
2π

∫ π

−π
g(y) sin(ny) dy

= 1
2π

∫ π

−π
(g1(y) + ig2(y)) sin (ny) dy

= 1
2π

∫ π

−π
g1(y) sin (ny) dy + i

2π

∫ π

−π
g2(y) sin (ny) dy

= −2Im (ĝ1(n))− 2iIm (ĝ2(n))

by Theorem 3.2.14 since g1 and g2 are real-valued. Therefore, since the
Riemann-Lebesgue Lemma (Theorem 3.5.11) implies that

lim
n→∞

ĝ1(n) = 0 and lim
n→∞

ĝ2(n) = 0,

it follows that (3.2) is true... modulo one caveat... g /∈ RI(T) since g may
not be bounded at zero! So does the above actually work?

To see the above is valid, first note since∣∣∣∣tan
(
x

2

)∣∣∣∣ ≥ |x|
for all x ∈ (−π, π) that∫ π

−π
|g(y)| dy =

∫ π

−π

|f(y)|∣∣tan
(y

2
)∣∣ dy ≤ ∫ π

−π

2|f(y)|
|y|

dy <∞ (3.3)

by the assumptions of the theorem. It is this fact that we can use to correct
the proof.

First, due to (3.3), it follows that the conclusions of Proposition 3.2.12
hold whenever we use a function that is a linear combination of g and elements
of RI(T). Therefore Theorem 3.2.14 is still valid as the proof of Theorem
3.2.14 relies only on Proposition 3.2.12. Furthermore, since Proposition
3.2.12 holds whenever we use a function that is a linear combination of g and
elements of RI(T), to prove the Riemann-Lebesgue Lemma (Theorem 3.5.11)
for g it remains only to show that for all ε > 0 there exists an h ∈ C(T) so
that

1
2π

∫ π

−π
|g(y)− h(y)| dy < ε.
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The proof of this fact can be obtained by looking at the proof of Lemma
3.3.8. Indeed ignoring the upper bounds on elements of C(T), it suffices to
prove there is a step function h0 on T such that

1
2π

∫ π

−π
|g(y)− h0(y)| dy < ε

2 .

By (3.3), it follows that there exists a δ > 0 such that

∫ δ

−δ
|g(y)| dy < ε

4

so by constructing a step function that is 0 on [−δ, δ] and constructed on
T \ [−δ, δ] via the same ideas as the proof of Lemma 3.3.8, the desired h0
will be constructed.

(The reason we did not work with such functions throughout is that we
only needed these facts in this one result and doing so would make other
results more difficult to prove.)

(Alternatively, one can revisit this after taking MATH 4012. Indeed, in
pretty much every result in this chapter, RI(T) can be replaced with the
Lebesgue integrable functions L1(T) and (3.3) shows g ∈ L1(T).)

Theorem 3.9.6 (Dirichlet-Dini’s Test). Let f ∈ RI(T) and let x0 ∈ T.
Suppose L ∈ C is such that

∫ π

0

1
x

∣∣∣∣f(x0 + x) + f(x0 − x)
2 − L

∣∣∣∣ dx <∞.
Then limn→∞ Pn(f)(x0) = L.

Proof. Fix f ∈ RI(T), x0 ∈ T, and L ∈ C satisfying the assumptions of the
theorem. Define g : T→ C by

g(x) = f(x0 + x) + f(x0 − x)
2 − L

for all x ∈ T. Then g ∈ RI(T) and, since g(−x) = g(x) for all x ∈ T,

∫ π

−π

∣∣∣∣g(x)
x

∣∣∣∣ dx = 2
∫ π

0

∣∣∣∣g(x)
x

∣∣∣∣ dx <∞,
by assumption. Hence Lemma 3.9.5 implies that

lim
n→∞

Pn(g)(0) = 0.
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However, notice by Proposition 3.3.3 and Proposition 3.4.4, we have for all
n ∈ N that

Pn(g)(0)
= (g ∗Dn)(0)

= 1
2π

∫ π

−π
g(y)Dn(−y) dy

= 1
2π

∫ π

−π

(
f(x0 + y) + f(x0 − y)

2 − L
)
Dn(−y) dy

= 1
4π

∫ π

−π
f(x0 + y)Dn(−y) dy + 1

4π

∫ π

−π
f(x0 − y)Dn(−y) dy

− 1
2π

∫ π

−π
LDn(−y) dy

= 1
4π

∫ −π
π

f(x0 − r)Dn(r)(−1) dr + 1
4π

∫ π

−π
f(x0 − y)Dn(y) dy − L

= 1
2π

∫ π

−π
f(x0 − y)Dn(y) dy − L

= (Dn ∗ f)(x0)− L
= (f ∗Dn)(x0)− L
= Pn(f)(x0)− L.

Thus the result follows.

One example where Dirichlet-Dini’s Test (Theorem 3.9.6) applies is the
following.
Corollary 3.9.7. Let f ∈ RI(T) and suppose f is differentiable at a point
x0 ∈ T. Then

f(x0) = lim
n→∞

Pn(f)(x0).

Proof. Let f ∈ RI(T) be such that f is differentiable at a point x0 ∈ T.
Therefore

lim
x↘0

1
x

∣∣∣∣f(x0 + x) + f(x0 − x)
2 − f(x0)

∣∣∣∣ = |f ′(x0)|

so
x 7→ 1

x

∣∣∣∣f(x0 + x) + f(x0 − x)
2 − f(x0)

∣∣∣∣
is a bounded function on (0, π]. Thus∫ π

0

1
x

∣∣∣∣f(x0 + x) + f(x0 − x)
2 − f(x0)

∣∣∣∣ dx <∞
so the Dirichlet-Dini’s Test (Theorem 3.9.6) implies that

f(x0) = lim
n→∞

Pn(f)(x0)

as desired.
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3.10 Mean-Square Convergence
To conclude this chapter, we return to our motivation for constructing Fourier
series, namely orthogonal projections. Using this linear algebra concepts,
we can describe another form of convergence and obtain more information
about the Fourier coefficients. In particular, part a) of the following looks
like convergence where length has replaced the absolute value. This idea will
be further explored in MATH 4011.

Theorem 3.10.1 (Mean-Square Convergence). For all f ∈ RI(T),

a) limn→∞ ‖Pn(f)− f‖2 = 0.

b) ‖f‖2 =
√∑∞

n=−∞ |f̂(n)|2.

Proof. To see that a) is true, we will use the fact that elements of RI(T)
can be approximated with elements of C(T) ‘sufficiently well’ and elements
of C(T) can be approximated with elements of T (T) ‘sufficiently well’.

Fix f ∈ RI(T) and let ε > 0 be arbitrary. Since f ∈ RI(T), there exists
an M ∈ R such that |f(x)| ≤M for all x ∈ T. By Lemma 3.3.8, there exists
an g ∈ C(T) such that

|g(x)| ≤ 2M

for all x ∈ T and

1
2π

∫ π

−π
|f(x)− g(x)| dx < ε2

4(3M + 1) .

Moreover, by Theorem 3.5.10, there exists p ∈ T (T) such that

|g(x)− p(x)| < ε

2
for all x ∈ T. Hence

‖f − p‖2 ≤ ‖f − g‖2 + ‖g − p‖2

=
( 1

2π

∫ π

−π
|f(x)− g(x)|2 dx

) 1
2

+
( 1

2π

∫ π

−π
|g(x)− p(x)|2 dx

) 1
2

≤
( 1

2π

∫ π

−π
|f(x)− g(x)|(|f(x)|+ |g(x)|) dx

) 1
2

+
(

1
2π

∫ π

−π

ε2

4 dx

) 1
2

≤
( 1

2π

∫ π

−π
|f(x)− g(x)|(3M) dx

) 1
2

+ ε

2

≤
(

(3M) ε2

4(3M + 1)

) 1
2

+ ε

2

≤ ε

2 + ε

2 = ε.
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Since p ∈ T (T), there exists an N ∈ N such that p ∈ TN (T). Therefore,
if n ≥ N then p ∈ Tn(T) and thus part d) of Theorem 3.1.18 implies that

‖f − Pn(f)‖2 ≤ ‖f − p‖2 < ε.

Therefore since ε > 0 was arbitrary, the proof of a) is complete.

To see that b) is true, notice for all n ∈ N that

‖f‖2 = ‖(f − Pn(f)) + Pn(f)‖2 ≤ ‖f − Pn(f)‖2 + ‖Pn(f)‖2

so

‖f‖2 − ‖Pn(f)‖2 ≤ ‖f − Pn(f)‖2 .

Similarly

‖Pn(f)‖2 = ‖(Pn(f)− f) + f‖2
≤ ‖Pn(f)− f‖2 + ‖f‖2
= | − 1| ‖f − Pn(f)‖2 + ‖f‖2
= ‖f − Pn(f)‖2 + ‖f‖2

so

‖Pn(f)‖2 − ‖f‖2 ≤ ‖f − Pn(f)‖2 .

Hence

|‖f‖2 − ‖Pn(f)‖2| ≤ ‖f − Pn(f)‖2 .

Therefore, part a) implies that

lim
n→∞

|‖f‖2 − ‖Pn(f)‖2| = 0
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so

‖f‖2 = lim
n→∞

‖Pn(f)‖2

= lim
n→∞

√
〈Pn(f), Pn(f)〉

= lim
n→∞

√√√√〈 n∑
k=−n

f̂(k)ek,
n∑

j=−n
f̂(j)ej

〉

= lim
n→∞

√√√√ n∑
k=−n

n∑
j=−n

f̂(k)f̂(j) 〈ek, ej〉

= lim
n→∞

√√√√ n∑
k=−n

f̂(k)f̂(k) 〈ek, ek〉 〈ej ,ek〉=0
if j 6=k

= lim
n→∞

√√√√ n∑
k=−n

f̂(k)f̂(k) 〈ek,ek〉=1

= lim
n→∞

√√√√ n∑
k=−n

|f̂(k)|2

=

√√√√ ∞∑
k=−∞

|f̂(k)|2 taking the square root
is continuous

as desired.

One immediate corollary of the Mean-Square Convergence (Theorem
3.10.1) is that we can compute the value of the following sum.

Corollary 3.10.2.
∑∞
n=1

1
n4 = π4

90 .

Proof. Recall from Example 3.2.17 that if f : T → C is defined by f(x) =
1
4(x− π)2 for all x ∈ [0, 2π), then

f̂(n) = 1
2n2

for all n ∈ Z with n 6= 0 and f̂(0) = π2

12 . Therefore

∞∑
n=−∞

∣∣∣f̂(n)
∣∣∣2 = π4

144 +
∞∑

n=−∞
n 6=0

1
|2n2|2

= π4

144 + 1
2

∞∑
n=1

1
n4 .
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Thus the Mean-Square Convergence (Theorem 3.10.1) implies that
∞∑
n=1

1
n4 = −π

4

72 + 2 ‖f‖22

= −π
4

72 + 1
π

∫ 2π

0
|f(x)|2 dx

= −π
4

72 + 1
π

∫ 2π

0

1
16(x− π)4 dx

= −π
4

72 +
( 1

16π
1
5(x− π)5

)∣∣∣∣2π
x=0

= −π
4

72 +
( 1

80π (π)5 − 1
80π (−π)5

)
= −π

4

72 + π4

40

= π4

90
as desired.

Another immediate corollary of the Mean-Square Convergence (Theorem
3.10.1) is the ability to compute the integral of a product of functions via a
series of Fourier coefficients.

Corollary 3.10.3 (Parseval’s Identity). For all f, g ∈ RI(T),

1
2π

∫ π

−π
f(x)g(x) dx =

∞∑
n=−∞

f̂(n)ĝ(n).

Proof. It is elementary to verify for any z, w ∈ C that

zw = 1
4
(
|z + w|2 − |z − w|2 + i|z + iw|2 − i|z − iw|2

)
.

Hence the Mean-Square Convergence (Theorem 3.10.1) implies that
1

2π

∫ π

−π
f(x)g(x) dx

= 1
2π

∫ π

−π

1
4
(
|f(x) + g(x)|2 − |f(x)− g(x)|2 + i|f(x) + ig(x)|2 − i|f(x)− ig(x)|2

)
dx

= 1
4
(
‖f + g‖2 − ‖f − g‖2 + i ‖f + ig‖2 − i ‖f − ig‖2

)
= 1

4

( ∞∑
n=−∞

|f̂(n) + ĝ(n)|2 − |f̂(n)− ĝ(n)|2 + i|f̂(n) + iĝ(n)|2 − i|f̂(n)− iĝ(n)|2
)

=
∞∑

n=−∞
f̂(n)ĝ(n)

as desired.
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Our final mentioned (at this time) corollary of the Mean-Square Conver-
gence (Theorem 3.10.1) is that if “Pn(f)(x) stayed away from f(x) at too
many points”, then the integral

1
2π

∫ π

−π
|f(x)− Pn(f)|2 dx

would stay large thereby yielding a contradiction. This is formally seen as
follows.

Corollary 3.10.4. If f ∈ RI(T), then limn→∞ Pn(f)(x) = f(x) for ‘almost
every’ x ∈ T.

Proof. The proof of this result is beyond the ability of this course as it
requires technology from MATH 4012.

One can actually improve upon the Mean-Square Convergence (Theorem
3.10.1):

Theorem 3.10.5. If f ∈ RI(T) and p ∈ (1,∞), then

lim
n→∞

1
2π

∫ π

−π
|f(x)− Pn(f)(x)|p dx = 0.

Proof. The proof of this result is beyond the ability of this course as it
requires technology from MATH 4011.
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Chapter 4

Applications of Series of
Functions

In this final chapter, we will look at some applications of the theory developed
throughout the course, mainly the results in Chapter 3. This will demonstrate
the power of series, and more specifically Fourier series, in analysis.

Of course the applications studied in this chapter are just a sampling
of what can be done. One example we wish we had time for would be a
complete proof of the Central Limit Theorem in probability. Said proof can
be accomplished by taking a suitable transformation of the distributions of
averages of random variables, taking a limit of the transformations, realizing
the limit is the transform of a Gaussian distribution, and showing this
implies the average of random variables tends to the Gaussian distribution
in a certain sense. This is very reminiscent of Fourier series, but requires a
fair bit of technology that would take all the time we have for applications.
Consequently, we will focus on these multiple applications instead.

4.1 Isoperimetric Inequality

For our first application of Fourier series, we will look at the question in
geometry of maximizing the area contained in a region of R2 by a closed
string of a fixed length. Of course our intuition says the optimal shape
should be a circle. However, we have seen weird things in this course such
as a function that is continuous but nowhere differentiable, so perhaps our
intuition is incorrect. Modulo some assumptions (which are made in the
following definition), it turns out Fourier series can be used to show our
intuition is correct.

Definition 4.1.1. A parametrized curve in R2 is a set Γ ⊆ R2 such that
there exists a continuous function γ : [a, b] → R2 such that Γ = Range(γ).
The function γ is called a parametrization of Γ.
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It is said that Γ is closed if γ(a) = γ(b).
It is said that Γ is simple if Γ does not intersect itself except possibly at

the endpoints; that is if t1, t2 ∈ [a, b] are such that t1 6= t2, then γ(t1) 6= γ(t2)
provided {x1, x2} 6= {a, b}.

Finally, it is said that a simple closed curve Γ is smooth if γ is continu-
ously differentiable on [a, b] (with the one-sided derivatives at the endpoints
agreeing) and γ′(t) 6= ~0 for all t ∈ [a, b].

Remark 4.1.2. It should be pointed out that a curve being ‘smooth’ can
mean different things in different contexts by various authors. For us, we
will just need the above definition in our main result and thus opt for this
definition of ‘smooth’ in order to simplify discussions.

Remark 4.1.3. It is not difficult to see that if γ : [a, b] → R2 is the
parametrization of a simple closed curve, then the x- and y-terms of γ are
continuous periodic functions with period b− a. We will make use of this
fact in order to apply Fourier series provided we can reduce to T. Indeed
this can often be done via the following.

Definition 4.1.4. Let γ : [a, b] → R2 be the parametrization of a simple,
closed, smooth curve Γ. A re-parametrization of γ : [a, b]→ R2 is a function
ϕ : [c, d]→ R2 such that there exists a continuously differentiable bijective
function ψ : [c, d]→ [a, b] with non-vanishing derivative such that

ϕ(s) = γ(ψ(s))

for all s ∈ [c, d].

Note a re-parametrization yields the same subset of R2 and we can
always re-parametrized so that we are working on T. Of course, the hope in
differential geometry is that the parametrization does not affect the quantities
one desires to study. The first quantity we desire to study is the following.

Definition 4.1.5. Given a simple, closed, smooth curve Γ parametrized by
γ : [a, b]→ R2 where γ(t) = (x(t), y(t)) for x, y : [a, b]→ R, the length of Γ
is defined to be

`(Γ) =
∫ b

a

∥∥γ′(t)∥∥2 dt =
∫ b

a

√
|x′(t)|2 + |y′(t)|2 dt.

Remark 4.1.6. It is not difficult to see that the above is the correct formula
for length based on elementary calculus arguments (i.e. distance travelled is
the integral of speed).

Remark 4.1.7. It is necessary to show that the length of a simple, closed,
smooth curve Γ does not depend on the parametrization. Indeed suppose Γ
is parametrized by γ : [a, b]→ R2, ϕ : [c, d]→ R2, and ψ : [c, d]→ [a, b] is a
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continuously differentiable bijective function with non-vanishing derivative
such that

ϕ(s) = γ(ψ(s))

for all s ∈ [c, d]. Notice this implies

ϕ′(s) = γ′(ψ(s))ψ′(s)

for all s ∈ [c, d]. Moreover either ψ′(s) > 0 for all s ∈ (c, d) or ψ′(s) < 0
for all s ∈ (c, d). The former is the case that γ and ϕ draw Γ in the same
orientation whereas the latter is the case that γ and ϕ draw Γ in different
orientations. Therefore we obtain that∫ d

c

∥∥ϕ′(s)∥∥2 ds =
∫ d

c

∥∥γ′(ψ(s))
∥∥

2 |ψ
′(s)| ds

=
∫ b

a

∥∥γ′(t)∥∥2 dt

via a change of variables. (Well, there is actually a lot to prove here. First, if
ψ(c) = a and ψ(d) = b, then ψ′(s) > 0 and the above holds via by the Change
Rule. If ψ(c) = b and ψ(d) = a, then ψ′(s) < 0 so we would introduce a
negative sign when implementing the Change Rule, which would be corrected
as we would need to change the order of the bounds of the integral. Finally,
if we re-parametrized Γ with a different parametrization where we do not
start and end at γ(a) = γ(b), the same proof works by using periodicity.)
Hence the length of Γ is well-defined.

Remark 4.1.8. Given a simple, closed, smooth curve Γ, we can always
re-parametrize Γ to ensure Γ is parametrized via a continuously differentiable
map γ : [0, 2π]→ R2 with non-vanishing derivative. Moreover, it is possible
to assume that γ has constant speed; that is, there exists a c ∈ R such that
|γ′(t)| = c for all t ∈ [0, 2π] (specifically, we would expect c = `(Γ)

2π ). Indeed,
consider the map f : [0, 2π]→ [0, 2π] by

f(s) = 2π
`(Γ)

∫ s

0

∥∥γ′(t)∥∥2 dt

for all s ∈ [0, 2π]. By the definition of the length of Γ and since γ′ does not
vanish, f is a continuously differentiable bijective function with

f ′(s) = 2π
`(Γ)

∥∥γ′(s)∥∥2 6= 0

for all s ∈ [0, 2π]. By elementary calculus, ψ = f−1 : [0, 2π] → [0, 2π] is a
continuously differentiable bijective function with non-vanishing derivative
such that

ψ′(s) = 1
f ′(ψ(s)) = 1

2π
`(Γ) ‖γ′(ψ(s))‖2
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for all s ∈ [0, 2π]. Therefore if ϕ : [0, 2π]→ R2 is defined by

ϕ(s) = γ(ψ(s))

for all s ∈ [0, 2π], then

∥∥ϕ′(s)∥∥2 =
∥∥γ′(ψ(s))ψ′(s)

∥∥
2 =

∥∥γ′(ψ(s))
∥∥

2
1

2π
`(Γ) ‖γ′(ψ(s))‖2

= `(Γ)
2π

for all s ∈ [0, 2π] as desired.
By our Fourier series arguments, we can now assume that Γ is continuously

differentiable map γ : [−π, π] → R2 with constant speed. Thus we are in
Fourier series territory now to study γ.

Of course, the other geometric quantity we require is the following.

Definition 4.1.9. Given a simple closed curve Γ parametrized by γ : [a, b]→
R2 where γ(t) = (x(t), y(t)) where x, y : [a, b]→ R, the area enclosed by Γ is

A(Γ) = 1
2

∣∣∣∣∣
∫ b

a
x(t)y′(t)− y(t)x′(t) dt

∣∣∣∣∣ .
Remark 4.1.10. Green’s Theorem from multivariate calculus implies the
above is the correct formula for the area enclosed by a simple, closed, smooth
curve. As Green’s Theorem is the stable of any multivariate calculus course,
we omit the proof.

Remark 4.1.11. Again It is necessary to show that the area enclosed by
a simple, closed, smooth curve Γ does not depend on the parametrization.
Indeed suppose Γ is parametrized by γ : [a, b] → R2, ϕ : [c, d] → R2, and
ψ : [c, d] → [a, b] is a continuously differentiable bijective function with
non-vanishing derivative such that

ϕ(s) = γ(ψ(s))

for all s ∈ [c, d]. Notice this implies

ϕ′(s) = γ′(ψ(s))ψ′(s)

for all s ∈ [c, d]. Thus, if x, y : [a, b]→ R and x0, y0 : [c, d]→ R are such that

γ(t) = (x(t), y(t)) and ϕ(s) = (x0(s), y0(s))

for all t ∈ [a, b] and s ∈ [c, d], then

x0(s) = x(ψ(x)) y0(s) = y(ψ(s))
x′0(s) = x′(ψ(s))ψ′(s) and y′0(s) = y′(ψ(s))ψ′(s)
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for all s ∈ [c, d]. Thus, by the same technical arguments as in Remark 4.1.7,
we have that

1
2

∣∣∣∣∣
∫ d

c
x0(s)y′0(s)− y0(s)x′0(s) ds

∣∣∣∣∣
= 1

2

∣∣∣∣∣
∫ d

c
x(ψ(s))y′(ψ(s))ψ′(s)− y(ψ(s))x′(ψ(s))ψ′(s) ds

∣∣∣∣∣
= 1

2

∣∣∣∣∣
∫ b

a
x(t)y′(t)− y(t)x′(t) dt

∣∣∣∣∣
Hence the area enclosed by a simple, closed, smooth curve is well-defined.

With the above technicalities out of the way, we can discuss our main
result.

Theorem 4.1.12 (Isoperimetric Inequality). If Γ is a simple, closed,
smooth curve in R2, then

A(Γ) ≤ `(Γ)2

4π .

Moreover, this inequality is an equality if and only if Γ is a circle.

Proof. Note if Γ is a circle of radius r, then we know that `(Γ) = 2πr and
A(Γ) = πr2 so equality easily holds. To proceed with the remainder of the
proof, we will first show that the inequality is true, and then shows based on
the proof that the inequality holds exactly when Γ is a circle.

To see that the inequality holds, let γ : [−π, π]→ R2 be a parametrization
of Γ of constant speed. Thus if x, y : [−π, π] → R2 are such that γ(t) =
(x(t), y(t)) for all t ∈ [−π, π], then there exists a c ∈ R such that c > 0 and

|x′(t)|2 + |y′(t)|2 = c2

for all t ∈ [−π, π]. Therefore

`(Γ) =
∫ π

−π

√
|x′(t)|2 + |y′(t)|2 dt =

∫ π

−π
c dt = 2πc

Thus
c = `(Γ)

2π .

By assumptions, x′, y′ ∈ C(T). Moreover, notice for all n ∈ Z that

x̂′(n) = 1
2π

∫ π

−π
x′(t)e−int dt

=
( 1

2πx(t)e−int
)∣∣∣∣π
t=−π

− 1
2π

∫ π

−π
x(t)(−in)e−int dt

= 0 + in

2π

∫ π

−π
x(t)e−int dt

= inx̂(n)
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and similarly ŷ′(n) = inŷ(n). Therefore, the Mean Square Convergence
(Theorem 3.10.1), we obtain that

∞∑
n=−∞

n2
(
|x̂(n)|2 + |ŷ(n)|2

)
=

∞∑
n=−∞

∣∣∣x̂′(n)
∣∣∣2 +

∣∣∣ŷ′(n)
∣∣∣2

= 1
2π

∫ π

−π
|x′(t)|2 dx+ 1

2π

∫ π

−π
|y′(t)|2 dx

= 1
2π

∫ π

−π
|x′(t)|2 + |y′(t)|2 dt

= 1
2π

∫ π

−π
c2 dt

= c2. (4.1)

Furthermore, Parseval’s Identity (Corollary 3.10.3) implies that

A(Γ) = 1
2

∣∣∣∣∫ π

−π
x(t)y′(t)− x′(t)y(t) dt

∣∣∣∣
= π

∣∣∣∣∣
∞∑

n=−∞
x̂(n)ŷ′(n)− x̂′(n)ŷ(n)

∣∣∣∣∣
= π

∣∣∣∣∣
∞∑

n=−∞
x̂(n)inŷ(n)− inx̂(n)ŷ(n)

∣∣∣∣∣
= π

∣∣∣∣∣
∞∑

n=−∞
−in(x̂(n)ŷ(n)− x̂(n)ŷ(n))

∣∣∣∣∣
≤ π

∞∑
n=−∞

n|x̂(n)ŷ(n)− x̂(n)ŷ(n)| (4.2)

≤ π
∞∑

n=−∞
2n|x̂(n)||ŷ(n)| (4.3)

≤ π
∞∑

n=−∞
n(|x̂(n)|2 + |ŷ(n)|2) (4.4)

≤ π
∞∑

n=−∞
n2(|x̂(n)|2 + |ŷ(n)|2) n2 ≥ n (4.5)

= πc2

= π

(
`(Γ)
2π

)2

= `(Γ)2

4π
as desired.
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To prove that if A(Γ) = `(Γ)2

4π then Γ is a circle, note that equality in the
Isoperimetric Inequality implies that (4.2), (4.3), (4.4), and (4.5) are equalities
by the above proof. Note equality in (4.5) implies that |x̂(n)|2 + |ŷ(n)|2 = 0
for all n such that |n| ≥ 2. Thus an = bn = 0 for all n ∈ Z with |n| ≥ 2.
Thus x and y must be trigonometric polynomials of degree at most 1 so we
may write

x(t) = a1e
it + a0 + a−1e

−it and y(t) = b1e
it + b0 + b−1e

−it

for some a1, a0, a−1, b1, b0, b−1 ∈ C.
Since x and y are real-valued, this implies a0, b0 ∈ R, a−1 = a1, and

b−1 = b1 (see Theorem 3.2.14). Moreover, equality in (4.4) implies

2|a1||b1| = |a1|2 + |b1|2

and thus |a1| = |b1|. Furthermore, notice equation (4.1) implies that

c2 =
1∑

n=−1
n2(|an|2 + |bn|2) = 2(|a1|2 + |b1|2) = 4|a1|2

Therefore
|a1| = |b1| =

c

2
so we can write

a1 = c

2e
iθa and b1 = c

2e
iθb

for some θa, θb ∈ [−π, π].
By examining the inequalities from (4.2) to (4.3) to (4.4), equality implies

that

2|a1b1 − a1b1| =
1∑

n=−1
n|x̂(n)ŷ(n)− x̂(n)ŷ(n)|

=
1∑

n=−1
n2(|an|2 + |bn|2) = c2.

Thus, subbing in the expressions for a1 and b1, we obtain that

c2 = 2
∣∣∣∣( c2eiθa

)(
c

2e
−iθb

)
−
(
c

2e
−iθa

)(
c

2e
iθa

)∣∣∣∣
= c2

2

∣∣∣ei(θa−θb) − e−i(θa−θb)∣∣∣
= c2| sin(θa − θb)|.
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Hence | sin(θa − θb)| = 1 so θa − θb = kπ
2 for some k ∈ Z. Therefore

x(t) = a1e
it + a0 + a−1e

−it

= a1e
it + a0 + a1e

−it

= a0 + c

2
(
ei(t−θa) + e−i(t−θa)

)
= a0 + c

2 cos(t− θa)

and

y(t) = b1e
it + b0 + b−1e

−it

= b1e
it + a0 + b1e

−it

= b0 + c

2
(
ei(t−θb) + e−i(t−θb)

)
= b0 + c

2 cos(t− θb)

= b0 + c

2 cos
(
t− θa + kπ

2

)
= b0 ±

c

2 sin (t− θa)

(where + is used when k−1
2 is even and − is used when k−1

2 is odd). Thus
γ(t) = (x(t), y(t)) is the parametrization of a circle, so Γ is a circle as
desired.

4.2 Weyl’s Equidistribution Theorem

Our next application of Fourier series is rooted in ergodic theory; the branch
of mathematics that studies properties of dynamical systems. To understand
the basic concepts of ergodic theory, consider the interval [0, 1) where we
work modulo 1 and a bijective function f : [0, 1) → [0, 1). The hope is to
understand the behaviour of fn on points of [0, 1) as n varies. For example,
for a fixed number γ ∈ (0, 1), consider f defined by f(x) = x+ γ. For a fixed
x0 ∈ [0, 1), what can be said about (fn(x0))n≥1? In particular, if we were to
plot these points, what does their distribution look like? Does it clump up
or spread out? In particular, does it have the following property?

Definition 4.2.1. A sequence (xn)n≥1 in [0, 1) is said to be equidistributed
if for all (a, b) ⊆ [0, 1),

lim
N→∞

|{1 ≤ n ≤ N | xn ∈ (a, b)}|
N

= b− a

where, given X ⊆ N, |X| denotes the number of elements in X.

c©For use through and only available at pskoufra.info.yorku.ca.



4.2. WEYL’S EQUIDISTRIBUTION THEOREM 175

Remark 4.2.2. Equidistributed clearly means ‘equally distributed’; that
is, if a sequence (xn)n≥1 is equidistributed, then the probability a term in
(xn)n≥1 lies in an open interval of [0, 1) is approximately the length of the
interval as we add more and more points. This means that asymptotically
(xn)n≥1 is distributed with respect to the uniform distribution. Thus (xn)n≥1
will be as ‘spread out as possible’ in [0, 1). Moreover (xn)n≥1 must intersect
every interval; a property in topology known as being dense. Thus being
able to show sequences are equidistributed is desirable.

It is not difficult to show that certain sequences are not equidistributed.

Example 4.2.3. For all n ∈ N, let xn = 1
2n . Then (xn)n≥1 is not equidis-

tributed since ∣∣∣{1 ≤ n ≤ N
∣∣∣xn ∈ (1

2 , 1
)}∣∣∣

N
= 0 6= 1

2
for all n ∈ N.

Example 4.2.4. Consider the sequence

0, 1
2 ,

1
4 ,

1
2 ,

3
4 ,

1
2 ,

1
8 ,

1
2 ,

3
8 ,

1
2 ,

5
8 ,

1
2 ,

7
8 ,

1
2 ,

1
16 , . . . .

It is not difficult to see that this sequence intersects every interval, but is
not equidistributed since any interval (a, b) around 1

2 will yield

|{1 ≤ n ≤ N | xn ∈ (a, b)}|
N

≥ 1
2 −

1
N
,

and there are intervals of length less than 1
2 centred at 1

2 .

For more examples, we note one useful way to construct sequences in [0, 1)
is to construct a sequence in R and use the following ‘modulo 1’ function.

Definition 4.2.5. Given x ∈ R, also called the integer part of x (the floor
of x), denoted bxc is the greatest integer less than or equal to x.

Given x ∈ R, the fractional part of x, denoted [x], is defined to be

[x] = x− bxc ∈ [0, 1).

By working ‘modulo 1’, we note if x, y ∈ [0, 1), then [x + y] ∈ [0, 1).
Similarly other operations behave well with respect to taking the fractional
part.

Example 4.2.6. For another example of a non-equidistributed sequences, fix
q ∈ Q∩ [0, 1) and consider the sequence ([nq])n≥1. If q = a

b with gcd(a, b) = 1
then

[nq] ∈
{

0, 1
b
,
2
b
, . . . ,

b− 1
b

}
for all n ∈ N. Thus clearly ([nq])n≥1 is not equidistributed as it does not
intersect

(
0, 1

b

)
.
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However, if we take an irrational number, then the exact opposite occurs:

Theorem 4.2.7 (Weyl’s Equidistributed Theorem). If γ ∈ R is irra-
tional, then the sequence ([nγ])n≥1 is equidistributed in [0, 1).

The way we will demonstrate the Weyl’s Equidistributed Theorem (The-
orem 4.2.7) is by demonstrating the following criterion for a sequence to be
equidistributed.

Theorem 4.2.8 (Weyl’s Criterion). A sequence (xn)n≥1 in [0, 1) is equidis-
tributed in [0, 1) if and only if

lim
N→∞

1
N

N∑
n=1

e2πkxni = 0

for all k ∈ Z \ {0}.

Indeed, Weyl’s Equidistributed Theorem (Theorem 4.2.7) can be proved
using Weyl’s Criterion (Theorem 4.2.8) as follows.

Proof of Weyl’s Equidistributed Theorem via Weyl’s Criterion. Let γ ∈ R
be irrational. To see that ([nγ])n≥1 is equidistributed in [0, 1), it suffices by
Weyl’s Criterion (Theorem 4.2.8) to show that

lim
N→∞

1
N

N∑
n=1

e2πk[nγ]i = 0

for all k ∈ Z \ {0}.
Fix k ∈ Z \ {0} and notice that

e2πkγi = cos(2πkγ) + i sin(2πkγ) 6= 1

as γ is irrational. Therefore, for all N ∈ N

1
N

N∑
n=1

e2πk[nγ]i = 1
N

N∑
n=1

e2πknγi 2π-periodicity

= 1
N

N∑
n=1

(
e2πkγi

)n
= 1
N
e2πkγi (e2πkγi)N+1 − 1

e2πkγi − 1 geometric series.

Since for all N ∈ N ∣∣∣∣∣ 1
N

N∑
n=1

e2πk[nγ]i
∣∣∣∣∣ ≤ 1

N

2
|e2πkγi − 1| ,
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we obtain that

lim
N→∞

1
N

N∑
n=1

e2πk[nγ]i = 0

Thus, as k ∈ Z \ {0} was arbitrary, Weyl’s Criterion (Theorem 4.2.8) implies
that ([nγ])n≥1 is equidistributed in [0, 1).

Remark 4.2.9. To be able to prove Weyl’s Criterion (Theorem 4.2.8), we
desire to connect the definition of equidistribution in [0, 1) to notions of
functions and integrals we have seen in this course. To do this, let (xn)n≥1
be a sequence in [0, 1), let A ⊆ [0, 1), and define the characteristic function
of A to be the function χA : [0, 1)→ R defined by

χA(x) =
{

1 if x ∈ A
0 if x /∈ A

.

Notice for any (a, b) ⊆ [0, 1) that

1
N

N∑
n=1

χ(a,b)(xn) = |{1 ≤ n ≤ N | xn ∈ (a, b)}|
N

and ∫ 1

0
χ(a,b)(x) dx = b− a.

Therefore, by the definition of equidistributed, (xn)n≥1 is equidistributed in
[0, 1) if and only if

lim
N→∞

1
N

N∑
n=1

χ(a,b)(xn) =
∫ 1

0
χ(a,b)(x) dx

for all (a, b) ⊆ [0, 1). Consequently, it is easy to see how the following result
may be of use in the proof of Weyl’s Criterion (Theorem 4.2.8).

Lemma 4.2.10. Let (xn)n≥1 be a sequence in [0, 1). Then

lim
N→∞

1
N

N∑
n=1

e2πkxni = 0

for all k ∈ Z \ {0} if and only if

lim
N→∞

1
N

N∑
n=1

f(xn) =
∫ 1

0
f(x) dx

for all continuous periodic functions f : R→ R with period 1.
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Proof. To begin, suppose

lim
N→∞

1
N

N∑
n=1

f(xn) =
∫ 1

0
f(x) dx.

for all continuous periodic functions f : R→ R with period 1. By using the
linearity of the integral, the above limit holds for all continuous periodic
functions f : R→ C with period 1.

Fix k ∈ Z \ {0} and let f : R→ C be defined by

f(x) = e2πkxi

for all x ∈ R. Thus f is a continuous periodic function with period 1 so the
above implies that

0 =
∫ 1

0
e2πkxi dx

=
∫ 1

0
f(x) dx

= lim
N→∞

1
N

N∑
n=1

f(xn)

= lim
N→∞

1
N

N∑
n=1

e2πkxni

as desired.
For the converse direction, suppose

lim
N→∞

1
N

N∑
n=1

e2πkxni = 0

for all k ∈ Z \ {0}. The idea of the proof is that this assumption implies the
conclusions for trigonometric polynomials (using e2πkxi instead of eikx) and
thus will hold since we can uniformly approximate periodic functions with
trigonometric polynomials.

Let ε > 0 be arbitrary. Consider the function g : R→ R defined by

g(x) = f

(
x

2π

)
for all x ∈ R. Since f is continuous and periodic with period 1, g ∈ C(T).
Therefore, Theorem 3.5.10 implies there exists a p ∈ T (T) such that

|g(x)− p(x)| < ε

3
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for all x ∈ [0, 2π). Since p ∈ T (T), there exists an m ∈ N and {ak}mk=−m ∈ C
such that

p(x) =
m∑

k=−m
ake

ikx

for all x ∈ [0, 2π). Therefore, if q : R→ R is defined by

q(x) = p(2πx) =
m∑

k=−m
ake

2πkxi

for all x ∈ R, then for all x ∈ [0, 1) we have that

|f(x)− q(x)| = |g(2πx)− p(2πx)| < ε

3 .

Notice that∫ 1

0
q(x) dx =

∫ 1

0

N∑
k=−N

ake
2πkxi dx =

m∑
k=−m

ak

∫ 1

0
e2πkxi dx = a0

and thus∣∣∣∣∣ 1
N

N∑
n=1

q(xn)−
∫ 1

0
q(x) dx

∣∣∣∣∣
=
∣∣∣∣∣ 1
N

N∑
n=1

q(xn)− a0

∣∣∣∣∣
=

∣∣∣∣∣∣ 1
N

N∑
n=1

m∑
k=−m

ake
2πkxni − a0

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1
N

m∑
k=−m
k 6=0

N∑
n=1

ake
2πkxni

∣∣∣∣∣∣∣∣ since 1
N
Na0e

0 = a0

≤
m∑

k=−m
k 6=0

|ak|
∣∣∣∣∣ 1
N

N∑
n=1

e2πkxni
∣∣∣∣∣ .

Therefore, since

lim
N→∞

1
N

N∑
n=1

e2πkxni = 0

for all k ∈ Z \ {0}, there exists an N0 ∈ N such that∣∣∣∣∣ 1
N

N∑
n=1

q(xn)−
∫ 1

0
q(x) dx

∣∣∣∣∣ < ε

3
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for all N ≥ N0.
Thus, for all N ≥ N0 we have that∣∣∣∣∣ 1

N

N∑
n=1

f(xn)−
∫ 1

0
f(x) dx

∣∣∣∣∣
≤
∣∣∣∣∣ 1
N

N∑
n=1

f(xn)− 1
N

N∑
n=1

q(xn)
∣∣∣∣∣+

∣∣∣∣∣ 1
N

N∑
n=1

q(xn)−
∫ 1

0
q(x) dx

∣∣∣∣∣
+
∣∣∣∣∫ 1

0
q(x) dx−

∫ 1

0
f(x) dx

∣∣∣∣
≤ 1
N

(
N∑
n=1
|f(xn)− q(xn)|

)
+ ε

3 +
∫ 1

0
|q(x)− f(x)| dx

≤ 1
N

(
N∑
n=1

ε

3

)
+ ε

3 +
∫ 1

0

ε

3 dx

= ε

3 + ε

3 + ε

3 = ε.

Therefore, as ε > 0 was arbitrary, the result is complete.

With that lemma out of the way, it is now possible to prove our desired
result.

Proof of Weyl’s Criterion (Theorem 4.2.8). Let (xn)n≥1 be a sequence in
[0, 1). Suppose that

lim
N→∞

1
N

N∑
n=1

e2πkxni = 0

for all k ∈ Z\{0}. To see that (xn)n≥1 is equidistributed in [0, 1), by Remark
4.2.9 we simply need to upgrade Lemma 4.2.10 to include characteristic
functions of intervals.

Let (a, b) ⊆ [0, 1] be such that a < b and let ε > 0 be arbitrary. Consider
the 1-periodic functions f+ : R→ R and f− : R→ R defined by

f+(x) =


1 if x ∈ [a, b]
1
ε (x− a+ ε) if x ∈ [a− ε, a] \ [a, b]
1
ε (b+ ε− x) if x ∈ [b, b+ ε] \ [a, b]
0 otherwise

f−(x) =


1 if x ∈ [a+ ε, b− ε]
1
ε (x− a) if x ∈ [a, a+ ε]
1
ε (b− x) if x ∈ [b− ε, b]
0 otherwise

.
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Thus f+ and f− are continuous functions such that∫ b

a
f−(x) dx = (b− a)− 2ε,

∫ b

a
f+(x) dx ≤ (b− a) + 2ε

and
f−(x) ≤ χ(a,b)(x) ≤ f+(x)

for all x ∈ [0, 1].
Recall Lemma 4.2.10 implies that

lim
N→∞

1
N

N∑
n=1

f+(xn) =
∫ 1

0
f+(x) dx

lim
N→∞

1
N

N∑
n=1

f−(xn) =
∫ 1

0
f−(x) dx.

Therefore, since for all N ∈ N,

1
N

N∑
n=1

f−(xn) ≤ 1
N

N∑
n=1

χ(a,b)(xn) ≤ 1
N

N∑
n=1

f+(xn),

we obtain that

(b− a)− 2ε =
∫ 1

0
f−(x) dx.

≤ lim
N→∞

1
N

N∑
n=1

f−(xn)

≤ lim inf
N→∞

1
N

N∑
n=1

χ(a,b)(xn)

≤ lim sup
N→∞

1
N

N∑
n=1

χ(a,b)(xn)

≤ lim
N→∞

1
N

N∑
n=1

f+(xn)

=
∫ 1

0
f+(x) dx

≤ (b− a) + 2ε.

Thus, as ε > 0 was arbitrary, we obtain that

b− a ≤ lim inf
N→∞

1
N

N∑
n=1

χ(a,b)(xn) ≤ lim sup
N→∞

1
N

N∑
n=1

χ(a,b)(xn) ≤ b− a.

Hence

lim
N→∞

1
N

N∑
n=1

χ(a,b)(xn) = b− a =
∫ 1

0
χ(a,b)(x) dx.
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Therefore, since (a, b) ⊆ [0, 1) was arbitrary, (xn)n≥1 is equidistributed in
[0, 1) by Remark 4.2.9.

Conversely, suppose that (xn)n≥1 is equidistributed in [0, 1). To see that

lim
N→∞

1
N

N∑
n=1

e2πkxni = 0

for all k ∈ Z \ {0}, it suffices by Lemma 4.2.10 to show that

lim
N→∞

1
N

N∑
n=1

f(xn) =
∫ 1

0
f(x) dx

for all continuous periodic functions f : R→ R with period 1. The idea is to
use the fact (xn)n≥1 is equidistributed in [0, 1) implies the desired limit holds
for characteristic functions of intervals and extend this to linear combinations
of characteristic functions of intervals and then to all continuous functions
via Riemann sums.

First we generalize Remark 4.2.9 to more intervals. Since (xn)n≥1 is
equidistributed in [0, 1), Remark 4.2.9 implies that

lim
N→∞

1
N

n∑
k=1

χ(a,b)(xn) = b− a.

Thus
lim
N→∞

1
N

n∑
k=1

χ(0,1)(xn) = 1.

so
lim
N→∞

1
N

n∑
k=1

χ[0,0](xn) = 0.

Since for any b ≤ 1 we have that

χ[0,b](x) = 1− χ(b,1)(x)

for all x ∈ [0, 1) we obtain that

lim
N→∞

1
N

n∑
k=1

χ[0,b](xn) = lim
N→∞

1
N

n∑
k=1

1− χ(b,1)(xn) = 1− (1− b) = b.

Similarly, for any 0 < a < b ≤ 1, we have that

χ[a,b](x) = 1− χ[0,0](x)− χ(0,a)(x)− χ(b,1)(x)

for all x ∈ [0, 1) so

lim
N→∞

1
N

n∑
k=1

χ[a,b](xn) = 1− 0− a− (1− b) = b− a.
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Returning to the desired direction, fix an arbitrary continuous periodic
function f : R → R with period 1 and let ε > 0 be arbitrary. Since f is
Riemann integrable, there exists a partition P = {tk}`k=0 of [0, 1] where

0 = t0 < t1 < · · · < t` = 1

such that if

Mk = sup({f(x) | x ∈ [tk−1, tk]}) and
mk = inf({f(x) | x ∈ [tk−1, tk]})

for all k ∈ {1, 2, . . . , n} and

U(f,P) =
∑̀
k=1

Mk(tk − tk−1) and

L(f,P) =
∑̀
k=1

mk(tk − tk−1),

then
L(f,P) ≤

∫ 1

0
f(x) dx ≤ U(f,P) ≤ L(f,P) + ε.

Define f−, f+ : [0, 1]→ R by

f+(x) =
∑̀
k=1

Mkχ[tk−1,tk](x) and

f−(x) =
∑̀
k=1

mkχ(tk−1,tk)(x)

for all x ∈ [0, 1]. Thus
f−(x) ≤ f(x) ≤ f+(x)

for all x ∈ [0, 1] so

1
N

N∑
n=1

f−(xn) ≤ 1
N

N∑
n=1

f(xn) ≤ 1
N

N∑
n=1

f+(xn)

for all N ∈ N. Since

lim
N→∞

1
N

N∑
n=1

f+(xn) = lim
N→∞

1
N

N∑
n=1

∑̀
k=1

Mkχ[tk−1,tk](xn)

=
∑̀
k=1

Mk

(
lim
N→∞

1
N

N∑
n=1

χ[tk−1,tk](xn)
)

=
∑̀
k=1

Mk(tk − tk−1)

= U(f,P).
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and similarly

lim
N→∞

1
N

N∑
n=1

f−(xn) = lim
N→∞

1
N

N∑
n=1

∑̀
k=1

mkχ(tk−1,tk)(xn)

=
∑̀
k=1

mk

(
lim
N→∞

1
N

N∑
n=1

χ(tk−1,tk)(xn)
)

=
∑̀
k=1

mk(tk − tk−1)

= L(f,P).

we obtain that ∫ 1

0
f(x) dx− ε ≤ L(f,P)

≤ lim inf
N→∞

1
N

N∑
n=1

f(xn)

≤ lim sup
N→∞

1
N

N∑
n=1

f(xn)

≤ U(f,P)
≤ L(f,P) + ε

≤
∫ 1

0
f(x) dx+ ε.

Therefore, since ε > 0 was arbitrary, we obtain that∫ 1

0
f(x) dx ≤ lim inf

N→∞

1
N

N∑
n=1

f(xn) ≤ lim sup
N→∞

1
N

N∑
n=1

f(xn) ≤
∫ 1

0
f(x) dx

so

lim
N→∞

1
N

N∑
n=1

f(xn) =
∫ 1

0
f(x) dx.

Hence, since f was arbitrary, the proof is complete.

4.3 Solution to the Heat Equation
Fourier series can also be used to solve problems in physics and many other
areas. One example of this is the so-called heat equation. Here we have a
fixed position object and are looking at its temperature u(x, y, t) at point
(x, y) at time t. Using physics, it is possible to show that u satisfies the
differential equation

σ

κ

∂u

∂t
= ∂2u

∂x2 + ∂2u

∂y2
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where σ constant called specific heat of the material and κ conductivity of
the material.

The goal of this section is to solve the steady-state heat equation; that
is, when ∂u

∂t = 0. This represents determining the temperature distribution
u(x, y) of an object at equilibrium. In particular, our solution will focus on
the case of a circle (or narrow disk). Since every point in the open disk

D = {(x, y) ∈ R2 | x2 + y2 < 1}

can be though of in polar coordinates with radius at most 1, we can represent
D as [0, 1)× T. The solutions to the steady-state heat equation then follow
from considering the Poisson kernel.

Theorem 4.3.1. Let f ∈ RI(T) and define u : [0, 1)× T→ C by

u(r, θ) = (f ∗ Pr)(θ)

for all r ∈ (0, 1) and θ ∈ T. Then the following are true:

a) If θ ∈ T is a point of continuity of f , then

lim
r↗1

u(r, θ) = f(θ).

Moreover, if f ∈ C(T), then the limit is uniform over θ ∈ T.

b) u is twice continuously derivatives in the open unit disc and

∆(u) = ∂2u

∂x2 + ∂2u

∂y2 = 0.

c) If f ∈ C(T), then u is the unique solution to the steady-state heat equation
in the open unit disc with boundary values f ; that is, u is the unique
twice continuously differentiable function on the open unit disc such that
∆u = 0 and

lim
r↗1

u(r, θ) = f(θ)

uniformly over all θ ∈ T.

Proof. Clearly part a) follows immediately from Theorem 3.6.7. To see that
part b) is true, we will be working with polar coordinates.

First recall from the Riemann-Lebesgue Lemma (Theorem 3.5.11) that

lim
n→∞

f̂(n) = 0 and lim
n→−∞

f̂(n) = 0.

Therefore, (f̂(n))n∈Z is bounded so there exists an M ∈ R such that∣∣∣f̂(n)
∣∣∣ ≤M
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for all n ∈ Z. Note for all r ∈ [0, 1) that

∞∑
n=−∞

∣∣∣nr|n|−1f̂(n)einθ
∣∣∣ ≤ ∞∑

n=−∞
Mnr|n|−1

converges by a simple application of the Ratio Test (Theorem 1.2.18). There-
fore, by using the Weierstrass M-Test (Theorem 2.2.15) and the real and
imaginary parts of u, we may to conclude that

∞∑
n=−∞

nr|n|−1f̂(n)einθ

converges uniformly over r ∈ [0, 1), and by using Corollary 2.5.2, we obtain
that u is differentiable with respect to r and

∂u

∂r
(r, θ) =

∞∑
n=−∞

|n|r|n|−1f̂(n)einθ.

(note this technically only gives us u is differentiable with respect to r on
(0, 1), but this can be extended to r = 0 by some simple computations.)

Similarly arguments show that u is twice (actually infinitely) continuously
differentiable with

∂u

∂θ
(r, θ) =

∞∑
n=−∞

inr|n|f̂(n)einθ

∂2u

∂r2 (r, θ) =
∞∑

n=−∞
|n|(|n| − 1)r|n|−2f̂(n)einθ and

∂2u

∂θ2 (r, θ) =
∞∑

n=−∞
−n2r|n|f̂(n)einθ.

Recall by Appendix C.3 that in polar coordinates

∆u = ∂2u

∂r2 + 1
r

∂u

∂r
+ 1
r2
∂u2

∂θ2 .

Therefore, we obtain that

∆u =
∞∑

n=−∞

(
|n|(|n| − 1)r|n|−2 + 1

r

(
|n|r|n|−1

)
+ 1
r2

(
−n2r|n|

))
f̂(n)einθ

=
∞∑

n=−∞

(
(|n|2 − |n|)r|n|−2 + |n|r|n|−2 − n2r|n|−2

)
f̂(n)einθ

= 0

as desired.

c©For use through and only available at pskoufra.info.yorku.ca.



4.3. SOLUTION TO THE HEAT EQUATION 187

To see that c) is true, suppose v : [0, 1) × T → C is twice continuously
differentiable function on the open unit disc such that ∆v = 0 and

lim
r↗1

v(r, θ) = f(θ)

uniformly over θ ∈ T. For all r ∈ (0, 1) and n ∈ Z, let

an(r) = 1
2π

∫ π

−π
v(r, θ)e−inθ dθ

(i.e. the nth Fourier coefficient of θ 7→ v(r, θ)). Our goal is to show that

an(r) = r|n|f̂(n)

for all n ∈ Z and r ∈ (0, 1). Indeed since for all r ∈ (0, 1) we know that

r|n|f̂(n) = 1
2π

∫ π

−π
u(r, θ)e−inθ dθ

by Lemma 3.6.6, the uniqueness of the Fourier coefficients for continuous
functions from Corollary 3.5.9 implies that

v(r, θ) = u(r, θ)

for all θ ∈ T and r ∈ (0, 1), which implies v = u by continuity thereby
completing the proof.

To prove the desired formula for an(r), we will construct and solve second
order differential equations using ∆v = 0. Note by the Leibniz Integration
Rule (Theorem C.2.1) that an is twice continuously differentiable on (0, 1).
Moreover, since for all n ∈ Z, r ∈ (0, 1), and θ ∈ T we know that

0 = e−inθ∆v(r, θ) = e−inθ
(
∂2v

∂r2 + 1
r

∂v

∂r
+ 1
r2
∂v2

∂θ2

)
(r, θ),

by integrating with respect to θ and applying the Leibniz Integration Rule
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(Theorem C.2.1) we obtain that

0 = 1
2π

∫ π

−π
e−inθ

(
∂2v

∂r2 + 1
r

∂v

∂r
+ 1
r2
∂v2

∂θ2

)
(r, θ) dθ

= ∂2

∂r2

( 1
2π

∫ π

−π
v(r, θ)e−inθ dθ

)
+ 1
r

∂

∂r

( 1
2π

∫ π

−π
v(r, θ)e−inθ dθ

)
+ 1

2π

∫ π

−π

1
r2
∂v2

∂θ2 (r, θ)e−inθ dθ

= a′′n(r) + 1
r
a′n(r) + 1

2πr2

∫ π

−π

∂v2

∂θ2 (r, θ)e−inθ dθ

= a′′n(r) + 1
r
a′n(r) + 1

2πr2

(
0−

∫ π

−π

∂v

∂θ
(r, θ)(−in)e−inθ dθ

)
= a′′n(r) + 1

r
a′n(r)− 1

2πr2

(∫ π

−π

∂v

∂θ
(r, θ)(−in)e−inθ dθ

)
= a′′n(r) + 1

r
a′n(r)− 1

2πr2

(
0−

∫ π

−π
v(r, θ)(−n2)e−inθ dθ

)
= a′′n(r) + 1

r
a′n(r)− n2

2πr2

∫ π

−π
v(r, θ)e−inθ dθ

= a′′n(r) + 1
r
a′n(r)− n2

r2 an(r).

To solve this second-order differential equation for an(r), fix n ∈ Z and
let bn(r) = an(r)

rn for all r ∈ (0, 1). Thus bn is twice continuously differentiable
on (0, 1) with

a′n(r) = nrn−1bn(r) + rnb′n(r) and
a′′n(r) = n(n− 1)rn−2bn(r) + 2nrn−1b′n(r) + rnb′′n(r).

Therefore, we obtain that

0 =
(
n(n− 1)rn−2bn(r) + 2nrn−1b′n(r) + rnb′′n(r)

)
+ 1
r

(
nrn−1bn(r) + rnb′n(r)

)
− n2

r2 r
nbn(r)

= rnb′′n(r) + (2n+ 1)rn−1b′n(r).

Thus
0 = rb′′n(r) + (2n+ 1)b′n(r) = (rb′n(r) + 2nbn(r))′.

Therefore, there must exists a constant cn ∈ C such that

rb′n(r) + 2nbn(r) = cn

for all r ∈ (0, 1). To solve this differential equation for bn(r), by breaking
the discussion via the real and imaginary parts of bn, we may assume that
bn is real-valued in the following computations.
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In the case n = 0, we see that rb′0(r) = c0 so

a0(r) = b0(r) =
∫
b′0(r) dr =

∫
c

r
dr = d0 + c0 ln(r)

for some constant d0. Otherwise, when n 6= 0, let

hn(r) = bn(r)− cn
2n.

Therefore
rh′n(r) + 2nhn(r) = 0

so
h′n(r)
hn(r) = −2n

r

and thus

ln(hn(r)) =
∫
h′n(r)
hn(r) dt =

∫ 2n
r
dt = −2n ln(r) + ln(dn) = ln(dnr−2n)

for some constant dn. Therefore

hn(r) = dnr
−2n

so
bn(r) = dnr

−2n + cn
2n

and thus
an(r) = dnr

−n + cn
2nr

n.

Since v is continuous on the open unit disk, v must be bounded near zero.
Therefore, since

an(r) = 1
2π

∫ π

−π
v(r, θ)e−inθ dθ,

we must have that an(r) is bounded as r tends to 0 from above. Therefore,
by examining our formulae for an(r), we must have that c0 = 0 and dn = 0
for all n ∈ Z \ {0} so that a0(r) = s0 and

an(r) = snr
|n|

for all n ∈ Z \ {0} where sn are constants. However, since

lim
r↗1

v(r, θ) = f(θ)
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uniformly over θ ∈ T, we obtain for all n ∈ Z that

sn = lim
r↗1

snr
|n|

= lim
r↗1

an(r)

= lim
r↗1

( 1
2π

∫ π

−π
v(r, θ)e−inθ dθ

)
= 1

2π

∫ π

−π

(
lim
r↗1

v(r, θ)
)
e−inθ dθ by Theorem 2.4.4

= 1
2π

∫ π

−π
f(θ)e−inθ dθ

= f̂(n).

Hence
an(r) = r|n|f̂(n)

for all n ∈ Z thereby completing the proof by the above discussions.

To conclude this section, we point out that Theorem 4.3.1 also is of
importance in complex analysis. Indeed u represents the unique harmonic
function on the closed unit disk with boundary values f , and the study of
harmonic functions is vital to complex analysis.

4.4 The Riemann Zeta Function

To conclude our applications chapter, we look at one instance of series that
is not related to Fourier series, but one of the most important series in not
only number theory, but pure mathematics:

Definition 4.4.1. The Riemann zeta function (on (1,∞)) is the function
ζ : (1,∞)→ R defined by

ζ(s) =
∞∑
n=1

1
ns

for all s ∈ (1,∞).

Remark 4.4.2. It is elementary to see that ζ(s) is well-defined for all s ∈
(1,∞) as the p-test (Corollary 1.2.15) implies the series

∑∞
n=1

1
ns converges

absolutely for all s ∈ (1,∞).
In fact, ζ can be extended to a large portion of the complex plane. Indeed

it is not difficult to extend ζ to all s ∈ C with Re(s) > 1 via the same series
definition. To see this, note for all s = a+ bi with a, b ∈ R and a > 1 that

1
ns

= 1
nanbi

= 1
na
e− ln(nbi) = 1

na
e−ib ln(n)

c©For use through and only available at pskoufra.info.yorku.ca.



4.4. THE RIEMANN ZETA FUNCTION 191

(modulo understanding complex logarithms), so

∞∑
n=1

∣∣∣∣ 1
ns

∣∣∣∣ =
∞∑
n=1

1
na

converges absolutely and thus ζ(s) =
∑∞
n=1

1
ns converges for all s ∈ C with

Re(s) > 1.
For our next extension, notice for all s ∈ C with Re(s) > 1 that

(1− 21−s)ζ(s) =
∞∑
n=1

1
ns
− 2

(2n)s

=
∞∑
n=1

1
ns
−
∞∑
n=1

2
(2n)s

=
( ∞∑
n=1

1
(2n− 1)s +

∞∑
n=1

1
(2n)s

)
−
∞∑
n=1

2
(2n)s

=
∞∑
n=1

1
(2n− 1)s −

∞∑
n=1

1
(2n)s

=
∞∑
n=1

(−1)n+1

ns

(since all series involved converge absolutely by the same arguments as above).
Therefore

ζ(s) = 1
1− 21−s

∞∑
n=1

(−1)n+1

ns

for all s ∈ C with Re(s) > 1. It is not difficult to see that this definition of ζ
extends to all s ∈ R with 0 < s < 1 by the Alternating Series Test (Theorem
1.2.22).

It is more complicated to extend ζ to all s ∈ C with 0 < Re(s) < 1 as the
above series will not be ‘alternating’. As this requires knowledge of analytic
extensions from complex analysis, we will not pursue this. However, with
some knowledge of Fourier series on R (another topic we do not have time
for), it is possible to show Riemann’s functional equation

ζ(s) = 2sπs−1 sin
(
πs

2

)
Γ(1− s)ζ(1− s)

where Γ is the Gamma function defined by

Γ(s) =
∫ ∞

0
xs−1e−x dx.

(In fact, Γ(n) = (n− 1)!). Modulo complex analysis, this lets one extend ζ
to all s ∈ C with Re(s) < 0.
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Of course, our focus on the Riemann zeta function will not lie in these
complex analysis results, but the connection between the Riemann zeta
function and prime numbers. Unfortunately, we will not go so far as to study
the Riemann Hypothesis (that is, the question of whether or not all zeros
of ζ in the region 0 < Re(s) < 1 occur on the line Re(s) = 1

2 , which has
implications for quantum computing and factorization of primes), but to
establish some elementary facts. To do this, we must first discuss infinite
products.

Definition 4.4.3. Let (an)n≥1 be a sequence of positive real numbers and
for each N ∈ N let

PN = a1a2 · · · aN =
N∏
k=1

ak.

The infinite product
∏∞
n=1 an is said to converge to L if (PN )N≥1 converges

to L.

The most basic connection between the Riemann zeta function and prime
numbers can be seen via the following result.

Theorem 4.4.4 (Euler’s Product Formula). For all s ∈ (1,∞),

ζ(s) =
∏

p a prime

1
1− 1

ps
.

Proof. Fix s ∈ (1,∞). Recall by the Fundamental Theorem of Arithmetic
that every n ∈ N has a unique factorization into a product of powers of prime
numbers. Therefore for all N,M ∈ N, we have that

∏
p a prime
p≤N

(
M∑
k=0

( 1
pk

)s)
≤
∞∑
n=1

1
ns
.

Since 0 ≤ 1
ps < 1 for all primes p, we have via geometric series that

1
1− 1

ps
=
∞∑
k=0

( 1
pk

)s

and every term in the series is positive. Therefore

∏
p a prime
p≤N

1
1− 1

ps
≤
∞∑
n=1

1
ns
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for all N ∈ N. However, notice that if n ∈ N and n ≤ N , then n is a product
of powers of primes that are all at most N . Therefore

N∑
n=1

1
ns
≤

∏
p a prime
p≤N

∞∑
k=0

( 1
pk

)s

=
∏

p a prime
p≤N

1
1− 1

ps
≤
∞∑
n=1

1
ns
.

Therefore, by taking the limit as N tends to infinity, we obtain that

∏
p a prime

1
1− 1

ps

converges and is equal to ζ(s) as desired.

To finish off the course, we note the following series diverges, which
implies there are a lot of primes.

Corollary 4.4.5. The series

∑
p a prime

1
p

diverges.

Proof. We will show for any N ∈ N that

∑
p a prime
p≤N

1
p
> ln(ln(N))− 1

2

from which the result clearly follows.
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To begin, notice that

ln

 ∏
p a prime
p≤N

1
1− 1

p

 =
∑

p a prime
p≤N

− ln
(

1− 1
p

)

=
∑

p a prime
p≤N

∞∑
k=1

1
k

(1
p

)k
by Remark 2.4.6

=
∑

p a prime
p≤N

1
p

+
∞∑
k=2

1
k

(1
p

)k

<
∑

p a prime
p≤N

1
p

+ 1
2

∞∑
k=2

1
pk

=
∑

p a prime
p≤N

1
p

+ 1
2

1
p2

1− 1
p

=

 ∑
p a prime
p≤N

1
p

+ 1
2

∑
p a prime
p≤N

1
p(p− 1)

<

 ∑
p a prime
p≤N

1
p

+ 1
2

N∑
n=2

1
n(n− 1)

=

 ∑
p a prime
p≤N

1
p

+ 1
2

N∑
n=2

1
n− 1 −

1
n

=

 ∑
p a prime
p≤N

1
p

+ 1
2

(
1− 1

N

)

<

 ∑
p a prime
p≤N

1
p

+ 1
2 .

Moreover, by the same ideas as used in the proof of Theorem 4.4.4, we have
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that

∏
p a prime
p≤N

1
1− 1

p

=
∏

p a prime
p≤N

∞∑
k=0

(1
p

)k
geometric series

≥
N∑
k=1

1
k

Fundamental Theorem of Arithmetic

>
N∑
k=1

∫ k+1

k

1
x
dx

=
∫ N+1

1

1
x
dx

>

∫ N

1

1
x
dx

= ln(N).

Combining these two, we have due to the fact that the natural logarithm is
increasing on (0,∞) that

∑
p a prime
p≤N

1
p
> ln(ln(N))− 1

2

as desired.
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Appendix A

Complex Numbers

In this appendix chapter, we will quickly review the basics of complex
numbers.

Definition A.0.1. The complex numbers, denoted C, are the set

C = {a+ bi | a, b ∈ R}

where i denotes a fixed symbol.
Given a complex number z = a + bi where a, b ∈ R, the number a is

called real part of z and is denoted byRe(z), and the number b is called the
imaginary part of z and is denoted by Im(z).

The symbol i in a complex number is meant to denote "
√
−1". To be

specific, we will equip C with binary operations of addition and multiplication
so that (0+1i)(0+1i) = −1 so that indeed i is a complex solution to x2 = −1.

Definition A.0.2. The binary operations + : C×C→ C and · : C×C→ C
defined by

(a+bi)+(c+di) = (a+c)+(b+d)i and (a+bi)(c+di) = (ac−bd)+(ad+bc)i

for all a, b, c, d ∈ R are called complex addition and complex multiplication
respectively.

Example A.0.3. It is not difficult to see that

(1 + 2i) + (3 + 4i) = 4 + 6i and (1 + 2i)(3 + 4i) = −5 + 10i.

Moreover, since
i2 = (0 + 1i)(0 + 1i) = −1 + 0i,

we do indeed have that i is a complex solution to x2 = −1. In addition, it is
not difficult to see that −i is also a complex solution to x2 = −1.
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198 APPENDIX A. COMPLEX NUMBERS

In order for C to be as nice to work with as R, we require complex
addition and multiplication to have specific properties. To be specific, we
want the following.

Theorem A.0.4. The set of complex numbers C together with complex
addition and multiplication is a field; that is,

(i) (Commutativity of Addition) z + w = w + z for all z, w ∈ C.

(ii) (Associativity of Addition) z+ (w+u) = (z+w) +u for all z, w, u ∈ C.

(iii) (Additive Unit) There exists a 0 ∈ C such that z + 0 = z for all z ∈ C
(i.e. 0 = 0 + 0i).

(iv) (Additive Inverses) For all z ∈ C there exists a −z ∈ C such that
z + (−z) = 0 (i.e. −(a+ bi) = (−a) + (−b)i).

(v) (Commutativity of Multiplication) zw = wz for all z, w ∈ C.

(vi) (Associativity of Multiplication) z(wu) = (zw)u for all z, w, u ∈ C.

(vii) (Multiplicative Unit) There exists a 1 ∈ C such that 1z = z for all
z ∈ C (i.e. 1 = 1 + 0i).

(viii) (Multiplicative Inverses) For all z ∈ C \ {0} there exists a z−1 ∈ C
such that z−1z = 1.

(ix) (Distributivity) z(w + u) = (zw) + (zu) for all z, w, u ∈ C.

Proof. Let z, w, u ∈ C be arbitrary. Hence there exists a, b, c, d, x, y ∈ R such
that

z = a+ bi, w = c+ di, and u = x+ yi.

We will now examine each of the above nine properties for these arbitrary
elements of C and demonstrate the property holds using the analogous
property for real numbers.

(i) Commutativity of Addition: Notice that

z + w = (a+ c) + (b+ d)i = (c+ a) + (d+ b)i = w + z

due to the commutativity of addition of real numbers. Thus commutativity
of addition of complex numbers has been demonstrated.

(ii) Associativity of Addition: Notice that

z + (w + u) = (a+ bi) + ((c+ x) + (d+ y)i)
= (a+ (c+ x)) + (b+ (d+ y))i
= ((a+ c) + x) + ((b+ d) + y)i
= ((a+ c) + (b+ d)i) + (x+ yi)
= (z + w) + u
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where the third equality holds due to the associativity of addition of real
numbers. Thus associativity of addition of complex numbers has been
demonstrated.

(iii) Additive Unit: Notice with 0 = 0 + 0i that

z + 0 = (a+ 0) + (b+ 0)i = a+ bi = z

due to the property of the zero element of R. Thus the complex numbers
have an additive unit.

(iv) Additive Inverses: Let −z = (−a) + (−b)i where −a and −b are the
additive inverses of a and b in R. then

z + (−z) = (a+ (−a)) + (b+ (−b))i = 0 + 0i = 0

as desired. Thus the complex numbers have additive inverses.
(v) Commutativity of Multiplication: Notice that

zw = (ac− bd) + (ad+ bc)i = (ca− db) + (cb+ da)i = wz

due to the commutativity of addition and multiplication of real numbers.
Thus commutativity of multiplication of complex numbers has been demon-
strated.

(vi) Associativity of Multiplication: Notice that

z(wu) = (a+ bi)((c+ di)(x+ yi))
= (a+ bi)((cx− dy) + (cy + dx)i)
= (a(cx− dy)− b(cy + dx)) + (a(cy + dx) + b(cx− dy))i
= (acx− ady − bcy − bdx) + (acy + adx+ bcx− bdy)i
= (acx− bdx− ady − bcy) + (acy − bdy + adc+ bcx)i
= ((ac− bd)x− (ad+ bc)y) + ((ac− bd)y + (ad+ bc)x)i
= ((ac− bd) + (ad+ bc)i)(x+ yi)
= ((a+ bi)(c+ di))(x+ yi)
= (zw)u

where commutativity and associativity of addition (fifth equality) and dis-
tributivity of real numbers (fourth and sixth equalities) have been used. Thus
associativity of multiplication of complex numbers has been demonstrated.

(vii) Multiplicative Unit: Notice with 1 = 1 + 0i that

1z = (1a− 0b) + (1b+ 0a)i = a+ bi = z

due to the property of the one element of R. Thus the complex numbers
have a multiplicative unit.
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(viii) Multiplicative Inverses: Assume z 6= 0. Thus a 6= 0 or b 6= 0 so
a2 + b2 > 0. Define

z−1 = a

a2 + b2
+ −b
a2 + b2

i,

which makes sense since a
a2+b2 ,

−b
a2+b2 ∈ R since non-zero real numbers have

multiplicative inverses. Notice that

z−1z =
((

a

a2 + b2

)
a−

( −b
a2 + b2

)
b

)
+
((

a

a2 + b2

)
b+

( −b
a2 + b2

)
a

)
i

=
(
a2 + b2

a2 + b2

)
+
(
ab− ba
a2 + b2

)
i

= 1 + 0i = 1

due to the commutative of multiplication and properties of addition of real
numbers. Hence z−1 is indeed the multiplicative inverses of z. Thus the
existence of multiplicative inverses for non-zero complex numbers has been
demonstrated.

(ix) Distributivity: Notice that

z(w + u) = (a+ bi)((c+ di) + (x+ yi))
= (a+ bi)((c+ x) + (d+ y)i)
= (a(c+ x)− b(d+ y)) + (a(d+ y) + b(c+ x))i
= (ac+ ax− bd− dy) + (ad+ ay + bc+ bx)i
= ((ac− bd) + (ax− dy)) + ((ad+ bc) + (ay + bx))i
= ((ac− bd) + (ad+ bc)i) + ((ax− dy) + (ay + bx)i)
= ((a+ bi)(c+ di)) + ((a+ bi)(x+ yi))
= (zw) + (zu)

where commutativity and associativity of addition (fourth equality) and
distributivity of real numbers (third equality) have been used. Thus distribu-
tivity of complex numbers has been demonstrated.

As all nine properties have now been demonstrated for arbitrary complex
numbers, the set of complex numbers together with addition and multiplica-
tion are a field.

Remark A.0.5. Embedded in the proof of Theorem A.0.4 is the formula
for the inverse of a non-zero complex number. Indeed if z = a + bi where
a, b ∈ R is such that z 6= 0, then

z−1 = a

a2 + b2
+ −b
a2 + b2

i.

For example,
(3 + 4i)−1 = 3

25 −
4
25 i.
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Note we can also write

z−1 = a− bi
a2 + b2

.

When dealing with complex numbers, both the numerator and denominator
are important common quantities that are worthy of developing further.

Definition A.0.6. Given a complex number z = a+ bi where a, b ∈ R, the
absolute value (or length or modulus) of z, denoted |z|, is the quantity

|z| =
√
a2 + b2.

Definition A.0.7. Given a complex number z = a+ bi where a, b ∈ R, the
complex conjugate of z, denoted z, is the quantity

z = a+ (−b)i.

Using our knowledge of the inverse of a non-zero complex number, we
have the following.

Corollary A.0.8. If z ∈ C \ {0}, then z−1 = 1
|z|2 z.

There are many other properties of the absolute value and complex
conjugates that are worthy of recording.

Proposition A.0.9. For all z, w ∈ C, the following are true:

a) Re(z) = z+z
2 .

b) Im(z) = z−z
2i .

c) z + w = z + w.

d) zw = z w.

e) |z| =
√
zz.

f) |Re(z)| ≤ |z|.

g) |Im(z)| ≤ |z|.

h) |z| = |z|.

i) |zw| = |z||w|.

j) If z 6= 0, then |z−1| = |z|−1.

k) |z + w| ≤ |z|+ |w|.

l) ||z| − |w|| ≤ |z − w|.
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Proof. Let z, w ∈ C be arbitrary. Thus there exists a, b, c, d ∈ R such that
z = a+ bi and w = c+ di.

To see that a) is true, notice

z + z

2 = (a+ bi) + (a− bi)
2 = 2a

2 = a = Re(z)

as desired.
To see that b) is true, notice

z − z
2i = (a+ bi)− (a− bi)

2i = 2bi
2i = b = Im(z)

as desired.
To see that c) is true, notice

z + w = (a+ c) + (b+ d)i
= (a+ c) + (−(b+ d))i
= (a+ (−b)i) + (c+ (−d)i)
= z + w.

as desired.
To see that d) is true, notice that

zw = (ac− bd) + (ad+ bc)i
= (ac− bd) + (−(ad+ bc))i
= (ac− (−b)(−d)) + (a(−d) + (−b)c)i
= (a+ (−b)i)(c+ (−d)i)
= z w

as desired.
To see that e) is true, notice that

√
zz =

√
(a+ (−b)i)(a+ bi)

=
√

(a2 − (−b)b) + (ab+ a(−b))i

=
√
a2 + b2 = |z|

as desired.
To see that f) and g) are true, note that

a2 ≤ a2 + b2 and b2 ≤ a2 + b2,

so
|Re(z)| = |a| =

√
a2 ≤

√
a2 + b2 = |z|
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and
|Im(z)| = |b| =

√
b2 ≤

√
a2 + b2 = |z|

as desired.
To see that h) is true, note that

|z| = |a+ (−b)i| =
√
a2 + (−b)2 =

√
a2 + b2 = |z|

as desired.
To see that i) is true, notice that

zw = (ac− bd) + (ad+ bc)i

so that

|zw| =
√

(ac− bd)2 + (ad+ bc)2

=
√

(a2c2 − 2abcd+ b2d2) + (a2d2 + 2abcd+ b2c2)

=
√
a2c2 + b2d2 + a2d2 + b2c2

=
√

(a2 + b2)(c2 + d2)

=
√

(a2 + b2)
√

(c2 + d2)
= |z||w|

as desired.
To see that j) is true, notice by i) that

|z−1||z| = |z−1z| = |1| = 1,

so |z−1| = |z|−1 as desired.
To see that k) is true, notice that

|z + w|2 = (z + w) (z + w) by e)
= (z + w) (z + w) by c)
= zz + zw + wz + ww

= |z|2 + zw + zw + |w|2 by d) and e)
= |z|2 + 2Re(zw) + |w|2 by a)
≤ |z|2 + 2|zw|+ |w|2 by f)
= |z|2 + 2|z||w|+ |w|2 by i)
= |z|2 + 2|z||w|+ |w|2 by h)
= (|z|+ |w|)2.

Therefore, by taking the square root of both sides of the inequality, the
desired result is obtained.
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Finally, to see that l) is true, first notice by k) that

|z| = |(z − w) + w| ≤ |z − w|+ |w|.

Therefore
|z| − |w| ≤ |z − w|.

Similarly, notice by k) and i) that

|w| = |(w − z) + z|
≤ |w − z|+ |z|
= |(−1)(z − w)|+ |z|
= | − 1||z − w|+ |z| = |z − w|+ |z|.

Hence
|w| − |z| ≤ |z − w|.

Therefore, by combining |z|− |w| ≤ |z−w| and |w|− |z| ≤ |z−w|, we obtain
that

||z| − |w|| ≤ |z − w|

as desired.

c©For use through and only available at pskoufra.info.yorku.ca.



Appendix B

Differentiation and
Integration in C

In this section, we will extend the notions of derivatives and integrals of real-
valued functions on closed intervals to complex-valued functions. In particular,
it will be demonstrated that every elementary notion for derivative and
integrals seen in previous courses extend to these complex-valued functions
with ease.

B.1 Complex Differentiation

As is natural with calculus, we begin with differentiation. To simplify
notation, we introduce the following.

Notation B.1.1. For a, b ∈ R with a < b, the vector space of all complex-
valued functions on [a, b] is denoted by F([a, b],C). Recall if f ∈ F([a, b],C),
then the real and imaginary parts of f are the functions Re(f), Im(f) :
[a, b]→ R defined by

Re(f)(x) = Re(f(x)) and Im(f)(x) = Im(f(x))

for all x ∈ [a, b].

Definition B.1.2. Let f ∈ F([a, b],C) and let x0 ∈ (a, b). It is said that f
is differentiable at x0 if

lim
h→0

f(x0 + h)− f(x0)
h

exists in C. When f is differentiable at x0, the derivative of f at x0, denoted
f ′(x0), is

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)
h

∈ C.
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Finally, it is said that f is differentiable on [a, b] if f is differentiable at
each point in (a, b) and f is continuous on [a, b]. The derivative of f on (a, b)
is the function f ′ : (a, b)→ C whose value at x0 ∈ (a, b) is f ′(x0) as defined
above.

Of course, it is possible to develop the properties of derivatives of complex-
valued functions on intervals by mirroring the corresponding real-valued
results. However, as limits of complex numbers converge if and only if their
real and imaginary parts converge, the theory of derivatives of complex-
valued functions on intervals reduces down to the theory of derivatives of
real-valued functions on intervals.

Theorem B.1.3. Let f ∈ F([a, b],C), let f1 = Re(f), let f2 = Im(f), and
let x0 ∈ (a, b). Then f is differentiable at x0 if and only if f1 and f2 are
differentiable at x0. When f is differentiable at x0,

f ′(x0) = f ′1(x0) + if ′2(x0).

Finally, f is differentiable on [a, b] if and only if f1 and f2 are differentiable
on [a, b], in which case f ′ = f ′1 + if ′2.

Proof. Since for all x0 ∈ (a, b) and h ∈ R with x0 + h ∈ [a, b] we have that

f(x0 + h)− f(x0)
h

= f1(x0 + h)− f1(x0)
h

+ i
f2(x0 + h)− f2(x0)

h
,

it follows that
lim
h→0

f(x0 + h)− f(x0)
h

exists if and only if

lim
h→0

f1(x0 + h)− f1(x0)
h

and lim
h→0

f2(x0 + h)− f2(x0)
h

exist. Moreover, this implies that

f ′(x0) = f ′1(x0) + if ′2(x0).

Finally, since f is continuous if and only if f1 and f2 are continuous, the
result follows.

It is worthwhile to see that one specific function behaves incredibly well
with respect to this definition of differentiation thereby further supporting
why this definition of differentiation for complex-valued functions on intervals
is desirable.
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Example B.1.4. Let a, b ∈ R, let α = a+ bi ∈ C, and define f : R→ C by

f(x) = eαx = e(a+bi)x = eax cos(bx) + ieax sin(bx)

for all x ∈ R. Then f is differentiable at each point in R with

f ′(x) = (eax cos(bx))′ + i (eax sin(bx))′

= (aeax cos(bx)− beax sin(bx)) + i (aeax sin(bx) + beax cos(bx))
= (a+ bi)eax cos(bx) + (−b+ ia)eax sin(bx)
= (a+ bi)eax cos(bx) + i(a+ bi)eax sin(bx)
= (a+ bi) (eax cos(bx) + ieax sin(bx))
= αf(x).

Hence
(eαx)′ = αeαx

for all α ∈ C.

Of course, some results, such as the following, immediately import from
the theory of derivatives of real-valued functions.

Corollary B.1.5. Let f ∈ F([a, b],C) and let x0 ∈ (a, b). If f is differen-
tiable at x0, then f is continuous at x0.

Proof. Since f is differentiable at x0, Re(f) and Im(f) are differentiable at
x0. Therefore Re(f) and Im(f) are continuous at x0 so f = Re(f) + iIm(f)
is continuous at x0.

Again using the results for derivatives of real-valued functions, certain
operations behave well with respect to differentiation.

Corollary B.1.6. Let f, g ∈ F([a, b],C) and let x0 ∈ (a, b). If f and g are
differentiable at x0, then f + g is differentiable at x0 with

(f + g)′(x0) = f ′(x0) + g′(x0).

Proof. Let f1 = Re(f), f2 = Im(f), g1 = Re(g), and g2 = Im(g). Since

f + g = (f1 + if2) + (g1 + ig2) = (f1 + g1) + i(f2 + g2)

we have that

Re(f + g) = f1 + g1 and Im(f + g) = f2 + g2.

Therefore, since f and g are differential at x0, we know that f1, f2, g1, and g2
are differentiable at x0 and thus Re(f + g) and Im(f + g) are differentiable
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at x0 by results from the real case with

(f + g)′(x0) = (f1 + g1)′(x0) + i(f2 + g2)′(x0)
= (f ′1(x0) + g′1(x0)) + i(f ′2(x0) + g′2(x0))
= (f ′1(x0) + if ′2(x0)) + (g′1(x0) + ig′2(x0))
= f ′(x0) + g′(x0)

as desired.

To see that scalar multiplication behaves well with respect to differentia-
tion, it is easier to generalize the product rule first.

Theorem B.1.7 (Product Rule). Let f, g ∈ F([a, b],C) and let x0 ∈ (a, b).
If f and g are differentiable at x0, then fg is differentiable at x0 with

(fg)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0).

Proof. Let f1 = Re(f), f2 = Im(f), g1 = Re(g), and g2 = Im(g). Since

fg = (f1 + if2)(g1 + ig2) = (f1g1 − f2g2) + i(f1g2 + f2g1)

we have that

Re(fg) = f1g1 − f2g2 and Im(fg) = f1g2 + f2g1.

Therefore, since f and g are differential at x0, we know that f1, f2, g1, and
g2 are differentiable at x0 and thus Re(fg) and Im(fg) are differentiable at
x0 by the real-valued product rule with

(fg)′(x0) = (f1g1 − f2g2)′(x0) + i(f1g2 + f2g1)′(x0)
=
(
(f1g1)′(x0)− (f2g2)′(x0)

)
+ i

(
(f1g2)′(x0) + (f2g1)′(x0)

)
=
(
(f ′1(x0)g1(x0) + f1(x0)g′1(x0))− (f ′2(x0)g2(x0) + f2(x0)g′2(x0)

)
+ i

(
(f ′1(x0)g2(x0) + f1(x0)g′2(x0)) + (f ′2(x0)g1(x0) + f2(x0)g′1(x0)

)
= f ′1(x0) (g1(x0) + ig2(x0)) + f ′2(x0) (−g2(x0) + ig1(x0))

+ (f1(x0) + if2(x0)) g′1(x0) + (−f2(x0) + if1(x0)) g′2(x0)
= f ′1(x0)g(x0) + if ′2(x0)g(x0) + f(x0)g′1(x0) + if(x0)g′2(x0)
= (f ′1(x0) + if ′2(x0))g(x0) + f(x0)(g′1(x0) + ig′2(x0))
= f ′(x0)g(x0) + f(x0)g′(x0)

as desired.

Corollary B.1.8. Let f ∈ F([a, b],C) and let x0 ∈ (a, b). If f is differen-
tiable at x0 and α ∈ C, then αf is differentiable at x0 with

(αf)′(x0) = αf ′(x0).
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Proof. Define g ∈ F([a, b],C) by g(x) = α for all x ∈ [a, b]. It is elementary
to see based on the definition of the derivative that g is differentiable with
g′(x) = 0 for all x ∈ (a, b). Hence the Product Rule implies fg = αf is
differentiable at x0 with

(αf)′(x0)(fg)′(x0) = f ′(x0)g(x0) + f(x0g
′(x0) = αf ′(x0) + 0 = αf ′(x0)

as desired.

Of course, the quotient rule also generalizes.

Theorem B.1.9 (Quotient Rule). Let f, g ∈ F([a, b],C) and let x0 ∈
(a, b). If g is differentiable at x0 and g(x0) 6= 0, then 1

g is differentiable at x0
with (1

g

)′
(x0) = − g′(x0)

(g(x0))2 .

Therefore, if in addition f is differentiable at x0, then f
g is differentiable at

x0 with (
f

g

)′
(x0) = f ′(x0)g(x0)− f(x0)g′(x0)

(g(x0))2 .

Proof. Instead of appealing to the real and imaginary parts, it is much easier
to return to the definition of the derivative. Suppose g is differentiable at
x0 and g(x0) 6= 0. Since g is differentiable at x0, g is continuous at x0
and therefore, since g(x0) 6= 0, there exists a δ > 0 such that if x ∈ R
and |x − x0| < δ, then x ∈ (a, b) and g(x) 6= 0. Thus for all h ∈ R with
0 < |h| < δ we have that

1
g(x0+h) −

1
g(x0)

h
=

g(x0)−g(x0+h)
g(x0)g(x0+h)

h
= g(x0)− g(x0 + h)

g(x0)g(x0 + h)h .

Since g is continuous at x0, we know that

lim
h→0

1
g(x0 + h) = 1

g(x0) .

Moreover, since g is differentiable at x0, we know that

lim
h→0

g(x0)− g(x0 + h)
h

= −g′(x0).

Hence

lim
h→0

1
g(x0+h) −

1
g(x0)

h
= − g′(x0)

(g(x0))2 .

Thus 1
g is differentiable at x0 with(1

g

)′
(x0) = − g′(x0)

(g(x0))2 .
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Finally, if in addition f is differentiable at x0, then f
g = f 1

g is differentiable
at x0 by the product rule with(

f

g

)′
(x0) = f ′(x0) 1

g(x0) + f(x0)
(1
g

)′
(x0)

= f ′(x0)
g(x0) − f(x0) g′(x0)

(g(x0))2

= f ′(x0)g(x0)− f(x0)g′(x0)
(g(x0))2

as desired.

Finally, we have a version of the chain rule for the composition of a
real-valued function with a complex-valued function.

Theorem B.1.10 (Chain Rule). Let I and J be open intervals, let g :
I → C, and let f : J → R be such that f(J) ⊆ I. Suppose that a ∈ J , f
is differentiable at a, and g is differentiable at f(a). Then g ◦ f : I → C is
differentiable at a and

(g ◦ f)′(a) = g′(f(a))f ′(a).

Proof. Let g1 = Re(g) and g2 = Im(g). Then

(g ◦ f)(x) = g1(f(x)) + ig2(f(x)) = (g1 ◦ f)(x) + i(g2 ◦ f)(x)

for all x ∈ J . Therefore, by the chain rule for real-valued functions, g ◦ f is
differentiable at a with

(g ◦ f)′(a) = (g1 ◦ f)′(a) + i(g2 ◦ f)′(a)
= g′1(f(a))f ′(a) + ig′2(f(a))f ′(a)
= g′(f(a))f ′(a)

as desired.

B.2 Complex Integration
With the basics of differentiation of a complex-valued function on an interval
complete, we turn our attention to integration. As differentiation can be
done via the real and imaginary parts, the following definition should be no
surprise.

Definition B.2.1. Given f ∈ F([a, b],C), it is said that f is Riemann
integrable if Re(f) and Im(f) are Riemann integrable. When f is Riemann
integrable, the complex-valued Riemann integral of f on [a, b] is defined to
be the complex number∫ b

a
f(x) dx =

∫ b

a
Re(f)(x) dx+ i

∫ b

a
Im(f)(x) dx.
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Using the above definition and by exploiting results in the real-valued
setting, we automatically generalize the Fundamental Theorems of Calculus.

Theorem B.2.2 (Fundamental Theorem of Calculus, Part I). Let
f : [a, b]→ C be continuous and define F : [a, b]→ C by

F (x) =
∫ x

a
f(t) dt

for all x ∈ [a, b]. Then F is continuous on [a, b], differentiable on (a, b), and
F ′(x) = f(x) for all x ∈ (a, b).

Proof. Let f1 = Re(f), f2 = Im(f), F1 = Re(F ), and F2 = Im(F ). By the
definition of the complex-valued Riemann integral, we have that

F1(x) =
∫ x

a
f1(t) dt and F2(x) =

∫ x

a
f2(t) dt

for all x ∈ [a, b]. Since f is continuous, f1 and f2 are continuous. Therefore,
by the real-valued version of the Fundamental Theorem of Calculus, we
obtain that F1 and F2 are continuous on [a, b], differentiable on (a, b), and
F ′1(x) = f1(x) and F ′2(x) = f2(x) for all x ∈ (a, b). Thus it follows from
Theorem B.1.3 that F is continuous on [a, b], differentiable on (a, b), and
F ′(x) = f(x) for all x ∈ (a, b).

Theorem B.2.3 (Fundamental Theorem of Calculus, II). Let f, F :
[a, b]→ C be such that f is Riemann integrable on [a, b], F is continuous on
[a, b], F is differentiable on (a, b), and F ′(x) = f(x) for all x ∈ (a, b). Then∫ b

a
f(t) dt = F (b)− F (a).

Proof. Let f1 = Re(f), f2 = Im(f), F1 = Re(F ), and F2 = Im(F ). Therefore
f1 and f2 are Riemann integrable on [a, b], F1 and F2 are continuous on [a, b],
F1 and F2 are differentiable on (a, b), and F ′1(x) = f1(x) and F ′2(x) = f2(x)
for all x ∈ (a, b) by Theorem B.1.3. Therefore, by the real-valued version of
the Fundamental Theorem of Calculus, we obtain that∫ b

a
f1(t) dt = F1(b)− F1(a) and

∫ b

a
f2(t) dt = F2(b)− F2(a).

Thus ∫ b

a
f(t) dt =

∫ b

a
f1(t) dt+ i

∫ b

a
f2(t) dt

= (F1(b)− F1(a)) + i(F2(b)− F2(a))
= (F1(b) + iF2(b))− (F1(a) + iF2(a)) = F (b)− F (a)

as desired.
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As with real-valued functions, the Fundamental Theorems of Calculus
immediately enables us to integrate any function we know the anti-derivative
of. In particular, the exponentials in Example B.1.4 are particularly easy yet
useful in this course.

Example B.2.4. Let a, b ∈ R, let α = a+bi ∈ C\{0}, and define f : R→ C
by

f(x) = eαx = e(a+bi)x = eax cos(bx) + ieax sin(bx)
for all x ∈ R. Since

f ′(x) = αeαx

for all x ∈ R, we see that ( 1
α
f

)′
(x) = eαx

for all x ∈ R. Thus the Fundamental Theorem of Calculus implies for all
c, d ∈ R with c < d that ∫ d

c
eαx dx = 1

α
eαd − 1

α
eαc.

To conclude this discussion, it is particularly useful to know what opera-
tions on Riemann integrable functions produce Riemann integrable functions
and how the values of the integrals relate. We begin with the following.

Proposition B.2.5. Let f, g ∈ F([a, b],C) be Riemann integrable. Then the
following are true:

a) f + g is Riemann integrable.

b) f is Riemann integrable.

c) fg is Riemann integrable.

d) |f | is Riemann integrable.

Proof. Let f1 = Re(f), f2 = Im(f), g1 = Re(g), and g2 = Im(g). Since
f and g are Riemann integrable, f1, f2, g1, and g2 are Riemann integrable.
Therefore, since

Re(f + g) = f1 + g1,

Im(f + g) = f2 + g2,

Re(f) = f1,

Im(f) = −f2,

Re(fg) = f1g1 − f2g2,

Im(fg) = f1g2 + f2g1, and

|f | =
√
f2

1 + f2
2 ,
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we see that all of these functions are Riemann integrable and thus f + g, f ,
fg, and |f | are Riemann integrable.

Of course, it is unsurprising that the complex integral is linear.

Proposition B.2.6. Let f, g ∈ F([a, b],C) be Riemann integrable. Then

∫ b

a
f(x) + g(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx.

Moreover, if α ∈ C, then

∫ b

a
αf(x) dx = α

∫ b

a
f(x) dx.

Proof. Let f1 = Re(f), f2 = Im(f), g1 = Re(g), and g2 = Im(g). Since

Re(f + g) = f1 + g1 and Im(f + g) = f2 + g2,

we obtain by the definition of the complex integral that

∫ b

a
f(x) + g(x) dx

=
(∫ b

a
f1(x) + g1(x) dx

)
+ i

(∫ b

a
f2(x) + g2(x) dx

)

=
(∫ b

a
f1(x) dx+

∫ b

a
g1(x) dx

)
+ i

(∫ b

a
f2(x) dx+

∫ b

a
g2(x) dx

)

=
(∫ b

a
f1(x) dx+ i

∫ b

a
f2(x) dx

)
+
(∫ b

a
g1(x) dx+ i

∫ b

a
g2(x) dx

)

=
∫ b

a
f(x) dx+

∫ b

a
g(x) dx

as desired.
For the second part of the proof, write α = c+ di where c, d ∈ R. Since

Re(αf) = cf1 − df2 and Im(αf) = cf2 + df1,
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we obtain by the definition of the complex integral that∫ b

a
αf dx

=
(∫ b

a
cf1(x)− df2(x) dx

)
+ i

(∫ b

a
cf2(x) + df1(x) dx

)

=
(
c

∫ b

a
f1(x) dx− d

∫ b

a
f2(x) dx

)
+ i

(
c

∫ b

a
f2(x) dx+ d

∫ b

a
f1(x) dx

)

= (c+ di)
∫ b

a
f1(x) dx+ (−d+ ic)

∫ b

a
f2(x) dx

= α

∫ b

a
f1(x) dx+ αi

∫ b

a
f2(x) dx

= α

(∫ b

a
f1(x) dx+ i

∫ b

a
f2(x) dx

)
= α

∫ b

a
f(x) dx

as desired.

In addition, integrating a complex conjugation is almost trivial.

Proposition B.2.7. Let f ∈ F([a, b],C) be Riemann integrable. Then∫ b

a
f(x) dx =

∫ b

a
f(x) dx.

Proof. Let f1 = Re(f) and f2 = Im(f). Since

Re(f) = f1 and Im(f) = −f2,

we obtain by the definition of the complex integral that∫ b

a
f(x) dx

=
∫ b

a
f1(x) dx+ i

∫ b

a
−f2(x) dx

=
∫ b

a
f1(x) dx− i

∫ b

a
f2(x) dx

=
∫ b

a
f1(x) dx+ i

∫ b

a
f2(x) dx

=
∫ b

a
f(x) dx

as desired.

We recall from integrating real-valued functions that integrals of products
need not be the product of the integrals. However, integration by parts still
works.
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Theorem B.2.8 (Integration by Parts). Let h1, h2 ∈ F([a, b],C) be
continuously differentiable functions. Then∫ b

a
h′1(x)h2(x) dx = (h1(b)h2(b)− h1(a)h2(a))−

∫ b

a
h1(x)h′2(x) dx.

Proof. Let f : [a, b]→ C be defined by

f(x) = h1(x)h2(x)

for all x ∈ [a, b]. Since h1 and h2 are continuous on [a, b], we obtain that f
is continuous on [a, b]. Moreover, since h1 and h2 are differentiable on (a, b),
the product rule implies that

f ′(x) = h′1(x)h2(x) + h1(x)h′2(x)

for all x ∈ (a, b). Furthermore, since h1 and h2 are continuously differentiable,
we see that f ′ = h′1h2 + h1h

′
2 is Riemann integrable on [a, b]. Therefore, the

Fundamental Theorem of Calculus II implies that

h1(b)h2(b)− h1(a)h2(a) = f(b)− f(a)

=
∫ b

a
f ′(x) dx

=
∫ b

a
h′1(x)h2(x) + h1(x)h′2(x) dx

=
∫ b

a
h′1(x)h2(x) dx+

∫ b

a
h1(x)h′2(x) dx.

Thus, by rearranging this equation, the result follows.

Finally, the following relates the integrals of a function and its absolute
value. However, as the proof does not follow from the real-valued results, we
need to be slightly clever.

Theorem B.2.9. Let f ∈ F([a, b],C) be Riemann integrable. Then∣∣∣∣∣
∫ b

a
f(x) dx

∣∣∣∣∣ ≤
∫ b

a
|f(x)| dx.

Proof. Since ∫ b

a
f(x) dx ∈ C,

there exists a z ∈ C such that |z| = 1 and

z

∫ b

a
f(x) dx =

∣∣∣∣∣
∫ b

a
f(x) dx

∣∣∣∣∣
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(i.e. if
∫ b
a f(x) dx = reiθ for some r ≥ 0 and θ ∈ [0, 2π), then take z = e−iθ).

Therefore we have that

0 ≤
∣∣∣∣∣
∫ b

a
f(x) dx

∣∣∣∣∣
= z

∫ b

a
f(x) dx

=
∫ b

a
zf(x) dx

=
∫ b

a
Re(zf(x)) dx+ i

∫ b

a
Im(zf(x)) dx.

However, the above inequality implies it must be true that∫ b

a
Im(zf(x)) dx = 0

as the only way a real number and a complex number are equal is if the
imaginary part of the complex number is zero. Therefore we have that∣∣∣∣∣

∫ b

a
f(x) dx

∣∣∣∣∣ =
∫ b

a
Re(zf(x)) dx

≤
∫ b

a
|zf(x)| dx as Re(zf(x)) ≤ |zf(x)|

=
∫ b

a
|z||f(x)| dx

=
∫ b

a
|f(x)| dx

as desired.
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Appendix C

Multivariate Calculus
Theorems

In this appendix chapter, we will provide proofs to the multivariate calculus
results that are used in this course.

C.1 Fubini’s Theorem
We begin with the fundamental result of changing the order of integral signs.

Theorem C.1.1 (Fubini’s Theorem). If f : [a, b]× [c, d]→ R is continu-
ous, then

y 7→
∫ b

a
f(x, y) dx and x 7→

∫ d

c
f(x, y) dy

are continuous on [c, d] and [a, b] respectively, and∫∫
[a,b]×[c,d]

f(x, y) dA =
∫ b

a

∫ d

c
f(x, y) dy dx =

∫ d

c

∫ b

a
f(x, y) dx dy.

Before we get to the proof of Fubini’s Theorem (Theorem C.1.1), we first
desire to present a proof that if f : [a, b]× [c, d]→ R is continuous, then f is
Riemann integrable over [a, b]× [c, d]. To do this, we re-imagine the notion
of uniform continuity presented in Definition 2.8.1.

Definition C.1.2. A function f : [a, b] × [c, d] → R is said to be uni-
formly continuous on I if for all ε > 0 there exists a δ > 0 such that
if (x1, y1), (x2, y2) ∈ [a, b] × [c, d], |x1 − x2| < δ, and |y1 − y2| < δ, then
|f(x1, y1)− f(x2, y2)| < ε.

Unsurprisingly, we can generalize the proof of Theorem 2.8.4 to the
following.

Theorem C.1.3. If f : [a, b]× [c, d]→ R is continuous, then f is uniformly
continuous.

217
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Proof. Let f : [a, b]× [c, d]→ R be continuous. Suppose to the contrary that
f is not uniformly continuous. Hence there exists an ε > 0 such that for
all δ > 0 there exists (x1, y1), (x2, y2) ∈ [a, b]× [c, d] such that |x1 − x2| < δ,
|y1− y2| < δ, and |f(x1, y1)− f(x2, y2)| ≥ ε. Therefore, for each n ∈ N there
exist (xn, yn), (x′n, y′n) ∈ [a, b]× [c, d] with |xn − x′n| < 1

n , |yn − y
′
n| < δ, and

|f(xn, yn)− f(x′n, y′n)| ≥ ε.
Since [a, b] is closed and bounded, the Bolzano-Weierstrass Theorem

implies there exists a subsequence (xkn)n≥1 of (xn)n≥1 that converges to
some number L ∈ [a, b]. Subsequently, since [c, d] is closed and bounded, the
Bolzano-Weierstrass Theorem implies there exists a subsequence (ymkn )n≥1
of (ykn)n≥1 that converges to some number K ∈ [c, d]. Note (xmkn )n≥1 still
converges to L since (xkn)n≥1 does.

Since f is continuous on [a, b]× [c, d], there exists an N1 ∈ N such that
|f(xmkn , ymkn )− f(L,K)| < ε

2 for all n ≥ N1.
Consider the subsequence (x′mkn )n≥1 of (x′n)n≥1. Notice for all n ∈ N

that

|x′mkn − L| ≤ |x
′
mkn
− xmkn |+ |xmkn − L|

≤ 1
mkn

+ |xmkn − L|

≤ 1
n

+ |xmkn − L|.

Therefore, since limn→∞ |xmkn − L| = 0 and limn→∞
1
n = 0, we obtain that

limn→∞ x
′
mkn

= L. Similarly, limn→∞ y
′
mkn

= K. Since f is continuous this
implies that there exists an N2 ∈ N such that |f(x′mkn , y

′
mkn

)− f(L,K)| < ε
2

for all n ≥ N2.
Notice if N = max{N1, N2}, then the above implies that

|f(xmkn , ymkn )− f(x′mkn , y
′
mkn

)|
≤ |f(xmkn , ymkn )− f(L)|+ |f(L)− f(x′mkn , y

′
mkn

)|

<
ε

2 + ε

2 = ε

thereby contradicting the fact that |f(xmkn , ymkn ) − f(x′mkn , y
′
mkn

)| ≥ ε.
Hence f is uniformly continuous on [a, b]× [c, d].

It is the property of uniform continuity that implies continuous functions
are Riemann integrable. The following demonstrates the 2-variable version,
whereas the 1-variable version (which should have been proved in MATH
2001) follows by similar arguments.

Corollary C.1.4. If f : [a, b]× [c, d]→ R is continuous, then f is Riemann
integrable on [a, b]× [c, d].
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Proof. Let ε > 0. Since f is continuous on [a, b]× [c, d], f is uniformly contin-
uous on [a, b]× [c, d]. Thus there exists a δ > 0 such that if (x1, y1), (x2, y2) ∈
[a, b]× [c, d] are such that |x1 − x2| < δ and |y1 − y2| < δ, then

|f(x1, y1)− f(x2, y2)| < ε

(b− a)(d− c) .

Let P be any partition of [a, b]× [c, d] with interval lengths at most δ (which
can always be constructed). Write P = {{(xi, yj)}ni=0}mj=0 where

a = x0 < x1 < · · · < xn = b

c = y0 < y1 < · · · < ym = d.

For all (i, j) ∈ {1, . . . , n} × {1, . . . ,m}, let

Mi,j = sup({f(x, y) | (x, y) ∈ [xi−1, xi]× [yj−1, yj ]}
mi,j = inf({f(x, y) | (x, y) ∈ [xi−1, xi]× [yj−1, yj ]}.

Then

U(f,P) =
n∑
i=1

m∑
j=1

Mi,j(xi − xi−1)(yj − yj−1)

L(f,P) =
n∑
i=1

m∑
j=1

mi,j(xi − xi−1)(yj − yj−1).

Hence

U(f,P)− L(f,P) =
n∑
i=1

m∑
j=1

(Mi,j −mi,j)(xi − xi−1)(yj − yj−1)

≤
n∑
i=1

m∑
j=1

ε

(b− a)(d− c)(xi − xi−1)(yj − yj−1)

= ε.

Therefore, as ε > 0 was arbitrary, f is Riemann integrable.

Proof of Fubini’s Theorem (Theorem C.1.1). First, it is necessary to demon-
strate that all of the integrals in the statement of the theorem are well-defined.

Since f is Riemann integrable,∫∫
[a,b]×[c,d]

f(x, y) dA

is well-defined. Moreover, since

x 7→ f(x, y0) and y 7→ f(x0, y)

c©For use through and only available at pskoufra.info.yorku.ca.



220 APPENDIX C. MULTIVARIATE CALCULUS THEOREMS

are continuous on [a, b] and [c, d] respectively for all x0 ∈ [a, b] and y0 ∈ [c, d],
we obtain that ∫ b

a
f(x, y0) dx and

∫ d

c
f(x0, y) dy

are well-defined for all x0 ∈ [a, b] and y0 ∈ [c, d]. Thus, to see that∫ d

c

∫ b

a
f(x, y) dx dy and

∫ b

a

∫ d

c
f(x, y) dy dx

are well-defined, it suffices to show that

y 7→
∫ b

a
f(x, y) dx and x 7→

∫ d

c
f(x, y) dy

are continuous on [c, d] and [a, b] respectively.
To see that the first is continuous, let ε > 0. Since f is uniformly

continuous on [a, b]× [c, d], there exists a δ > 0 such that if (x1, y1), (x2, y2) ∈
[a, b]× [c, d] are such that |x1 − x2| < δ and |y1 − y2| < δ, then

|f(x1, y1)− f(x2, y2)| < ε

b− a
.

Therefore, for all y1, y2 ∈ [c, d] with |y1 − y2| < δ we have that∣∣∣∣∣
∫ b

a
f(x, y1) dx−

∫ b

a
f(x, y2) dx

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a
f(x, y1)− f(x, y2) dx

∣∣∣∣∣
≤
∫ b

a
|f(x, y1)− f(x, y2)| dx

≤
∫ b

a

ε

b− a
dx

= ε.

Thus y 7→
∫ b
a f(x, y) dx is uniformly continuous on [c, d]. Similarly x 7→∫ d

c f(x, y) dy is uniformly continuous on [a, b].
To see that ∫∫

[a,b]×[c,d]
f(x, y) dA =

∫ d

c

∫ b

a
f(x, y) dx dy,

let ε > 0 be arbitrary. Since f is Riemann integrable on [a, b]× [c, d], there
exists a partition P of [a, b]× [c, d] such that if P = {{(xi, yj)}ni=0}mj=0 where

a = x0 < x1 < · · · < xn = b

c = y0 < y1 < · · · < ym = d

and for all (i, j) ∈ {1, . . . , n} × {1, . . . ,m}, we let

Mi,j = sup({f(x, y) | (x, y) ∈ [xi−1, xi]× [yj−1, yj ]}
mi,j = inf({f(x, y) | (x, y) ∈ [xi−1, xi]× [yj−1, yj ]},
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then with

U(f,P) =
n∑
i=1

m∑
j=1

Mi,j(xi − xi−1)(yj − yj−1)

L(f,P) =
n∑
i=1

m∑
j=1

mi,j(xi − xi−1)(yj − yj−1)

we have that

L(f,P) ≤
∫∫

[a,b]×[c,d]
f(x, y) dA ≤ U(f,P) < L(f,P) + ε.

Since for all (i, j) ∈ {1, . . . , n} × {1, . . . ,m} we have

mi,j ≤ f(x, y) ≤Mi,j

for all (x, y) ∈ [xi−1, xi]× [yj−1, yj ], we obtain that

mi,j(xi − xi−1) ≤
∫ xi

xi−1
f(x, y) dx ≤Mi,j(xi − xi−1)

for all y ∈ [yj−1, yj ] and (i, j) ∈ {1, . . . , n} × {1, . . . ,m}. Therefore, for any
fix j ∈ {1, . . . ,m} and y ∈ [yj−1, yj ], we obtain by summing over i that

n∑
i=1

mi,j(xi − xi−1) ≤
n∑
i=1

∫ xi

xi−1
f(x, y) dx

=
∫ b

a
f(x, y) dx

≤
n∑
i=1

Mi,j(xi − xi−1).

Thus, by integrating all three expressions over y ∈ [yj−1, yj ] for all j ∈
{1, . . . ,m}, we obtain that

n∑
i=1

mi,j(xi − xi−1)(yj − yj−1) ≤
∫ yj

yj−1

∫ b

a
f(x, y) dx dy

≤
n∑
i=1

Mi,j(xi − xi−1)(yj − yj−1).
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Thus, by summing over all j ∈ {1, . . . ,m}, we obtain that

L(f,P) =
m∑
j=1

n∑
i=1

mi,j(xi − xi−1)(yj − yj−1)

≤
m∑
j=1

∫ yj

yj−1

∫ b

a
f(x, y) dx dy

=
∫ b

a

∫ b

a
f(x, y) dx dy

≤
m∑
j=1

n∑
i=1

Mi,j(xi − xi−1)(yj − yj−1)

= U(f,P).

Therefore, since both∫∫
[a,b]×[c,d]

f(x, y) dA and
∫ d

c

∫ b

a
f(x, y) dx dy

are in the interval
[L(f,P), U(f,P)]

and
U(f,P)− L(f,P) < ε,

we obtain that∣∣∣∣∣
∫∫

[a,b]×[c,d]
f(x, y) dA−

∫ d

c

∫ b

a
f(x, y) dx dy

∣∣∣∣∣ < ε.

Therefore, as ε > 0 was arbitrary, we obtain that∫∫
[a,b]×[c,d]

f(x, y) dA =
∫ d

c

∫ b

a
f(x, y) dx dy.

The proof that ∫∫
[a,b]×[c,d]

f(x, y) dA =
∫ b

a

∫ d

c
f(x, y) dy dx

is similar.

C.2 Leibniz Integral Rule

Another useful result from multi-variate calculus is the ability to differentiate
under the integral sign.
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Theorem C.2.1 (Leibniz Integral Rule). Let f : [a, b] × [c, d] → R be
such that ∂f

∂y is continuous on [a, b]× [c, d]. Then

d

dy

(∫ b

a
f(x, y) dx

)
=
∫ b

a

∂f

∂y
(x, y) dx

on (c, d).

Proof. Since ∂f
∂y is continuous on [a, b]× [c, d], f is continuous on [a, b]× [c, d]

and thus both integrals in the statement of the theorem are well-defined.
To see the desired result, fix y0 ∈ (c, d). Consider the function F : [c, d]→

R defined by

F (t) =
∫ t

c

∫ b

a

∂f

∂y
(x, y) dx dy

for all t ∈ [c, d]. Note F is well-defined since ∂f
∂y is continuous and

y 7→
∫ b

a

∂f

∂y
(x, y) dx

is continuous by Fubini’s Theorem (Theorem C.1.1). Moreover, by the
Fundamental Theorem of Calculus, we know that

F ′(t) =
∫ b

a

∂f

∂y
(x, t) dx

for all t ∈ (c, d). Thus, it suffices to show that(
d

dy

(∫ b

a
f(x, y) dx

))
(y0) = F ′(y0).

Notice if h > 0 is such that y0 + h ∈ [c, d], then by Fubini’s Theorem
(Theorem C.1.1) and the Fundamental Theorem of Calculus, we have that

F (y0 + h)− F (y0)
h

= 1
h

(∫ y0+h

c

∫ b

a

∂f

∂y
(x, y) dx dy −

∫ y0

c

∫ b

a

∂f

∂y
(x, y) dx dy

)

= 1
h

(∫ y0+h

y0

∫ b

a

∂f

∂y
(x, y) dx dy

)

= 1
h

∫ b

a

∫ y0+h

y0

∂f

∂y
(x, y) dy dx

=
∫ b

a
f(x, y0 + h)− f(x, y0) dx

= 1
h

(∫ b

a
f(x, y0 + h) dx−

∫ b

a
f(x, y0) dx

)
.
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Thus

lim
h↘0

1
h

(∫ b

a
f(x, y0 + h) dx−

∫ b

a
f(x, y0) dx

)
= lim

h↘0

F (y0 + h)− F (y0)
h

= F ′(y0).

Since similar arguments show

lim
h↗0

1
h

(∫ b

a
f(x, y0 + h) dx−

∫ b

a
f(x, y0) dx

)
F ′(y0),

the result follows.

C.3 Laplace’s Equation in Polar Coordinates
One result necessary for applications to the steady-state heat equation is the
following version of the Laplacian in polar coordinates.

Theorem C.3.1. If f is a continuous function on the closed unit disk centred
at the origin that is twice continuously differentiable on the open unit centred
at the origin, then, using polar coordinates,

∆f = ∂2f

∂r2 + 1
r

∂f

∂r
+ 1
r2
∂f2

∂θ2 .

Proof. Recall if (x, y) is a point in the closed unit disk and

x = r cos(θ) and y = r sin(θ)

are the polar coordinates, then

∂x

∂r
= cos(θ),

∂y

∂r
= sin(θ),

∂x

∂θ
= −r sin(θ), and

∂y

∂θ
= r cos(θ).

To show the desired formula holds, let us compute

∂2f

∂r2 ,
∂f

∂r
, and ∂f2

∂θ2

using the Chain Rule. Indeed

∂f

∂r
= ∂f

∂x

∂x

∂r
+ ∂f

∂y

∂y

∂r
= cos(θ)∂f

∂x
+ sin(θ)∂f

∂y
.
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Therefore,

∂2f

∂r2 = ∂

∂r

(
cos(θ)∂f

∂x
+ sin(θ)∂f

∂y

)
= cos(θ) ∂

∂r

(
∂f

∂x

)
+ sin(θ) ∂

∂r

(
∂f

∂y

)
= cos(θ)

(
∂

∂x

(
∂f

∂x

)
∂x

∂r
+ ∂

∂y

(
∂f

∂x

)
∂y

∂r

)
+ sin(θ)

(
∂

∂x

(
∂f

∂y

)
∂x

∂r
+ ∂

∂y

(
∂f

∂y

)
∂y

∂r

)
= cos(θ)

(
cos(θ)∂

2f

∂x2 + sin(θ) ∂
2f

∂y∂x

)

+ sin(θ)
(

cos(θ) ∂
2f

∂x∂y
+ sin(θ)∂

2f

∂y2

)

= cos2 ∂
2f

∂x2 + 2 cos(θ) sin(θ) ∂
2f

∂x∂y
+ sin2(θ)∂

2f

∂y2 .

Similarly

∂f

∂θ
= ∂f

∂x

∂x

∂θ
+ ∂f

∂y

∂y

∂θ
= −r sin(θ)∂f

∂x
+ r cos(θ)∂f

∂y
.

Therefore

∂2f

∂θ2 = ∂

∂θ

(
−r sin(θ)∂f

∂x
+ r cos(θ)∂f

∂y

)
= −r cos(θ)∂f

∂x
− r sin(θ) ∂

∂θ

(
∂f

∂x

)
− r sin(θ)∂f

∂y
+ r cos(θ) ∂

∂θ

(
∂f

∂y

)
= −r cos(θ)∂f

∂x
− r sin(θ)

(
∂

∂x

(
∂f

∂x

)
∂x

∂θ
+ ∂

∂y

(
∂f

∂x

)
∂y

∂θ

)
− r sin(θ)∂f

∂y
+ r cos(θ)

(
∂

∂x

(
∂f

∂y

)
∂x

∂θ
+ ∂

∂y

(
∂f

∂y

)
∂y

∂θ

)
= −r cos(θ)∂f

∂x
− r sin(θ)

(
−r sin(θ)∂

2f

∂x2 + r cos(θ) ∂
2f

∂y∂x

)

− r sin(θ)∂f
∂y

+ r cos(θ)
(
−r sin(θ) ∂

2f

∂x∂y
+ r cos(θ)∂

2f

∂y2

)

= −r cos(θ)∂f
∂x
− r sin(θ)∂f

∂y

+ r2 sin2(θ)∂
2f

∂x2 − 2r cos(θ) sin(θ) ∂
2f

∂x∂y
+ r2 cos2(θ)∂

2f

∂y2 .
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Therefore

∂2f

∂r2 + 1
r

∂f

∂r
+ 1
r2
∂f2

∂θ2

=
(

cos2 ∂
2f

∂x2 + 2 cos(θ) sin(θ) ∂
2f

∂x∂y
+ sin2(θ)∂

2f

∂y2

)

+ 1
r

(
cos(θ)∂f

∂x
+ sin(θ)∂f

∂y

)
+ 1
r2

(
−r cos(θ)∂f

∂x
− r sin(θ)∂f

∂y

)
+ 1
r2

(
r2 sin2(θ)∂

2f

∂x2 − 2r cos(θ) sin(θ) ∂
2f

∂x∂y
+ r2 cos2(θ)∂

2f

∂y2

)

= (cos2(θ) + sin2(θ))
(
∂2f

∂x2 + ∂2f

∂y2

)
= ∆f

as desired.
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1-torus, 87

Abel sum, 139
absolute value, 201
absolutely convergent series, 13
Alternating Series Test, 19
area enclosed by a curve, 170

Cauchy Criterion, convergent series, 11
Cauchy sequence, 8
Cauchy-Schwarz Inequality, 92
Cesàro sum, 128
characteristic function, 177
closed curve, 168
Comparison Test, 14
complex conjugate, 201
complex exponential, 33
complex numbers, 197
conditionally convergent series, 21
conjugate, complex number, 201
continuous at a point, 40
continuous function, 40
continuous, uniformly, 77, 217
converge, sequence, 3
convergent series, 9
convolution, 110
cosine, 35

derivative, complex, 205
differentiable function, complex, 205
Dini’s Test, 159
Dirichlet kernel, 114
Dirichlet-Dini Test, 159
diverge, sequence, 3
divergent series, 9
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equidistributed, sequence, 174
Euler’s Formula, 36
Euler’s Product Formula, 192

Fejér kernel, 128
Fejér’s Theorem, 134
Fejér’s Theorem, Zygmund, 155
field, 198
floor, real number, 175
Fourier coefficient, 99
Fourier series, 100
Fourier series, partial, 100
fractional part, real number, 175
Fubini’s Theorem, continuous functions, 217
Fubini’s Theorem, sums, 30

Gamma function, 191
geometric series, 10

Hardy’s Theorem, 147

imaginary part, 197
imaginary part, function, 42
inner product, 90
integer part, real number, 175
Integral Test, 15
Isoperimetric Inequality, 171

Lebesgue point, 156
Lebesgue’s Theorem, 151
Leibniz Integral Rule, 223
Leibniz’s Theorem, 19
length of a curve, 168
length, RI(T), 92
length, complex number, 201
limit, sequence, 3

Mean-Square Convergence, 161
modulus, complex number, 201

natural logarithm, 72
nowhere differentiable, 49

orthonormal set, 96

parametrization of a curve, 167
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parametrized curve, 167
Parseval’s dentity, 164
partial Fourier series, 100
partial sum, 9
periodic extension, function, 50
periodic function, 50
pointwise convergence, 42
pointwise convergence, series of functions, 43
pointwise sum of functions, 43
Poisson kernel, 136
power series, 69
product, infinite, converges, 192

radius of convergence, 73
Ratio Test, 16
re-parametrization of a curve, 168
real part, 197
real part, function, 42
Riemann integrable on T, 88
Riemann’s functional equation, 191
Riemann-Lebesgue Lemma, 135
Root Test, 18

sequence converges, 3
sequence diverges, 3
sequence, Cauchy, 8
series, converge, 9
series, diverges, 9
simple curve, 168
sin, 35
smooth curve, 168
summability kernel, 123

tail, series, 9
Taylor’s Theorem, 74
Tonelli’s Theorem, sums, 28
trigonometric polynomials, 89

uniform convergence, 44
uniform convergence, series, 47
uniformly bounded, 46
unit circle, 87

Weierstrass function, 54
Weierstrass M-Test, 48
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Werierstrass Approximation Theorem, 79
Weyl’s Criterion, 176
Weyl’s Equidistributed Theorem, 176
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