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Preface:
These are the first edition of these lecture notes for MATH 4011.
Consequently, there may be several typographical errors. Not every result in
these notes will be covered in class. For example, some results will be
covered through assignments. However, these notes should be fairly
self-contained. If you come across any typos, errors, omissions, or unclear
explanations, please feel free to contact me so that I may continually
improve these notes.
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Chapter 1

Metric Spaces

One way or another, analysis is the mathematical study of limits thereby
obtaining the ability to approximate quantities. This is very different from
say algebra where everything has to be computed exactly. In algebra, one
can only add a finite number of elements in a ring, field, or vector space.
However, as seen in previous courses, analysis allows for infinite series of
numbers or functions by considering finite series and taking a limit. It is this
flexibility that enables the analysis of real numbers to be such a useful tool
in mathematics.

At this point we have mainly studied analysis for real numbers and
continuous functions on the real line. However, if one takes a moment and
thinks back to how arguments worked in previous analysis courses, everything
revolves around taking limits of sequences. Furthermore, to take a limit of a
sequence, one needs only a notion of what it means for one element to be
close to another. This works well for real numbers by asking for the absolute
value of the difference between two numbers to be small. However, there
are only certain properties required of this distance in order to make our
arguments work.

In this course, we will study what happens when we extend our basic
analytic tools and techniques to a wider variety of spaces. In particular, this
chapter will develop the basic analytic concepts with respect to distance
functions, known as metrics. The only properties all metrics share are those
that one would absolutely require for a well-defined notion of distance and for
our basic analytic arguments to work. After defining and providing examples
of metrics, we will study convergence of sequences, topology, and continuous
functions in this metric space setting. These basic concepts are truly the
doorway into a vast new realm of analysis.

1



2 CHAPTER 1. METRIC SPACES

1.1 Metric and Normed Linear Spaces
To begin, we must start with the correct notion of a distance function. Note
all of the properties we require of a distance function are those that one
would expect a proper distance function to have.

Definition 1.1.1. Let X be a non-empty set. A metric on X is a function
d : X × X → [0, ∞) such that

1. for x, y ∈ X, d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x) for all x, y ∈ X, and

3. (triangle inequality) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

We already know of one example of a metric.

Example 1.1.2. For any c > 0, define d : R×R → [0, ∞) by d(x, y) = c|x−y|.
Then (R, d) is a metric space. Indeed it is trivial to verify the three properties
of d being a metric.

Note often we will desire to work with the complex numbers.

Example 1.1.3. Define d : C×C → [0, ∞) by d(x, y) = |x − y|. Then (C, d)
is a metric space. Indeed it is trivial to verify the three properties of d being
a metric.

Note there are a diverse collection of metrics one can place on set.

Example 1.1.4. Define d : R × R → [0, ∞) by d(x, y) = |e−x − e−y|. Then
(R, d) is a metric space. To see this, we note that since the function x 7→ e−x

is injective, d(x, y) = 0 if and only if e−x = e−y if and only if x = y. Moreover,
the fact that d(x, y) = d(y, x) and the triangle inequality holds follow trivially.
Hence (R, d) is a metric space.

Consequently, as we desire to study a space together with a pre-described
fixed metric, we define the following.

Definition 1.1.5. A metric space is a pair (X , d) where X is a non-empty
set and d is a metric on X .

Note we may on occasion abuse notation by saying that X is a metric
space without specifying the metric d.

Remark 1.1.6. Due to the fact that there are many possible metrics on a
given set, unless otherwise specified, we will use the metric d(x, y) = |x − y|
as the canonical metric on both R and C.

Of course, there are many more metric spaces we can consider.
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1.1. METRIC AND NORMED LINEAR SPACES 3

Example 1.1.7. Let C[a, b] denote the set of all real-valued continuous
functions on a closed interval [a, b]. Define d∞ : C[a, b] × C[a, b] → [0, ∞) by

d(f, g) = sup
x∈[a,b]

|f(x) − g(x)|

for all f, g ∈ C[a, b]. Then d is a metric on C[a, b]. Indeed first notice that
d(f, g) < ∞ as f − g is a continuous function so the Extreme Value Theorem
(see Theorem 4.1.15 for example) implies that the supremum is obtained and
thus finite. The remaining three properties of a metric are then trivial to
verify. We call d∞ the uniform metric on C[a, b].

However, there are more exotic metrics. In particular, the following can
be used as a metric on any set!

Example 1.1.8. Let X be a non-empty set. Define d : X × X → [0, ∞) by

d(x, y) =
{

0 if x = y

1 if x ̸= y
.

It is elementary to verify that d is a metric. We call d the discrete metric on
X.

Moreover, there are ways to construct new metrics from other metrics.
For some examples of this, consider the following.

Example 1.1.9. Given n ∈ N, define d1 : Cn × Cn → [0, ∞) by

d1((z1, . . . , zn), (w1, . . . , wn)) =
n∑

k=1
|zk − wk|

for all (z1, . . . , zn), (w1, . . . , wn) ∈ Cn. Then it is easy to verify that (Cn, d1)
is a metric space.

Example 1.1.10. Given n ∈ N, define d∞ : Cn × Cn → [0, ∞) by

d∞((z1, . . . , zn), (w1, . . . , wn)) = sup
1≤k≤n

|zk − wk|

for all (z1, . . . , zn), (w1, . . . , wn) ∈ Cn. Then it is easy to verify that (Cn, d∞)
is a metric space.

Of course, the above can be modified to consider metric d1 and d∞ on
n-tuples from arbitrary metric spaces. More generally, we can place a metric
on sequences instead of n-tuples.

Example 1.1.11. Let {(Xn, dn)}∞
n=1 be a countable collection of metric

spaces. Let
X = {(xn)n≥1 | xn ∈ Xn for all n ∈ N}

©For use through and only available at pskoufra.info.yorku.ca.



4 CHAPTER 1. METRIC SPACES

be the set of all sequences whose nth term comes from Xn. Define d : X ×X →
[0, ∞) by

d((xn)n≥1, (yn)n≥1) =
∞∑

n=1

dn(xn, yn)
2n(1 + dn(xn, yn))

for all (xn)n≥1, (yn)n≥1 ∈ X . We claim that d is a metric on X .
To see that d is a metric on X , we first notice for all n ∈ N, xn ∈ Xn,

and yn ∈ Xn that
0 ≤ dn(xn, yn)

2n(1 + dn(xn, yn)) ≤ 1
2n

.

Hence for all (xn)n≥1, (yn)n≥1 ∈ X we have that

0 ≤ d((xn)n≥1, (yn)n≥1) ≤
∞∑

n=1

1
2n

= 1

so d : X × X → [0, ∞).
Fix (xn)n≥1, (yn)n≥1 ∈ X . Then clearly d((xn)n≥1, (yn)n≥1) = 0 if and

only if
dn(xn, yn)

2n(1 + dn(xn, yn)) = 0

for all n ∈ N if and only if dn(xn, yn) = 0 if and only if xn = yn for all
n ∈ N (as (Xn, dn) is a metric space) if and only if (xn)n≥1 = (yn)n≥1. Hence
d satisfies the first property of a metric. Furthermore, since dn(xn, yn) =
dn(yn, xn) for all n ∈ N as (Xn, dn) is a metric space, we clearly obtain that

d((xn)n≥1, (yn)n≥1) = d((yn)n≥1, (xn)n≥1).

Thus d satisfies the second property of a metric. Finally, to see that d satisfies
the triangle inequality, notice for all a, b, c ∈ R with a, b, c ≥ 0 that

c ≤ a + b

⇒ c ≤ a + b + 2ab + abc

⇒ c + ac + bc + abc ≤ a + ab + ac + abc + b + ab + bc + abc

⇒ c(1 + a)(1 + b) ≤ a(1 + b)(1 + c) + b(1 + a)(1 + c)

⇒ c

1 + c
≤ a

1 + a
+ b

1 + b
.

Thus for all (xn)n≥1, (yn)n≥1, (zn)n≥1 ∈ X , by substituting a = dn(xn, zn),
b = dn(zn, yn), and c = dn(xy, yn) for all n ∈ N we obtain that

dn(xn, yn)
2n(1 + dn(xn, yn)) ≤ dn(xn, zn)

2n(1 + dn(xn, zn)) + dn(zn, yn)
2n(1 + dn(zn, yn))

for all n ∈ N, and thus

d((xn)n≥1, (yn)n≥1) ≤ d((xn)n≥1, (zn)n≥1) + d((zn)n≥1, (yn)n≥1).

Hence d satisfies the triangle inequality so d is a metric on X .
We call d the product metric on {(Xn, dn)}∞

n=1.

©For use through and only available at pskoufra.info.yorku.ca.



1.1. METRIC AND NORMED LINEAR SPACES 5

Of course, Rn can also be made into a metric space by restricting the
definition of d1 and d∞ to Rn × Rn in Examples 1.1.9 and 1.1.10. This may
be generalized as follows.

Example 1.1.12. Let (X , d) be a metric space and let Y be a non-empty
subset of X . Define d|Y : Y × Y → [0, ∞) by d|Y (y1, y2) = d(y1, y2) for all
y1, y2 ∈ Y . Then (Y, d|Y ) is a metric space. We call d|Y the metric on Y
induced by (X , d).

Of course, we haven’t even touched on the usual metric we use to measure
distance in Rn.

Example 1.1.13. Define d2 : Rn × Rn → [0, ∞) by

d2((x1, . . . , xn), (y1, . . . , yn)) =

√√√√ n∑
k=1

|xk − yk|2

for all (x1, . . . , xn), (y1, . . . , yn) ∈ Rn. Then (Rn, d2) is a metric space and
the metric d2 is called the Euclidean metric.

Of course, we must ask how do we know the Euclidean metric is a metric?
Verifying all but the triangle inequality is trivial. However, verifying the
triangle inequality is non-trivial. So how can we see the triangle inequality
holds for the Euclidean metric?

Well, it turns out that not all metrics were created equal. In particular,
we desire to study special types of metric spaces. These metric spaces come
from specific functions on vector spaces that behave like the absolute value
does on R and C. Consequently, we will restrict to vector spaces where the
scalars are either the real or the complex numbers. Consequently, it will be
convenient to use K to denote either R or C.

The following is our generalization of the absolute value to vector spaces.

Definition 1.1.14. Let V be a vector space over K. A norm on V is a
function ∥ · ∥ : V → [0, ∞) such that

1. for v⃗ ∈ V, ∥v⃗∥ = 0 if and only if v⃗ = 0⃗,

2. ∥αv⃗∥ = |α| ∥v⃗∥ for all α ∈ K and v⃗ ∈ V, and

3. (triangle inequality) ∥v⃗ + w⃗∥ ≤ ∥v⃗∥ + ∥w⃗∥ for all v⃗, w⃗ ∈ V.

Of course, we desire to study vector spaces with a fixed pre-described
norm, so we make the following definition.

Definition 1.1.15. A normed linear space is a pair (V, ∥ · ∥) where V is a
vector space over K and ∥ · ∥ is a norm on V.

©For use through and only available at pskoufra.info.yorku.ca.



6 CHAPTER 1. METRIC SPACES

Again we may abuse notation by saying that V is a normed linear space
without specifying the norm.

As our motivation for generalizing the absolute value was to induce a
metric, we note the following.

Proposition 1.1.16. If (V, ∥ · ∥) is a normed linear space, then V is a metric
space with the metric d : V × V → [0, ∞) defined by d(v⃗, w⃗) = ∥v⃗ − w⃗∥. We
call d the metric induced by ∥ · ∥.

Proof. It suffices to show that d is a metric. Clearly d : V × V → [0, ∞).
Furthermore notice d(v⃗, w⃗) = 0 if and only if ∥v⃗ − w⃗∥ = 0 if and only if
v⃗ − w⃗ = 0⃗ if and only if v⃗ = w⃗.

Next notice for all v⃗, w⃗ ∈ V that

d(v⃗, w⃗) = ∥v⃗ − w⃗∥ = ∥(−1)(w⃗ − v⃗)∥ = | − 1| ∥w⃗ − v⃗∥ = d(w⃗, v⃗).

Finally, to see that d satisfies the triangle inequality, notice for all v⃗, w⃗, z⃗ ∈ V
that

d(v⃗, z⃗) + d(z⃗, w⃗) = ∥v⃗ − z⃗∥ + ∥z⃗ − w⃗∥
≥ ∥(v⃗ − z⃗) + (z⃗ − w⃗)∥
= ∥v⃗ − w⃗∥ = d(v⃗, w⃗).

Hence d is a metric.

Remark 1.1.17. Notice in the proof of the triangle inequality in Proposition
1.1.16 that using w⃗ = 0⃗ produced ∥v⃗ − z⃗∥ + ∥z⃗∥ ≥ ∥v⃗∥ for all v⃗, z⃗ ∈ V . Hence

∥v⃗∥ − ∥z⃗∥ ≤ ∥v⃗ − z⃗∥

for all v⃗, z⃗ ∈ V. Thus, by interchanging v⃗ and z⃗, we obtain that

∥z⃗∥ − ∥v⃗∥ ≤ ∥v⃗ − z⃗∥

so
|∥v⃗∥ − ∥z⃗∥| ≤ ∥v⃗ − z⃗∥

for all v⃗, z⃗ ∈ V. This potentially useful inequality is often called the reverse
triangle inequality.

Clearly the absolute value on K is an norm on K. Furthermore, the
metric induced by this norm is exactly the metric introduced in Examples
1.1.2 and 1.1.3. In fact, some of the other metrics we have seen come from
norms.

Example 1.1.18. For n ∈ N, define ∥ · ∥1 : Kn → [0, ∞) by

∥(z1, . . . , zn)∥1 =
n∑

k=1
|zk|

for all (z1, . . . , zn) ∈ Kn. It is elementary to verify that ∥ · ∥1 is a norm on Kn

that induced the metric d1 as in Example 1.1.9. We call ∥ · ∥1 the 1-norm.

©For use through and only available at pskoufra.info.yorku.ca.



1.1. METRIC AND NORMED LINEAR SPACES 7

Example 1.1.19. For n ∈ N, define ∥ · ∥∞ : Kn → [0, ∞) by

∥(z1, . . . , zn)∥∞ = sup
1≤k≤n

|zk|

for all (z1, . . . , zn) ∈ Kn. It is elementary to verify that ∥ · ∥∞ is a norm on
Kn that induced the metric d∞ as in Example 1.1.10. We call ∥ · ∥∞ the
sup-norm or the ∞-norm.

Example 1.1.20. Let C[a, b] denote the set of all real-valued continuous
functions on a closed interval [a, b]. Then C[a, b] is a vector space over R
under the operations of pointwise addition and scalar multiplication. Define
∥ · ∥∞ : C[a, b] → [0, ∞) by

∥f∥∞ = sup
x∈[a,b]

|f(x)|

for all f ∈ C[a, b]. Note ∥ · ∥∞ does take values in [0, ∞) by the Extreme
Value Theorem (see Theorem 4.1.15). It is elementary to see that ∥ · ∥∞ is a
norm on C[a, b]. We call ∥ · ∥∞ the sup-norm.

Of course, the sup-norm works perfectly well if we restrict the set of
continuous functions to, for example, the polynomials. In particular, this
holds true in more generality.

Proposition 1.1.21. Let (V, ∥ · ∥) be a normed linear space and let W be a
subspace of V. The restriction of ∥ · ∥ to W is a norm on W .

Remark 1.1.22. However, some of the metrics we have seen are not norms.
For example, if V is a vector space over K, the discrete metric cannot be
induced by a norm since if a norm (and thus its induced metric) takes the
value 1, then it takes all values in [0, ∞).

Of course, returning to the problem at hand of showing the Euclidean
metric is indeed a metric, we can instead ask whether the following is a norm.

Example 1.1.23. For n ∈ N, define ∥ · ∥2 : Kn → [0, ∞) by

∥(z1, . . . , zn)∥2 =

 ∑
1≤k≤n

|zk|2
 1

2

for all (z1, . . . , zn) ∈ Kn. Then ∥ · ∥∞ is a norm on Kn called the Euclidean
norm or the 2-norm.

Clearly the Euclidean norm will induce the Euclidean metric provided
the Euclidean norm is in fact a norm. The Euclidean norm is in fact a very
special norm as it is induced by a structure on a vector space that is even
superior to a norm, namely an inner product. In particular, the dot product

©For use through and only available at pskoufra.info.yorku.ca.



8 CHAPTER 1. METRIC SPACES

on Cn can be shown to satisfy the Cauchy-Schwarz Inequality (Theorem
6.1.11) and the fact that the triangle inequality holds for the Euclidean
norm then easily follows. Instead of introducing inner products here and
providing the plethora of examples, we will be postponing the discussion of
inner products until Section 6.1 as it serves as an excellent introduction to
an important topic, as we do not want to focus our attention to too specific
a structure at this time, and as we do not want to digress into specifics for
inner product spaces at every point throughout this course.

Instead we note there are many more norms we can place on Kn that
generalize the Euclidean norm.

Example 1.1.24. For n ∈ N and a fixed p ∈ (1, ∞), define ∥ · ∥p : Kn →
[0, ∞) by

∥(z1, . . . , zn)∥p =
(

n∑
k=1

|zk|p
) 1

p

for all (z1, . . . , zn) ∈ Kn. Then ∥ · ∥p is a norm on Kn called the p-norm.

It is not difficult to see that ∥ · ∥p satisfies the first two properties of
Definition 1.1.14. Indeed ∥(z1, . . . , zn)∥p ≥ 0 with equality if and only if
zk = 0 for all k. Furthermore, for all (z1, . . . , zn) ∈ Kn and α ∈ K, we see
that

∥α(z1, . . . , zn)∥p =
(

n∑
k=1

|αzk|p
) 1

p

=
(

n∑
k=1

|α|p|zk|p
) 1

p

=
(

|α|p
n∑

k=1
|zk|p

) 1
p

= |α|
(

n∑
k=1

|zk|p
) 1

p

= |α| ∥(z1, . . . , zn)∥p .

However, it is difficult to see whether ∥ · ∥p satisfies the triangle inequality.
Thus how can we see that the p-norm is indeed a norm?

1.2 The p-Norms

To see that the p-norm satisfies the triangle inequality, we will need to develop
some additional inequalities. First consider the function f : (1, ∞) → (1, ∞)
defined by f(x) = x

x−1 . Using elementary calculus, f is a bijection. In

©For use through and only available at pskoufra.info.yorku.ca.



1.2. THE p-NORMS 9

particular, for each p ∈ (1, ∞) there exists a unique q ∈ (1, ∞) such that
p = q

q−1 . Thus
1
p

= q − 1
q

= 1 − 1
q

.

Hence for each p ∈ (1, ∞) there exists a unique q ∈ (1, ∞) such that 1
p + 1

q = 1.

Definition 1.2.1. Let p ∈ (1, ∞). The unique q ∈ (1, ∞) such that 1
p + 1

q = 1
is called the conjugate of p. Note we consider ∞ to be the conjugate of 1
and 1 to be the conjugate of ∞.

The following inequality related to dual pairs is a key step towards
verifying the triangle inequality for the p-norms.

Lemma 1.2.2 (Young’s Inequality). Let a, b ≥ 0 and let p, q ∈ (1, ∞) be
conjugates. Then ab ≤ 1

pap + 1
q bq.

Proof. Notice 1 = 1
p + 1

q = p+q
pq implies p + q − pq = 0. Hence q = p

p−1 .
Fix b ≥ 0. Notice if b = 0, the inequality easily holds. Thus we will

assume b > 0.
Define f : [0, ∞) → R by f(x) = 1

pxp + 1
q bq − bx. Clearly f(0) > 0

and limx→∞ f(x) = ∞ as p > 1 so xp grows faster than x. We claim that
f(x) ≥ 0 for all x ∈ [0, ∞) thereby proving the inequality. Notice f is
differentiable on [0, ∞) with

f ′(x) = xp−1 − b.

Therefore f ′(x) = 0 if and only if x = b
1

p−1 . Moreover, it is elementary to
see from the derivative that f has a local minimum at b

1
p−1 and thus f has a

global minimum at b
1

p−1 due to the boundary conditions. Therefore, since

f
(
b

1
p−1
)

= 1
p

b
p

p−1 + 1
q

bq − b
1+ 1

p−1 = 1
p

bq + 1
q

bq − bq = 0,

we obtain that f(x) ≥ 0 for all x ∈ [0, ∞) as desired.

Using Young’s Inequality, we have a stepping stone towards the triangle
inequality.

Theorem 1.2.3 (Hölder’s Inequality). Let p, q ∈ (1, ∞) be such that
1
p + 1

q = 1. For any n ∈ N and a1, . . . , an, b1, . . . , bn ∈ C,

n∑
i=1

|aibi| ≤
(

n∑
i=1

|ai|p
) 1

p
(

n∑
i=1

|bi|q
) 1

q

.
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10 CHAPTER 1. METRIC SPACES

Proof. Let α = (
∑n

i=1 |ai|p)
1
p and let β = (

∑n
i=1 |bi|q)

1
q . It is clear that α = 0

implies ai = 0 for all i which implies
∑n

i=1 |aibi| = 0 and thus the inequality
will hold in this case. Similarly if β = 0, then the inequality holds. Hence
we may assume that α, β > 0.

Since α, β > 0, we obtain that

n∑
i=1

|aibi| = αβ
n∑

i=1

∣∣∣∣ai

α

∣∣∣∣ ∣∣∣∣bi

β

∣∣∣∣
≤ αβ

(
n∑

i=1

1
p

∣∣∣∣ai

α

∣∣∣∣p + 1
q

∣∣∣∣bi

β

∣∣∣∣q
)

by Lemma 1.2.2

= αβ

(
1

pαp

n∑
i=1

|ai|p + 1
qβq

n∑
i=1

|bi|q
)

= αβ

(1
p

+ 1
q

)
= αβ

as desired.

Note Hölder’s Inequality has the following trivial extension.

Theorem 1.2.4. For any n ∈ N and a1, . . . , an, b1, . . . , bn ∈ C,

n∑
i=1

|aibi| ≤ ∥(a1, . . . , an)∥1 ∥(b1, . . . , bn)∥∞ .

Finally Hölder’s Inequality enables us to prove the triangle inequality for
the p-norm.

Theorem 1.2.5 (Minkowski’s Inequality). Let p ∈ (1, ∞). For any
n ∈ N and a1, . . . , an, b1, . . . , bn ∈ C,

(
n∑

i=1
|ai + bi|p

) 1
p

≤
(

n∑
i=1

|ai|p
) 1

p

+
(

n∑
i=1

|bi|p
) 1

p

.

Proof. Choose q ∈ (1, ∞) so that 1
p + 1

q = 1. Thus q = p
p−1 . Since p ∈ (1, ∞),
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1.2. THE p-NORMS 11

notice by Hölder’s Inequality (Theorem 1.2.3) that
n∑

i=1
|ai + bi|p

=
n∑

i=1
(|ai + bi|)(|ai + bi|)p−1

≤
n∑

i=1
(|ai| + |bi|)(|ai + bi|)p−1

=
n∑

i=1
|ai|(|ai + bi|)p−1 +

n∑
i=1

|bi|(|ai + bi|)p−1

≤
(

n∑
i=1

|ai|p
) 1

p
(

n∑
i=1

(|ai + bi|p−1)q

) 1
q

+
(

n∑
i=1

|bi|p
) 1

p
(

n∑
i=1

(|ai + bi|p−1)q

) 1
q

=

( n∑
i=1

|ai|p
) 1

p

+
(

n∑
i=1

|bi|p
) 1

p

( n∑
i=1

|ai + bi|p
) 1

q

.

If
∑n

i=1 |ai + bi|p = 0, the result follows trivially. Otherwise, we may divide
both sides of the equation by (

∑n
i=1 |ai + bi|p)

1
q to obtain that(

n∑
i=1

|ai + bi|p
) 1

p

=
(

n∑
i=1

|ai + bi|p
)1− 1

q

≤
(

n∑
i=1

|ai|p
) 1

p

+
(

n∑
i=1

|bi|p
) 1

p

as desired.

Most of the above examples of normed linear spaces have been finite
dimensional. As we will see later that finite dimensional normed linear spaces
are particularly nice, it is useful to have some examples of infinite dimensional
normed linear spaces. Using the inequalities developed above, we can extend
the notion of p-norms to sequences and continuous functions.

Example 1.2.6. Let p ∈ [1, ∞). Let ℓp(N) (or to specify the field, ℓp(N,K))
denote all sequences (zn)n≥1 of elements of K such that

∞∑
k=1

|zk|p < ∞.

Then ℓp(N) is a normed linear space with norm ∥ · ∥p : ℓp(N) → [0, ∞) defined
by

∥(zn)n≥1∥p =
( ∞∑

k=1
|zk|p

) 1
p

.

It is elementary to see that ∥ · ∥p is well-defined (an infinite sum of non-
negative numbers is non-negative) and satisfies the first two properties of
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12 CHAPTER 1. METRIC SPACES

a norm (and is closed under scalar multiplication) as defined in Definition
1.1.14. To see that ∥ · ∥p satisfies the triangle inequality (and that ℓp(N) is
indeed closed under addition), we note that Minkowski’s Inequality (Theorem
1.2.5) implies

(
m∑

k=1
|zk + wk|p

) 1
p

≤
(

m∑
k=1

|zk|p
) 1

p

+
(

m∑
k=1

|wk|p
) 1

p

for all m ∈ N and (zn)n≥1, (wn)n≥1 ∈ ℓp(N). Therefore, taking a limit as m
tends to infinite yields the triangle inequality and the fact that if z⃗, w⃗ ∈ ℓp(N),
then z⃗ + w⃗ ∈ ℓp(N). We call ∥ · ∥p the p-norm.

Example 1.2.7. Let ℓ∞(N) (or to specify the field, ℓ∞(N,K)) denote all
sequences (zn)n≥1 of elements of K such that

sup
k∈N

|zk| < ∞.

Then ℓ∞(N) is a normed linear space with norm ∥ · ∥∞ : ℓ∞(N) → [0, ∞)
defined by

∥(zn)n≥1∥∞ = sup
k∈N

|zk|.

It is elementary to see that ∥ · ∥∞ is well-defined norm, which we call the
sup-norm or the ∞-norm.

Remark 1.2.8. It is not difficult to see that if p, q ∈ [1, ∞] and p < q, then
ℓp(N) ⊊ ℓq(N). Indeed, if (zn)n≥1 ∈ ℓp(N), then

∑∞
n=1 |zn|p < ∞ so (zn)n≥1

is bounded (i.e. (zn)n≥1 ∈ ℓ∞(N)) and
∑∞

n=1 |zn|q < ∞ for all q ∈ (p, ∞).
To see the inclusion is strict, notice that ( 1

n
1
p

)n≥1 is not in ℓp(N) but is in
ℓq(N) for all q > p.

Using similar arguments to those used in Example 1.2.6, we obtain the
following versions of Hölder’s Inequality.

Theorem 1.2.9 (Hölder’s Inequality). Let p, q ∈ (1, ∞) be such that
1
p + 1

q = 1 (or p = 1 and q = ∞). If (an)n≥1 ∈ ℓp(N) and (bn)n≥1 ∈ ℓq(N),
then (anbn)n≥1 ∈ ℓ1(N) and

∥(anbn)n≥1∥1 ≤ ∥(an)n≥1∥p ∥(bn)n≥1∥q .

Proof. For each m ∈ N, we obtain by Hölder’s Inequality (Theorem 1.2.3)
that

m∑
k=1

|akbk| ≤
(

m∑
k=1

|ak|p
) 1

p
(

m∑
k=1

|bk|q
) 1

q

.

Taking the limit at m tends to infinity yields the result.
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1.2. THE p-NORMS 13

We have already developed an ∞-norm for C[a, b]. Like with infinite
sequences, we can define a p-norm on the continuous functions. To do this,
we replace sums with their generalization; namely integrals.

Definition 1.2.10. For p ∈ [1, ∞) define ∥ · ∥p : C[a, b] → [0, ∞) by

∥f∥p =
(∫ b

a
|f(x)|p dx

) 1
p

for all f ∈ C[a, b].

To see that ∥ · ∥p is indeed a norm on C[a, b], first notice that if f ∈ C[a, b]
then |f |p ∈ C[a, b] and thus

0 ≤
∫ b

a
|f(x)|p dx < ∞.

Hence 0 ≤ ∥f∥p < ∞. Next, notice that ∥f∥p = 0 if and only if∫ b

a
|f(x)|p dx = 0.

As |f |p is continuous, the above occurs if and only if |f(x)|p = 0 for all
x ∈ [a, b] which is equivalent to f = 0. Furthermore, if α ∈ R then

∥αf∥p =
(∫ b

a
|αf(x)|p dx

) 1
p

=
(∫ b

a
|α|p|f(x)|p dx

) 1
p

=
(

|α|p
∫ b

a
|f(x)|p dx

) 1
p

= |α|
(∫ b

a
|f(x)|p dx

) 1
p

= |α| ∥f∥p .

Finally, to see that the triangle inequality holds and thus ∥ · ∥p is indeed a
norm, we prove the following versions of Hölder’s and Minkowski’s Inequality.

Theorem 1.2.11 (Hölder’s Inequality). Let p, q ∈ (1, ∞) be such that
1
p + 1

q = 1 (or p = 1 and q = ∞). If f, g ∈ C[a, b], then

∥fg∥1 ≤ ∥f∥p ∥g∥q .

Proof. Let f, g ∈ C[a, b] be arbitrary. First notice

∥fg∥1 =
∫ b

a
|f(x)g(x)| dx ≤

∫ b

a
|f(x)| ∥g∥∞ dx = ∥f∥1 ∥g∥∞ .
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14 CHAPTER 1. METRIC SPACES

Otherwise suppose p, q ∈ (1, ∞). Let

α = ∥f∥p and β = ∥g∥q .

If α = 0, then |f |p = 0 and thus |f | = 0. This implies fg = 0 almost
everywhere and hence the inequality holds. Similarly, if β = 0 then the
inequality holds. Hence we may assume that α, β > 0.

Since α, β > 0, we obtain that

∫ b

a
|f(x)g(x)| dx = αβ

∫ b

a

|f(x)|
α

|g(x)|
β

dx

≤ αβ

∫ b

a

|f(x)|p

pαp
+ |g(x)|q

qβq
dx by Lemma 1.2.2

= αβ

(
1

pαp

∫ b

a
|f(x)|p dµ + 1

qβq

∫ b

a
|g(x)|q dx

)

= αβ

(1
p

+ 1
q

)
= αβ

as desired.

Theorem 1.2.12 (Minkowski’s Inequality). Let p ∈ [1, ∞). If f, g ∈
C[a, b], then

∥f + g∥p ≤ ∥f∥p + ∥g∥p .

Proof. Fix p ∈ [1, ∞) and f, g ∈ C[a, b]. If p = 1, we notice that

∥f + g∥1 =
∫ b

a
|f(x) + g(x)| dx ≤

∫ b

a
|f(x)| + |g(x)| dx

=
∫ b

a
|f(x)| dx +

∫ b

a
|g(x)| dx

= ∥f∥1 + ∥g∥1 .

Otherwise suppose p ∈ (1, ∞). Choose q ∈ (1, ∞) so that 1
p + 1

q = 1.
Thus q = p

p−1 . Since p ∈ (1, ∞), notice by Hölder’s inequality (Theorem

©For use through and only available at pskoufra.info.yorku.ca.



1.3. THE METRIC TOPOLOGY 15

1.2.11) that∫ b

a
|f(x) + g(x)|p dx

=
∫ b

a
|f(x) + g(x)||f(x) + g(x)|p−1 dx

≤
∫ b

a
(|f(x)| + |g(x)|)|f(x) + g(x)|p−1 dx

=
∫ b

a
|f(x)||f(x) + g(x)|p−1 dx +

∫ b

a
|g(x)||f(x) + g(x)|p−1 dx

≤
(∫ b

a
|f(x)|p dx

) 1
p
(∫ b

a
(|f(x) + g(x)|p−1)q dx

) 1
q

+
(∫ b

a
|g(x)|p dx

) 1
p
(∫ b

a
(|f(x) + g(x)|p−1)q dx

) 1
q

=
(
∥f∥p + ∥g∥p

)(∫ b

a
|f(x) + g(x)|p dx

) 1
q

.

If
∫ b

a |f(x) + g(x)|p dx = 0, the result follows trivially. Otherwise, we may

divide both sides of the equation by
(∫ b

a |f(x) + g(x)|p dx
) 1

q to obtain that

∥f + g∥p =
(∫ b

a
|f(x) + g(x)|p dx

)1− 1
q

≤ ∥f∥p + ∥g∥p

as desired.

Although there are many other norms, metric, normed linear spaces, and
metric spaces we could discuss, for now we move on to studying the common
properties and notions for these spaces, such as convergence of sequences.

1.3 The Metric Topology
In this section, we will analyze the notion of convergent sequences in metric
spaces. Of course we could jump right in and define the convergence of a
sequence using our distance function. However, in doing so we would miss
out on obtaining some important information about the structure of metric
spaces and of the subsets of our spaces. Thus we will begin with another view
of what it means for a sequence to converge and thereby permit a deeper
discussion of types and properties of subsets of metric spaces.

One way to interpret the notion of a convergence sequence of real numbers
(an)n≥1 to converges to a number L without a notion of distance is to say
that an ∈ (L − ϵ, L + ϵ) for all n ≥ N . Thus for (an)n≥1 to be ‘close’ to L
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16 CHAPTER 1. METRIC SPACES

means that each element in (an)n≥1 must eventually be in any fixed open
interval containing L. Thus if we can analyze the essential properties of open
intervals and generalize these to metric spaces, we may generalize the notion
of a convergent sequence. If fact, we want a concept slightly more general
than an open interval.

Definition 1.3.1. Let X be a non-empty set. A collection T ⊆ P(X) is
said to be a topology on X if

1. ∅, X ∈ T ,

2. if {Uα}α∈I ⊆ T , then
⋃

α∈I Uα ∈ T , and

3. if n ∈ N and U1, . . . , Un ∈ T , then
⋂n

i=1 Ui ∈ T .

The elements of T are called the open sets of the topology.

There are many examples of topologies we may place on a set.

Example 1.3.2. Let X be a non-empty set. The set T = {X, ∅} is a
topology on X known as the trivial topology.

Example 1.3.3. Let X be a non-empty set. The set T = P(X) is a topology
on X known as the discrete topology.

Of course, the above topologies may not be the best topologies for a
metric space as we desire a topology related to the metric. Thus we define
the following which are motivated by the Euclidean metric.

Definition 1.3.4. Let (X , d) be a metric space. Given an x ∈ X and an
r > 0, the open ball of radius r centred at x, denoted B(x, r), is the set

B(x, r) = {y ∈ X | d(x, y) < r}.

Similarly, given an x ∈ X and an r ≥ 0, the closed ball of radius r centred at
x, denoted B[x, r], is the set

B[x, r] = {y ∈ X | d(x, y) ≤ r}.

Example 1.3.5. In R with the absolute value metric, B(x, r) = (x−r, x+r)
and B[x, r] = [x − r, x + r] for all x ∈ R and r > 0.

Example 1.3.6. For R2, the following diagram illustrates B(0, 1) for various
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1.3. THE METRIC TOPOLOGY 17

p-norms:

∥ · ∥∞∥ · ∥2

∥ · ∥1

Example 1.3.7. Let X be a non-empty set and let d be the discrete metric
on X. Then, for all x ∈ X,

B(x, r1) = B[x, r2] = {x} if r1 ≤ 1 and r2 < 1, and
B(x, r1) = B[x, r2] = X if r1 > 1 and r2 ≤ 1.

Unsurprisingly, to obtain a desirably topology on a metric space, we will
use our open balls to construct the open sets.

Theorem 1.3.8. Let (X , d) be a metric space. Let T be the set of all subsets
U of X such that for each x ∈ U there exists an ϵ > 0 such that B(x, ϵ) ⊆ U .
Then T is a topology on X .

Proof. To see that T is a topology, we must verify the three properties in
Definition 1.3.1. It is clear by definition that ∅, X ∈ T .

Suppose {Uα}α∈I is a set of elements of T . To see that
⋃

α∈I Uα ∈ T ,
let x ∈

⋃
α∈I Uα be arbitrary. Then there must be an i ∈ I such that

x ∈ Ui. Since Ui ∈ T , there exists an ϵ > 0 such that B(x, ϵ) ⊆ Ui. Hence
B(x, ϵ) ⊆ Ui ⊆

⋃
α∈I Uα. As x ∈

⋃
α∈I Uα was arbitrary,

⋃
α∈I Uα ∈ T .

Finally, suppose U1, . . . , Un ∈ T . To see that
⋂n

i=1 Ui ∈ T , suppose
x ∈

⋂n
i=1 Ui be arbitrary. Hence x ∈ Ui for all i ∈ {1, . . . , n}. Since each

Ui ∈ T , there exists an ϵi > 0 such that B(x, ϵi) ⊆ Ui for all i ∈ {1, . . . , n}.
Let ϵ = min1≤i≤n ϵi > 0. Notice for each i ∈ {1, . . . , n} that

B(x, ϵ) ⊆ B(x, ϵi) ⊆ Ui.

Hence B(x, ϵ) ⊆
⋂n

i=1 Ui. As x ∈
⋂n

i=1 Ui was arbitrary,
⋂n

i=1 Ui ∈ T as
desired.

Definition 1.3.9. Let (X , d) be a metric space. The topology T from
Theorem 1.3.8 is called the metric space topology on (X , d). Unless otherwise
specified, given a metric space (X , d) the topology on X will always be the
metric space topology and the elements of T will be referred to as open sets.
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18 CHAPTER 1. METRIC SPACES

Of course, it is useful to be able to determine which sets are open. It
should not be a surprise that our open balls are indeed open sets. In fact, it
is not difficult to see that the metric topology is the smallest topology where
every open ball is an open set.

Proposition 1.3.10. Let (X , d) be a metric space. Every open ball in X is
an open set.

Proof. Consider the open ball B(x, ϵ) for some x ∈ X and ϵ > 0. To see that
B(x, ϵ) is open, let y ∈ B(x, ϵ) be arbitrary. Thus d(x, y) < ϵ.

Let δ = ϵ − d(x, y) > 0. We claim that B(y, δ) ⊆ B(x, ϵ). To see this, let
z ∈ B(y, δ) be arbitrary. Then d(z, y) < δ so, by the triangle inequality,

d(z, x) ≤ d(z, y) + d(y, x) < δ + d(y, x) = ϵ.

Therefore, since z ∈ B(y, δ) was arbitrary, B(y, δ) ⊆ B(x, ϵ). Hence B(x, ϵ)
is open as y ∈ B(x, ϵ) was arbitrary.

We also note the following complete description of open subsets of R.

Proposition 1.3.11. Every open subset of R is a countable union of open
intervals.

Proof. Let U be an arbitrary non-empty open subset of R. Define a relation
∼ on U by x ∼ y if and only if whenever x < z < y or y < z < x then z ∈ U .
We claim that ∼ is an equivalence relation on U .

To see that ∼ is an equivalence relation, first notice that if x ∈ U , then
x ∼ x trivially. Furthermore, clearly if x ∼ y then z ∈ U whenever x < z < y
or y < z < x, and thus y ∼ x. Finally, suppose x, y, w ∈ U are such that
x ∼ y and y ∼ w. To see that x ∼ w, we divide the discussion into five cases:

Case 1: x ≤ y ≤ w. In this case, we have x < z < y implies z ∈ U and
y < z < w implies z ∈ U . If z is such that x < z < w, then either x < z < y,
y < z < w, or y = z. As all of these imply z ∈ U , we have x ∼ w in this
case.

Case 2: w ≤ y ≤ x. This case follows from Case 1 by interchanging x and
w.

Case 3: y ≤ x ≤ w. In this case, we have y < z < w implies z ∈ U . Thus
if x < z < w then y < z < w so z ∈ U . Hence z ∼ x in this case.

Case 4: y ≤ w ≤ x. This case follows from Case 3 by interchanging x and
w.

Case 5: x ≤ w ≤ y or w ≤ x ≤ y. This case follows from Cases 3 and 4
by reversing the inequalities.

Thus, in any case x ∼ w. Thus ∼ is an equivalence relation.
Next we claim that each equivalence class is an open interval. To see

this let x ∈ U be arbitrary and let Ex denote the equivalence class of x with
respect to ∼. To see that Ex is an open interval, let

αx = inf(Ex) and βx = sup(Ex).
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1.3. THE METRIC TOPOLOGY 19

We claim that Ex = (αx, βx).
First, we claim that αx < βx. To see this, notice that x ∈ Ex ⊆ U . Hence,

as U is open, there exists an ϵ > 0 such that (x − ϵ, x + ϵ) ⊆ U . Clearly
y ∼ x for all y ∈ (x − ϵ, x + ϵ) so

αx ≤ x − ϵ < x + ϵ ≤ βx.

To see that (αx, βx) ⊆ Ex, let y ∈ (αx, βx) be arbitrary. Since αx < y <
βx, by the definition of inf and sup there exists z1, z2 ∈ Ex such that

αx ≤ z1 < y < z2 ≤ βx.

Since z1, z2 ∈ Ex, we have z1 ∼ x and z2 ∼ x. Thus z1 ∼ z2 so [z1, z2] ⊆ U .
Hence y ∈ [z1, z2] ⊆ U . Therefore, as y ∈ (αx, βx) was arbitrary, (αx, βx) ⊆
Ex.

To see that Ex ⊆ (αx, βx), note that Ex ⊆ (αx, βx) ∪ {αx, βx} by the
definition of αx and βx. Thus it suffices to show that αx, βx /∈ Ex. Suppose
βx ∈ Ex (this implies βx ≠ ∞). Then βx ∈ U so there exists an ϵ > 0 so
that (βx − ϵ, βx + ϵ) ⊆ U . Hence βx + 1

2ϵ ∼ βx ∼ x (as βx ∈ Ex). Hence
βx + 1

2ϵ ∈ Ex. However βx + 1
2ϵ > βx so βx + 1

2ϵ ∈ Ex contradicts the fact
that βx = sup(Ex). Hence we have obtained a contradiction so βx /∈ Ex.
Similar arguments show that αx /∈ Ex. Hence Ex = (αx, βx) as desired.

To complete the proof, first notice that clearly

U =
⋃

x∈U

Ex

so U is a union of open intervals. It remains to be verified that the above
union can be made countable. Since each Ex is an open interval, Ex ∩Q ≠ ∅.
Hence, as each Ex ∩ Q is non-empty, by the Axiom of Choice there exists a
function f : {Ex | x ∈ U} → Q such that f(Ex) ∈ Ex for all x ∈ U . Hence,
as Ex ∩ Ey = ∅ if Ex ̸= Ey, f is an injective function. Hence {Ex | x ∈ U} is
countable. Thus the union U =

⋃
x∈U Ex can be made into a countable union

by choosing one representative from each equivalence class (or, alternatively,
U =

⋃
q∈Q f−1({q})).

Remark 1.3.12. Note that Definition 1.3.1 only requires that a finite
intersection of open sets is open. To see why this is required, note that in R
that Un = (− 1

n , 1
n) is an open subset of R for all n ∈ N yet

⋂∞
n=1 Un = {0} is

not an open set.

Example 1.3.13. Let X be an arbitrary set and let d be the discrete metric
on X. Then the metric topology on (X, d) is the discrete topology. To see
this, note by Example 1.3.7 that {x} is an open set in the metric topology
on (X, d) for all x ∈ X. Therefore, for all A ⊆ X we see that A =

⋃
a∈A{a}

is open in (X, d). Hence, as A ⊆ X was arbitrary, every subset of X is open
in (X, d).
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Remark 1.3.14. As we have many p-norms on Kn, it is natural to ask how
their topologies compare. In turns out that each p-norm yields the same
topology! To see this, fix n ∈ N. If p ∈ [1, ∞] let Tp denoted the topology on
Kn induced by the p-norm.

To see that Tp = T∞ for all p ∈ [1, ∞) (and thus Tp = Tq for all
p, q ∈ [1, ∞]), first notice for an arbitrary x⃗ = (x1, . . . , xn) ∈ Kn that

∥x⃗∥p
∞ = sup

1≤k≤n
|xk|p

≤
n∑

k=1
|xk|p

= ∥x⃗∥p

≤
n∑

k=1
∥x⃗∥p

∞

= n ∥x⃗∥p
∞ .

Hence ∥x⃗∥∞ ≤ ∥x⃗∥p ≤ n
1
p ∥x⃗∥∞ for all x⃗ ∈ Kn.

To show that Tp = T∞ we must show that every open subset of Kn with
respect to either norm is open with respect to the other norm. For notational
simplicity, we will use Bp(x⃗, r) to denote the open ball centred at x⃗ of radius
r with respect to the p-norm and we will use B∞(x⃗, r) to denote the open
ball centred at x⃗ of radius r with respect to the ∞-norm

To begin, let U ∈ Tp be arbitrary. To see that U ∈ T∞, let x ∈ U be
arbitrary. Since U ∈ Tp there exists an r > 0 such that Bp(x⃗, r) ⊆ U . As
B∞

(
x⃗, 1

np r
)

⊆ Bp(x⃗, r) ⊆ U by the above norm estimates, and as x ∈ U

was arbitrary, we obtain that U ∈ T∞. Hence Tp ⊆ T∞.
For the other inclusion, let U ∈ T∞ be arbitrary. To see that U ∈ Tp,

let x ∈ U be arbitrary. Since U ∈ T∞ there exists an r > 0 such that
B∞(x⃗, r) ⊆ U . As Bp (x⃗, r) ⊆ B∞(x⃗, r) ⊆ U by the above norm estimates,
we obtain that U ∈ Tp. Hence T∞ ⊆ Tp. Thus T∞ = Tp as desired.

While we are comparing topologies from different metrics, we can describe
the topologies on subsets.

Proposition 1.3.15. Let (X , d) be a metric space and let Y ⊆ X be non-
empty. Recall (Y, d|Y ) is a metric space. A subset A ⊆ Y is open in (Y, d|Y )
if and only if A = Y ∩ U for some open subset U of (X , d).

Proof. For notational clarity, for y ∈ Y and r > 0, we will use BX (y, r)
to denote the open ball centred at y of radius r in (X , d) and we will use
BY (y, r) to denote the open ball centred at y of radius r in (y, d|Y ).

First, suppose A ⊆ Y is such that A = Y ∩ U for some open subset U of
(X, d). To see that A is open, let a ∈ A be arbitrary (if A = ∅, then clearly

©For use through and only available at pskoufra.info.yorku.ca.



1.3. THE METRIC TOPOLOGY 21

A is open). Thus a ∈ Y ∩ U ⊆ U so, as U is open in (X , d), there exists a
r > 0 such that BX (a, r) ⊆ U . Therefore

BY (a, r) = Y ∩ BX (a, r) ⊆ Y ∩ U = A.

Therefore, since a ∈ A was arbitrary, A is open in (Y, d|Y ).
Conversely, suppose that A ⊆ Y is open in (Y, d|Y ). If A = ∅, then clearly

we may take U = ∅. Otherwise, if A ̸= ∅, then since A is open in (Y, d|Y ), for
all a ∈ A there exists an ra > 0 such that BY (a, ra) ⊆ A. Hence we clearly
have that

A =
⋃

a∈A

BY (a, ra)

by construction. Let
U =

⋃
a∈A

BX (a, ra).

Clearly U is open in (X , d). Moreover

Y ∩ U =
⋃

a∈A

Y ∩ BX (a, ra) =
⋃

a∈A

BY (a, ra) = A.

Therefore, as A ⊆ Y was arbitrary, the result is complete.

Example 1.3.16. Let Y = [0, 1] ⊆ R. Then the interval [0, 1
2) is open in

([0, 1], | · |) by Proposition 1.3.15 since [0, 1
2) = [0, 1] ∩ (−1

2 , 1
2) and (−1

2 , 1
2) is

open in (R, | · |).

Although we are mainly interested in open sets in relation to convergent
sequences at this time, the complements of open sets will be of incredibly
interest.

Definition 1.3.17. Let T be a topology on a set X. A subset F ⊆ X is
said to be closed if F c is open.

Example 1.3.18. Let (X , d) be a metric space. Then ∅ and X are both
closed and open sets.

Example 1.3.19. In R with the absolute value metric, (a, b] is neither
open nor closed. Indeed (a, b] is not open as there is no open ball around b
contained in (a, b], and (a, b] is not closed as (a, b]c = (−∞, a] ∪ (b, ∞) is not
open since there is no open ball around a contained in (a, b]c.

Example 1.3.20. In R with the absolute value metric, [a, b] is closed for
all a, b ∈ R since [a, b]c = (−∞, a) ∪ (b, ∞) is a union of open sets and thus
open.

Proposition 1.3.21. Every closed ball and singleton in a metric space (X , d)
is a closed set.
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Proof. Let x ∈ X and r ≥ 0. We will abuse notation and consider B[x, 0] =
{x}.

We claim that B[x, r]c is open. To see this, let y ∈ B[x, r]c be arbitrary.
Then d(x, y) > r. Let ϵ = d(x, y) − r > 0. Notice if z ∈ B(y, ϵ) then

d(x, y) ≤ d(x, z) + d(z, y) < d(x, z) + ϵ = d(x, z) + d(x, y) − r

which implies r < d(x, z). Hence B(y, ϵ) ⊆ B[x, r]c. Therefore, as y ∈
B[x, r]c was arbitrary, B[x, r]c is an open set. Whence B[x, r] is closed.

Example 1.3.22. Let d be the discrete metric on a non-empty set X. Then,
as the metric topology on (X, d) is the discrete topology by Example 1.3.13,
every subset of (X, d) is closed.

Like with open sets, there are set operations we may perform on closed
sets.

Proposition 1.3.23. Let T be a topology on a set X, let I be an non-empty
set, and for each α ∈ I let Fα be a closed subset of X. Then

•
⋂

α∈I Fα is closed in X, and

•
⋃

α∈I Fα is open in X provided I has a finite number of element.

Proof. Since De Morgan’s Laws imply(⋂
α∈I

Fα

)c

=
⋃
α∈I

F c
α and

(⋃
α∈I

Fα

)c

=
⋂
α∈I

F c
α,

the result follows by the definition of a closed set along with the definition
of a topology.

Remark 1.3.24. Complementing the fact that a countable intersection of
open sets need not be open, a countable union of closed sets need not be
closed. Indeed A =

⋃∞
n=1{ 1

n} is a countable union of closed sets in R that is
not closed since 0 ∈ Ac yet (−ϵ, ϵ) ⊈ Ac for all ϵ > 0 (we will see later that
A ∪ {0} is a closed set). Furthermore, there exist closed subsets of R that
are not countable unions of closed intervals.

Finally, similar to Proposition 1.3.15, we can describe closed subsets of
induced metrics on subsets.

Corollary 1.3.25. Let (X , d) be a metric space and let Y ⊆ X be non-empty.
Recall (Y, d|Y ) is a metric space. A subset A ⊆ Y is closed in (Y, d|Y ) if and
only if A = Y ∩ F for some closed subset F of (X , d).

Proof. Notice A ⊆ Y is closed in (Y, d|Y ) if and only if Y \ A is open in
(Y, d|Y ) if and only if Y \ A = Y ∩ U for some open subset U of (X , d) by
Proposition 1.3.15 if and only if A = Y ∩ (X \ U) for some open subset U
of (X , d) if and only if A = Y ∩ F for some closed subset F of (X , d) as
desired.
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1.4 Converging Sequences
Now that we have developed the notion of the metric topology, we have
finally arrived at defining when a sequence in a metric spaces converges.
First we will model the standard definition for convergent sequences of real
numbers, and then we will see the connection to the metric topology.

Definition 1.4.1. Let (X , d) be a metric space and let (xn)n≥1 be a sequence
in X . The sequence (xn)n≥1 is said to converge in X to an element x0 ∈ X
if for all ϵ > 0 there exists an N ∈ N such that d(xn, x0) < ϵ for all n ≥ N .
In this case x0 is said to be a limit of the sequence (xn)n≥1 and we write
x0 = limn→∞ xn.

Remark 1.4.2. Of course, like in previous courses, the ‘< ϵ’ in Definition
1.4.1 can be replaced with ‘≤ ϵ’ without changing the definition.

As the statement “d(xn, x0) < ϵ” is equivalent to saying that xn ∈ B(x0, ϵ)
and as every open set containing x0 contains an open ball centred at x0, we
directly have a connection between convergence of sequences and topology.

Proposition 1.4.3. Let (X , d) be a metric space. A sequence (xn)n≥1
converges to an element x0 ∈ X if and only if for every open set U of X such
that x0 ∈ U there exists an N ∈ N such that xn ∈ U for all n ≥ N .

Remark 1.4.4. For general topological spaces (i.e. a space with a topology),
the notion of convergence is defined via Proposition 1.4.3 as we need not
have a metric. One thinks of each open set as a ‘neighbourhood’ around a
point and for a sequence to converge to a point, it must eventually inside
every open set.

Example 1.4.5. Let m ∈ N. Note Proposition 1.4.3 implies that convergent
sequences are completely determined by the open sets, and thus the topology
of a metric space. In particular, since all (Km, ∥ · ∥p) for p ∈ [1, ∞] have the
same topology by Remark 1.3.14, a sequence converges in (Km, ∥ · ∥p) if and
only if it converges in (Km, ∥ · ∥∞).

To see what it means for a sequence to converge in (Km, ∥ · ∥∞), for each
n ∈ N, let x⃗n = (z1,n, . . . , zm,n) ∈ Km. Given x⃗ = (z1, . . . , zm) ∈ Km, the
following are equivalent:

(1) (x⃗n)n≥1 converges to x⃗ with respect to the ∞-norm.

(2) limn→∞ |zk,n − zk| = 0 for all k ∈ {1, . . . , m}.

To see that (1) implies (2), let ϵ > 0 be arbitrary. Since (x⃗n)n≥1 converges to x⃗
with respect to the ∞-norm, there exists an N ∈ N such that ∥x⃗n − x⃗∥∞ < ϵ
for all n ≥ N . Since that |zk,n − zk| ≤ ∥x⃗n − x⃗∥∞ for all k ∈ {1, . . . , m}, we
see that |zk,n − zk| < ϵ for all n ≥ N and k ∈ {1, . . . , m}. Hence, as ϵ > 0
was arbitrary, limn→∞ |zk,n − zk| = 0 for all k ∈ {1, . . . , m}.

©For use through and only available at pskoufra.info.yorku.ca.



24 CHAPTER 1. METRIC SPACES

For the other direction, suppose that (2) holds and let ϵ > 0 be arbitrary.
Hence for all k ∈ {1, . . . , m} there exists an Nk ∈ N such that |zk,n − zk| < ϵ
for all n ≥ Nk. Thus if N = max1≤k≤m Nk, the for all n ≥ N we have that

∥x⃗n − x⃗∥∞ = sup
1≤k≤m

|zk,n − zk| < ϵ.

Therefore, as ϵ > 0 was arbitrary, (x⃗n)n≥1 converges to x⃗ with respect to the
∞-norm.
Example 1.4.6. By using similar arguments to those used in Example 1.4.5
for K = R and p = 2, if (zn)n≥1 is a sequence in C, z ∈ C, and an, bn, a, b ∈ R
are such that z = a + bi and zn = an + bni for all n ∈ N, then z = limn→∞ zn

if and only if a = limn→∞ an and b = limn→∞ bn.
Remark 1.4.7. A careful analysis of the above examples reveals that (C, | · |)
and (R2, ∥ · ∥2) behave very similarly as metric spaces. We will later analyze
what it means for two normed linear spaces to be ‘the same’.

As we have seen examples of convergent sequences in R in previous
courses, we will examine some more exotic examples.
Example 1.4.8. Given a sequence (fn)n≥1 of elements of C[a, b], notice that
(fn)n≥1 converges to an element f ∈ C[a, b] with respect to ∥ · ∥∞ if and only
if for all ϵ > 0 there exists an N ∈ N such that |fn(x) − f(x)| < ϵ for all
x ∈ [a, b] and n ≥ N . This is precisely the notion of uniform convergence of
functions discussed in previous analysis courses.
Example 1.4.9. Let d be the discrete metric on a non-empty set X. If
(xn)n≥1 is a sequence in X, then (xn)n≥1 converges to a point x0 ∈ X if and
only if there exists an N ∈ N such that xn = x0 for all n ≥ N ; that is, the
sequence is eventually constant. This is due to the fact that d(xn, x0) < 1 if
and only if xn = x0.
Example 1.4.10. Given a p ∈ [1, ∞], it is not difficult to see that if
x⃗n = (xn,k)k≥1 ∈ ℓp(N,K) for all n ∈ N, y⃗ = (yk)k≥1, and limn→∞ x⃗n = y⃗ in
ℓp(N,K), then limn→∞ xn,k = yk for all k ∈ N as

|xn,k − yk| ≤ ∥x⃗n − y⃗∥p

for all n, k ∈ N. However, the converse need not hold. To see this, for each
n ∈ N, let x⃗n = (xn,k)k≥1 where

xn,k =
{

1 k ≤ n

0 k > n
.

Then it is elementary to see that limn→∞ xn,k = 1 for all k, yet (x⃗n)n≥1 does
not converge in (ℓp(N,K), ∥ · ∥p). Indeed this is clear if p ≠ ∞ as the constant
sequence x⃗ = (1)n≥1 is not an element of ℓp(N) and is the only option for the
limit by the first part of this example. If p = ∞, notice ∥x⃗ − x⃗n∥∞ = 1 for
all n ∈ N. Thus clearly (x⃗n)n≥1 does not converge to x⃗ in (ℓ∞(N,K), ∥ · ∥∞).
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In the case of normed linear spaces, the notion of convergent sequences
behaves well with respect to the vector space operations.

Proposition 1.4.11. Let (X , ∥ · ∥X ) be a normed linear space over K. If
(x⃗n)n≥1 and (y⃗n)n≥1 are sequences that converge to x⃗ and y⃗ respectively, then

• (x⃗n + y⃗n)n≥1 converges to x⃗ + y⃗, and

• (αx⃗n)n≥1 converges to αx⃗ for all α ∈ K.

Proof. Let ϵ > 0. Since

∥(x⃗n + y⃗n) − (x⃗ − y⃗)∥ ≤ ∥x⃗n − x⃗∥ + ∥y⃗n − y⃗∥ and
∥αx⃗n − αx⃗∥ ≤ |α| ∥x⃗n − x⃗∥

for all n and since we may chose N sufficiently large so that the right-hand
sides of both inequalities is less than ϵ, the result follows.

As we have mentioned, the notion of convergent sequences makes sense
in any topological space by using Proposition 1.4.3 as the definition of a
convergent sequence. However, this raises a problem in that, under this
definition, it is possible for a sequence to converge to multiple points. Indeed,
if we consider the trivial topology, then every sequence converges to every
point in the space since the only open sets are the empty set and the full
set. This is why in Definition 1.4.1 we only defined ‘a’ limit of a sequence
instead of ‘the’ limit of a sequence. However, for our metric topologies, we
can prove that limits are unique.

Proposition 1.4.12. Let (X , d) be a metric space and let (xn)n≥1 be a
sequence in X . If x0 = limn→∞ xn and y0 = limn→∞ xn, then x0 = y0.

Proof. Suppose x0 = limn→∞ xn and y0 = limn→∞ xn. Let ϵ > 0 be arbitrary.
Since x0 = limn→∞ xn there exists an N1 ∈ N such that d(xn, x0) < ϵ for all
n ≥ N1. Similarly, since y0 = limn→∞ xn there exists an N2 ∈ N such that
d(xn, y0) < ϵ for all n ≥ N2. Therefore, if N = max{N1, N2}, we obtain that

0 ≤ d(x0, y0) ≤ d(x0, xN ) + d(xN , y0) < 2ϵ.

Since the above inequality holds for all ϵ > 0, we obtain that d(x0, y0) = 0.
Hence x0 = y0 by property (1) of Definition 1.1.1

To finish off our initial discussion of convergent sequences, we note that
given a sequence it is often useful to be able to construct other sequences by
removing elements. This leads to the following notion.

Definition 1.4.13. Let (X , d) be a metric space. A subsequence of a sequence
(xn)n≥1 of elements of X is any sequence (yn)n≥1 such that there exists an
increasing sequence of natural numbers (kn)n≥1 so that yn = xkn for all
n ∈ N.
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Unsurprisingly, if a sequence converges to a point, so does every subse-
quence.

Proposition 1.4.14. Let (X , d) be a metric space and let (xn)n≥1 be a
sequence that converges to x ∈ X . Every subsequence of (xn)n≥1 converges
to x.

Proof. Let (xkn)n≥1 be a subsequence of (xn)n≥1. Let ϵ > 0. Since x =
limn→∞ xn, there exists an N ∈ N such that d(xn, x) < ϵ for all n ≥ N .
Since (kn)n≥1 is an increasing sequence of natural numbers, there exists an
N0 ∈ N such that kn ≥ N for all n ≥ N0. Hence d(xkn , x) < ϵ for all n ≥ N0.
Therefore, as ϵ > 0 was arbitrary, we obtain that limn→∞ xkn = x by the
definition of the limit.

1.5 Points and Sets
There are many useful notions related to the convergence of sequences in
metric spaces. In this section, we will analyze specific types of points and sets
in relation to sequences. These notions have useful theoretical applications
in later in the course and give us a greater understanding of the structural
aspects of a metric space.

We begin with the following types of elements we may be interested in
studying.

Definition 1.5.1. Let (X , d) be a metric space and let A ⊆ X . An element
x0 ∈ X is said to be a:

• limit point of A if there exists a sequence (an)n≥1 of points in A that
converges to x0.

• cluster point of A if there exists a sequence (an)n≥1 of points in A\{x0}
that converges to x0.

• boundary point of A if x0 is a limit point of both A and Ac.

• interior point of A if there exists an ϵ > 0 such that B(x0, ϵ) ⊆ A.

The set of limit, cluster, boundary, and interior points of are denoted lim(A),
cluster(A), bdy(A), and int(A) respectively.

Before we get to examples, we note the following which will give us an
alternative characterization of lim(A), cluster(A), and bdy(A) which look
more like the characterization of int(A).

Lemma 1.5.2. Let (X , d) be a metric space and let A ⊆ X . Then x ∈ lim(A)
if and only if A ∩ B(x, ϵ) ̸= ∅ for all ϵ > 0. Consequently x ∈ bdy(A) if and
only if for all ϵ > 0 we have A ∩ B(x, ϵ) ̸= ∅ and Ac ∩ B(x, ϵ) ̸= ∅.

Similarly x ∈ cluster(A) if and only if A ∩ B(x, ϵ) \ {x} ≠ ∅ for all ϵ > 0.
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Proof. First, suppose x ∈ lim(A). Hence there exists a sequence (an)n≥1 of
points in A that converges to x. Therefore, if ϵ > 0 then there exists an
N ∈ N such that an ∈ B(x, ϵ) for all n ≥ N . Hence aN ∈ A ∩ B(x, ϵ) so the
claim follows.

For the other direction, suppose that A ∩ B(x, ϵ) ̸= ∅ for all ϵ > 0.
Hence for each n ∈ N there exists an an ∈ A ∩ B(x, 1

n). We claim that
(an)n≥1 converges to x thereby proving x ∈ lim(A). To see this, let ϵ > 0
be arbitrary and choose N ∈ N such that 1

N < ϵ. Hence for all n ≥ N we
have d(x, an) < 1

n < 1
N < ϵ. Therefore, as ϵ > 0 was arbitrary, we obtain

that x ∈ lim(A) by definition.
The proof of the claim for bdy(A) is trivial and the proof of the claim

for cluster(A) is nearly identical.

The following examples demonstrate that no two of these sets need to be
equal in general.

Example 1.5.3. Given a, b ∈ R with a < b, it is easy to see that if
A ∈ {[a, b], (a, b], [a, b), (a, b)}, then

lim(A) = cluster(A) = [a, b], bdy(A) = {a, b}, and int(A) = (a, b).

Example 1.5.4. Let X = { 1
n | n ∈ N} and let Y = X ∪ {0}. Then

lim(X) = bdy(X) = Y, cluster(X) = {0}, and int(X) = ∅.

Furthermore

lim(Y ) = bdy(Y ) = Y, cluster(Y ) = {0}, and int(Y ) = ∅.

Example 1.5.5. Let Z = {(0, y) | y ∈ [0, 1]} viewed as a subset of
(R2, ∥ · ∥2). Then

lim(Z) = cluster(Z) = bdy(Z) = Z and int(Z) = ∅.

Example 1.5.6. Let

W = {x ∈ Q | 0 < x <
√

2}.

Then
lim(W ) = cluster(W ) = [0,

√
2].

However
bdy(W ) = [0,

√
2], and int(W ) = ∅.

Looking at the above examples and giving a moments thought, one can
see that if A is a set then lim(A) = cluster(A) ∪ A. Furthermore, in the
above examples, notice only [a, b], Y , Z are closed. The fact that these are
exactly the sets that contain their limit, cluster, and boundary points is no
coincidence.
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Theorem 1.5.7. Let (X , d) be a metric space and let A ⊆ X . The following
are equivalent:

(1) A is a closed set.

(2) lim(A) ⊆ A.

(3) cluster(A) ⊆ A.

(4) bdy(A) ⊆ A.

Proof. First notice (2) and (3) are equivalent as lim(A) = A ∪ cluster(A).
In addition, since bdy(A) ⊆ lim(A), clearly (2) implies (4). To see that (4)
implies (2), suppose bdy(A) ⊆ A but there exists an x ∈ lim(A) \ A. Since
x ∈ lim(A) and x ∈ Ac ⊆ lim(Ac), x is a boundary point of A by definition.
Hence x ∈ bdy(A) ⊆ A which is a contradiction. Hence (4) implies (2).

To see that (1) implies (2), suppose that A is a closed set and that
there exists an x ∈ lim(A) \ A. Hence there exists a sequence (an)n≥1 of
elements from A such that x = limn→∞ an, and x ∈ Ac. Since A is closed,
Ac is open so there exists an ϵ > 0 such that B(x, ϵ) ⊆ Ac. However, since
x = limn→∞ an, there exists an N ∈ N such that an ∈ B(x, ϵ) ⊆ Ac for
all n ≥ N . Notice this is contradiction as an ∈ A for all n ∈ N. Hence
lim(A) ⊆ A.

To see that (2) implies (1), suppose that A is not closed. Therefore Ac

is not open. Thus there exists an x ∈ Ac such that B(x, ϵ) ∩ A ̸= ∅ for all
ϵ > 0. Hence x ∈ lim(A) \ A by Lemma 1.5.2. Thus lim(A) \ A is non-empty
whenever A is not closed.

Example 1.5.8. It is not difficult to see that if A = {0} ∪ { 1
n | n ∈ N},

then cluster(A) = {0}. Hence A is a closed set.

Remark 1.5.9. Notice that A = int(A) ∪ (bdy(A) ∩ A). Consequently, if A
is closed, Theorem 1.5.7 shows A = int(A) ∪ bdy(A).

One of the most important examples to consider in analysis of subset of
R is the following set.

Definition 1.5.10. Let P0 = [0, 1]. Construct P1 from P0 by removing the
open interval of length 1

3 from the middle of P0 (i.e. P1 = [0, 1
3 ] ∪ [2

3 , 1]).
Then construct P2 from P1 by removing the open intervals of length 1

32 from
the middle of each closed subinterval of P1. Subsequently, having constructed
Pn, construct Pn+1 by removing the open intervals of length 1

3n+1 from the
middle of each of the 2n closed subintervals of Pn. The set

C =
⋂

n≥1
Pn

is known as the Cantor set.
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Remark 1.5.11. The Cantor set has many interesting properties. Firstly,
we note that the Cantor set is closed being the intersection of closed sets.

The following gives another characterization of the Cantor sets.

Lemma 1.5.12. Let x ∈ R. Then x ∈ C if and only if there is a sequence
(an)n≥1 with an ∈ {0, 2} for all n ∈ N such that x = limn→∞

∑n
k=1

ak

3k (i.e.
x ∈ [0, 1] and x has a ternary expansion using only 0s and 2s).

Proof. Suppose x ∈ C. Hence x ∈ Pn for all n ∈ N. Hence, by the recursive
construction of the Pn, there exists numbers a1, a2, a3, . . . ∈ {0, 2} such that

x ∈
[

n∑
k=1

ak

3k
,

1
3n

+
n∑

k=1

ak

3k

]
⊆ Pn

for all n ∈ N. To see that x = limn→∞
∑n

k=1
ak

3k , we notice that∣∣∣∣∣x −
n∑

k=1

ak

3k

∣∣∣∣∣ ≤
∣∣∣∣∣
(

1
3n

+
n∑

k=1

ak

3k

)
−

n∑
k=1

ak

3k

∣∣∣∣∣ = 1
3n

.

Therefore, since limn→∞
1

3n = 0, we obtain that x = limn→∞
∑n

k=1
ak

3k as
desired.

Conversely, suppose that x ∈ R is such that there exists a sequence
(an)n≥1 with an ∈ {0, 2} for all n ∈ N such that x = limn→∞

∑n
k=1

ak

3k . For
each n ∈ N, let sn =

∑n
k=1

ak

3k . Hence, by the description of Pn, we obtain
that sn ∈ Pn for all n. In fact, upon closer examination, we see that sm ∈ Pn

whenever m ≥ n. Indeed if m ≥ n then
n∑

k=1

ak

3k
≤

m∑
k=1

ak

3k
= sm ≤

n∑
k=1

ak

3k
+

m∑
k=n+1

2
3k

≤
n∑

k=1

ak

3k
+ 2

3n+1

1 −
(

1
3

)m−n

1 − 1
3

=
n∑

k=1

ak

3k
+

1 −
(

1
3

)m−n

3n

≤
n∑

k=1

ak

3k
+ 1

3n
.

Since each Pn is a closed set, since x = limm→∞ sm, and since sm ∈ Pn

whenever m ≥ n, we obtain that x ∈ Pn for each n ∈ N by the sequential
description of closed sets. Hence x ∈

⋂
n≥1 Pn = C.

Lemma 1.5.12 enables us to demonstrate the following two results.

Corollary 1.5.13. int(C) = ∅ and cluster(C) = C.
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Proof. To see that int(C) is empty, suppose to the contrary that there exists an
x ∈ int(C). Hence there exists an ϵ > 0 such that (x−ϵ, x+ϵ) ⊆ C =

⋂
n≥1 Pn.

Hence (x − ϵ, x + ϵ) ⊆ Pn for all n ∈ N. Choose N ∈ N such that 1
3N < ϵ. By

the construction of PN we see that PN cannot contain an open interval of
length more that 1

3N . Hence it is impossible for (x − ϵ, x + ϵ) ⊆ PN . Thus
we have obtained a contradiction so it must be the case that int(C) = ∅.

For the other equality, notice since C is closed, cluster(C) ⊆ C. We claim
that cluster(C) = C. To see this, let x ∈ C be arbitrary. By Lemma 1.5.12
there exists a sequence (an)n≥1 with an ∈ {0, 2} for all n ∈ N such that
x = limn→∞

∑n
k=1

ak

3k . For each m ∈ N, let xm = limn→∞
∑n

k=1
am,k

3k where

am,k =


ak if k ̸= m

0 if k = m and ak = 2
2 if k = m and ak = 0

.

By Lemma 1.5.12 we see that xm ∈ C for all m ∈ N and that xm ̸= x
for all m ∈ N by construction. Furthermore, as |x − xm| = 2

3m , we see
that x = limm→∞ xm. Hence x ∈ cluster(C). Therefore, as x was arbitrary,
cluster(C) = C.

Corollary 1.5.14. |C| = |R|.

Proof. To see that C is uncountable, define f :
∏∞

n=1{0, 1} → C by

f((bn)n≥1) = lim
n→∞

n∑
k=1

2bk

3k
.

Clearly f is a well-defined injection so |C| ≥ 2|N| = |R|. Since C ⊆ R, we
obtain that |C| = |R| as desired.

As the limit, boundary, and cluster points are related to the notion of
‘closedness’, it is unsurprising that the interior points are related to ‘openness’.

Proposition 1.5.15. Let (X , d) be a metric space and let A ⊆ X . The
interior of A is an open set.

Proof. Let x ∈ int(A) be arbitrary. Therefore there exists an ϵ > 0 such that
B(x, ϵ) ⊆ A. We claim that B

(
x, ϵ

2
)

⊆ int(A). To see this, let y ∈ B
(
x, ϵ

2
)

be arbitrary. Notice if z ∈ B
(
y, ϵ

2
)

then

d(z, x) ≤ d(z, y) + d(y, x) <
ϵ

2 + ϵ

2 = ϵ.

Hence B
(
y, ϵ

2
)

⊆ B(x, ϵ) ⊆ A. Hence y ∈ int(A) by the definition of the
interior. Therefore, as y ∈ B

(
x, ϵ

2
)

was arbitrary, B
(
x, ϵ

2
)

⊆ int(A). Hence
int(A) is open by the definition of an open set.
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In particular, the interior of a set is the largest open subset of a given
set. To see this, we first note the following.

Proposition 1.5.16. Let (X , d) be a metric space and let A ⊆ X . If U ⊆ A
is an open set in (X , d), then U ⊆ int(A).

Proof. Suppose U ⊆ A is an open set in (X , d). Since U is open, for each
x ∈ U then there exists an ϵ > 0 such that B(x, ϵ) ⊆ U ⊆ A. Hence, by the
definition of the interior, x ∈ int(A) for all x ∈ U .

Corollary 1.5.17. Let (X , d) be a metric space and let A ⊆ X . Then

int(A) =
⋃

U∈Γ
U where Γ = {U ⊆ A | U is an open subset of X }.

Hence int(A) is the largest open subset of A.

Proof. If U ∈ Γ then U ⊆ int(A) by Proposition 1.5.16. Hence
⋃

U∈Γ U ⊆
int(A).

For the other inclusion, let x ∈ int(A) be arbitrary. By the definition of
the interior there exists an ϵ > 0 such that B(x, ϵ) ⊆ A. As B(x, ϵ) ∈ Γ, we
obtain that x ∈ B(x, ϵ) ⊆

⋃
U∈Γ U . Therefore, as x ∈ int(A) was arbitrary,

we obtain that int(A) ⊆
⋃

U∈Γ U .

The above shows that if a point is in the interior of a set A, then it is
‘far’ away from elements of Ac. These types of sets are useful when it comes
to the notion of convergence.

Definition 1.5.18. Let (X , d) be a metric space and let A ⊆ X . It is said
that A is a neighbourhood of an element x ∈ X if x ∈ int(A); that is, there
exists an ϵ > 0 such that B(x, ϵ) ⊆ A.

In particular, using Proposition 1.4.3, we have another characterization
of convergent sequences.

Proposition 1.5.19. Let (X , d) be a metric space. A sequence (xn)n≥1
converges to an element x0 ∈ X if and only if for every neighbourhood A of
x0 there exists an N ∈ N such that xn ∈ A for all n ≥ N .

As a complement to finding the largest open subset of a set, we may desire
to find the smallest closed set containing a set. This serves the important
operation of adding the minimal amount of points to a set to make it closed.
This may be performed as follows.

Let (X , d) be a metric space and let A ⊆ X . As X is a closed set,

F = {F ⊆ X | F is closed and A ⊆ F}

is a non-empty set. Consequently, by Proposition 1.3.23, A =
⋂

F ∈F F is a
closed set in X that contains A. Furthermore, A is the smallest closed set
(under inclusion) containing A.
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Definition 1.5.20. The set A described above is called the closure of A in
X .

Of course, as unions change to intersections and open sets change to
closed sets under complementation, the closure of a set is related to the
interior of the complement.

Proposition 1.5.21. Let (X , d) be a metric space and let A ⊆ X . Then
int(Ac) = (A)c.

Proof. Notice that x ∈ int(Ac) if and only if there exists an ϵ > 0 such that
B(x, ϵ) ⊆ Ac. If ϵ > 0 and B(x, ϵ) ⊆ Ac then A ⊆ B(x, ϵ)c. Since B(x, ϵ)c is
a closed set and x /∈ B(x, ϵ)c, we obtain that x /∈ A so x ∈ (A)c. Similarly, if
x ∈ (A)c then x /∈ A. As A is closed, (A)c is open so there exists an ϵ > 0
such that B(x, ϵ) ⊆ (A)c ⊆ Ac. Thus the proof is complete.

Furthermore, it is unsurprising that to make a set closed, one need only
add certain points we have seen before.

Proposition 1.5.22. Let (X , d) be a metric space and let A ⊆ X . The set
A ∪ lim(A) = lim(A) is a closed set. In particular lim(A) = A. Similarly
A = A ∪ cluster(A) = A ∪ bdy(A).

Proof. To see that lim(A) is a closed set, we will show that

lim(lim(A)) ⊆ lim(A)

and apply Theorem 1.5.7. Let x ∈ lim(lim(A)) be arbitrary. Therefore
for each n ∈ N there exists an yn ∈ lim(A) such that d(x, yn) < 1

n . Since
yn ∈ lim(A), there exists an xn ∈ A such that d(xn, yn) < 1

n . Hence
d(x, xn) < 2

n for each n ∈ N. Thus (xn)n≥1 is a sequence of elements of
A that converges to x. Hence x ∈ lim(A). Therefore, as x was arbitrary,
A ∪ lim(A) is closed.

To see that A = A∪ lim(A), we obtain by the definition of the closure that
A ⊆ A ∪ lim(A). Since any closed set containing A must also contain lim(A)
by Theorem 1.5.7, the other inclusion is apparent. Furthermore, clearly
A∪cluster(A) = A∪ lim(A) = A. Finally, a near identical proof to the above
shows that A ∪ bdy(A) is closed and since A ∪ bdy(A) ⊆ A ∪ lim(A) = A,
the proof is complete.

Corollary 1.5.23. Let (X , d) be a metric space and let A ⊆ X . Then x ∈ A
if and only if A ∩ B(x, ϵ) ̸= ∅ for all ϵ > 0.

Proof. As Proposition 1.5.22 implies A = lim(A), the result trivially follows
from Lemma 1.5.2.

Remark 1.5.24. Given a metric space (X , d), it is possible that B(x, r) ≠
B[x, r]. For example, let d be the discrete metric on a non-empty set X .
Then for all x ∈ X , B(x, 1) = {x} whereas B[x, 1] = X .
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Recall that every real number is a limit of rational numbers; that is,
Q = R. In general, given a metric space (X , d), it is incredibly useful to have
a set A ⊆ X such that A = X as this permits us to obtain a great deal of
information about X from the potentially simpler set A. Thus we make the
following definition.

Definition 1.5.25. Let (X , d) be a metric space and let A ⊆ B ⊆ X . It
is said that A is dense in B if B ⊆ A. Equivalently, A is dense in B if for
every b ∈ B there exists a sequence (an)n≥1 of elements from A such that
b = limn→∞ an.

It is particularly useful to have the smallest possible dense set. The
following is, in general, the smallest possible type of set.

Definition 1.5.26. A metric space (X , d) is said to be separable if there
exists a countable dense subset of X .

Example 1.5.27. Since Q = R, clearly R is separable even though R is
uncountable. Similarly, by Example 1.4.5, it is not difficult to see using Q
that Kn is separable with respect to any p-norm.

It is not difficult to see if X is a metric space with the discrete metric,
then X is separable if and only if X is countable.

Example 1.5.28. The space ℓ1(N,R) is separable. To see this, we claim
that

A = {(an)n≥1 | an ∈ Q for all n, an = 0 for all but finitely many n}

is a countable dense subset of ℓ1(N,R). To see this, we first notice that Qn

is countable for all n ∈ N. Since A may be viewed as an increasing union of
copies of Qn, A can be viewed as a countable union of countable sets and
thus A is countable.

To see that A = ℓ1(N,R), let (xn)n≥1 ∈ ℓ1(N,R) be arbitrary. Let
ϵ > 0 be arbitrary. Since

∑∞
n=1 |xn| < ∞, there exists an N ∈ N such that∑∞

n=N+1 |xn| < 1
2ϵ. Since Q is dense in R, for each n ≤ N there exists an

an ∈ Q such that |xn − an| < 1
2N ϵ. For n > N , define an = 0. Hence

(an)n≥1 ∈ A and

∥(xn)n≥1 − (an)n≥1∥1 =
∞∑

n=1
|xn − an|

=
N∑

n=1
|xn − an| +

∞∑
n=N+1

|xn|

≤
N∑

n=1

1
2N

ϵ +
∞∑

n=N+1
|xn|

≤ 1
2ϵ + 1

2ϵ = ϵ.

©For use through and only available at pskoufra.info.yorku.ca.



34 CHAPTER 1. METRIC SPACES

Therefore, as ϵ > 0 was arbitrary, (xn)n≥1 ∈ A. Therefore, as (xn)n≥1 ∈
ℓ1(N,R) was arbitrary, A = ℓ1(N,R) so ℓ1(N,R) is separable.

Example 1.5.29. The space ℓ∞(N,R) is not separable. To see this, suppose
to the contrary that there exists a countable dense subset C of ℓ∞(N,R).
Consider the set

B = {(bn)n≥1 | bn ∈ {0, 1}} ⊆ ℓ∞(N,R).

By Assignment 1, B is uncountable. Further notice if x⃗, y⃗ ∈ B are distinct,
then ∥x⃗ − y⃗∥∞ = 1. Therefore, B(x⃗, 1

2)∩B(y⃗, 1
2) = ∅ for all distinct x⃗, y⃗ ∈ B.

However, since C is dense in ℓ∞(N,R), there must be an element of C in
B(x⃗, 1

2) for each x⃗ ∈ B which is impossible as C has a countable number of
points, these balls are disjoint, and there are an uncountable number of balls.
Hence ℓ∞(N,R) is not separable.

1.6 Continuity
As with everything in mathematics, once one has defined the main objects
one desires to study, one then defines the morphisms or functions related to
ones’ central object. As with every previous analysis course, these morphisms
are the continuous functions. In particular, continuous functions are those
that preserve convergent sequences and topological properties.

To generalize the notion of a continuous function on R to a function
between metric spaces, we simply generalize the ϵ-δ notion of continuity.

Definition 1.6.1. Let (X , dX ) and (Y, dY) be metric spaces. It is said that
a function f : X → Y is continuous at a point x0 ∈ X if for all ϵ > 0 there
exists a δ > 0 such that if dX (x, x0) < δ then dY(f(x), f(x0)) < ϵ. Otherwise
it is said that f is discontinuous at x0.

Remark 1.6.2. Note that the ‘<’ in both the ‘< δ’ and ‘< ϵ’ portions of
Definition 1.6.1 may be replaced by ‘≤’. Indeed this follows since for all
x0 ∈ X and r > 0,

B

(
x0,

1
2r

)
⊆ B

[
x0,

1
2r

]
⊆ B (x0, r) .

Of course, our real desire is functions that are continuous everywhere.

Definition 1.6.3. Let (X , dX ) and (Y, dY) be metric spaces. It is said that
a function f : X → Y is continuous (on X ) if f is continuous at each point
in X . The set of continuous functions from X to Y is denoted C(X , Y).

We have already seen several continuous functions on R in previous
courses (e.g. polynomials, trigonometric functions, exponentials, etc.). Here
are some more unusual examples.
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Example 1.6.4. Let (X , dX ) and (Y, dY) be metric spaces.

(1) If dX is the discrete metric, then any function f : X → Y is continuous.

(2) If dY is the discrete metric, then a function f : X → Y is continuous
at x0 if and only if there exists a neighbourhood U of x0 such that f is
constant on U . In particular, if X = R and dY is the discrete metric,
f : X → Y is continuous if and only if f is constant.

Example 1.6.5. Let (X , d) be a metric space, let x0 ∈ X be fixed, and
define f : X → R by f(x) = d(x, x0) for all x ∈ X . Then f is a continuous
function (when R is equipped with the absolute value metric as always). To
see this, let y0 ∈ X be a fixed point. To see that f is continuous at y0, notice
for all x ∈ X that

d(x, x0) ≤ d(x, y0) + d(y0, x0) and d(y0, x0) ≤ d(x, y0) + d(x, x0)

so

d(x, x0) − d(y0, x0) ≤ d(x, y0) and d(y0, x0) − d(x, x0) ≤ d(x, y0).

Hence
|f(x) − f(y0)| ≤ |d(x, x0) − d(y0, x0)| ≤ d(x, y0)

(in particular, a reverse triangle inequality holds in metric spaces too). Hence,
if ϵ > 0 is arbitrary, then by taking δ = ϵ > 0 we see that if x ∈ B(y0, δ)
then |f(x) − f(y0)| < ϵ. Hence, as ϵ > 0 was arbitrary, f is continuous at y0.
Therefore, as y0 ∈ X was arbitrary, f is continuous on (X , d).

Similarly, if (V, ∥ · ∥) is a normed linear space, if v⃗0 ∈ V, and f : V → R
is defined by f(v⃗) = ∥v⃗ − v⃗0∥ = d(v⃗, v⃗0), then f is continuous. In particular,
by taking v⃗0 = 0⃗, we see that v⃗ 7→ ∥v⃗∥ is a continuous function.

As with continuous functions on R, continuity of functions between metric
spaces may be characterized via preservation of convergent sequences. Fur-
thermore, continuity can also be characterized using topological properties.

Theorem 1.6.6. Let (X , dX ) and (Y, dY) be metric spaces, let f : X → Y,
and let x0 ∈ X . The following are equivalent:

(1) f is continuous at x0.

(2) For every sequence (xn)n≥1 in X that converges to x0, the sequence
(f(xn))n≥1 converges to f(x0).

(3) For every neighbourhood V of f(x0), f−1(V ) is a neighbourhood of x0.
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Proof. To see that (1) implies (2), suppose f is continuous at x0 and that
(xn)n≥1 is a sequence in X that converges to x0. To see that (f(xn))n≥1
converges to f(x0), let ϵ > 0. Since f is continuous at x0, there exists a δ > 0
such that if dX (x, x0) < δ then dY(f(x), f(x0)) < ϵ. Since x0 = limn→∞ xn,
there exists an N ∈ N such that d(xn, x0) < δ for all n ≥ N . Hence
d(f(xn), f(x0)) < ϵ for all n ≥ N . Since ϵ > 0 was arbitrary, we obtain that
f(x0) = limn→∞ f(xn) as desired.

To see that (2) implies (3), suppose to the contrary that there exists a
neighbourhood V of f(x0) such that f−1(V ) is not a neighbourhood of x0.
Since x0 ∈ f−1(V ) this implies that B(x0, 1

n) ∩ (f−1(V ))c ̸= ∅ for all n ∈ N.
For each n choose an element

xn ∈ B

(
x0,

1
n

)
∩ (f−1(V ))c.

Hence (xn)n≥1 converges to x0. Therefore, by the assumption of (2), we
obtain that f(x0) = limn→∞ f(xn). Since V is a neighbourhood of f(x0),
this implies f(xn) ∈ V for some n ∈ N which implies xn ∈ f−1(V ). As
xn ∈ (f−1(V ))c, we have obtained a contradiction. Hence (2) implies (3).

To see that (3) implies (1), let ϵ > 0 be arbitrary. Since B(f(x0), ϵ) is a
neighbourhood of f(x0), f−1(B(f(x0), ϵ)) is a neighbourhood of x0 by the
assumption of (3). Hence there exists a δ > 0 such that

B(x0, δ) ⊆ f−1(B(f(x0), ϵ)).

Thus, if d(x, x0) < δ then

x ∈ B(x0, δ) ⊆ f−1(B(f(x0), ϵ))

so f(x) ∈ B(f(x0), ϵ) and thus d(f(x), f(x0)) < ϵ. Hence f is continuous by
definition.

In addition to the above we obtain the following characterization of
continuity using open sets. As the following characterization makes no use of
the metric, one may generalize this result to obtain a definition of continuous
functions between any two topological spaces.

Theorem 1.6.7. Let (X , dX ) and (Y, dY) be metric spaces. A function
f : X → Y is continuous if and only if f−1(V ) is open in X for every open
subset V of Y.

Proof. First, suppose that f−1(V ) is open in X for every open subset V of
Y. To see that f is continuous at every point in X , we note we may simply
repeat the proof of (3) implies (1) in Theorem 1.6.6 at each point in X .

Conversely, suppose f : X → Y is continuous and let V be an arbitrary
open subset of Y. Let U = f−1(V ). To see that U is open, let x ∈ U be
arbitrary. Since f(x) ∈ V and since V is open, V is a neighbourhood of
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f(x). Hence, by Theorem 1.6.6 we obtain that U is a neighbourhood of x.
Thus x ∈

∫
(U). Therefore, as x ∈ U was arbitrary,

∫
(U) = U . Hence U is

open.

If one desires, one may used closed sets in place of open sets.

Corollary 1.6.8. Let (X , dX ) and (Y, dY) be metric spaces. A function
f : X → Y is continuous if and only if f−1(F ) is closed (in X ) for every
closed subset F of Y.

Proof. Since f−1(Ac) = (f−1(A))c, the result follows trivially from Theorem
1.6.7.

As with continuous functions on R, composition continuous functions
preserves continuity.

Proposition 1.6.9. Let (X , dX ), (Y, dY), and (Z, dZ) be metric spaces, and
let f : X → Y and g : Y → Z be continuous functions. Then g ◦ f : X → Z
is continuous.

Proof. To see that g ◦ f is continuous, let U be an arbitrary open subset of
Z. Notice (g ◦ f)−1(U) = f−1(g−1(U)). Since g : Y → Z is continuous and
U ⊆ Z is open, g−1(U) open in Y by Theorem 1.6.7. Hence, since f : X → Y
is continuous and g−1(U) is open in Y , f−1(g−1(U)) open in X by Theorem
1.6.7. Therefore, as U was arbitrary, g ◦f : X → Z is continuous by Theorem
1.6.7.

Of course, there are many examples continuous functions that may be
of use in this course. To study some of these functions, we begin with the
following notion.

Definition 1.6.10. Let (X , d) be a metric space and let A ⊆ X be a non-
empty set. Given x ∈ X , the distance from x to A, denoted dist(x, A), is
defined to be

dist(x, A) = inf{d(x, a) | a ∈ A}.

Example 1.6.11. If A = {a} then clearly d(x, A) = d(x, a). Furthermore,
if X is a normed linear space, then d(x, A) = ∥x − a∥.

As a further example and to exhibit some important properties of
dist(x, A), we note the following.

Lemma 1.6.12. Let (X , d) be a metric space and let A ⊆ X be a non-empty
set. For each x ∈ X , dist(x, A) = 0 if and only if x ∈ A. Consequently
dist(x, A) = dist(x, A) for all x ∈ X .
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Proof. Suppose that dist(x, A) = 0. Therefore for all n ∈ N there exists an
an ∈ A such that d(x, an) < 1

n . Hence x = limn→∞ an so x ∈ lim(A) = A.
Conversely, suppose x ∈ A. Hence x ∈ lim(A) so there exists a sequence

(an)n≥1 of elements of A such that x = limn→∞ an. Thus limn→∞ d(x, an) = 0
so dist(x, A) = 0.

As A ⊆ A, we clearly obtain that dist(x, A) ≤ dist(x, A) for all x ∈ X . To
see the other inequality, fix x ∈ X . Let ϵ > 0 be arbitrary. By the definition
of the distance, there exists an y ∈ A such that d(x, y) ≤ dist(x, A) + ϵ.
However, since y ∈ A there exists an a ∈ A such that d(y, a) < ϵ. Hence

d(x, a) ≤ d(x, y) + d(y, a) ≤ dist(x, A) + 2ϵ.

Thus, as a ∈ A,
dist(x, A) ≤ dist(x, A) + 2ϵ.

Therefore, as ϵ > 0 was arbitrary, dist(x, A) ≤ dist(x, A) thereby completing
the proof.

Next we demonstrate the continuity of the distance function to a set. In
particular, by applying the following to the examples contained in Example
1.6.11, we generalize Example 1.6.5.

Theorem 1.6.13. Let (X , d) be a metric space and let A ⊆ X be a non-
empty set. The function F : X → R defined by F (x) = dist(x, A) for all
x ∈ X is continuous.

Proof. To see that F is continuous, let x, y ∈ X be arbitrary. If δ > 0,
then by the definition of the distance there exists an a ∈ A such that
d(x, a) ≤ dist(x, A) + δ. Therefore

dist(y, A) ≤ d(y, a) ≤ d(x, y) + d(x, a) ≤ d(x, y) + dist(x, A) + δ.

As the above inequality holds for all δ > 0, we obtain that F (y) ≤ F (x) +
d(x, y). By reversing the roles of x and y, we obtain that F (x) ≤ F (y)+d(x, y)
and hence |F (x) − F (y)| ≤ d(x, y).

To see now that F is continuous, fix x0 ∈ X and let ϵ > 0 be arbitrary. Let
δ = ϵ > 0. Therefore, if y ∈ X is such that d(x0, y) < δ then |F (x0)−F (y)| ≤
d(x0, y) < δ = ϵ. Hence F is continuous at x0. Therefore, as x0 was arbitrary,
F is continuous as desired.

Using the functions from Theorem 1.6.13, we can prove the metric space
version of the following theorem quite easily.

Theorem 1.6.14 (Urysohn’s Lemma). Let (X , d) be a metric space and
let B and C be two non-empty disjoint closed subsets of X . There exists a
continuous function f : X → [0, 1] such that f(x) = 0 if x ∈ B, f(x) = 1 if
x ∈ C, and 0 < f(x) < 1 if x /∈ B ∪ C.
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Proof. Consider the function f : X → R defined by

f(x) = dist(x, B)
dist(x, B) + dist(x, C) .

for all x ∈ X . We claim that f is well-defined; that is, the denominator never
vanishes. To see this, suppose to the contrary that there exists an x ∈ X
such that dist(x, B) + dist(x, C) = 0. Thus dist(x, B) = dist(x, C) = 0 so by
part (a), x ∈ B = B and x ∈ C = C as B and C are closed. Therefore, as
B ∩ C = ∅, we have obtained a contradiction. Hence f is well-defined.

Next, clearly f(x) ≥ 0 for all x ∈ X . Since

0 ≤ dist(x, B) ≤ dist(x, B) + dist(x, C)

we see that f : X → [0, 1]. Furthermore, by Theorem 1.6.13 and elementary
properties of continuous functions, f is continuous (i.e. if (xn)n≥1 converges to
x in X , then (dist(xn, B))n≥1 converges to dist(x, B) by Theorem 1.6.13 and
(dist(xn, C))n≥1 converges to dist(x, C) by Theorem 1.6.13. Since dist(x, B)+
dist(x, C) ̸= 0, we obtain by elementary properties of convergent sequences
of real numbers that (f(xn))n≥1 converges to f(x). Hence f is continuous).

To complete the proof, first notice that f(x) = 0 if and only if dist(x, B) =
0 if and only if x ∈ B by Lemma 1.6.12. Similarly f(x) = 1 if and only if
dist(x, B) = dist(x, B) + dist(x, C) if and only if dist(x, C) = 0 if and only
if x ∈ C Lemma 1.6.12. Since f : X → [0, 1], we obtain that 0 < f(x) < 1
for all x /∈ B ∪ C thereby completing the proof.

In addition to having continuous functions, it is also quite often useful
to have the following explicit description of the points of discontinuity of a
function.

Theorem 1.6.15. Let f : R → R and let

D(f) = {x ∈ R | f is discontinuous at x}.

For each n ∈ N let

Dn(f) =
{

x ∈ R
∣∣∣∣∣ for every δ > 0 there exists y, z such that

|x − y| < δ, |x − z| < δ, and |f(y) − f(z)| ≥ 1
n

}
.

Then Dn(f) is closed for each n ∈ N and D(f) =
⋃∞

n=1 Dn(f). Hence the
discontinuities of f is a countable union of closed sets.

Proof. Fix m ∈ N. To see that Dm(f) is closed, let (xn)n≥1 be an arbitrary
sequence of elements of Dm(f) that converges to some x ∈ R. To see that
x ∈ Dm(f), let δ > 0 be arbitrary. Since x = limn→∞ xn, there exists an
N ∈ N such that |x−xN | < 1

2δ. Furthermore, since xN ∈ Dm(f), there exists
y, z ∈ R such that |xN − y| < 1

2δ, |xN − z| < 1
2δ, and |f(y) − f(z)| ≥ 1

m . As
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|x−y| < δ and |x−z| < δ by the triangle inequality, and as |f(y)−f(z)| ≥ 1
m ,

we obtain that x ∈ Dm(f) as δ > 0 was arbitrary. Hence, as (xn)n≥1 was
arbitrary, Dm(f) is closed.

To see that D(f) =
⋃∞

n=1 Dn(f), first suppose x ∈
⋃∞

n=1 Dn(f). Hence
x ∈ Dm(f) for some m ∈ N. To see that f is discontinuous at x, suppose to
the contrary that f is continuous at x. Notice by the definition of Dm(f)
that for each n ∈ N there exists points yn, zn ∈ R such that |x − yn| < 1

n ,
|x − zn| < 1

n , and |f(yn) − f(zn)| ≥ 1
m . Since x = limn→∞ yn = limn→∞ zn,

the continuity of f implies f(x) = limn→∞ f(yn) = limn→∞ f(zn), which
contradicts the fact that |f(yn) − f(zn)| ≥ 1

m for all n. Hence we have
obtained a contradiction so x ∈ D(f). Hence

⋃∞
n=1 Dn(f) ⊆ D(f).

For the other inclusion, notice if x ∈ D(f) then f is discontinuous at x.
Therefore there exists an ϵ > 0 such that for all δ > 0 there exists a y ∈ R
such that |x − y| < δ yet |f(x) − f(y)| ≥ ϵ. Choose m ∈ N such that 1

m < ϵ.
By taking z = x in the definition of Dm(f), we see that x ∈ Dm(f). Hence,
as x was arbitrary, D(f) ⊆

⋃∞
n=1 Dn(f) thereby completing the proof.

1.7 Metric Spaces of Continuous Functions
As we have seen that C[a, b] is a metric space with respect to the uniform
metric, it is natural to ask whether the same holds for the set of continuous
functions between two metric spaces. Unfortunately, the set of continuous
functions between two metric spaces need not be a ‘nice’ metric space. Of
course we may place the discrete metric on any set, but for continuous
functions we would like a non-trivial metric such that the distance between
two functions is related to the pointwise distance between the functions. The
issue with generalizing the uniform metric from C[a, b] to this context is that
the supremum used need not be finite. In particular, we will need some
notion of boundedness for our functions in order to generalize the uniform
metric.

Definition 1.7.1. Let (X , d) be a metric space and let A ⊆ X . It is said
that A is bounded if there exists an x ∈ X such that

sup{d(x, a) | a ∈ A} < ∞.

Remark 1.7.2. Since for all y ∈ X we have

d(y, a) ≤ d(y, x) + d(x, a),

the choice of x does not matter in Definition 1.7.1. Hence, if X is a normed
linear space, we may choose x = 0⃗ to obtain that A is bounded if and only if

sup{∥a∥X | a ∈ A} < ∞.

Thus we can truly see that this is a good notion of a bounded set in a metric
space.
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To obtain a good metric space of continuous functions, we will restrict
ourselves to the following continuous functions.

Definition 1.7.3. Let (X , dX ) and (Y, dY) be metric spaces. A function
f : X → Y is said to be bounded if f(X ) is a bounded set in Y. The set of
all bounded continuous functions f : X → Y is denoted Cb(X , Y).

Example 1.7.4. If X = N and Y = K equipped with the discrete metric
and absolute value metric respectively, then Cb(X , Y) = ℓ∞(N,K) via the
map f 7→ (f(n))n≥1.

Of course, once we restrict to bounded functions, we can easily generalize
the uniform metric.

Theorem 1.7.5. Let (X , dX ) and (Y, dY) be metric spaces. Then Cb(X , Y)
is a metric space with the metric

d(f, g) = sup{dY(f(x), g(x)) | x ∈ X }.

We call d the uniform metric.

Proof. First, given f, g ∈ Cb(X , Y), to see that d(f, g) < ∞, we note there
exists an a ∈ Y such that

sup{dY(f(x), a) | x ∈ X } < ∞ and sup{dY(g(x), a) | x ∈ X } < ∞.

From this it clearly follows from the triangle inequality on dY that d(f, g) < ∞.
The remaining properties of a metric are trivial to verify.

Of course, with continuous functions on R, the sum of continuous functions
is continuous and a scalar multiple of continuous functions is continuous.
This means that continuous functions on R are a vector space. To repeat
these ideas for Cb(X , Y) is only possible if Y is a normed linear space. This
yields the following thereby generalizing the sup norm on C[a, b].

Theorem 1.7.6. Let (X , dX ) be a metric space and let (Y, ∥ · ∥Y) be a normed
linear space over K. Then Cb(X , Y) is a normed linear space over K with the
operations of pointwise addition and scalar multiplication, and the norm

∥f∥∞ = sup{∥f(x)∥Y | x ∈ X }.

The norm ∥ · ∥∞ is called the supremum norm.

Proof. If f, g : X → Y are continuous functions, then one can verify that
f + g and αf are continuous for all α ∈ K by using part (2) of Theorem 1.6.6
together with Proposition 1.4.11. If f and g are bounded, the properties
of ∥ · ∥Y easily imply that f + g and αf are bounded. Hence Cb(X , Y) is a
vector space over K. The fact that ∥ · ∥∞ is a norm easily follows (with the
proof that it is finite following as in Theorem 1.7.5).
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To complete this section, we desire to analyze continuity in the context
of normed linear spaces. In particular, the ‘nice’ maps between vector spaces
are the linear maps as these are precisely the functions that preserve the
vector space operations. Thus we desire to study when a linear map between
normed linear spaces is continuous. To do this, as linear maps will clearly not
be bounded as defined above (i.e. if their range contains a non-zero vector,
then by linearity we can scale that vector in the range to have arbitrarily
large norm), we need to modify the definition of boundedness.

Definition 1.7.7. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces
over K. A linear map T : X → Y is said to be bounded if

sup
{

∥T (x⃗)∥Y | x⃗ ∈ X , ∥x⃗∥X ≤ 1
}

< ∞.

If T is bounded, then we write

∥T∥ = sup{∥T (x⃗)∥Y | x⃗ ∈ X , ∥x⃗∥X ≤ 1}.

The quantity ∥T∥ is called the operator norm of T . Furthermore, the set of
bounded linear maps from X to Y is denoted B(X , Y).

Remark 1.7.8. Note we can only discuss bounded linear maps between
normed linear spaces over the same field. Thus throughout these notes, this
will be a standing assumption when discussing bounded linear maps.

In addition, note that ∥T∥ is a measure of how large the unit ball (the
ball of radius 1 centred at 0⃗) in X is scaled by applying T .

To see that the operator norm is indeed a norm, we note that the only
non-trivial property of Definition 1.1.14 to verify is that if ∥T∥ = 0, then T
is the zero linear map. Note the following lemma yields the result.

Lemma 1.7.9. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces over
K and let T ∈ B(X , Y). Then

∥T (x⃗)∥Y ≤ ∥T∥ ∥x⃗∥X

for all x⃗ ∈ X .

Proof. Since
∥∥∥T (⃗0)

∥∥∥
Y

=
∥∥∥⃗0∥∥∥

X
= 0, the result holds when x⃗ = 0⃗. If x⃗ ̸= 0⃗,

then ∥x⃗∥X ̸= 0. Consequently, as∥∥∥∥∥ 1
∥x⃗∥X

x⃗

∥∥∥∥∥
X

= 1
∥x⃗∥X

∥x⃗∥X = 1,

we obtain from the definition of the operator norm that

1
∥x⃗∥X

∥T (x⃗)∥Y =
∥∥∥∥∥ 1

∥x⃗∥X
T (x⃗)

∥∥∥∥∥
Y

=
∥∥∥∥∥T
(

1
∥x⃗∥X

x⃗

)∥∥∥∥∥
Y

≤ ∥T∥ .

Therefore ∥T (x⃗)∥Y ≤ ∥T∥ ∥x⃗∥X as desired.
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Corollary 1.7.10. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces
over K. Then B(X , Y) is a normed linear space over K with the operator
norm as defined in Definition 1.7.7.

The reason we have been analyzing bounded linear maps in reference to
continuous function is that B(X , Y) is all continuous linear functions from
X to Y.

Theorem 1.7.11. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces
over K and let T : X → Y be linear. The following are equivalent:

(1) T is continuous.

(2) T is continuous at 0.

(3) T is bounded.

Proof. Clearly (1) implies (2). To see that (2) implies (3), let ϵ = 1. Since
T is continuous at 0, there exists a δ > 0 such that if ∥x⃗∥X ≤ δ then
∥T (x⃗)∥Y ≤ 1. Therefore, if x⃗ ∈ X is such that ∥x⃗∥X ≤ 1, then ∥δx⃗∥X ≤ δ so

δ ∥T (x⃗)∥Y = ∥δT (x⃗)∥Y = ∥T (δx⃗)∥Y ≤ 1.

Hence ∥x⃗∥X ≤ 1 implies ∥T (x⃗)∥Y ≤ δ−1 so T is bounded with ∥T∥ ≤ δ−1 by
definition.

To see that (3) implies (1), let x⃗0 ∈ X be arbitrary. To see that T is
continuous at x, let ϵ > 0. Let δ = ϵ

∥T ∥+1 > 0. If x⃗ ∈ X is such that
∥x⃗ − x⃗0∥X < δ, then Lemma 1.7.9 implies that

∥T (x⃗) − T (x⃗0)∥Y = ∥T (x⃗ − x⃗0)∥Y ≤ ∥T∥ ∥x⃗ − x⃗0∥X < ∥T∥ ϵ

∥T∥ + 1 < ϵ.

Therefore T is continuous at x⃗0 as ϵ > 0 was arbitrary. Therefore, as x⃗0 ∈ X
was arbitrary, T is continuous on X .

Perhaps it is surprising at this point in the course, but B(X , Y) is one
of the most important normed linear spaces! Thus it is perhaps useful to
include some examples. Note it is often quite difficult to actually compute
the operator norm of a bounded linear map.

Example 1.7.12. Let x0 ∈ [0, 1]. Define Tx0 : C[0, 1] → R by

Tx0(f) = f(x0)

for all f ∈ C[0, 1]. Clearly Tx0 is a linear map. If C[0, 1] is equipped with
the ∞-norm, then Tx0 is bounded with ∥Tx0∥ = 1. To see this, notice for all
f ∈ C[0, 1] that

|Tx0(f)| = |f(x0)| ≤ ∥f∥∞
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by definition of the ∞-norm. Hence Tx0 is bounded with ∥Tx0∥ ≤ 1. To see
that ∥Tx0∥ = 1, notice the function g(x) = 1 for all x ∈ [0, 1] is an element
of C[0, 1] with ∥g∥∞ = 1. Since

|Tx0(g)| = |g(x0)| = 1,

However, if C[0, 1] is equipped with the 1-norm, then Tx0 is not bounded.
To see this, for each n ∈ N, define fn ∈ C[0, 1] by

fn(x) =


2n
(
x −

(
x0 − 1

2n

))
if x ∈

[
x0 − 1

2n , x0
]

−2n
(
x −

(
x0 + 1

2n

))
if x ∈

[
x0, x0 + 1

2n

]
0 otherwise

for all x ∈ [0, 1]. It is not difficult to see that

∥fn∥1 =
∫ 1

0
|f(x)| dx ≤ 1

regardless of the value of x0 (in fact, if x0 ∈ {0, 1} then ∥fn∥1 = 1
2 for all

n ∈ N, and if x0 /∈ {0, 1} then ∥fn∥1 = 1 for sufficiently large n). Furthermore,
as

|Tx0(fn)| = |fn(x0)| = 2n

we obtain that

sup{|Tx0(f)| | f ∈ C[0, 1], ∥f∥1 ≤ 1} = ∞

so Tx0 is unbounded.

Example 1.7.13. Let p, q ∈ [1, ∞] be such that 1
p + 1

q = 1 and let y⃗ =
(yn)n≥1 ∈ ℓp(N,R). Define T : ℓq(N,R) → R by

T ((xn)n≥1) =
∞∑

n=1
xnyn

for all (xn)n≥1 ∈ ℓq(N,R). We claim that T is a well-defined bounded linear
map with ∥T∥ = ∥y⃗∥p. To see this, first, note as 1

p + 1
q = 1 that p = q

q−1 . To
see that T is well-defined, note since y⃗ = (yn)n≥1 ∈ ℓp(N,R) we have for all
(xn)n≥1 ∈ ℓq(N,R) that (xnyn)n≥1 ∈ ℓ1(N,R) by Hölders’ inequality so that

∞∑
n=1

|xnyn| < ∞

and thus, as R is complete and thus absolutely summable series converge,
we have that

T ((xn)n≥1) =
∞∑

n=1
xnyn
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is a well-defined element of R. Hence T is well-defined. Furthermore, the
fact that T is linear follows from basic properties of convergent series.

To see that T is bounded, notice for all (xn)n≥1 ∈ ℓq(N,R) that

|T ((xn)n≥1)| =
∣∣∣∣∣

∞∑
n=1

xnyn

∣∣∣∣∣ ≤
∞∑

n=1
|xnyn| ≤ ∥(xn)n≥1∥q ∥y⃗∥p

by Hölder’s inequality. Hence we easily see that T is bounded and ∥T∥ ≤ ∥y⃗∥p.

To obtain equality, we first notice if y⃗ = 0⃗, then clearly the inequality
holds. Thus we may assume that ∥y⃗∥p > 0. For each n ∈ N let

xn =
{

0 if yn = 0
yn(|yn|)

q
q−1 −2 if yn ̸= 0

.

Clearly (xn)n≥1 is a well-defined sequence. We claim that (xn)n≥1 ∈ ℓq(N).
To see this, we notice that

∞∑
n=1

|xn|q =
∞∑

n=1
|yn|q+ q2

q−1 −2q

=
∞∑

n=1
|yn|

q
q−1

=
∞∑

n=1
|yn|p < ∞

as 1
p + 1

q = 1. Hence (xn)n≥1 ∈ ℓq(N). Moreover, we see that

∥(xn)n≥1∥q =
( ∞∑

n=1
|yn|p

) 1
q

= ∥y⃗∥
p
q
p .

Let z⃗ = 1

∥y⃗∥
p
q
p

(xn)n≥1. Hence z⃗ ∈ ℓq(N,R) and ∥z⃗∥q = 1 by construction.
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Moreover

T (z⃗) = 1

∥y⃗∥
p
q
p

∞∑
n=1

ynxn

= 1

∥y⃗∥
p
q
p

∞∑
n=1

y2
n(|yn|)

q
q−1 −2

= 1

∥y⃗∥
p
q
p

∞∑
n=1

|yn|
q

q−1

= 1

∥y⃗∥
p
q
p

∞∑
n=1

|yn|p

= 1

∥y⃗∥
p
q
p

∥y⃗∥p
p

= ∥y⃗∥
p
(

1− 1
q

)
p = ∥y⃗∥p .

Hence ∥T∥ ≥ ∥y⃗∥p thereby completing the question.

1.8 Connected Sets
To complete this chapter, we will generalize an essential result from a previous
analysis course: the Intermediate Value Theorem. Recall the Intermediate
Value Theorem states that if f : [a, b] → R is a continuous function and
f(a) < y < f(b), then there exists a c ∈ (a, b) such that f(c) = y. This
theorem can be rephrased using a specific type of set.

Definition 1.8.1. Let (X , d) be a metric space and let A ⊆ X . It is said
that A is disconnected if there exists two open disjoint subsets U and V of
X such that U ∩ A ̸= ∅, V ∩ A ̸= ∅, and A ⊆ U ∪ V .

It is said that A is connected if A is not disconnected.

Notice that the empty set is vacuously not disconnected and thus is
connected. For some more concrete examples, we prove the following.

Lemma 1.8.2. A subset A of R is connected if and only if whenever x, y ∈ A
are such that x < y, then [x, y] ⊆ A. In particular, a subset of R is connected
if and only if it is an interval.

Proof. Suppose there exists x, y ∈ A such that x < y yet [x, y] ⊈ A. Hence
there exists a z ∈ (x, y) such that z /∈ A. Let U = (−∞, z) and V = (z, ∞).
Clearly U and V are non-empty open subsets of of R such that x ∈ U ∩ A,
y ∈ V ∩ A, and U ∪ V = R \ {z} ⊇ A. Hence A is disconnected.

Conversely, suppose A is disconnected. Therefore there exists non-empty
disjoint open subsets U and V of X such that U ∩ A ̸= ∅, V ∩ A ≠ ∅, and
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A ⊆ U ∪ V . Let x ∈ U ∩ A and y ∈ V ∩ A. By interchanging the roles of
U and V if necessary, we may assume that x < y. We desire to show that
[x, y] ⊈ A.

Let
z = sup{u ∈ U | x < u < y}.

Notice that the set in the above supremum is non-empty since x ∈ U and U
is an open set so there exists an ϵ > 0 such that (x − ϵ, x + ϵ) ⊆ U .

We claim that z /∈ U . To see this, suppose to the contrary that z ∈ U .
Since y ∈ V and U ∩ V = ∅, it must be the case that x < z < y. However, as
z < y, z ∈ U , and U is open, there exists a δ > 0 such that (z − δ, z + δ) ⊆ U
so

z < min
{

y, z + 1
2δ

}
≤ sup{u ∈ U | x < u < y} = z

which is a contraction. Hence z /∈ U .
Next, we claim that z /∈ V . To see this, suppose to the contrary that

z ∈ V . Then there exists an r > 0 such that (z − r, z + r) ⊆ V . However, by
the definition of z there must exists a u ∈ U such that z − 1

2r ≤ u, which
implies u ∈ (z − r, z + r) ⊆ V . As this contradicts the fact that U ∩ V = ∅,
we obtain that z /∈ V .

By the above, we see that z /∈ U ∪ V . As A ⊆ U ∪ V , we obtain that
z /∈ A. Therefore, as z ∈ [x, y], we obtain that [x, y] ⊈ A as desired.

To relate this to the Intermediate Value Theorem, we need to consider
the notion of connectedness in the metric space ([a, b], | · |). We note the
following which implies that [a, b] is connected since [a, b] is a connected
subset of R.

Lemma 1.8.3. Let (X , d) be a metric space and let A ⊆ X . Then A is
connected as a subset of (X , d) if and only if A is connected as a subset of
(A, d|A).

Proof. Suppose A is a disconnected subset of (X , d). Therefore there exists
there exists two open disjoint subsets U and V of (X , d) such that U ∩ A ̸= ∅,
V ∩ A ̸= ∅, and A ⊆ U ∪ V . Since U ∩ A and V ∩ A are open subsets of
(A, d|A) by Proposition 1.3.15, clearly A is a disconnected subset of (X , d).

Suppose A is a disconnected subset of (A, d|A). Therefore there exists two
non-empty open disjoint subsets U and V of (A, d|A) such that U ∪ V = A.
The issue with simply using Proposition 1.3.15 is that the open subsets of
(X , d) obtained may not be disjoint. Thus we need to carefully analyze the
proof of Proposition 1.3.15.

Since U is open in (A, d|A) for each u ∈ U there exists an ϵu > 0 such that
BA(u, ϵu) = BX (u, ϵu) ∩ A ⊆ U . Similarly, for each v ∈ V there exists an
ϵv > 0 such that BX (v, ϵv)∩A ⊆ V . We claim that BX

(
u, ϵu

2
)
∩BX

(
v, ϵv

2
)

= ∅.

©For use through and only available at pskoufra.info.yorku.ca.



48 CHAPTER 1. METRIC SPACES

To see this, suppose to the contrary that x ∈ BX
(
u, ϵu

2
)

∩ BX
(
v, ϵv

2
)
. Hence

d(u, v) ≤ d(u, x) + d(x, v) ≤ ϵu

2 + ϵv

2 ≤ min{ϵu, ϵv}.

Therefore, either u ∈ V (when ϵu ≤ ϵv) or v ∈ U (when ϵv ≤ ϵu), which
contradicts the fact that U and V are disjoint. Hence the claim has been
show.

Thus

U ′ =
⋃

u∈U

BX

(
u,

ϵu

2

)
and V ′ =

⋃
v∈V

BX

(
v,

ϵv

2

)

are disjoint open subsets of (X , d) such that U ′ ∩A = U ̸= ∅, V ′ ∩A = V ̸= ∅,
and A ⊆ U ∪ V ⊆ U ′ ∪ V ′. Hence A is a disconnected subset in (X , d) as
desired.

Finally we arrive at the true version of the Intermediate Value Theorem.

Theorem 1.8.4 (Intermediate Value Theorem). Let (X , dX ) and (Y, dY)
be metric spaces. If f : X → Y is continuous and X is connected, then f(X )
is connected.

Proof. Let f : X → Y be continuous. Suppose f(X ) is disconnected. Then
there exists two non-empty disjoint open subsets U and V of Y such that
f(X ) ∩ U ̸= ∅, f(X ) ∩ V ̸= ∅, and f(X ) ⊆ U ∩ V . Let U ′ = f−1(U)
and V ′ = f−1(V ). Since f is continuous, U ′ and V ′ are open subsets of
X . Furthermore, since f(X ) ∩ U ̸= ∅ and f(X ) ∩ V ̸= ∅, U ′ and V ′ are
non-empty. Finally, since f(X ) ⊆ U ∩ V , we obtain that U ′ ∪ V ′ = X . Hence
X is disconnected as desired.
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Chapter 2

Completeness

As we have seen in the previous chapter, there are many exotic examples of
metric and normed linear spaces. Consequently, there are a diverse collection
of behaviours in metric spaces. For example, we have seen via Example 1.4.9
that the only sequences that converge in the discrete metric are eventually
constant. This is possibly a undesirable behaviour as it limits the ability for
us to approximate quantities; that is, we are back in the setting of having to
compute things exact. Thus, it is natural to ask what properties do we wish
to impose on metric spaces in order for there to be a rich analytic theory.

Perhaps unsurprisingly, the most powerful analysis will come from re-
stricting to spaces that have similar properties to those observed in R. One
interesting properties that R has relates to determining when sequences
converge. A priori, in order to determine when a sequence converges, one
must first know the limit and prove that the sequence converges to the limit.
In this chapter, we will examine when we may deduce a sequence converges
without knowing its limit. This ‘completeness’ of a metric space will enable
several results related to series and continuous functions to be developed and
will be a major assumption require of most important results in this course.

2.1 Cauchy Sequences

As seen in previous analysis courses, one major obstruction in verifying a
sequence converges is that one needs a prior to know the limit of the sequence
as only then can one verify Definition 1.4.1. Consequently, it is useful to have
an alternate method of determining a sequence converges without knowing
the limit.

This leads us to a previously seen concept for sequences in R. In order
for a sequence to converge, given any ϵ > 0 all the elements of the sequence
must be within ϵ of their limit. In particular, this means that the terms in
the sequence must eventually be within 2ϵ of each other. Thus we define the
following.

49
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Definition 2.1.1. Let (X , d) be a metric space. A sequence (xn)n≥1 is said
to be Cauchy if for all ϵ > 0 there exists an N ∈ N such that d(xn, xm) < ϵ
for all n, m ≥ N .

Remark 2.1.2. There exists sequences (xn)n≥1 such that

lim
n→∞

d(xn, xn+1) = 0

that are not Cauchy. Indeed let xn =
∑n

k=1
1
k for all n ∈ N. Clearly

d(xn, xn+1) = 1
n+1 yet (xn)n≥1 is not Cauchy as for all m ∈ N

sup
m→∞

d(xn, xm) = sup
m→∞

m∑
k=n

1
k

= ∞.

As with Cauchy sequences in R, there are immediately sequences we can
deduce are not Cauchy.

Lemma 2.1.3. Every Cauchy sequence in a metric space is bounded.

Proof. Let (xn)n≥1 be a Cauchy sequence in a metric space (X , d). Since
(xn)n≥1 is Cauchy, there exists an N ∈ N such that d(xn, xm) < 1 for all
n, m ≥ N . Let

M = max{d(x1, xN ), . . . , d(xN−1, xN ), 1}.

Using the above paragraph, we see that d(xn, xN ) ≤ M for all n ∈ N. Hence
(xn)n≥1 is bounded.

Furthermore, we have already seen several examples of Cauchy sequences.

Lemma 2.1.4. Every convergent sequence in a metric space is Cauchy.

Proof. Let (xn)n≥1 be a convergent sequence in a metric space (X , d) and
let x0 = limn→∞ xn. To see that (xn)n≥1 is Cauchy, let ϵ > 0 be arbitrary.
Since x0 = limn→∞ xn, there exists an N ∈ N such that d(xn, x0) < ϵ

2 for all
n ≥ N . Therefore, for all n, m ≥ N ,

d(xn, xm) ≤ d(xn, x0) + d(x0, xm) <
ϵ

2 + ϵ

2 = ϵ.

Thus, as ϵ > 0 was arbitrary, (xn)n≥1 is Cauchy by definition.

Corollary 2.1.5. Every convergent sequence in a metric spaces is bounded.

Of course, it would be nice if the converse Lemma 2.1.4 were true as it
would enable us to determine that sequences converge without knowing their
limits as we would simply need to verify that they are Cauchy. As perhaps
this is not true in every metric space, we make the following definition.
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Definition 2.1.6. A metric space (X , d) is said to be complete if every
Cauchy sequence converges.

Any metric space with the discrete metric is complete as any Cauchy
sequence with respect to the discrete metric is eventually constant. Further-
more R is complete. We will quickly recall the proof that R is complete by
beginning with the following result which holds in any metric space.

Lemma 2.1.7. Let (xn)n≥1 be a Cauchy sequence in a metric space (X , d).
If a subsequence of (xn)n≥1 converges, then (xn)n≥1 converges.

Proof. Let (xn)n≥1 be a Cauchy sequence with a convergent subsequence
(xkn)n≥1 and let x0 = limn→∞ xkn . We claim that limn→∞ xn = x0. To
see this, let ϵ > 0 be arbitrary. Since (xn)n≥1 is Cauchy, there exists an
N ∈ N such that d(xn, xm) < ϵ

2 for all n, m ≥ N . Furthermore, since
x0 = limn→∞ xkn , there exists an kj ≥ N such that d(xkj

, x0) < ϵ
2 . Hence, if

n ≥ N then

d(xn, x0) ≤ d(xn, xkj
) + d(xkj

, x0) <
ϵ

2 + ϵ

2 = ϵ.

Thus, as ϵ > 0 was arbitrary, (xn)n≥1 is converges to x0 by definition.

In addition, recall the following theorem.

Theorem 2.1.8 (Bolzano-Weierstrass Theorem). Every bounded se-
quence of real numbers has a convergent subsequence with respect to the
absolute value metric.

Theorem 2.1.9 (Completeness of the Real Numbers). Every Cauchy
sequence of real numbers converges with respect to the absolute value metric.

Proof. Let (xn)n≥1 be a Cauchy sequence of real numbers. Thus (xn)n≥1
is bounded by Lemma 2.1.3. Therefore (xn)n≥1 has a convergent sequence
by the Bolzano-Weierstrass Theorem. Hence (xn)n≥1 converges by Lemma
2.1.7.

Example 2.1.10. If we use a different metric on the real numbers, it is
possible that Cauchy sequences need not converge. To see this, recall from
Example 1.1.4 if d : R × R → [0, ∞) is defined by

d(x, y) = |e−x − e−y|

for all x, y ∈ R, then (R, d) is a metric space.
We claim that (R, d) is not complete. To see this, consider the sequence

of natural numbers (n)n≥1. We claim that (n)n≥1 is Cauchy in (R, d). To
see this, let ϵ > 0. Since limn→∞ e−n = 0, there exists an N ∈ N such that
0 < e−n < ϵ

2 for all n ≥ N . Hence for all n, m ≥ N we have that

d(n, m) =
∣∣e−n − e−m

∣∣ ≤ e−n + e−m <
ϵ

2 + ϵ

2 = ϵ.
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Therefore, as ϵ > 0 was arbitrary, (n)n≥1 is Cauchy in (R, d).
However, we claim that (n)n≥1 does not converge in (R, d). To see this,

we note that a sequence (xn)n≥1 converges in (R, d) to x0 ∈ R if and only
if e−x0 = limn→∞ e−xn in the absolute value metric on R if and only if
x0 = limn→∞ xn in the absolute value metric on R. Therefore, as (n)n≥1
does not converge in the absolute value metric on R, (n)n≥1 does not converge
in (R, d) as claimed. Hence (R, d) is not complete.

In addition, note the above argument shows that a sequence (xn)n≥1
converges in (R, d) to x0 ∈ R if and only if (xn)n≥1 converges in (R, | · |) to
x0. Thus although (R, d) and (R, | · |) have the same convergent sequences,
only one is complete. Thus completeness is truly a property that is reliant
on the metric, not just the topology!

For other examples of complete metric spaces, we turn to the following.

Corollary 2.1.11. For every p ∈ [1, ∞] and n ∈ N, (Kn, ∥ · ∥p) is complete.

Proof. To see that (Rn, ∥ · ∥p) is complete, let (x⃗k)k≥1 be an arbitrary Cauchy
sequence in (Rn, ∥ · ∥p). Write x⃗k = (xk,1, . . . , xk,n). Since for all k, m ∈ N
we have

|xk,j − xm,j | ≤ ∥x⃗k − x⃗m∥p ,

it is elementary to see that (xk,j)k≥1 is a Cauchy sequence in R for all j ∈
{1, . . . , n}. Since R is complete, for each j ∈ {1, . . . , n} there exists an xj ∈ R
such that xj = limk→∞ xk,j . If x⃗ = (x1, . . . , xn), then x⃗ = limk→∞ x⃗k in
(Rn, ∥ · ∥p) by Example 1.4.5. Therefore, as (x⃗k)k≥1 was arbitrary, (Rn, ∥ · ∥p)
is complete.

To see that (Cn, ∥ · ∥p), it suffices by the same arguments to show that
(C, | · |) is complete. To see that (C, | · |) is complete, let (zk)k≥1 be an
arbitrary Cauchy sequence in C. For each k, write zk = ak + ibk where
ak, bk ∈ R. Since for all k, m ∈ N we have

|ak − am|, |bk − bm| ≤ |zk − zm|,

it is elementary to see that (ak)k≥1 and (bk)k≥1 are Cauchy sequences in
R. Since R is complete, a = limk→∞ ak and b = limk→∞ bk exist. Hence
z = a + bi, then z = limk→∞ zk by Example 1.4.6. Hence, as (zk)k≥1 was
arbitrary, (C, | · |) is complete.

Once we have a complete metric space, the following shows that we have
many other complete metric spaces.

Theorem 2.1.12. Let (X , d) be a complete metric space and let A ⊆ X be
non-empty. Then (A, d|A) is complete if and only if A is closed in X .

Proof. Suppose (A, d|A) is complete. To see that A is closed, let (an)n≥1 be
an arbitrary sequence of elements from A that converges to some element
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x ∈ X . Since (an)n≥1 converges in X , (an)n≥1 is Cauchy in X by Lemma
2.1.4 and therefore is Cauchy in (A, d|A). Hence (an)n≥1 converges in A to
some element a ∈ A as (A, d|A) is complete. Since limits in metric spaces are
unique by Proposition 1.4.12, a = x. Hence x ∈ A so A is closed by Theorem
1.5.7.

For the converse, suppose A is closed in X . To see that (A, d|A) is
complete, let (an)n≥1 be an arbitrary Cauchy sequence in (A, d|A). Hence
(an)n≥1 is a Cauchy sequence in (X , d). Since (X , d) is complete, (an)n≥1
converges to some element x ∈ X . Since A is closed in X , Theorem 1.5.7
implies that x ∈ A. Hence as (an)n≥1 was an arbitrary Cauchy sequence,
(A, d) is complete.

Note the following gives us examples of complete metric spaces that are
not complete normed linear spaces.

Corollary 2.1.13. Every closed subset of (Kn, ∥ · ∥p) is a complete metric
space for all p ∈ [1, ∞].

Notice that one direction of the proof of Theorem 2.1.12 did not require
(X , d) to be complete. Thus we obtain the following.

Corollary 2.1.14. Let (X , d) be a metric space and let A ⊆ X be non-empty.
If (A, d) is complete, then A is closed in X .

2.2 Banach Spaces

The above produced several examples of complete metric spaces including
many that were not normed linear spaces. As complete normed linear spaces
are incredibly nice and important for the remainder of the course, and as
saying/typing complete normed linear spaces is rather cumbersome, we make
the following definition.

Definition 2.2.1. A Banach space is a complete normed linear space.

Corollary 2.1.11 produced for us a collection of Banach spaces. For the
remainder of this subsection, we will note several of the normed linear spaces
we have seen previously are Banach spaces. Furthermore, via Theorem 2.1.12,
we obtain any closed vector subspace of these Banach spaces is also a Banach
space (and any closed subset is a complete metric space).

As we go through the following, note there is a similar theme to the
proofs.

Proposition 2.2.2. For each p ∈ [1, ∞], (ℓp(N,K), ∥ · ∥p) is a Banach space.

Proof. Note the proof of this proposition is very similar to that of Propo-
sition 1.4.12 except for the complication that arose in Example 1.4.10 (i.e.
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convergences entrywise need not imply convergence in (ℓp(N,K), ∥ · ∥p)). To
bi-pass this problem, we will invoke a technique that will be used repeatedly
in this section.

Fix p ∈ [1, ∞] and let (x⃗n)n≥1 be an arbitrary Cauchy sequence in
(ℓp(N,K), ∥ · ∥p). For each n ∈ N, write x⃗n = (xn,k)k≥1. Since for all
m, j, k ∈ N,

|xm,k − xj,k| ≤ ∥x⃗m − x⃗j∥p ,

we see that for each k ∈ N the sequence (xn,k)n≥1 is Cauchy in (K, | · |).
Therefore, as (K, | · |) is complete, yk = limn→∞ xn,k exists in (K, | · |) for
each k ∈ N.

Let y⃗ = (yn)n≥1. To complete the proof, it suffices to verify two things:
that y⃗ ∈ ℓp(N,K), and that limn→∞ ∥y⃗ − x⃗n∥p = 0. We will only discuss the
case p ̸= ∞ and the case p = ∞ is similar. For p ≠ ∞ notice for all m ∈ N
that(

m∑
k=1

|yk − x1,k|p
) 1

p

= lim
n→∞

(
m∑

k=1
|xn,k − x1,k|p

) 1
p

≤ lim sup
n→∞

∥x⃗n − x⃗1∥p .

Since (x⃗n)n≥1 is Cauchy in (ℓp(N,K), ∥ · ∥p), we also have that (x⃗n)n≥1 is
bounded in (ℓp(N,K), ∥ · ∥p) by Lemma 2.1.3. Hence lim supn→∞ ∥x⃗n − x⃗1∥p

is finite. Therefore, by taking the limit as m tends to infinity, we obtain that( ∞∑
k=1

|yk − x1,k|p
) 1

p

≤ lim sup
n→∞

∥x⃗n − x⃗1∥p .

Hence z⃗ = (yk − x1,k)k≥1 ∈ ℓp(N,K). Therefore, as y⃗ = z⃗ + x⃗1, we obtain
that y⃗ ∈ ℓp(N,K) by the triangle inequality.

To see that limn→∞ ∥y⃗ − x⃗n∥p = 0, let ϵ > 0 be arbitrary. Note the above
proof also shows for all j ∈ N that

∥y⃗ − x⃗j∥p ≤ lim sup
n→∞

∥x⃗n − x⃗j∥p .

Since (x⃗n)n≥1 is Cauchy in (ℓp(N,K), ∥ · ∥p), there exists an N ∈ N such
that ∥x⃗m − x⃗j∥p ≤ ϵ for all m, j ≥ N . Hence if j ≥ N , the above im-
plies ∥y⃗ − x⃗j∥p ≤ ϵ. Therefore, as ϵ > 0 was arbitrary, we obtain that
limn→∞ ∥y⃗ − x⃗n∥p = 0. Hence (x⃗n)n≥1 converges in (ℓp(N,K), ∥ · ∥p) so, as
(x⃗n)n≥1 was arbitrary, (ℓp(N,K), ∥ · ∥p) is complete.

To discuss Banach spaces consisting of functions, we first note the fol-
lowing types of convergence and a lemma which guarantees certain limits
are continuous. This lemma is the generalization to metric spaces of a result
that is a cornerstone of any first course in analysis.

Definition 2.2.3. Let (X , dX ) and (Y, dY) be metric spaces. For each n ∈ N
let fn : X → Y. Given f : X → Y, it is said that the sequence (fn)n≥1
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• converges pointwise to f if limn→∞ fn(x) = f(x) for all x ∈ X .

• converges uniformly to f if (fn)n≥1 converges to f with respect to the
uniform metric (provided it makes sense); that is, for all ϵ > 0 there
exists an N ∈ N such that dY(f(x), fn(x)) < ϵ for all n ≥ N and for
all x ∈ X .

Theorem 2.2.4. Let (X , dX ) and (Y, dY) be metric spaces and let f : X → Y.
If (fn)n≥1 is a sequence of continuous functions from X to Y that converge
to f uniformly, then f is continuous.

Proof. To see that f is continuous, let x0 ∈ X be arbitrary. To see that
f is continuous at x0 let ϵ > 0 be arbitrary. Since (fn)n≥1 converges to f
uniformly, there exists an N ∈ N such that dY(f(x), fN (x)) < ϵ

3 for all x ∈ X .
Since fN is continuous at x0, there exists a δ > 0 such that if dX (x, x0) < δ
then dY(fN (x), fN (x0)) < ϵ

3 . Hence if x ∈ X and dX (x, x0) < δ, then, by
the triangle inequality,

dY(f(x), f(x0)) ≤ dY(f(x), fN (x)) + dY(fN (x), fN (x0)) + dY(fN (x0), f(x0))

<
ϵ

3 + ϵ

3 + ϵ

3 = ϵ.

Hence, as ϵ > 0 was arbitrary, f is continuous at x0. Thus, as x0 was
arbitrary, f is continuous on X .

Using the above, we obtain the following result for metric spaces.

Theorem 2.2.5. Let (X , dX ) and (Y, dY) be metric spaces. If Y is complete,
then (Cb(X , Y), d∞) is a complete metric space.

Proof. Let (fn)n≥1 be an arbitrary Cauchy sequence in (Cb(X , Y), d∞). For
each x ∈ X , notice

dY(fn(x), fm(x)) ≤ d∞(fn, fm)

for all n, m ∈ N. Hence it is elementary to see that (fn(x))n≥1 is a Cauchy
sequence in Y for all x ∈ X . Therefore, since Y is complete, for each
x ∈ X there exists an f(x) ∈ Y such that f(x) = limn→∞ fn(x). Clearly the
function x 7→ f(x) defines a function f : X → Y.

To complete the proof, it suffices to verify three things: that f : X → Y
is continuous, that f is bounded, and that limn→∞ d∞(f, fn) = 0. For the
first, we claim that (fn)n≥1 converges to f uniformly on X . To see this, first
notice for all x ∈ X and m ∈ N that

dY(f(x), fm(x)) = lim
n→∞

dY(fn(x), fm(x)) ≤ lim sup
n→∞

d∞(fn, fm).
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Since (fn)n≥1 is Cauchy in (Cb(X , Y), d∞), we also have that (fn)n≥1 is
bounded in (Cb(X , Y), d∞) by Lemma 2.1.3. Hence lim supn→∞ d∞(fn, fm)
is finite. Therefore, by taking the supremum over all x ∈ X , we obtain that

sup{dY(f(x), fm(x)) | x ∈ X } ≤ lim sup
n→∞

d∞(fn, fm)

for all m ∈ N. Thus, by taking m = 1 and using the fact that f1 is bounded,
we easily see that f is bounded.

To see that f is continuous, we will show that (fn)n≥1 converges uniformly
to f using the above. Thus let ϵ > 0 be arbitrary. Since (fn)n≥1 is Cauchy
in (Cb(X , Y), d∞), there exists an N ∈ N such that d∞(fj , fm) ≤ ϵ for all
m, j ≥ N . Hence if m ≥ N , the above implies

sup{dY(f(x), fm(x)) | x ∈ X } < ϵ.

Thus (fn)n≥1 converges to f uniformly on X . Hence f is continuous by
Theorem 2.2.4.

As the above shows that limm→∞ d∞(f, fm) = 0, (fn)n≥1 converges to
f in (Cb(X , Y), d∞). Thus, as (fn)n≥1 was an arbitrary Cauchy sequence,
(Cb(X , Y), d∞) is complete.

Since Cb(X , Y) is a normed linear space provided Y is, we obtain the
following.

Corollary 2.2.6. Let (X , dX ) be a metric space and let (Y, ∥ · ∥Y) be a
Banach space. Then (Cb(X , Y), ∥ · ∥∞) is a Banach space.

Corollary 2.2.7. Let (X , dX ) be a metric space. Then (Cb(X ,R), ∥ · ∥∞) is
a Banach space.

Finally, returning to bounded linear maps between normed linear spaces,
we obtain the following.

Theorem 2.2.8. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces. If
Y is a Banach space, then (B(X , Y), ∥ · ∥) is a Banach space (where ∥ · ∥ is
the operator norm).

Proof. Let (Tn)n≥1 be an arbitrary Cauchy sequence in (B(X , Y), ∥ · ∥). For
each x⃗ ∈ X , notice

∥Tn(x⃗) − Tm(x⃗)∥Y ≤ ∥Tn − Tm∥ ∥x⃗∥X

for all n, m ∈ N. Hence it is elementary to see that (Tn(x⃗))n≥1 is a Cauchy
sequence in Y for all x⃗ ∈ X . Therefore, since Y is complete, for each x⃗ ∈ X
there exists an T (x⃗) ∈ Y such that T (x⃗) = limn→∞ Tn(x⃗).
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To complete the proof, it suffices to verify three things: that T : X → Y
is linear, that T is bounded, and that limn→∞ ∥T − Tn∥ = 0. To see that T
is linear, notice for all x⃗1, x⃗2 ∈ X and α ∈ K that

T (αx⃗1+x⃗2) = lim
n→∞

Tn(αx⃗1+x⃗2) = lim
n→∞

αTn(x⃗1)+Tn(x⃗2) = αT (x⃗1)+T (x⃗2).

Hence T is linear.
To see that T is bounded, notice for all x⃗ ∈ X with ∥x⃗∥X ≤ 1 and m ∈ N

that

∥T (x⃗) − Tm(x⃗)∥Y = lim
n→∞

∥Tn(x⃗) − Tm(x⃗)∥Y ≤ lim sup
n→∞

∥Tn − Tm∥

Since (Tn)n≥1 is Cauchy in (B(X , Y), ∥ · ∥), we also have that (Tn)n≥1 is
bounded in (B(X , Y), ∥ · ∥) by Lemma 2.1.3. Hence lim supn→∞ ∥Tn − Tm∥
is finite. In particular, we obtain that there exists a constant K such that

∥T (x⃗)∥Y ≤ ∥T1(x⃗)∥Y + K ≤ ∥T1∥ + K

for all x⃗ ∈ X with ∥x⃗∥X ≤ 1. Hence T is bounded with ∥T∥ ≤ ∥T1∥ + K.
To see that limn→∞ ∥T − Tn∥ = 0, let ϵ > 0 be arbitrary. Since (Tn)n≥1

is Cauchy in (B(X , Y), ∥ · ∥), there exists an N ∈ N such that ∥Tm − Tj∥ ≤ ϵ
for all m, j ≥ N . Hence if j ≥ N , the above implies ∥T (x⃗) − Tj(x⃗)∥ ≤ ϵ
for all x⃗ ∈ X with ∥x⃗∥X ≤ 1. Therefore, as ϵ > 0 was arbitrary, we obtain
that limn→∞ ∥T − Tn∥ = 0. Hence (Tn)n≥1 converges in (B(X , Y), ∥ · ∥) so,
as (Tn)n≥1 was arbitrary, (B(X , Y), ∥ · ∥) is complete.

To finish this section, we demonstrate that there are normed linear spaces
we have seen that are not Banach spaces.

Example 2.2.9. Let p ∈ [1, ∞) and consider the p-norm on C[0, 1] from
Definition 1.2.10. We claim that (C[0, 1], ∥ · ∥p) is not complete. To see this,
for each n ∈ N let fn ∈ C[0, 1] be the function defined by

fn(x) =


1 if x ∈

[
0, 1

2

]
1 − n

(
x − 1

2

)
if x ∈

[
1
2 , 1

2 + 1
n

]
0 otherwise

.

We claim that (fn)n≥1 is a Cauchy sequence that does not converge. To see
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that (fn)n≥1 is Cauchy, notice if n, m ∈ N with n > m then

∥fn − fm∥p =
(∫ 1

0
|fn(x) − fm(x)|p dx

) 1
p

=
(∫ 1

2 + 1
m

1
2

|fn(x) − fm(x)|p dx

) 1
p

≤
(∫ 1

2 + 1
m

1
2

1 dx

) 1
p

≤ 1
m

1
p

as |fn(x) − fm(x)| ≤ 1 for all x ∈ [0, 1]. Therefore, as limm→∞
1

m
1
p

= 0, we
obtain that (fn)n≥1 is Cauchy in (C[0, 1], ∥ · ∥p).

To see that (fn)n≥1 does not have a limit in (C[0, 1], ∥ · ∥p), suppose to
the contrary that f ∈ C[0, 1] is a limit of (fn)n≥1. Then for all a, b ∈ [0, 1]
with a < b, we have that

lim sup
n→∞

(∫ b

a
|fn(x) − f(x)|p dx

) 1
p

≤ lim sup
n→∞

(∫ 1

0
|fn(x) − f(x)|p dx

) 1
p

= lim sup
n→∞

∥fn − f∥p = 0

as the integral of a positive function is positive and the function x 7→ x
1
p is

increasing on [0, ∞). Thus for each a, b ∈
[
0, 1

2

]
with a < b we obtain that

0 = lim sup
n→∞

(∫ b

a
|fn(x) − f(x)|p dx

) 1
p

=
(∫ b

a
|1 − f(x)|p dx

) 1
p

However, as f is continuous on [0, 1], this implies that f(x) = 1 for all
x ∈

[
0, 1

2

]
. Similarly, if 1

2 < a < b ≤ 1, we obtain by selecting n large enough
so that 1

2 + 1
n < a that

0 = lim sup
n→∞

(∫ b

a
|fn(x)|p dx

) 1
p

=
(∫ b

a
|f(x)|p dx

) 1
p

.

Hence, the same arguments imply that f(x) = 0 for all x ∈
(

1
2 , 1
]
. Thus,

as f is continuous at 1
2 , we have obtained that 0 = f

(
1
2

)
= 1 which is

a contradiction. Thus (fn)n≥1 does not have a limit in (C[0, 1], ∥ · ∥p) so
(C[0, 1], ∥ · ∥p) is not complete.

Note we had to exclude p = ∞ from Example 2.2.9 as (C[0, 1], ∥ · ∥∞) =
(Cb[0, 1], ∥ · ∥∞) is complete by Theorem 2.2.5.
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2.3 Verifying Completeness

The above has demonstrated that several of the space we naturally desire to
consider are Banach spaces. Thus, as we have several Banach spaces and
complete metric spaces, it is nice to determine what additional properties
these spaces have beyond the convergence of all Cauchy sequences. In
particular, we will demonstrate additional properties that are equivalent to
the convergence of all Cauchy sequences. Each of these additional properties
has their own particular use.

For an alternate description of completeness, we need the following notion
for how wide a set is.

Definition 2.3.1. Let (X , d) be a metric space and let A ⊆ X be non-empty.
The diameter of A, denoted diam(A), is defined to be

diam(A) = sup{d(x, y) | x, y ∈ A} ∈ [0, ∞].

Example 2.3.2. In R,

diam((0, 1)) = diam([0, 1]) = 1

whereas diam(R) = ∞.

Example 2.3.3. In any metric space (X , d), it is elementary to see that

diam(B(x, r)) ≤ diam(B[x, r]) ≤ 2r

for all x ∈ X and r > 0. However, it is possible that these inequalities are
strict. Indeed if d is the discrete metric, then

diam(B(x, r)) =
{

0 if r ≤ 1
1 if r > 1

and diam(B[x, r]) =
{

0 if r < 1
1 if r ≥ 1

.

Using the notion of the diameter of a set, we can describe completeness
using small closed sets instead of Cauchy sequences. This adds to the validity
of the term ‘completeness’ in that it shows we do not have any holes in our
complete metric spaces.

Theorem 2.3.4 (Cantor’s Theorem). Let (X , d) be a metric space. Then
the following are equivalent:

(1) (X , d) is a complete metric space.

(2) If (Fn)n≥1 is a sequence of non-empty closed subsets of X such that
Fn+1 ⊆ Fn for all n ∈ N and limn→∞ diam(Fn) = 0, then

⋂∞
n=1 Fn ̸= ∅.
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Proof. Suppose (X , d) is a complete metric space. Let (Fn)n≥1 be an arbitrary
sequence of non-empty closed subsets of X such that Fn+1 ⊆ Fn for all n ∈ N
and limn→∞ diam(Fn) = 0. To see that

⋂∞
n=1 Fn ̸= ∅, for each n ∈ N choose

xn ∈ Fn. We claim that (xn)n≥1 is a Cauchy sequence. To see this, let ϵ > 0
be arbitrary. Since limn→∞ diam(Fn) = 0, there exists an N ∈ N such that
diam(FN ) < ϵ. As Fn+1 ⊆ Fn for all n ∈ N, we obtain that xn ∈ Fn for all
n ≥ N . Hence d(xn, xm) ≤ diam(FN ) < ϵ for all n, m ≥ N . Hence, as ϵ > 0
was arbitrary, (xn)n≥1 is a Cauchy sequence.

Since (X , d) is complete, x = limn→∞ xn exists. Since for each m ∈ N we
have xn ∈ Fm for all n ≥ m, we obtain from Theorem 1.5.7 together with
the fact that Fm is closed that x ∈ Fm for all m ∈ N. Hence x ∈

⋂∞
n=1 Fn so⋂∞

n=1 Fn ̸= ∅.
For the converse direction, suppose (X , d) has property (2). To see that

(X , d) is complete, let (xn)n≥1 be an arbitrary Cauchy sequence. For each
n ∈ N, let

Fn = {xk | k ≥ n}.

Clearly each Fn is a non-empty closed subset of X such that Fn+1 ⊆ Fn for
all n ∈ N.

We claim that limn→∞ diam(Fn) = 0. To see this, let ϵ > 0 be arbitrary.
Since (xn)n≥1 is Cauchy, there exists an N ∈ N such that d(xn, xm) < ϵ

3 for
all n, m ≥ N . We claim that diam(Fn) ≤ ϵ whenever n ≥ N . To see this, fix
n ≥ N and let x, y ∈ Fn be arbitrary. By the definition of Fn, there exists
k, j ≥ n ≥ N such that

d(x, xj) <
ϵ

3 and d(y, xk) <
ϵ

3 .

Hence

d(x, y) ≤ d(x, xj) + d(xj , xk) + d(xk, y) <
ϵ

3 + ϵ

3 + ϵ

3 = ϵ

as k, j ≥ N and by our choice of N . Hence diam(Fn) ≤ ϵ whenever n ≥ N
by the definition of the diameter of a set. Thus the claim is complete.

As we are assuming property (2), the above implies that
⋂∞

n=1 Fn ̸= ∅.
Let x ∈

⋂∞
n=1 Fn. We claim that (xn)n≥1 converges to x. To see this, let

ϵ > 0 be arbitrary. Since limn→∞ diam(Fn) = 0, there exists an N ∈ N such
that diam(Fn) < ϵ for all n ≥ N . Since x, xn ∈ Fn for all n ∈ N, we obtain
that

d(x, xn) ≤ diam(Fn) < ϵ

for all n ≥ N . Therefore, as ϵ > 0 was arbitrary, x = limn→∞ xn. Hence, as
(xn)n≥1 was an arbitrary Cauchy sequence, (X , d) is complete.

We will see several uses of Cantor’s Theorem (Theorem 2.3.4) later in the
course. For now we turn to another important property of the real numbers,
namely the convergence of specific types of series. In particular, every
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‘absolutely summable’ series converges. We can generalize these concepts to
metric spaces as follows.

Definition 2.3.5. Let (X , ∥ · ∥) be a normed linear space. A series
∑∞

n=1 x⃗n

is said to be summable if the sequence of partial sums (sn)n≥1 converges
(where sn =

∑n
k=1 x⃗k).

A series
∑∞

n=1 x⃗n is said to be absolutely summable if
∑∞

n=1 ∥x⃗n∥ < ∞.

Theorem 2.3.6. Let (X , ∥ · ∥) be a normed linear space. Then X is complete
(i.e. a Banach space) if and only if every absolutely summable series is
summable.

Proof. Suppose (X , ∥ · ∥) is complete. Let
∑∞

n=1 x⃗n be an arbitrary absolutely
summable series in (X , ∥ · ∥). To see that

∑∞
n=1 x⃗n is summable, let ϵ > 0

be arbitrary. Since
∑∞

n=1 ∥x⃗n∥ < ∞, there exists an N ∈ N such that∑∞
n=N ∥x⃗n∥ < ϵ. Therefore, if k, m ≥ N and, without loss of generality,

m ≥ k, then

∥sm − sk∥ =
∥∥∥∥∥

m∑
n=1

x⃗n −
k∑

n=1
x⃗n

∥∥∥∥∥
=

∥∥∥∥∥∥
m∑

n=k+1
x⃗n

∥∥∥∥∥∥
≤

m∑
n=k+1

∥x⃗n∥

≤
∞∑

n=N

∥x⃗n∥ < ϵ.

Therefore, as ϵ > 0 was arbitrary, the sequence of partial sums (sn)n≥1 is
Cauchy. Hence (sn)n≥1 converges as X is complete. Thus, as

∑∞
n=1 x⃗n was

arbitrary, every absolutely summable series in X is summable.
For the converse, suppose every absolutely summable sequence in X

is summable. To see that X is complete, let (x⃗n)n≥1 be an arbitrary
Cauchy sequence. Since (x⃗n)n≥1 is Cauchy, there exists an n1 ∈ N such that
∥x⃗m − x⃗j∥ < 1

2 for all m, j ≥ n1. Similarly, since (x⃗n)n≥1 is Cauchy, there
exists an n2 ∈ N such that n2 > n1 and ∥x⃗m − x⃗j∥ < 1

22 for all m, j ≥ n2.
By repeating the above process, for each k ∈ N there exists an nk ∈ N such
that nk < nk+1 for all k and ∥x⃗m − x⃗j∥ < 1

2k for all m, j ≥ nk.
For each k ∈ N let y⃗k = x⃗nk+1 − x⃗nk

. By the above paragraph, we see
that ∞∑

k=1
∥y⃗k∥ ≤

∞∑
k=1

1
2k

< ∞.

Hence
∑∞

k=1 y⃗k is an absolutely summable series in X . Therefore, by the
assumptions on X ,

∑∞
k=1 y⃗k is summable in X .
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Let x⃗ = x⃗n1 +
∑∞

k=1 y⃗k. We claim that (x⃗nk
)k≥1 converges to x⃗. To see

this, let ϵ > 0 be arbitrary. Then there exists a M ∈ N such that if m ≥ M
then ∥∥∥∥∥

∞∑
k=1

y⃗k −
m∑

k=1
y⃗k

∥∥∥∥∥ < ϵ.

Therefore, if m ≥ M ,∥∥x⃗ − x⃗nm+1

∥∥ ≤
∥∥∥∥∥

∞∑
k=1

y⃗k −
m∑

k=1
y⃗k

∥∥∥∥∥+
∥∥∥∥∥x⃗n1 − x⃗nm+1 +

m∑
k=1

y⃗k

∥∥∥∥∥
< ϵ +

∥∥∥∥∥x⃗n1 − x⃗nm+1 +
m∑

k=1
x⃗nk+1 − x⃗nk

∥∥∥∥∥
= ϵ.

Therefore, as ϵ > 0 was arbitrary, (x⃗nk
)k≥1 converges to x⃗. Hence (x⃗n)n≥1

converges to x⃗ by Lemma 2.1.7. Therefore, as (x⃗n)n≥1 was an arbitrary
Cauchy sequence, X is complete.

As an immediate corollary, we obtain the following result pertaining to
convergence of series of continuous functions.
Corollary 2.3.7 (Weierstrass M-Test). Let (X , d) be a metric space and
let (fn)n≥1 be a sequence of functions from Cb(X ,R). Suppose there exists
an M ∈ R such that

∑∞
n=1 ∥fn∥∞ < M . Then

∑∞
n=1 fn converges uniformly

on X to a continuous function.

2.4 Tietz Extension Theorem
Using Theorem 2.3.6 and Urysohn’s Lemma (Theorem 1.6.14), we can prove
an important result about extending continuous functions on closed sets. To
begin, we note there exists an elementary proof in the case we are considering
closed subsets of (R, | · |).
Theorem 2.4.1 (Tietze’s Extension Theorem on R). Let F ⊆ R be
closed and let f : F → C be continuous. There exists a continuous function
g : R → C such that g(x) = f(x) for all x ∈ F and

sup({|g(x)| | x ∈ R}) ≤ sup({|f(x)| | x ∈ F}).

Proof. Since F c is open, by Proposition 1.3.11 we may write F c as a countable
union of disjoint non-empty open intervals, say

⋃∞
n=1(an, bn). Define g : R →

C by

g(x) =


f(x) if x ∈ F

f(an) if x ∈ (an, bn) and bn = ∞
f(bn) if x ∈ (an, bn) and an = −∞
f(bn)−f(an)

bn−an
(x − an) + h(an) otherwise
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for all x ∈ R; that is g agrees with f on F and is linear on each (an, bn). It
is not difficult to see that g is continuous and

sup({|g(x)| | x ∈ R}) ≤ sup({|f(x)| | x ∈ F}).

However, if we had a continuous function on a closed subsets of Rn or
a general metric space, it is far more difficult to know how to extend the
function to a continuous function on Rn. The following theorem solves this
problem for us.

Theorem 2.4.2 (Tietz’s Extension Theorem - Bounded Version).
Let (X , d) be a metric space, let F be a closed subset of (X , d), and let
f ∈ Cb(F,R) be continuous (where F is equipped with the metric d|F ). There
exists a g ∈ Cb(X,R) such that g|F = f and ∥g∥∞ = ∥f∥∞.

Proof. Since f ∈ Cb(F,R), we know that

∥f∥∞ = sup({|f(x)| | x ∈ F}) < ∞.

Clearly if ∥f∥∞ = 0, we can take g to be the zero function thereby completing
the claim. Hence we may assume that ∥f∥∞ > 0. Therefore, by scaling f if
necessary, we can assume without loss of generality that ∥f∥∞ = 1. Thus
|f(x)| ≤ 1 for all x ∈ F .

To proceed with the proof, our goal is to Urysohn’s Lemma (Theorem
1.6.14) to get several elements of Cb(X ,R). We will construct these functions
in a specific way so that their sum closer and closer approximates f on F .
We will then take a limit of these functions to obtain the desired extension
of f .

To begin, let

A1 =
{

x ∈ F

∣∣∣∣ f(x) ∈
[
−1, −1

3

]}
= f−1

([
−1, −1

3

])
and

B1 =
{

x ∈ F

∣∣∣∣ f(x) ∈
[1

3 , 1
]}

= f−1
([1

3 , 1
])

.

Therefore, since f is continuous on F , A1 and B1 disjoint closed subsets
of F by Corollary 1.6.8. Therefore, since F is closed in (X , d) and since
closed subsets of F are the intersection of F with a closed subset of (X , d) by
Corollary 1.3.25 and therefore closed in (X , d), we see that A1 and B1 disjoint
closed subsets of (X , d). Thus Urysohn’s Lemma (Theorem 1.6.14) implies
there exists a continuous function h1 : X →

[
−1

3 , 1
3

]
such that h1(a) = −1

3
for all a ∈ A1 and h1(b) = 1

3 for all b ∈ B1 [Note Urysohn’s Lemma only
applies if A1 ̸= ∅ and B1 ̸= ∅. If A1 = B1 = ∅, use the zero function for h1.
Otherwise, if A1 = ∅, use the constant function 1

3 for h1, and if B1 = ∅, use
the constant function −1

3 for h1.]
We claim that |f(x) − h1(x)| ≤ 2

3 for all x ∈ F . To see this, notice if
x ∈ A1 then −1 ≤ f(x) ≤ −1

3 so the fact that h1(x) = −1
3 as x ∈ A1 implies
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|f(x) − h1(x)| ≤ 2
3 . Similarly, if x ∈ B1 then 1

3 ≤ f(x) ≤ 1 so the fact that
h1(x) = 1

3 as x ∈ B1 implies |f(x) − h1(x)| ≤ 2
3 . Finally, if x ∈ F \ (A1 ∪ B1),

then the definitions of A1 and B1 imply that −1
3 < f(x) < 1

3 so, as h1 : X →[
−1

3 , 1
3

]
, we obtain that |f(x) − h1(x)| ≤ 2

3 . Hence |f(x) − h1(x)| ≤ 2
3 for all

x ∈ F .
Let α = 2

3 . We claim that there exists a sequence (hn)n≥1 in Cb(X ,R)
such that

∥hn∥∞ ≤ 1
3αn−1 and

∣∣∣∣∣f(x) −
n∑

k=1
hk(x)

∣∣∣∣∣ ≤ αn for all x ∈ F

for all n ∈ N. To see this, we proceed by induction on n with the base
case n = 1 completed by the above arguments. Thus, to proceed with the
inductive step, suppose there exist (hk)n

k=1 in Cb(X ,R) such that

∥hm∥∞ ≤ 1
3αk−1 and

∣∣∣∣∣f(x) −
m∑

k=1
hk(x)

∣∣∣∣∣ ≤ αm for all x ∈ F

for all m ∈ {1, . . . , n}. Let

An+1 =
{

x ∈ F

∣∣∣∣∣ f(x) −
n∑

k=1
hk(x) ∈

[
−αn, −1

3αn
]}

and

Bn+1 =
{

x ∈ F

∣∣∣∣∣ f(x) −
n∑

k=1
hk(x) ∈

[1
3αn, αn

]}
.

Since hk ∈ Cb(X ,R) for all k ∈ {1, . . . , n} and since F is a closed subspace
of (X , d), we see that x 7→ f(x) −

∑n
k=1 hk(x) is a continuous function on F

and thus An+1 and Bn+1 are disjoint closed subsets of F . Therefore, since
F is closed in (X , d) and since closed subsets of F are the intersection of F
with a closed subset of (X , d) by Corollary 1.3.25 and therefore closed in
(X , d), we see that An+1 and Bn+1 disjoint closed subsets of (X , d). Thus,
Urysohn’s Lemma (Theorem 1.6.14) implies there exists a continuous function
hn+1 : X →

[
−1

3αn, 1
3αn

]
such that hn+1(a) = −1

3αn for all a ∈ An+1 and
hn+1(b) = 1

3αn for all b ∈ Bn+1.
Clearly ∥hn+1∥∞ ≤ 1

3αn by construction. To see that∣∣∣∣∣f(x) −
n+1∑
k=1

hk(x)
∣∣∣∣∣ ≤ αn+1

for all x ∈ F , we will proceed as we did in the n = 1 case. Indeed, if x ∈ An+1
then

hn+1(x) = −1
3αn and f(x) −

n∑
k=1

hk(x) ∈
[
−αn, −1

3αn
]
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so ∣∣∣∣∣f(x) −
n+1∑
k=1

hk(x)
∣∣∣∣∣ ≤ αn − 1

3αn = 2
3αn = αn+1.

Similarly, if x ∈ Bn+1 then

hn+1(x) = 1
3αn and f(x) −

n∑
k=1

hk(x) ∈
[1

3αn, αn
]

so ∣∣∣∣∣f(x) −
n+1∑
k=1

hk(x)
∣∣∣∣∣ ≤ αn − 1

3αn = 2
3αn = αn+1.

Finally, if x ∈ F \ (An+1 ∪ Bn+1), then the definitions of An+1 and Bn+1
imply that∣∣∣∣∣f(x) −

n∑
k=1

hk(x)
∣∣∣∣∣ <

1
3αn and |hn+1(x)| ≤ 1

3αn

so ∣∣∣∣∣f(x) −
n+1∑
k=1

hk(x)
∣∣∣∣∣ ≤ 1

3αn + 1
3αn = 2

3αn = αn+1.

Hence ∣∣∣∣∣f(x) −
n+1∑
k=1

hk(x)
∣∣∣∣∣ ≤ αn+1

for all x ∈ F . Therefore, the inductive step is complete so there exist (hn)n≥1
in Cb(X ,R) with the desired properties.

Of course, by construction we know that

∞∑
n=1

∥hn∥∞ ≤
∞∑

n=1

1
3αn−1 = 1

3
1

1 − α
= 1 < ∞.

Hence
∑∞

n=1 hn is an absolutely summable series in (Cb(X ,R), ∥ · ∥∞). There-
fore, since (Cb(X,R), ∥ · ∥∞) is a Banach space by Corollary 2.2.6, Theorem
2.3.6 implies that

∑∞
n=1 hn is summable. Hence

g =
∞∑

n=1
hn

is a well-defined element of Cb(X ,R). We claim that g is the function we
seek.
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To begin to see that g has the desired properties, we note since the norm
is a continuous function on any normed linear space by Example 1.6.5 that

∥g∥∞ = lim
n→∞

∥∥∥∥∥
n∑

k=1
hk

∥∥∥∥∥
∞

≤ lim sup
n→∞

n∑
k=1

∥hk∥∞

≤ lim sup
n→∞

n∑
k=1

1
3αk−1

= 1
3

1
1 − α

= 1

so ∥g∥∞ ≤ 1. Hence, provided we can show that g|F = f , we will then be
able to use the fact that ∥f∥∞ = 1 to obtain that ∥g∥∞ = 1 = ∥f∥∞ as
desired. Hence, all that remains to be shown is that g|F = f .

To see that g|F = f , let x ∈ F be arbitrary. Then the definition of g
implies that

|f(x) − g(x)| = lim
n→∞

∣∣∣∣∣f(x) −
n∑

k=1
hk(x)

∣∣∣∣∣ ≤ lim sup
n→∞

αn = 0

as α = 2
3 . Hence g(x) = f(x). Therefore, since x ∈ F was arbitrary, g|F = f

as desired.

With Theorem 2.4.2, it is not too difficult to extend these results to
unbounded functions.

Theorem 2.4.3 (Tietz’s Extension Theorem - Unbounded Version).
Let (X , d) be a metric space, let F be a closed subset of X , and let f : F → R
be continuous (with respect to the metric d|F on F ). There exists a continuous
function g : X → R such that g|F = f .

Proof. Our goal in this proof is to use a homeomorphism (a continuous map
with a continuous inverse) to reduce the result to the bounded case studied
in Theorem 2.4.2. Indeed consider the function φ : R → (−1, 1) defined by

φ(x) = x

1 + |x|

for all x ∈ R. It is elementary to see that φ is continuous with continuous
inverse φ−1 : (−1, 1) → R defined by

φ−1(y) = y

1 − |y|

for all y ∈ (−1, 1). Hence, if f0 : F → (−1, 1) is defined by f0 = φ ◦ f , then
f0 ∈ Cb(F,R) is such that ∥f0∥∞ ≤ 1. Hence the bounded version of Tietz
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Extension Theorem (Theorem 2.4.2) implies there exists an h0 ∈ Cb(X ,R)
such that ∥h0∥∞ = ∥f0∥∞ ≤ 1 and h0|F = f0.

Of course, if h0(x) ̸= ±1 for all x ∈ X , then one can immediately take
g = φ−1 ◦ h0 thereby completing the proof. Therefore, as we only know that
∥h0∥∞ ≤ 1 so it is possible that h0(x) = ±1 for some x ∈ X , we must correct
h0.

Let C = h−1
0 ({−1, 1}). Since h0 ∈ Cb(X ,R), C is a closed (possibly empty

subset) of X by Corollary 1.6.8. We claim that C ∩ F = ∅. To see this,
notice if x ∈ F then h0(x) = f0(x) ∈ (−1, 1) so x /∈ C by definition. Hence
C ∩ F = ∅. Thus Urysohn’s Lemma (Theorem 1.6.14) implies there exists
a continuous function h : X → [0, 1] such that h(x) = 0 for all x ∈ C and
h(x) = 1 for all x ∈ F . Define g0 : X → R by

g0(x) = h0(x)h(x)

for all x ∈ X . Since g0 is a product of elements of Cb(X ,R), it is elementary
to see that g0 ∈ Cb(X ,R). Furthermore, we claim that g(X) ⊆ (−1, 1). To
see this, notice if x ∈ C then |h0(x)| = 1 and h(x) = 0 so g0(x) = 0 ∈ (−1, 1).
Furthermore, if x ∈ X \C then |h0(x)| < 1 and h(x) ∈ [0, 1] so g0(x) ∈ (−1, 1).
Hence g(X ) ⊆ (−1, 1) as claimed.

Define g : X → R by

g(x) = φ−1(g0(x))

for all x ∈ X , which is well-defined as g(X) ⊆ (−1, 1). Furthermore
g ∈ C(X ,R) as g is the composition of two continuous functions and thus
continuous. Finally, to see that g|F = f , let x ∈ F be arbitrary. Then

g(x) = φ−1(g0(x)) = φ−1(h0(x)h(x)) = φ−1(f0(x)1) = φ−1(f0(x)) = f(x)

as desired.

Remark 2.4.4. Note both versions of the Tietz Extension Theorem can fail
if the set we are trying to extend a continuous function from are not closed.
Indeed consider the continuous function f : (−∞, 0) ∪ (0, ∞) → R defined by

f(x) =
{

1 if x > 0
−1 if x < 0

for all x ∈ (−∞, 0) ∪ (0, ∞). Clearly f is continuous on its domain yet it is
impossible to extend f to a continuous function on R.

Remark 2.4.5. Note the only requirements used to prove both versions of
the Tietz Extension Theorem were that Cb(X,R) was complete and that a
Urysohn’s Lemma existed. Thus the same proof may be used to prove the
Tietz Extension Theorem for a wider collection of topological spaces.
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2.5 Completions
As we have seen complete metric spaces (and in particular Banach spaces)
are very nice metric spaces to consider as many of the properties of the real
number generalize to these spaces. However, we have also seen metric spaces
that are not complete (Example 2.2.9). Thus it is natural to ask, “Given a
metric spaces (X , d), it is possible to view X inside a complete metric space?”
To answer this question, we must first define what we mean by ‘view inside’.
This leads to the question, “What does it mean for two metric spaces to be
the same?”

To begin, we note the following notion of‘equality of metric spaces’ which
is related to topological notions.

Definition 2.5.1. Let (X , dX ) and (Y, dY) be metric spaces. A function
f : X → Y is said to be a homeomorphism if f is invertible and both f and
f−1 are continuous. Furthermore, its is said that (X , dX ) and (Y, dY) are
homeomorphic if there exists a homeomorphism from X to Y.

Example 2.5.2. For each n ∈ N, let f : Kn → Kn be defined by f(x) = x.
Then f is a homeomorphism from (Kn, ∥ · ∥p) to (Kn, ∥ · ∥q) for any p, q ∈
[1, ∞]. Indeed, since

∥(z1, . . . , zn)∥∞ ≤ ∥(z1, . . . , zn)∥p ≤ n
1
p ∥(z1, . . . , zn)∥∞

for all (z1, . . . , zn) ∈ Kn by Remark 1.3.14, we clearly see that f is a home-
omorphism from (Kn, ∥ · ∥∞) to (Kn, ∥ · ∥p) for any p ∈ [1, ∞]. Since the
composition of homeomorphisms is clearly a homeomorphism, the result
follows.

Example 2.5.3. For each n ∈ N, let f : R2n → Cn be defined by

f(x1, . . . , x2n) = (x1 + ix2, x3 + ix4, . . . , x2n−1 + ix2n)

for all (x1, . . . , x2n) ∈ R2n. Then f is a homeomorphism from (R2n, ∥ · ∥2)
to (Cn, ∥ · ∥2) (and thus from (R2n, ∥ · ∥p) to (Cn, ∥ · ∥q) for any p, q ∈ [1, ∞]).
Indeed as |a + bi| =

√
a2 + b2 for all a, b ∈ R, it is trivial to verify that f is a

homeomorphism.

Remark 2.5.4. The notion of homeomorphic metric spaces produces an
equivalence relation on metric spaces. Indeed define two metric spaces to
be equivalent if and only if there are homeomorphic. It is elementary to
verify that this is an equivalence relation on the collection of metric spaces.
Consequently homeomorphic is a good notion for when two metric spaces
are the same. Indeed note that if (X , dX ) and (Y, dY) are homeomorphic
and f : X → Y is a homeomorphism, then f provides a bijection between
convergent sequences; that is, if (xn)n≥1 is a sequence in X , then (xn)n≥1
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converges to x in X if and only if (f(xn))n≥1 converges to f(x) in Y. Using
Theorem 1.5.7 this implies a subset F of X is closed if and only if f(F ) is
closed in Y . Consequently a subset U of X is open if and only if f(U) is open
in Y. Hence both X and Y have the same topologies. Thus, for all intents
and purposes in this course, (X , dX ) and (Y, dY) are the ‘same topological
spaces’. In particular, Example 2.5.2 implies (Kn, ∥ · ∥p) for p ∈ [1, ∞] are all
the same metric space and Example 2.5.3 implies (R2n, ∥ · ∥2) to (Cn, ∥ · ∥2)
can be viewed as the same metric space.

Remark 2.5.5. Furthermore, the notion of a homeomorphism can be used
to show something interesting. Given two metric d1 and d2 on a non-empty
set X, we know that if (X, d1) and (X, d2) have the same topology, then
they have the same convergent sequences by Proposition 1.4.3. Conversely,
if (X, d1) and (X, d2) have the same convergent sequences, then the identity
map from (X, d1) to (X, d2) is a homeomorphism so a set U is open in (X, d1)
if and only if U is open in (X, d2). Hence convergent sequences completely
determine the topology of a metric space!.

Remark 2.5.6. However, there is an issue with using homeomorphic as the
notion for two metric spaces to be ‘equal’. Indeed we can also show the identity
map is a homeomorphism from (R, | · |) to (R, d) where d : R × R → [0, ∞)
is defined by d(x, y) = |e−x − e−y| as in Example 1.1.4. Indeed Example
2.1.10 showed that (R, | · |) and (R, d) have the same convergent sequences.
However, Example 2.1.10 also showed that (R, | · |) and (R, d) do not have
the same Cauchy sequences. Thus is homeomorphism truly the right notion
for metric spaces to be the same?

As the above demonstrates, the notion of homeomorphic metric spaces
is weaker than what we desire as although the topological properties are
preserved, the metric structures are not. Thus we make the following
definitions.

Definition 2.5.7. Let (X , dX ) and (Y, dY) be metric spaces. A function
φ : X → Y is said to be an isometry if dY(φ(x1), φ(x2)) = dX (x1, x2) for all
x1, x2 ∈ X .

If in addition to being an isometry φ is a bijection, it is said that φ is an
isomorphism. Finally, its is said that (X , dX ) and (Y, dY) are isomorphic if
there exists an isomorphism from X to Y.

Remark 2.5.8. Notice that if φ is an isometry, then φ(x1) = φ(x2) if and
only if

0 = dY(φ(x1), φ(x2)) = dX (x1, x2)

if and only if x1 = x2. Hence every isometry is automatically injective. Fur-
thermore, since isometries preserve distances, it is clear that every isometry
is continuous.

©For use through and only available at pskoufra.info.yorku.ca.



70 CHAPTER 2. COMPLETENESS

Example 2.5.9. Let f : K → K where K is equipped with the absolute
value metric. It is elementary to see that f is an isometry (of metric spaces)
if and only if there exists an a ∈ K and a u ∈ K such that |u| = 1 and
f(x) = ux + a for all x ∈ K. Indeed, such a function is easily seen to be an
isometry. Conversely, given an isometry f , let a = f(0) and u = f(1) − f(0).
It is then not difficult to verify that f(x) = ux + a for all x ∈ K. Note all
such isometries are isomorphisms.

Example 2.5.10. Using the results from Chapter 6, it will be possible to
show that a function f : Kn → Kn is an isometry with respect to the 2-norms
if and only if there exists an a⃗ ∈ Kn and a n × n matrix U with entries in K
such that U∗U = In (where U∗ is the conjugate transpose of U and In is the
n × n identity matrix) and f(x⃗) = Ux⃗ + a⃗ for all x⃗ ∈ Kn.

Example 2.5.11. Define f : R → R2 by f(x) = (x, 0). Clearly f is an
isometry that is not an isomorphism.

Example 2.5.12. The function f : R2n → Cn in Example 2.5.3 is an
isomorphism from (R2n, ∥ · ∥2) to (Cn, ∥ · ∥2). However, for any n ∈ N, f is
not an isomorphism from (R2n, ∥ · ∥p) to (Cn, ∥ · ∥p) for any p ∈ [1, ∞) since

∥f(1, 1, . . . , 1)∥p =
(

n∑
k=1

|1 + i|p
) 1

p

= n
1
p
√

2

whereas ∥(1, . . . , 1)∥p = (2n)
1
p . Similarly ∥f(1, . . . , 1)∥∞ =

√
2 whereas

∥(1, . . . , 1)∥∞ = 1 so f is not an isomorphism from (R2n, ∥ · ∥∞) to (Cn, ∥ · ∥∞).

Remark 2.5.13. The notion of isomorphic metric spaces produces an
equivalence relation on metric spaces. Indeed define two metric spaces to be
equivalent if and only if there are isomorphic. It is elementary to verify that
this is an equivalence relation on the collection of metric spaces. Note this
is a superior notion of equivalence than homeomorphic as it preserves the
metric structures in addition to the topology!

In fact, the following demonstrates that every metric space can be viewed
as a subset of continuous real-valued functions!

Theorem 2.5.14. Let (X , dX ) be a metric space. Then (X , dX ) is isomorphic
to a subset of (Cb(X ,R), ∥ · ∥∞).

Proof. Fix a point a ∈ X . For each z ∈ X , define a function fz : X → R by

fz(x) = d(x, z) − d(x, a)

for all x ∈ X . We claim that fz ∈ Cb(X ,R). To see this, notice for all x ∈ X
that

|fz(x)| = |d(x, z) − d(x, a)| ≤ d(z, a)
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by the reverse triangle inequality. Hence fz is bounded by d(z, a). Further-
more, to see that fz is continuous, we notice that the functions x 7→ d(x, z)
and x 7→ d(x, a) are continuous by Example 1.6.5. Hence fz ∈ Cb(X ,R).

Define the map φ : X → Cb(X ,R) by

φ(z) = fz.

We claim that φ is an isomorphism. To see this, notice for all z1, z2 ∈ X and
x ∈ X that

|fz1(x) − fz2(x)| = |(d(x, z1) − d(x, a)) − (d(x, z2) − d(x, a))|
= |d(x, z1) − d(x, z2)| ≤ d(z1, z2)

by the triangle inequality. Hence ∥φ(z1) − φ(z2)∥∞ ≤ d(z1, z2) for all z1, z2 ∈
X . However, since

|fz1(z2)−fz2(z2)| = |(d(z2, z1) − d(z2, a)) − (d(z2, z2) − d(z2, a))| = d(z2, z1)

we obtain that ∥φ(z1) − φ(z2)∥∞ = d(z1, z2). Hence φ is an isometry as
desired.

Returning to our original goal of determining whether we can view every
metric spaces inside a complete metric space, we are in a position to define
what we mean by ‘inside a complete metric space’. Of course, we would
also like to take the complete metric space to be as small as possible. This
returns us to the idea of a closure (Definition 1.5.20).

Definition 2.5.15. Let (X , dX ) be a metric space. A completion of (X , dX ) is
a complete metric space (Y, dY) such that there exists an isometry φ : X → Y
such that φ(X ) = Y.

Example 2.5.16. Consider the metric space (Q, d) where d(x, y) = |x − y|
for all x, y ∈ Q. Clearly (R, | · |) is a completion of (Q, d).

In fact, we have already established everything we require to show that a
metric space has a completion.

Corollary 2.5.17. Every metric space has a completion.

Proof. Let (X , d) be a metric space. By Theorem 2.5.14, there exists a subset
A ⊆ (Cb(X ,R), ∥ · ∥∞) such that X is isomorphic to A. As (Cb(X ,R), ∥ · ∥∞)
is complete by Theorem 2.2.5, A is complete by Theorem 2.1.12. Hence A is
a completion of X by definition.

Of course, it would be nice if each metric space only had one completion.
The following demonstrates this is the case.

Proposition 2.5.18. Any two completions of a metric space are isomorphic.
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Proof. Let (X , dX ) be a metric space. Suppose that (Y, dY) and (Z, dZ) are
completions of (X , dX ). Therefore there exists isometries φY : X → Y and
φZ : X → Z such that φY(X ) = Y and φZ(X ) = Z. Our goal is to extend
the identity map from X ⊆ Y to X ⊆ Z to obtain an isometry from Y to Z.
To do this, we will make use of the fact that Y and Z are complete and thus
have convergent Cauchy sequences.

To define an isometry φ : Y → Z, let y ∈ Y be arbitrary. Hence, as Y
is the closure of X there exists a sequence (xn)n≥1 of elements of X such
that y = limn→∞ φY(xn). However, as (φY(xn))n≥1 converges in (Y, dY),
(φY(xn))n≥1 is Cauchy in (Y, dY). Therefore, (xn)n≥1 is Cauchy in (X , dX )
as φY is an isometry. Hence (φZ(xn))n≥1 also must be Cauchy as φZ is
an isometry. Since (Z, dZ) is complete, (φZ(xn))n≥1 converges in (Z, dZ).
Let zy = limn→∞ φZ(xn). We would like to define φ : Y → Z such that
f(y) = zy.

There is one technical issue with this definition that we should get out
of the way; that is, we desire to show that if (x′

n)n≥1 is another sequence
of elements of X such that y = limn→∞ φY(x′

n), then zy = limn→∞ φZ(x′
n).

This will demonstrate that the sequence of elements of X we choose converging
to y ∈ Y does not affect the limit in (Z, dZ). To see this, notice by the
triangle inequality and properties of limits that

lim
n→∞

dZ(φZ(x′
n), φZ(xn)) = lim

n→∞
dX (x′

n, xn)

= lim
n→∞

dY(φY(x′
n), φY(xn))

= dY(y, y) = 0.

Hence as zy = limn→∞ φZ(xn), the above easily implies zy = limn→∞ φZ(x′
n).

Hence the claim is complete.
Hence we may define φ : Y → Z as follows: for each y ∈ Y choose a

sequence (xn)n≥1 of elements of X such that y = limn→∞ φY(xn) and define
φ(y) = limn→∞ φZ(xn). We claim that φ is an isometry. To see this, let
y, y′ ∈ Y be arbitrary. Choose sequence (xn)n≥1 and (x′

n)n≥1 of elements of
X such that y = limn→∞ φY(xn) and y′ = limn→∞ φY(x′

n). Then, by the
triangle inequality and properties of limits,

dZ(φ(y), φ(y′)) = lim
n→∞

dZ(φZ(xn), φZ(x′
n))

= lim
n→∞

dX (xn, x′
n)

= lim
n→∞

dY(φY(xn), φY(x′
n))

= dY(y, y′).

Hence φ is an isometry (and therefore injective).
To see that φ is surjective (and thus a bijection) let z ∈ Z be arbitrary.

Note as Z is the completion of φZ(X ), there exists a sequence (xn)n≥1 of
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elements of X such that z = limn→∞ φZ(xn). By similar arguments to those
above, y = limn→∞ φY(xn) exists and thus φ(y) = z. Hence, as z ∈ Z was
arbitrary, φ is surjective. Hence Y and Z are isomorphic.

The above demonstrates everything we could possibly want to know
about completions for metric spaces. However, if we are dealing with normed
linear spaces, we would like our maps to preserve the vector space structures.
In particular, we would like our maps to be linear in order to obtain the
appropriate notion of equality. Thus we make the following definitions.

Definition 2.5.19. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces.
A function φ : X → Y is said to be an isometry if φ is linear and ∥φ(x⃗)∥Y =
∥x⃗∥X for all x⃗ ∈ X .

If in addition to being an isometry φ is a bijection, it is said that φ
is an isomorphism. Finally, its is said that (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) are
isomorphic if there exists a isomorphism from X to Y.

Note ∥φ(x⃗)∥Y = ∥x⃗∥X for all x⃗ ∈ X along with the fact that φ is linear
implies

∥φ(x⃗1) − φ(x⃗2)∥Y = ∥x⃗1 − x⃗2∥X .

In particular, isometries for normed linear spaces are isometries for metric
spaces.

Example 2.5.20. Note Example 2.5.3 shows that (R2n, ∥ · ∥2) and (Cn, ∥ · ∥2)
were isomorphic metric spaces. If we view Cn as a vector space over R,
then the same proof shows that (R2n, ∥ · ∥2) and (Cn, ∥ · ∥2) are isomorphic
normed linear spaces. However, if we view Cn as a vector space over C, then
(R2n, ∥ · ∥2) and (Cn, ∥ · ∥2) are not isomorphic. Thus we will always view Cn

as a vector space over C (as otherwise we should just consider R2n).

Of course, when dealing with normed linear spaces, we would like our
completions to behave well with respect to the vector space structures. Thus
we provide an alternate and improved definition for the completion of a
normed linear space.

Definition 2.5.21. Let (X , ∥ · ∥X ) be a normed linear space. A completion
of (X , ∥ · ∥X ) is a Banach space (Y, ∥ · ∥Y) such that there exists an isometry
φ : X → Y such that φ(X ) = Y.

Of course Corollary 2.5.17 demonstrates that every normed linear space
has a completion as a metric space whereas Proposition 2.5.18 shows that
there is only one possible completion for each metric space. As a normed linear
space completion is a metric space completion, the completion in Corollary
2.5.17 is the only candidate for a normed linear space completion. However,
it is not clear whether the function z⃗ 7→ fz⃗ (where fz⃗(x⃗) = ∥z⃗ − x⃗∥ − ∥x⃗ − a⃗∥
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for all x⃗ ∈ X and a⃗ ∈ X is fixed) is linear. Thus it is unclear that every
normed linear space has a normed linear space completion.

It turns out that every normed linear space has a completion as a normed
linear space. There are two methods we could take to proving this. The
first is to take the metric space completion of a normed linear space (X , ∥ · ∥)
and define a vector space structure on the completion via the vector space
structure on X . The difficulty then comes in definition the norm and verifying
the definition does produce a norm.

We will proceed with an alternative description of the completion for
normed linear spaces. This description uses equivalence of Cauchy sequences
and it of use in showing that structures more specific than normed linear
spaces have closures with appropriate properties (see Theorem 6.2.2).

Theorem 2.5.22. Every normed linear space has a completion.

Proof. Let (X , ∥ · ∥X ) be a normed linear space. Let V denote the set of all
Cauchy sequences in X . Note that V is non-empty as every constant sequence
is Cauchy. In fact, the constant sequences will give us the embedding of X
into its completion. Furthermore, since given Cauchy sequences (x⃗n)n≥1 and
(y⃗n)n≥1 and α ∈ K, the sequences

(x⃗n + y⃗n)n≥1 and (αx⃗n)n≥1

are Cauchy by the properties of the norm, V is a vector space over K.
However, V is not the normed linear space we want. To construct a normed
linear space, we require a quotient.

Let
W =

{
(x⃗n)n≥1 ∈ V | lim

n→∞
x⃗n = 0⃗

}
.

Clearly W is a subspace of V . Recall an equivalence relation ∼ may be
placed on V via v⃗1 ∼ v⃗2 if and only if v⃗1 − v⃗2 ∈ W . Furthermore, recall if
[v⃗] denotes the equivalence class of v⃗ and V/W is the set of all equivalence
classes, then V/W is a vector space with operations [v⃗1] + [v⃗2] = [v⃗1 + v⃗2]
and α[v⃗] = [αv⃗]. In particular, two elements (x⃗n)n≥1, (y⃗n)n≥1 ∈ V produce
the same element in V/W if and only if

lim
n→∞

∥x⃗n − y⃗n∥X = 0

Define ∥ · ∥ : V/W → [0, ∞) by

∥[(x⃗n)n≥1]∥ = lim sup
n→∞

∥x⃗n∥X

and note that since (x⃗n)n≥1 is Cauchy and thus bounded by Lemma 2.1.3,
∥ · ∥ does indeed map into [0, ∞). However, since we are dealing with
equivalence classes, we must check that ∥ · ∥ is well-defined. To see this,
notice if [(x⃗n)n≥1] = [(y⃗n)n≥1] then

lim
n→∞

∥x⃗n − y⃗n∥X = 0.
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so
lim sup

n→∞
∥x⃗n∥X = lim sup

n→∞
∥y⃗n∥X

by the reverse triangle inequality. Hence ∥ · ∥ is well-defined. To see that ∥ · ∥
is indeed a norm, note that ∥[(x⃗n)n≥1]∥ = 0 if and only if lim supn→∞ ∥x⃗n∥X =
0 if and only if (x⃗n)n≥1 ∈ W if and only if [(x⃗n)n≥1] = 0⃗V/W . As the other
properties from Definition 1.1.14 are trivial to verify, (V/W, ∥ · ∥) is a normed
linear space.

We will postpone the proof that (V/W, ∥ · ∥) is complete momentarily in
order to demonstrate some facts in relation to X . Define φ : X → V/W
by φ(x⃗) = [(x⃗)n≥1]; that is, map each element of X to a constant sequence.
Clearly φ is well-defined, linear, and an isometry. We claim that φ(X ) is
dense in V/W .

To see that φ(X ) is dense in V/W , let [(x⃗n)n≥1] ∈ V/W be arbitrary and
let ϵ > 0 be arbitrary. Since (x⃗n)n≥1 is Cauchy in X , there exists an N ∈ N
such that ∥x⃗n − x⃗m∥X < ϵ for all n, m ≥ N . Hence

∥φ(x⃗N ) − [(x⃗n)n≥1]∥ ≤ ϵ

by the definition of ∥ · ∥. Therefore, as ϵ > 0 was arbitrary, [(x⃗n)n≥1] is in
the closure of φ(X ). Therefore, as [(x⃗n)n≥1] ∈ V/W was arbitrary, φ(X ) is
dense in V/W .

To see that (V/W, ∥ · ∥) is complete, let (z⃗n)n≥1 be an arbitrary Cauchy
sequence in (V/W, ∥ · ∥). Since φ(X ) is dense in V/W , for each n ∈ N there
exists an x⃗n ∈ X such that

∥φ(x⃗n) − z⃗n∥ <
1
n

.

We claim that (x⃗n)n≥1 is a Cauchy sequence of elements of X and thus is an
element of V . To see this, notice for all n, m ∈ N that

∥x⃗n − x⃗m∥X = ∥φ(x⃗n) − φ(x⃗m)∥
≤ ∥φ(x⃗n) − z⃗n∥ + ∥z⃗n − z⃗m∥ + ∥z⃗m − φ(x⃗m)∥

≤ 1
n

+ 1
m

+ ∥z⃗n − z⃗m∥ .

Therefore, as (z⃗n)n≥1 is Cauchy, it is elementary to verify the above inequality
implies (x⃗n)n≥1 is Cauchy. Finally, to see that (z⃗n)n≥1 converges to z⃗ =
[(x⃗n)n≥1], we notice that

lim
n→∞

∥φ(x⃗n) − z⃗∥ = 0

as (x⃗n)n≥1 is Cauchy. Hence as

∥z⃗n − z⃗∥ ≤ ∥z⃗n − φ(x⃗n)∥ + ∥φ(x⃗n) − z⃗∥ ≤ 1
n

+ ∥φ(x⃗n) − z⃗∥ ,
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we obtain that (z⃗n)n≥1 converges to z⃗ = [(x⃗n)n≥1]. Therefore, as (z⃗n)n≥1
was an arbitrary Cauchy sequence, V/W is complete thereby completing the
proof.

We saw in Example 2.2.9 that the p-norm on the continuous functions is
not complete. Thus a natural question to ask is, “What is the completion
of C[0, 1] with respect to the p-norm?” This question can only be answered
with knowledge from MATH 4012.
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Chapter 3

Banach Space Theorems

We have already seen several properties that make Banach spaces excellent
analytic objects to work with. The goal of this chapter is to develop sev-
eral important theorems in Banach space theory that have wide reaching
applications.

3.1 Banach Contractive Mapping Theorem
Our first goal is to prove a theorem that says certain maps on a space have
a ‘fixed point’; that is, a map f : X → X has a fixed point if there is an
element a ∈ X such that f(a) = a. One corollary of this theorem is that we
can find solutions to several types of equations using fixed points.

There are many types of fixed point theorems in analysis. The one specific
one we will be investigating involves the following type of map.

Definition 3.1.1. Let (X , d) be a metric space. A map f : X → X is said
to be a contraction if there exists a k ∈ [0, 1) such that

d(f(x), f(y)) ≤ kd(x, y)

for all x, y ∈ X .

It is elementary to see that every contraction is a continuous function.
However, not all continuous functions are contractions.

Example 3.1.2. The functions f, g : R → R defined by f(x) = x + 2
and g(x) = x2 for all x ∈ R are not contractions. However, the function
h : [0, 1] → R defined by h(x) = cos(x) is a contraction. Indeed, to see that
h is a contraction, we note by the Mean Value Theorem that for all x, y ∈ R
with x < y that there exists a c ∈ (x, y) such that

|h(x) − h(y)| = | cos(x) − cos(y)| ≤ | sin(c)||x − y|.

Thus, as sin(c) ̸= ±1 for all x ∈ [0, 1], we obtain that h is a contraction.

77



78 CHAPTER 3. BANACH SPACE THEOREMS

Example 3.1.3. Let X be a normed linear space and let T ∈ B(X , X ).
Then T is a contraction if and only if ∥T∥ < 1.

The reason contractive maps are so important is the following fixed point
theorem for complete metric spaces.

Theorem 3.1.4 (Banach Contractive Mapping Theorem). Let (X , d)
be a complete metric space and let f : X → X be a contraction. Then there
exists a unique point x0 ∈ X such that f(x0) = x0 (that is, f has a unique
fixed point).

Proof. Let (X , d) be a complete metric space and let f : X → X be a
contraction. Therefore there exists a k ∈ [0, 1) such that

d(f(x), f(y)) ≤ kd(x, y)

for all x, y ∈ X . First we will show the existence of an x0 ∈ X such that
f(x0) = x0.

Choose any point x1 ∈ X . For each n ∈ N, recursively define xn ∈ X via
xn+1 = f(xn). We claim that (xn)n≥1 is Cauchy. To see this, let ϵ > 0 be
arbitrary. Notice for all q ∈ N with q ≥ 2 that

d(xq+1, xq) = d(f(xq), f(xq−1)) ≤ kd(xq, xq−1) ≤ . . . ≤ kq−1d(x2, x1).

Choose N ∈ N such that kn−1

1−k d(x2, x1) < ϵ for all n ≥ N . Therefore, if
m, n ∈ N are such that m ≥ n ≥ N , then

d(xm, xn) ≤
m−1∑
q=n

d(xq+1, xq) by the triangle inequality

≤
m−1∑
q=n

kq−1d(x2, x1)

≤
∞∑

q=n

kq−1d(x2, x1)

= kn−1

1 − k
d(x2, x1) < ϵ

as 0 ≤ k < 1. Hence (xn)n≥1 is Cauchy as desired.
Since X is complete, (xn)n≥1 converges in X . Let x0 = limn→∞ xn. We

claim that f(x0) = x0. To see this, notice since f is continuous that

f(x0) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = x0

as desired.
Finally, to show that x0 is the unique fixed point, suppose there exists a

point y ∈ X such that f(y) = y. Since

d(x0, y) = d(f(x0), f(y)) ≤ kd(x0, y),

and since 0 ≤ k < 1, we see that d(x0, y) = 0 and thus y = x0 as desired.
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Remark 3.1.5. Before moving on, we note that the Banach Contractive
Mapping Theorem (Theorem 3.1.4) fails if one replaces the assumption ‘f
is a contraction’ with the weaker notion that ‘d(f(x), f(y)) < d(x, y) for all
x, y ∈ X with x ̸= y’. Indeed consider X = [1, ∞), which is a complete metric
space with respect to the absolute value metric as X is a closed subset of
the complete metric space (R, | · |).

Define f : X → X by

f(x) = x + 1
x

for all x ∈ X . To see that f is well-defined (that is, f(x) ∈ X for all x ∈ X ),
notice that f(x) > x for all x ∈ X . Hence as [x, ∞) ⊆ X for all x ∈ X , f is
well-defined.

To see that |f(x) − f(y)| < |x − y| for all x, y ∈ X , notice that f is
differentiable on X with

f ′(x) = 1 − 1
x2 .

Therefore, if x, y ∈ X are such that x ̸= y, then the Mean Value Theorem
implies there exists a c ∈ (1, ∞) such that

|f(x) − f(y)| ≤ |f ′(x)||x − y| =
(

1 − 1
c2

)
|x − y| < |x − y|.

Hence f has the first desired property.
To see that f does not have a fixed point, suppose otherwise that there

exists an x0 ∈ X such that f(x0) = x0. Hence

x0 = f(x0) = x0 + 1
x0

so 1
x0

= 0, which is an obvious contradiction. Hence f does not have a fixed
point.

Although it may not seem like it, but the Banach Contractive Mapping
Theorem (Theorem 3.1.4) is quite powerful. To emphasize this power, we
note we can prove the following result which is assumed in pretty much every
differential equations course without proof.

Theorem 3.1.6 (Picard’s Theorem). Let K ∈ C([a, b] × [c, d],R) and
suppose there exists an M ∈ R such that

|K(x, y1) − K(x, y2)| ≤ M |y1 − y2|

for all x ∈ [a, b] and y1, y2 ∈ [c, d]. Then for any x0 ∈ (a, b) and y0 ∈ (c, d)
there exists a unique function f on an open interval I containing x0 such
that f(x0) = y0 and f ′(x) = K(x, f(x)) for all x ∈ I.
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Proof. First, since

|K(x, y1) − K(x, y2)| ≤ M |y1 − y2|

for all x ∈ [a, b] and y1, y2 ∈ [c, d], we see that there exists a constant
k1 = M(d − c) > 0 such that

|K(x, y) − K(x, c)| ≤ k1

for all y ∈ [c, d] and all x ∈ [a, b]. Furthermore, as x 7→ K(x, a) is continuous,
the Extreme Value Theorem implies there exists a constant k2 such that
|K(x, c)| ≤ k2 for all x ∈ [a, b]. Hence

|K(x, y)| ≤ k1 + k2

for all (x, y) ∈ [a, b] × [c, d]. Let k0 = k1 + k2 > 0 so that |K(x, y)| ≤ k0 for
all (x, y) ∈ [a, b] × [c, d] (note the existence of k0 is far simplified with the
multivariate Extreme Value Theorem; see Chapter 4).

Choose an ϵ > 0 so that [y0 − ϵ, y0 + ϵ] ⊆ [c, d] and choose a δ > 0 so that

0 < δ < min
{

ϵ

k0
,

1
M

, |x0 − a|, |x0 − b|
}

.

Let I = [x0 − δ, x0 + δ] ⊆ [a, b] and let J = [y0 − ϵ, y0 + ϵ] ⊆ [c, d]. Since
C(I, J) is easily seen to be a closed subset of (Cb(I,R), ∥ · ∥∞), we obtain that
(C(I, J), d∞) is a complete metric space.

Define Γ : C(I, J) → C(I, J) as follows: given an f ∈ C(I, J), Γ(f) : I → J
is the function defined by

Γ(f)(x) = y0 +
∫ x

x0
K(t, f(t)) dt

for all x ∈ I. We claim that Γ is a well-defined function; that is Γ(f)(x) is
well-defined for all x ∈ I and f ∈ C(I, J), that Γ(f)(x) ∈ J for all x ∈ I and
f ∈ C(I, J), and that Γ(f) is continuous.

To see that Γ(f)(x) is well-defined for all x ∈ I and f ∈ C(I, J), notice
that K(t, f(t)) makes sense for all t ∈ [x0, x] ∪ [x, x0] as f is defined on I and
[x0, x]∪ [x, x0] ⊆ I. Furthermore, since K ∈ C([a, b]× [c, d],R), t 7→ K(t, f(t))
is continuous be a composition of continuous functions. Therefore, since
continuous functions are Riemann integrable, we have that Γ(f)(x) makes
sense for all x ∈ I and f ∈ C(I, J).

To see that Γ(f)(x) ∈ J for all x ∈ I and f ∈ C(I, J), notice that

|Γ(f)(x) − y0| =
∣∣∣∣∫ x

x0
K(t, f(t)) dt

∣∣∣∣
≤
∣∣∣∣∫ x

x0
|K(t, f(t))| dt

∣∣∣∣
≤
∣∣∣∣∫ x

x0
k0 dt

∣∣∣∣
≤ k0|x − x0| ≤ k0δ < ϵ.
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Hence Γ(f)(x) ∈ [y0 − ϵ, y0 + ϵ] = J for all x ∈ I and f ∈ C(I, J).
Finally, to see that Γ(f) is a continuous function, notice for all x1, x2 ∈ I

with x1 < x2 that

|Γ(f)(x2) − Γ(f)(x1)| ≤
∣∣∣∣∫ x2

x1
K(t, f(t)) dt

∣∣∣∣
≤
∫ x2

x1
|K(t, f(t))| dt

≤
∫ x2

x1
k0 dt = k0(x2 − x1).

From this it is elementary to see that Γ(f) is a continuous function. Hence Γ
is a well-defined map.

We claim that Γ is a contractive map. To see this, notice for all f, g ∈
C(I, J) that for all x ∈ I we have

|Γ(f)(x) − Γ(g)(x)| =
∣∣∣∣∫ x

x0
K(t, f(t)) − K(t, g(t)) dt

∣∣∣∣
≤
∣∣∣∣∫ x

x0
|K(t, f(t)) − K(t, g(t))| dt

∣∣∣∣
≤
∣∣∣∣∫ x

x0
M |f(t) − g(t)| dt

∣∣∣∣
≤
∣∣∣∣∫ x

x0
M ∥f − g∥∞ dt

∣∣∣∣
≤ M |x − x0| ∥f − g∥∞ ≤ Mδ ∥f − g∥∞ .

Hence, as Mδ < 1 by construction, we obtain that Γ is a contractive map.
Thus the Banach Contractive Mapping Theorem (Theorem 3.1.4) implies
there exists a unique f ∈ C(I, J) such that Γ(f) = f .

As Γ(f) = f , we have for all x ∈ I that

f(x) = y0 +
∫ x

x0
K(t, f(t)) dt.

Clearly this implies f(x0) = y0. Moreover, by the Fundamental Theorem of
Calculus, we have that

f ′(x) = K(x, f(x))

for all x ∈ (x0 − δ, x0 + δ). Hence the proof is complete.

3.2 The Baire Category Theorem
In this section, we will prove one of the most surprisingly useful theorems
pertaining to complete metric spaces. Although it is not be apparent from
the statement of the theorem its uses, we will see in the subsequent sections
some of its applications.
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The theorem we are trying to prove (Theorem 3.2.7) characterizes how
specific subsets of a complete metric space behave. The types of sets involved
are outlined in the following definition.

Definition 3.2.1. Let (X , d) be a metric space. A subset A ⊆ X is said to
be

• nowhere dense if int(A) = ∅.

• first category in (X , d) if A =
⋃∞

n=1 An where each An ⊆ X is nowhere
dense.

• second category in (X , d) if A is not first category.

• residual if Ac is first category

Example 3.2.2. Consider X = R. Clearly for each x ∈ R the set {x} is
nowhere dense. Furthermore, from this it is clear that Q is of first category
in R and their complements are residual in R. One question that Theorem
3.2.7 will answer is whether R is of first or of second category.

Example 3.2.3. The Cantor set is nowhere dense. Indeed the Cantor set is
closed and has no interior by Corollary 1.5.13. Hence the Cantor set is also
of first category.

Remark 3.2.4. More often than not, given a metric space (X , d), we are
interested in whether X is of first or second category in itself. Consequently,
we see that

X =
∞⋃

n=1
An ⇒ X =

∞⋃
n=1

An.

Therefore, as the closure of a nowhere dense set is clearly nowhere dense, X
is of first category if and only if X is a countable union of closed nowhere
dense sets. Consequently, the following theorem is useful as it describes an
alternate characterization of closed, nowhere dense subsets.

Lemma 3.2.5. Let (X , d) be a metric space and let A ⊆ X . Then A is
closed and nowhere dense if and only if Ac is open and dense in X .

Proof. Suppose A is closed and nowhere dense. Hence ∅ = int(A) = int(A)
and Ac is open. To see that Ac is dense, let x ∈ X be arbitrary. Since
int(A) = ∅, for each ϵ > 0 we must have that B(x, ϵ) ∩ Ac ̸= ∅. Hence, as
x ∈ X was arbitrary, Ac is dense in X .

Conversely, suppose Ac is open and dense. Clearly this implies A is closed.
To see that A is nowhere dense (that is int(A) = int(A) is empty) let a ∈ A
be arbitrary. Since Ac is dense in X , for all ϵ > 0 there exists an x ∈ Ac

such that x ∈ B(a, ϵ). Hence for all ϵ > 0, B(a, ϵ) ⊈ A. Hence a /∈ int(A).
Therefore, as a ∈ A was arbitrary, int(A) = ∅ so A is nowhere dense.
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Corollary 3.2.6. Let (X , d) be a metric space. Then X is of first category
in itself if and only if there exists a sequence (Un)n≥1 of open dense subsets
of X with

⋂∞
n=1 Un = ∅.

Proof. The result follows directly from Lemma 3.2.5 and Remark 3.2.4.

Using this corollary, the following important theorem implies every com-
plete metric space is of second category.

Theorem 3.2.7 (Baire’s Category Theorem). Let (X , d) be a complete
metric space. Suppose (Un)n≥1 is a sequence of open dense subsets of X .
Then

⋂∞
n=1 Un is dense in X . Hence X is of second category in itself.

Proof. To see that
⋂∞

n=1 Un is dense in X , let x ∈ X and ϵ > 0 be arbitrary.
We must show that there exists an element of

⋂∞
n=1 Un within ϵ of x. To do

this, it is first useful to note that if y ∈ X and r > 0 then for any 0 < r′ < r
we have that

B[y, r′] ⊆ B(y, r).
Let r1 = 1

2ϵ. Since U1 is dense in X , there exists an element a1 ∈ U1
such that d(a1, x) < r1. Since U1 is open, by using the above comment there
exists an 0 < r2 < 1

4ϵ such that B[a1, r2] ⊆ U1 (i.e. choose an open ball
around a1 contained in U1 and then decrease the radius of the ball).

Since U2 is dense in X , there exists an element a2 ∈ U2 such that
d(a2, a1) < r2. Hence a2 ∈ B(a1, r2) so a2 ∈ U2 ∩ B(a1, r2). Hence, since
U2 ∩ B(a1, r2) is open, there exists an 0 < r2 < 1

23 ϵ such that B[a2, r3] ⊆
U2 ∩ B(a1, r2).

By recursion, for each n ∈ N there exists an an ∈ Un ∩ B(an−1, rn)
and an 0 < rn+1 < 1

2n+1 ϵ such that d(an, an−1) < rn and B[an, rn+1] ⊆
Un ∩ B(an−1, rn).

For each n ∈ N, let Fn = B[an, rn+1]. Clearly (Fn)n≥1 is a sequence of
non-empty closed subsets of X such that Fn+1 ⊆ Fn and limn→∞ diam(Fn) =
0 (as diam(Fn) ≤ 2rn+1). Hence Cantor’s Theorem (Theorem 2.3.4) implies
that

⋂∞
n=1 Fn ̸= ∅.

Let y ∈
⋂∞

n=1 Fn. We claim that y ∈
⋂∞

n=1 Un and d(x, y) < ϵ. To see
this, notice that Fn ⊆ Un for all n ∈ N. Hence as y ∈ Fn for all n ∈ N,
y ∈ Un for all n ∈ N so y ∈

⋂∞
n=1 Un. To see that d(x, y) < ϵ, we note that

y ∈ F1 = B[a1, r2] so d(y, a1) ≤ r2. Hence

d(x, y) ≤ d(x, a1) + d(a1, y) ≤ r1 + r2 < ϵ

by the triangle inequality. Hence the result follows.

There are numerous uses of the Baire Category Theorem. We conclude
this section by demonstrating a use related to the structure of R whereas
further uses will be demonstrated in subsequent sections.

Our first use of the Baire Category Theorem will be to analyze certain
subsets of metric spaces.
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Definition 3.2.8. Let (X , d) be a metric space. A subset A ⊆ X is said to be
Gδ if there exists a collection of open sets {Un}∞

n=1 such that A =
⋂∞

n=1 Un.
Similarly, a subset B ⊆ X is said to be Fσ if there exists a collection of

closed sets {Fn}∞
n=1 such that A =

⋃∞
n=1 Fn.

Remark 3.2.9. It is not difficult to see using De Morgan’s Laws that A is
Gδ if and only if Ac is Fσ.

Example 3.2.10. Every closed subset of a metric space is Gδ. To see this,
suppose F be a closed subset of a metric space (X , d). If F = ∅ then, as ∅ is
open and as

⋂∞
n=1 ∅ = ∅, we obtain that F is Gδ.

Otherwise, suppose F is not empty. For each n ∈ N, let

Un =
⋃

x∈F

B

(
x,

1
n

)
.

Clearly each Un is an open subset such that F ⊆ Un. Hence

F ⊆
∞⋂

n=1
Un.

For the other inclusion, suppose x ∈ F c. Therefore x /∈ F = F as F is closed.
Hence Lemma 1.6.12 implies that d(x, F ) > 0. Choose n ∈ N such that

d(x, F ) ≥ 1
n

> 0.

Hence d(x, y) ≥ 1
n for all y ∈ F . Thus, by the definition of Un, x /∈ Un.

Whence x /∈
⋂∞

n=1 Un. Hence

F =
∞⋂

n=1
Un

so F is Gδ.

For another example, we prove the following.

Proposition 3.2.11. The rationals are not a Gδ subset of (R, | · |).

Proof. Suppose to the contrary that Q is Gδ. Hence there exists a collection
of open sets {Un}∞

n=1 such that Q =
⋂∞

n=1 Un. Therefore Q ⊆ Un for all n
so each Un is dense in R. Hence each U c

n is closed and nowhere dense by a
result from class.

Notice that

R \ Q =
∞⋃

n=1
U c

n
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so the irrational numbers are a union of closed nowhere dense sets. Moreover,
since Q is countable, we may write Q = {rn | n ∈ N}. Thus

Q =
∞⋃

n=1
{rn}

so Q is a countable union of closed nowhere dense sets. Thus

R = (R \ Q) ∪ Q =
( ∞⋃

n=1
U c

n

)
∪
( ∞⋃

n=1
{rn}

)
,

we obtain that R is a countable union of nowhere dense sets and thus R is
of first category. However, as R is complete, the Baire Category Theorem
implies that R is not of first category thereby providing a contradiction.
Hence Q is not a Gδ set.

Using Proposition 3.2.11, we can demonstrate that certain sets cannot
be the discontinuities of a real-valued function.

Theorem 3.2.12. There does not exists a function f : R → R that is
continuous at each point in Q yet discontinuous at each point in R \ Q.

Proof. Let f : R → R. By Theorem 1.6.15 the set of discontinuities of f are
Fσ. Thus the points where f is continuous must be a Gδ set. As Q is not
Gδ by Proposition 3.2.11, f cannot be continuous at each point in Q yet
discontinuous at each point in R \ Q.

3.3 Open Mapping Theorem

Another use of the Baire Category Theorem (Theorem 3.2.7) is to study
bounded linear maps between Banach spaces. In particular, since bounded
linear maps are continuous, the inverse images of open sets are open. The
goal of this section is to prove that surjective bounded linear maps map
open sets to open sets. This enables us to prove that the inverses of bijective
bounded linear maps are bounded and characterize continuous linear maps
using their graphs.

To begin, we require the following odd looking result that says if an open
ball is in the closure of the image of a bounded linear map of an open ball,
then we can expand the later open ball to obtain strict containment.

Lemma 3.3.1. Let (X , ∥ · ∥X ) be a Banach space, let (Y, ∥ · ∥Y) be a normed
linear space, and let T ∈ B(X , Y). If BY (⃗0, 1) ⊆ T (BX (⃗0, m)) for some
m > 0, then BY (⃗0, 1) ⊆ T (BX (⃗0, 2m))
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Proof. Let m > 0 be such that BY (⃗0, 1) ⊆ T (BX (⃗0, m)). Notice for all α ∈ R
that (where for a set A, αA = {αa | a ∈ A})

BY (⃗0, α) = αBY (⃗0, 1) ⊆ αT (BX (⃗0, m))

= αT (BX (⃗0, m))

= T (αBX (⃗0, m)) = T (BX (⃗0, αm))

by linearity and continuity of T , and by properties of the norm.
To see that BY (⃗0, 1) ⊆ T (BX (⃗0, 2m)), let y⃗ ∈ BY (⃗0, 1) be arbitrary. Since

y⃗ ∈ T (BX (⃗0, m)) there exists an x⃗1 ∈ BX (⃗0, m) such that

∥y⃗ − T (x⃗1)∥Y <
1
2 .

Let y⃗1 = y⃗ − T (x⃗1) ∈ Y. Then y⃗1 ∈ BY (⃗0, 1
2) ⊆ T (BX (⃗0, 1

2m)). Hence there
exists an x⃗2 ∈ BX (⃗0, 1

2m) such that

∥y⃗1 − T (x⃗2)∥Y <
1
22 .

Repeating this process ad nauseum, we obtain a sequence of vectors (y⃗n)n≥1
in Y and a sequence of vectors (x⃗n)n≥1 in X such that y⃗n = y⃗n−1 − T (x⃗n),
y⃗n ∈ BY (⃗0, 1

2n ), x⃗n+1 ∈ BX (⃗0, 1
2n m), and

∥y⃗n − T (x⃗n+1)∥Y <
1
2n

for all n ∈ N.
Since X is a Banach space and since

∞∑
n=1

∥x⃗n∥X <
∞∑

n=1

1
2n

m = 2m < ∞,

we obtain by Theorem 2.3.6 that x⃗ =
∑∞

n=1 x⃗n exists and is an element of
BX (⃗0, 2m). To see that T (x⃗) = y⃗ thereby completing the proof, notice since
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T is continuous that

∥y⃗ − T (x⃗)∥Y = lim
n→∞

∥∥∥∥∥y⃗ − T

(
n∑

k=1
x⃗k

)∥∥∥∥∥
= lim

n→∞

∥∥∥∥∥y⃗ −
n∑

k=1
T (x⃗k)

∥∥∥∥∥
= lim

n→∞

∥∥∥∥∥y⃗1 −
n∑

k=2
T (x⃗k)

∥∥∥∥∥
= lim

n→∞

∥∥∥∥∥y⃗2 −
n∑

k=3
T (x⃗k)

∥∥∥∥∥
...
= lim

n→∞
∥y⃗n∥

≤ lim sup
n→∞

1
2n

= 0.

Hence T (x⃗) = y⃗. Therefore, since y⃗ ∈ BY (⃗0, 1) was arbitrary, BY (⃗0, 1) ⊆
T (BX (⃗0, 2m)).

Combining Lemma 3.3.1 together with the Baire Category Theorem
(Theorem 3.2.7), we obtain the following result.

Theorem 3.3.2 (Open Mapping Theorem). Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y)
be Banach spaces. If T ∈ B(X , Y) is surjective and U ⊆ X is open, then
T (U) is open in Y (that is, T maps open sets to open sets).

Proof. Let T ∈ B(X , Y) be surjective. First we will demonstrate that there
exists an r > 0 such that T (BX (⃗0, r)) is a neighbourhood of 0⃗ in Y.

To begin, for each m ∈ N consider the set Fm = T (BX (⃗0, m)) ⊆ Y.
Clearly each Fm is a closed subset of Y. Moreover, since T is surjective,

Y =
∞⋃

m=1
Fm.

Therefore, since Y is complete, the Baire Category Theorem (Theorem 3.2.7)
implies that Y is of second category and thus there must exists an m0 ∈ N
such that Fm0 is not nowhere dense. Hence int(Fm0) ̸= ∅. Therefore there
exists an y⃗0 ∈ Fm0 and a δ > 0 such that BY(y⃗0, δ) ⊆ Fm0 = T (BX (⃗0, m)).
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Since

BY (⃗0, δ) ⊆ {y⃗ − y⃗0 | y⃗ ∈ BY(y⃗0, δ)}
⊆ {y⃗1 − y⃗2 | y⃗1, y⃗2 ∈ Fm0}

= {y⃗1 + y⃗2 | y⃗1, y⃗2 ∈ T (BX (⃗0, m))}
as T is linear, −BX (⃗0, m) = BX (⃗0, m)

⊆ T (BX (⃗0, 2m))
by continuity, linearity, and the triangle inequality,

we obtain by Lemma 3.3.1 that BY (⃗0, δ) ⊆ T (BX (⃗0, 4m)).
To complete the result, let U be an arbitrary open subset of X . To see

that T (U) is open in Y, let y⃗ ∈ T (U) be arbitrary. Thus there exists a
x⃗ ∈ X such that T (x⃗) = y⃗. Since U is open, there exists an ϵ > 0 such that
BX (x⃗, ϵ) ⊆ U . However since

BY

(
0⃗,

ϵδ

4m

)
= ϵ

4m
BY (⃗0, δ) ⊆ ϵ

4m
T (BX (⃗0, 4m)) = T (BX (⃗0, ϵ))

we have that

BY

(
y⃗,

ϵδ

4m

)
=
{

y⃗ + z⃗

∣∣∣∣ z⃗ ∈ BY

(
0⃗,

ϵδ

4m

)}
⊆
{

T (x⃗) + z⃗ | z⃗ ∈ T (BX (⃗0, ϵ))
}

=
{

T (x⃗) + T (w⃗) | w⃗ ∈ BX (⃗0, ϵ)
}

=
{

T (x⃗ + w⃗) | w⃗ ∈ BX (⃗0, ϵ)
}

= T (BX (x⃗, ϵ))

by the linearity of T . Hence T (U) contains an open neighbourhood around
y⃗. Therefore, since y⃗ ∈ T (U) was arbitrary, T (U) is open in Y. Hence since
U was an arbitrary open subset of X , the result follows.

The Open Mapping Theorem has several applications.

Theorem 3.3.3 (The Inverse Mapping Theorem). Let (X , ∥ · ∥X ) and
(Y, ∥ · ∥Y) be Banach spaces and let T ∈ B(X , Y) be a bijection. Then
T −1 ∈ B(Y, X ).

Proof. Let T ∈ B(X , Y) be a bijection. Therefore T −1 : Y → X exists. Since
T is linear, clearly T −1 is linear. To see that T −1 is bounded (i.e. continuous
via Theorem 1.7.11), let U ⊆ X be open. Then

(T −1)−1(U) = T (U)

is open in Y by the Open Mapping Theorem (Theorem 3.3.2). Hence T is
continuous by Theorem 1.6.7.
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Using the Inverse Mapping Theorem (Theorem 3.3.3), we obtain the
following property relating different norms on vector spaces.

Corollary 3.3.4. Let X be a vector space over K that is complete with
respect to each of two norms ∥ · ∥a and ∥ · ∥b. If there exists a constant c1 ∈ R
such that

∥x⃗∥a ≤ c1 ∥x⃗∥b

for all x⃗ ∈ X , then there exists a constant c2 ∈ R such that

∥x⃗∥b ≤ c2 ∥x⃗∥a

for all x⃗ ∈ X .

Proof. Define T : (X , ∥ · ∥b) → (X , ∥ · ∥a) by T (x⃗) = x⃗. Clearly T is a linear
map. Moreover, since

∥x⃗∥a ≤ c1 ∥x⃗∥b

for all x⃗ ∈ X , we see that T is a bounded linear map from (X , ∥ · ∥b) to
(X , ∥ · ∥a). Hence, by the Inverse Mapping Theorem, T −1 is a bounded linear
map from (X , ∥ · ∥a) to (X , ∥ · ∥b). Since T −1(x⃗) = x⃗ for all x⃗ ∈ X , we obtain
that

∥x⃗∥b =
∥∥∥T −1(x⃗)

∥∥∥
b

≤
∥∥∥T −1

∥∥∥ ∥x⃗∥a .

Thus letting c2 =
∥∥T −1∥∥ completes the proof.

To characterize bounded linear maps using their graphs, we require the
following. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces. Define a
norm ∥ · ∥1 : X × Y → [0, ∞) by

∥(x⃗, y⃗)∥1 = ∥x⃗∥X + ∥y⃗∥Y .

Clearly ∥ · ∥1 is a norm and X × Y together with ∥ · ∥1 is denoted X ⊕1 Y.
Furthermore, it is elementary using the arguments of Section 2.2 to show
that if X and Y are Banach spaces, then X ⊕1 Y is a Banach space.

Theorem 3.3.5 (The Closed Graph Theorem). Let (X , ∥ · ∥X ) and
(Y, ∥ · ∥Y) be Banach spaces and let T : X → Y be linear. The graph

G(T ) = {(x⃗, T (x⃗)) | x⃗ ∈ X }

is closed in X ⊕1 Y if and only if T is continuous.

Proof. To see that G(T ) is closed when T is continuous, suppose T is con-
tinuous and let ((x⃗n, T (x⃗n)))n≥1 be an arbitrary sequence of elements of
G(T ) that converges to some element (x⃗, y⃗) ∈ X ⊕1 Y. Clearly this implies
(x⃗n)n≥1 converges to x⃗ in X and (T (x⃗n))n≥1 converges to y⃗ ∈ Y. Since T is
continuous, (x⃗n)n≥1 converging to x⃗ in X implies that (T (x⃗n))n≥1 converges
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to T (x⃗). Therefore, due to uniqueness of limits, we must have that y⃗ = T (x⃗).
Hence (x⃗, y⃗) ∈ G(T ) so G(T ) is closed by Theorem 1.5.7.

Conversely, suppose G(T ) is closed in X ⊕1 Y. Therefore, since G(T ) is
a vector subspace of X ⊕1 Y as T is linear, and since X ⊕1 Y is a Banach
space, G(T ) is also a Banach space by Theorem 2.1.12.

Define S : X → G(T ) by

S(x⃗) = (x⃗, T (x⃗))

for all x⃗ ∈ X . Clearly S is a linear map that is injective (by the first
coordinate) and surjective. Hence S is invertible with S−1 : G(T ) → X
defined by

S−1((x⃗, T (x⃗))) = x⃗.

Notice for all (x⃗, T (x⃗)) ∈ G(T ) that∥∥∥S−1((x⃗, T (x⃗)))
∥∥∥

X
= ∥x⃗∥X ≤ ∥x⃗∥X + ∥T (x⃗)∥Y = ∥(x⃗, T (x⃗))∥1 .

Therefore S−1 is bounded. Hence, as X and G(T ) are Banach spaces,
the Inverse Mapping Theorem (Theorem 3.3.3) implies that S is bounded.
Therefore, since

∥T (x⃗)∥Y ≤ ∥T (x⃗)∥Y + ∥x⃗∥X = ∥S(x⃗)∥1 ≤ ∥S∥ ∥x⃗∥X ,

we see that T is bounded as desired. Hence T is continuous as desired.

3.4 Principle of Uniform Boundedness
For our final major Banach space theorem of this chapter, we will use the Baire
Category Theorem (Theorem 3.2.7) to deduce certain pointwise bounded
sets are uniformly bounded. These two Uniform Boundness Principles are
quite useful.

We begin with the following Uniform Boundness Principles for continuous
functions on complete metric spaces.

Theorem 3.4.1 (Uniform Boundedness Principle). Let (X , dX ) be a
complete metric space, let (Y, dY) be a metric space, let y ∈ Y be a fixed
element, and let F ⊆ C(X , Y) be a non-empty set of functions such that for
each x ∈ X

Mx := sup
f∈F

dY(f(x), y) < ∞.

Then there exists a non-empty open subset U of X and a constant M > 0
such that

dY(f(x), y) ≤ M

for all f ∈ F and x ∈ U .
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Proof. For each n ∈ N, let

Fn =
{

x ∈ X
∣∣∣∣∣ sup

f∈F
dY(f(x), y) ≤ n

}
.

Clearly each Fn is a closed set as each element of F is continuous and the
distance function is continuous. Furthermore, if x ∈ X then x ∈ Fn for all
n ≥ Mx. Hence

X =
∞⋃

n=1
Fn.

Therefore, since X is second countable by the Baire Category Theorem
(Theorem 3.2.7), there exists an n0 ∈ N such that Fn0 is not nowhere dense
in X . Therefore ∅ ̸= int(Fn0) = int(Fn0) so there exists an open subset U
of X with U ⊆ Fn0 . Hence for all x ∈ U we have dY(f(x), y) ≤ n0 for all
f ∈ F as desired.

Note the above theorem is most useful when Y is a normed linear space
and y = 0⃗. In this case, the assumption becomes

Mx := sup
f∈F

∥f(x)∥Y < ∞

and the conclusion becomes

∥f(x)∥Y ≤ M

for all f ∈ F and x ∈ U .
Building on the above theorem, we obtain the following Uniform Bound-

edness Principle for bounded linear maps between Banach spaces

Theorem 3.4.2 (Uniform Boundedness Principle - Banach space
version). Let (X , ∥ · ∥X ) be a Banach space, (Y, ∥ · ∥Y) a normed linear space,
and let F ⊆ B(X , Y) be non-empty. Suppose for each x⃗ ∈ X that

sup{∥T (x⃗)∥Y | T ∈ F} < ∞.

Then
sup{∥T∥ | T ∈ F} < ∞.

Proof. For each T ∈ F , consider the function fT : X → R defined by

fT (x⃗) = ∥T (x⃗)∥Y

for all x⃗ ∈ X . Since T and the norm are continuous functions on X , it is
elementary to see that fT ∈ C(X ,R) for all T ∈ F .

Let
F0 = {fT | T ∈ F} ⊆ C(X ,R).
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Since X is complete and since

sup
f∈F0

|f(x⃗)| < ∞

for all x⃗ ∈ X , Theorem 3.4.1 implies that there exists an M > 0 and a
non-empty open subset U of X such that

∥T (x⃗)∥ = |fT (x⃗)| ≤ M

for all x⃗ ∈ U and T ∈ F .
Since U is a non-empty open set of X , there exists a vector x⃗0 ∈ U and

an ϵ > 0 so that BX (x⃗0, ϵ) ⊆ U . To obtain the conclusion, let T ∈ F be
arbitrary. Notice if x⃗ ∈ BX (⃗0, ϵ), then

∥T (x⃗)∥Y ≤ ∥T (x⃗ + x⃗0)∥Y + ∥−T (x⃗0)∥Y ≤ M + ∥T (x⃗0)∥Y .

as x⃗ + x⃗0 ∈ BX (x⃗0, ϵ). Therefore, if z⃗ ∈ BX (⃗0, 1), then

∥T (z⃗)∥Y = 1
ϵ

∥T (ϵz⃗)∥Y ≤ 1
ϵ

(
M + ∥T (x⃗0)∥Y

)
as ϵz⃗ ∈ BX (⃗0, ϵ). Hence

∥T∥ ≤ 1
ϵ

(
M + ∥T (x⃗0)∥Y

)
.

Therefore, as T ∈ F was arbitrary and as supT ∈F ∥T (x⃗0)∥Y < ∞, the proof
is complete.

The Uniform Boundedness Principle (Theorem 3.4.2) is particularly useful
to show the pointwise limit of bounded linear maps products a bounded
linear map.

Theorem 3.4.3 (The Banach-Steinhaus Theorem). Let (X , ∥ · ∥X ) be
a Banach space, let (Y, ∥ · ∥Y) be a normed linear space, and let (Tn)n≥1 be a
sequence of elements of B(X , Y) such that for all x⃗ ∈ X

lim
n→∞

Tn(x⃗)

exists in Y. Then supn≥1 ∥Tn∥ < ∞ and the map T : X → Y defined by
T (x⃗) = limn→∞ Tn(x⃗) is an element of B(X , Y).

Proof. Since for each x⃗ ∈ X the limit limn→∞ Tn(x⃗) exists, the sequence
(T (x⃗n))n≥1 is bounded. Therefore, by the Principle of Uniform Boundedness
(Theorem 3.4.2), we obtain that supn≥1 ∥Tn∥ < ∞.

Define T : X → Y by T (x⃗) = limn→∞ Tn(x⃗). Clearly if x⃗1, x⃗2 ∈ X and
α ∈ K then

T (x⃗1 +αx⃗2) = lim
n→∞

Tn(x⃗1 +αx⃗2) = lim
n→∞

Tn(x⃗1)+αTn(x⃗2) = T (x⃗1)+αT (x⃗2)
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so T is linear. To see that T is bounded, we note for all x⃗ ∈ X that

∥T (x⃗)∥ = lim
n→∞

∥Tn(x⃗)∥ ≤ lim sup
n→∞

∥Tn| ∥x⃗∥ ≤
(

sup
n≥1

∥Tn∥
)

∥x⃗∥ .

Therefore, as supn≥1 ∥Tn∥ < ∞, T is bounded.

Of course, there are many other uses of the Uniform Boundedness Princi-
ple (Theorem 3.4.2) and the Banach-Steinhaus Theorem (Theorem 3.4.3).
For example, one can use the Uniform Boundedness Principle (Theorem 3.4.2)
to prove that there exists a continuous function whose Fourier series does
not converge pointwise. In addition, there are many more uses in functional
analysis. However, that is another course.
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Chapter 4

Compact Metric Spaces

In the previous chapter we saw several major theorems that will aid in the
comprehension of Banach spaces. However, there is one tool that we are
still missing: the notion of a compact set. Compact sets are some form of
analogue of the notion of closed and bounded subsets of R in regards to
the existence of convergent sequences. In particular, in previous analysis
courses, most results for continuous functions hold for continuous functions
on a closed bounded interval. The reason these results hold is that closed
bounded intervals are compact. For example, we will see it is really the
notion of compactness that allows for the Extreme Value Theorem. Thus
compact metric spaces are some of the nicest metric spaces we can consider!

Thus the goal of this chapter is to develop the notion of compactness in
metric spaces. In particular, several equivalent notions are demonstrated.
It should be pointed out that some of these notions only are equivalent
only in the metric space setting and not the general topological setting.
However, using compactness we will be able to develop several properties that
distinguish finite and infinite dimensional Banach spaces and demonstrate
that all n-dimensional normed limit spaces are complete and really Kn in
disguise.

4.1 Compact Sets

To study compact sets, we first must define what a compact set it. The
notion of a compact set is based on trying to understand specific properties
of a set A based on collections of open sets that cover A. As such we define
the following.

Definition 4.1.1. Let (X , d) be a metric space and let A ⊆ X . A collection
{Uα}α∈I is said to be an open cover of A if each Uα is an open subset of X
and A ⊆

⋃
α∈I Uα.

Example 4.1.2. It is not difficult to see that for any set A and ϵ > 0,
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{B(a, ϵ) | a ∈ A} is an open cover of A. Similarly, if Un =
(

1
n , 1

)
for all

n ∈ N, then {Un}∞
n=1 is an open cover of (0, 1).

To study a set A via the open coverings of A, it would be incredibly useful
to be able to reduce the number of open sets contained in a covering. In
particular, being able to reduce to a finite number of sets would be optimal
as things are easy to compute exactly if one only needs to deal with a finite
number of elements. Consequently, our notion of a compact set is as follows.

Definition 4.1.3. Let (X , d) be a metric space. A subset K ⊆ X is said to
be compact if whenever {Uα}α∈I is an open cover of K there exists an n ∈ N
and α1, . . . αn ∈ I such that K ⊆

⋃n
k=1 Uαk

; that is, K is compact if every
open cover has a finite subcover .

Remark 4.1.4. If (X , d) is a metric space and A ⊆ X , then it is easy to see
that A is a compact subset of (X , d) if and only if A is a compact subset of
(A, d|A). Indeed this follows directly from Definition 4.1.3 and Proposition
1.3.15, which gives the structure of the open subset of (A, d|A). Consequently,
compactness is truly a property of the topology on a set and not the metric
space the set is living in.

Example 4.1.5. Technically the empty set is compact as every open cover
has a subcover consisting of one element.

Example 4.1.6. The subset (0, 1) of R is not compact. Indeed we previously
saw that if Un =

(
1
n , 1

)
for all n ∈ N, then {Un | n ∈ N} is an open cover

of (0, 1). However, clearly {Un}∞
n=1 does not have a finite subcover as if

n1, . . . , nm ∈ N then
⋃m

k=1 Unk
=
(

1
max{n1,...,nm} , 1

)
̸= (0, 1).

Example 4.1.7. The real numbers are not a compact set. Indeed if Un =
(−n, n) for each n ∈ N, then {Un}∞

n=1 is an open cover of R that does not
have a finite subcover.

The problem with the previous two examples are illustrated with the
following result.

Theorem 4.1.8. Let (X , d) be a metric space and let K ⊆ X be compact.
Then K is closed and bounded.

Proof. Let K ⊆ X be compact. To see that K is closed, let x ∈ Kc be
arbitrary. For each n ∈ N consider the closed set Fn = B

[
x, 1

n

]
and the open

set Un = F c
n. Since

∞⋃
n=1

Un =
( ∞⋂

n=1
Fn

)c

= {x}c = X \ {x},

we obtain that K ⊆
⋃∞

n=1 Un as x ∈ Kc. Hence {Un}∞
n=1 is an open cover

of K. Therefore, since K is compact, there exists n1, . . . , nq ∈ N such that
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K ⊆
⋃q

k=1 Unk
. If N = max{n1, . . . , nq}, we clearly obtain that K ⊆ UN

since Un ⊆ Um whenever n ≤ m. Hence B
(
x, 1

N

)
⊆ FN ⊆ Kc. Therefore,

since x ∈ Kc was arbitrary, Kc is open and thus K is closed as desired.
To see that K is bounded, fix some x ∈ X . For each n ∈ N, consider

the open set Un = B(x, n). Since for all y ∈ X there exists an m ∈ N
such that d(x, y) < m, we see that

⋃∞
n=1 Un = X . Hence {Un}∞

n=1 is an
open cover of K. Therefore, since K is compact, there exists n1, . . . , nq ∈ N
such that K ⊆

⋃q
k=1 Unk

. If N = max{n1, . . . , nq}, we clearly obtain that
K ⊆ B(x, N) and thus K is bounded.

In light of Theorem 4.1.8, we note the following.

Corollary 4.1.9. Let (X , d) be a compact metric space and let A ⊆ X . Then
A is compact if and only if A is closed.

Proof. If A is compact, then A is closed by Theorem 4.1.8.
Conversely, suppose that A is closed. To see that A is compact, let

{Uα}α∈I be an arbitrary open cover of A. Clearly {Ac} ∪ {Uα}α∈I is an open
cover of X and thus must have a finite subcover as X is compact. Clearly
this finite subcover once Ac is removed must be a finite subset of {Uα}α∈I

that covers A. Hence A is compact.

Unfortunately, compact sets are more than just closed and bounded sets
in metric spaces.

Example 4.1.10. Let X be an infinite set and let d be the discrete metric
on X. Then X is a closed and bounded subset of (X, d). However, X is not
a compact subset of (X, d) since {{x} | x ∈ X} is an open cover of X with
no finite subcovers.

Of course though, at the moment the only example of a compact set we
have provided is the empty set, which is not very illuminating. To obtain
a plethora of examples of compact sets, we turn to Kn. In particular, the
following theorem state that the converse of Theorem 4.1.8 holds for Kn.
This may lead those in previous analysis courses to define compact sets to
be closed and bounded sets. We will demonstrate why closed bounded sets
are not the correct notion to study in metric spaces later.

Theorem 4.1.11 (The Heine-Borel Theorem). Let K ⊆ Kn. Then K
is compact in (Kn, ∥ · ∥∞) if and only if K is closed and bounded.

Proof. First, if K is compact then K is closed and bounded by Theorem
4.1.8.

For the other direction, let K be closed and bounded. Suppose to the
contrary that K is not compact. Hence there exists an open cover {Uα}α∈I

of K that has no finite subcover. We desire to obtain a contradiction to this
fact.
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Since K is bounded, there exists an M ∈ R such that

K ⊆ [−M, M ] × · · · × [−M, M ]

when K = R, and

K ⊆ {(a1 + b1i, . . . , an + bni) | ai, bj ⊆ [−M, M ]}

when K = C. We will proceed with the proof where K = R as the case where
K = C follows by the same arguments using 2n in place of n.

Divide [−M, M ]n into 2n closed balls with side-lengths M . To be specific,
for all q1, . . . , qn ∈ {0, 1} let

Jq1,...,qn = [−M + Mq1, Mq1] × · · · × [−M + Mqn, Mqn].

Clearly each Jq1,...,qn is closed and the union of all possible Jq1,...,qns contains
K. Therefore, since {Uα}α∈I does not have a finite subcover of K, there
must exist one of these Jq1,...,qns such that {Uα}α∈I does not have a finite
subcover of K ∩ Jq1,...,qn (as there are a finite number of Jq1,...,qns). Denote
this Jq1,...,qn by B1 and notice diam(B1) = M .

Suppose for each k ∈ N we have constructed closed balls B1, . . . , Bk

such that Bj+1 ⊆ Bj , diam(Bj) = 1
2j M , and {Uα}α∈I does not have a finite

subcover of Bj ∩ K for all j ∈ {1, . . . , k − 1}. By repeating the above process
on Bk, there exists a closed ball Bk+1 ⊆ Bk such that diam(Bk+1) = 1

2k+1 M
and such that {Uα}α∈I does not have a finite subcover of Bk+1 ∩K. Thus, by
repeating this process ad infinitum, we obtain a collection {Bk}∞

k=1 of closed
balls of (Kn, ∥ · ∥∞) such that Bk+1 ⊆ Bk, diam(Bk) = 1

2k M , and {Uα}α∈I

does not have a finite subcover of Vk ∩ K for all k ∈ N (and thus Bk ∩ K ̸= ∅
for all k ∈ N).

Notice each Bk ∩ K is closed as K is closed and that diam(Bk ∩ K) ≤
diam(Bk) = 1

2k M . Therefore, since Kn is complete, Cantor’s Theorem
(Theorem 2.3.4) implies that

Y =
∞⋂

k=1
(Bk ∩ K) ̸= ∅.

We claim that Y has exactly one element. Indeed if x, y ∈ Y then x, y ∈ Bk

for all k ∈ N so d(x, y) ≤ diam(Bk) = 1
2k M for all k ∈ N which implies

d(x, y) = 0, or, equivalently, x = y. Hence Y contains exactly one point, say
z.

By construction z ∈ K. Therefore, as {Uα}α∈I is an open cover of K,
there exists an α0 ∈ I such that z ∈ Uα0 . Thus, since Uα0 is open, there
exists an ϵ > 0 such that B(z, ϵ) ⊆ Uα0 . Since diam(Bk) = 1

2k M for all
k ∈ N, there exists a k0 ∈ N such that diam(Bk0) < ϵ. Therefore, as z ∈ Bk0

we obtain for all x ∈ Bk0 that d(z, x) < ϵ so x ∈ B(z, ϵ) ⊆ Uα0 for all x ∈ Bk0 .
This implies Bk0 ∩ K ⊆ Bk0 ⊆ B(z, ϵ) ⊆ Uα0 which contradicts the fact that
{Uα}α∈I did not have a finite subcover of Bk0 ∩ K. As we have obtained a
contradiction, it must be the case that K is compact.
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Remark 4.1.12. Of course, since for all p ∈ [1, ∞) the Banach spaces
(Kn, ∥ · ∥∞) and (Kn, ∥ · ∥p) have the same open sets (and thus the same
open covers of sets) by Remark 1.3.14, a set K is compact in (Kn, ∥ · ∥∞) if
and only if K is compact in (Kn, ∥ · ∥p). Furthermore, as (Kn, ∥ · ∥∞) and
(Kn, ∥ · ∥p) have the same closed sets and the same bounded sets (by the
same computation as in Remark 1.3.14), the Heine-Borel Theorem (Theorem
4.1.11) also holds for (Kn, ∥ · ∥p) for all p ∈ [1, ∞).

The above demonstrates that the notion of a compact set is the same as
that of closed bounded sets in (Kn, ∥ · ∥p). Thus why compact sets are nicer
than closed bounded sets in metric spaces? The answer is the following result
that says the notion of compactness is preserved under continuous maps.

Theorem 4.1.13. Let (X , dX ) and (Y, dY) be metric spaces and let f : X →
Y be continuous. If K is a non-empty compact subset of X , then f(K) is a
compact subset of Y.

Proof. To see that f(K) is compact, let {Uα}α∈I be an arbitrary open cover
of f(K) in Y. Therefore {f−1(Uα)}α∈I is an open cover of K in X . Hence,
as K is compact, there exists α1, . . . , αn ∈ I such that K ⊆

⋃n
k=1 f−1(Uαk

).
Therefore f(K) ⊆

⋃n
k=1 Uαk

so {Uα}α∈I has a finite subcover of f(K).
Therefore, as {Uα}α∈I was arbitrary, f(K) is compact.

We note the following example which demonstrate the image under a
continuous function of a closed bounded set need not be closed nor bounded
for arbitrary metric spaces.

Example 4.1.14. Consider the metric space (Z, d) where d : Z×Z → [0, ∞)
is defined by

d(n, m) = |n − m|
1 + |n − m|

for all n, m ∈ Z. Clearly d is well-defined and a metric by the same arguments
as used in Example 1.1.11.

Notice that d(n, m) ∈ [0, 1) for all n, m ∈ Z. Hence Z is a closed bounded
set (Z, d). Furthermore, for each n ∈ Z,

inf{d(n, m) | m ∈ Z \ {n}} = min{d(n, n + 1), d(n, n − 1)} > 0

as the function x 7→ x
1+x is increasing on [0, ∞). Therefore, for each n ∈ N

there exists an rn > 0 such that B(n, rn) = {n}. Thus the topology on (Z, d)
is the discrete topology so every function from Z to a metric space must be
continuous.

Define f : Z → R by

f(n) =
{

n + 1 if n ≥ 0
− 1

n if n < 0
.

©For use through and only available at pskoufra.info.yorku.ca.



100 CHAPTER 4. COMPACT METRIC SPACES

Thus f is continuous. However, as

f(Z) = N ∪
{ 1

n
| n ∈ N

}
we clearly see that f(Z) is neither closed nor bounded in R.

Thus the above gives one reason why compact sets are far nicer than
closed bounded sets. In later sections we will see various characterizations
and uses of compact sets. For now, we note that since closed intervals in R
are compact by the Heine-Borel Theorem (Theorem 4.1.11), Theorem 4.1.13
is actually a generalization of the Extreme Value Theorem.

Theorem 4.1.15 (The Extreme Value Theorem). Let (X , d) be a
metric space, let f : X → R be continuous, and let K ⊆ X be non-empty and
compact. Then there exists points x1, x2 ∈ K such that f(x1) ≤ f(x) ≤ f(x2)
for all x ∈ K.

Proof. Since f is continuous and K is compact, Theorem 4.1.13 implies
that f(K) is a compact subset of R. Hence f(K) is closed and bounded
by Theorem 4.1.8. Since f(K) is non-empty and bounded, sup(f(K)) and
inf(f(K)) are finite and we can construct sequences of elements of f(K)
converging to sup(f(K)) and inf(f(K)) respectively. Since f(K) is also
closed, this implies sup(f(K)), inf(f(K)) ∈ f(K). Hence there exists x1, x2 ∈
K such that f(x1) = inf(f(K)) and f(x2) = sup(f(K)) so f(x1) ≤ f(x) ≤
f(x2) for all x ∈ K as desired.

4.2 Finite Dimensional Normed Linear Spaces
In this section, we will see one important use of the notion of compact
sets. In particular, using compactness we will be able to complete our study
finite dimensional normed linear spaces. As there is a plethora of finite
dimensional normed linear spaces (e.g. take your favourite normed linear
space (e.g. C[0, 1]) and take a span of a finite number of elements), we desire
to understand properties of such spaces. In particular, as we have seen that
(Kn, ∥ · ∥p) are complete and characterized compact sets as the closed and
bounded sets. We desire a similar analogue for any finite dimensional normed
linear space.

To proceed, we note that given a finite dimensional normed linear space
X there are many maps between X and (Kn, ∥ · ∥p). Our hope would be to
use one of these maps to obtain that X is complete. However, we clearly
may not be able to produce an isomorphism (i.e. there are many norms on
Kn) and the notion of homeomorphisms of metric spaces is not enough to
deduce completeness by Example 2.1.10.

However, for normed linear spaces, we have special maps: namely the
bounded linear maps. Using the notion of dimension, it is easy to construct
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an invertible linear map that is bounded when the domain is Kn equipped
with the ∞-norm.

Lemma 4.2.1. Let (X , ∥ · ∥X ) be an n-dimensional normed linear space over
K. If Kn is equipped with the ∞-norm, then there exists a bijective element
T ∈ B(Kn, X ).

Proof. Let {v⃗1, . . . , v⃗n} be a basis for X . Define T : Kn → X by

T ((z1, . . . , zn)) = z1v⃗1 + · · · + znv⃗n.

for all (z1, . . . , zn) ∈ Kn. Clearly T is linear and bijective by construction.
Furthermore for all (z1, . . . , zn) ∈ Kn

∥T ((z1, . . . , zn))∥X = ∥z1v⃗1 + · · · + znv⃗n∥X

≤
n∑

k=1
|zk| ∥v⃗k∥X

≤
(

n∑
k=1

∥v⃗k∥X

)
∥(z1, . . . , zn)∥∞ .

Hence T is bounded with ∥T∥ ≤
∑n

k=1 ∥v⃗k∥X .

We would like to conclude that the linear map T in Lemma 4.2.1 has a
bounded inverse. However, the Inverse Mapping Theorem (Theorem 3.3.3)
does not do this for us since we do not a priori know that (X , ∥ · ∥X ) is a
Banach space (i.e. complete). However, compactness comes to the rescue to
give us the following.

Lemma 4.2.2. Let (X , ∥ · ∥X ) be an n-dimensional normed linear space over
K. If Kn is equipped with the ∞-norm, then there exists a bijective linear
map T : Kn → X and two numbers 0 < k1 ≤ k2 < ∞ such that

k1 ∥z⃗∥∞ ≤ ∥T (z⃗)∥X ≤ k2 ∥z⃗∥∞

for all z⃗ ∈ Kn.

Proof. By Lemma 4.2.1 there exists a bijective element T ∈ B(Kn, X ). Hence

∥T (z⃗)∥X ≤ ∥T∥ ∥z⃗∥∞

thereby proving one inequality.
To see the other inequality, let

S1 = {z⃗ ∈ Kn | ∥z⃗∥∞ = 1}.

Clearly S1 is a closed bounded subset of Kn and therefore is compact by the
Heine-Borel Theorem (Theorem 4.1.11). Hence T (S1) is a compact subset of
X by Theorem 4.1.13. Define f : T (S1) → R by

f(x⃗) = ∥x⃗∥X
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for all x⃗ ∈ T (S1). Since f is continuous and since T (S1) is compact, by the
Extreme Value Theorem (Theorem 4.1.15) there exists a x⃗0 ∈ T (S1) such
that

α = f(x⃗0) ≤ f(x⃗)

for all x⃗ ∈ T (S1). Since x⃗0 ∈ T (S1) and since T is a bijection, x⃗0 ̸= 0⃗ so
α > 0.

We claim that
α ∥z⃗∥∞ ≤ ∥T (z⃗)∥X

for all z⃗ ∈ Kn. Clearly the inequality holds when z⃗ = 0. Otherwise if z⃗ ̸= 0
then 1

∥z⃗∥∞
z⃗ ∈ S1 so

∥T (z⃗)∥X = ∥z⃗∥∞

∥∥∥∥∥T
(

1
∥z⃗∥∞

z⃗

)∥∥∥∥∥
X

≥ α ∥z⃗∥∞ .

Thus the result follows.

The conclusions of Lemma 4.2.2 means that the norms on Kn and X
behave in a very similar way. For example, clearly (z⃗n)n≥1 converges in Kn

if and only if (T (z⃗n))n≥1 converges in X . We will see more applications of
these inequalities in Corollary 4.2.5, but for now we encapsulate this idea in
the following definition.

Definition 4.2.3. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces
over K. It is said that ∥ · ∥X and ∥ · ∥Y are equivalent if there exists a bijective
linear map T : X → Y and two numbers 0 < k1 ≤ k2 < ∞ such that

k1 ∥x⃗∥X ≤ ∥T (x⃗)∥Y ≤ k2 ∥x⃗∥X

for all x⃗ ∈ X .

It is clear that the notion of equivalent norms is an equivalence relation
on normed linear spaces. In particular, by using Lemma 4.2.2 twice, the
following is trivial.

Corollary 4.2.4. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be n-dimensional normed
linear spaces over K. Then ∥ · ∥X and ∥ · ∥Y are equivalent.

The fact that every norm on every finite dimensional normed linear space
is equivalent to ∥ · ∥∞ on Kn produces the following results properties of
finite dimensional normed linear spaces.

Corollary 4.2.5. Let (X , ∥ · ∥) be a finite dimensional normed linear space.
Then

(1) X is complete.

(2) Every vector subspace of X is closed.
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(3) A subset K ⊆ X is compact if and only if K is closed and bounded.

(4) Every linear map from X to another normed linear space is bounded.

Proof. Let (X , ∥ · ∥) be a finite dimensional normed linear space. If Kn is
equipped with the ∞-norm, then by Lemma 4.2.2 there exists a bijective
linear map T : Kn → X and two numbers 0 < k1 ≤ k2 < ∞ such that

k1 ∥z⃗∥∞ ≤ ∥T (z⃗)∥X ≤ k2 ∥z⃗∥∞

for all z⃗ ∈ Kn.
To see that X is complete, let (x⃗n)n≥1 be an arbitrary Cauchy sequence.

The above implies (T −1(x⃗n))n≥1 is a Cauchy sequence and thus converges to
some element z⃗ ∈ Kn. Since T is a continuous, we see that (x⃗n)n≥1 converges
to T (z⃗) in X . Therefore, as (x⃗n)n≥1 was arbitrary, X is complete.

To see (2), let Y be a vector subspace of X . Thus Y is a finite dimensional
normed linear space and thus complete by part (1). Hence Theorem 2.1.12
implies Y is closed.

To see (3), note if K is compact in X then K is closed and bounded
by Theorem 4.1.8. Conversely, suppose K is closed and bounded in X .
Hence T −1(K) is closed in Kn. Therefore, since the above inequalities imply
T −1(K) is bounded as K is bounded, T −1(K) is compact by the Heine-Borel
Theorem. Therefore, by Theorem 4.1.13, K = T (T −1(K)) is compact.

To see (4), let n be the dimension of X , let (Y, ∥ · ∥Y) be another normed
linear space, and let S : X → Y be a linear map. If Kn is equipped with the
∞-norm, by Corollary 4.2.4 there exists a bounded linear map T : X → Kn

such that T −1 : Kn → X is bounded. As

S = (S ◦ T −1) ◦ T,

if it can be demonstrated that S ◦ T −1 is bounded, then S is a composition
of continuous functions and thus will be continuous.

Let R = S ◦ T −1 : Kn → Y and for each k ∈ {1, . . . , n}, let

y⃗k = R((0, . . . , 0, 1, 0, . . . , 0))

where the 1 occurs in the kth position. Thus for all (z1, . . . , zn) ∈ Kn

∥R((z1, . . . , zn))∥Y = ∥z1y⃗1 + · · · + zny⃗n∥Y

≤
n∑

k=1
|zk| ∥y⃗k∥Y

≤
(

n∑
k=1

∥y⃗k∥Y

)
∥(z1, . . . , zn)∥∞ .

Hence R is bounded with ∥R∥ ≤
∑n

k=1 ∥y⃗k∥Y as desired.
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It is not difficult to find infinite dimensional counterexamples to each
property in Corollary 4.2.5.

Example 4.2.6. Consider the subset c00 of ℓ∞(N) defined by

c00 = {(an)n≥1 | an = 0 for all but finitely many n}.

Clearly c00 is a subspace of ℓ∞(N). However, we claim that c00 is not closed.
To see this, for each m, n ∈ N, define

am,n =
{ 1

n if n ≤ m

0 otherwise
.

Hence for each m ∈ N, z⃗m = (am,n)n≥1 ∈ c00. However, limm→∞ z⃗m =(
1
n

)
n≥1

in ℓ∞(N) and
(

1
n

)
n≥1

/∈ c00. Hence c00 is not closed and thus not
complete by Theorem 2.1.12. Hence conclusions (1) and (2) of Corollary
4.2.5 can fail for infinite dimensional normed linear spaces.

Example 4.2.7. Consider the set

B = B [⃗0, 1] ⊆ ℓ∞(N,R).

Clearly B is a closed bounded subset of ℓ∞(N). However, B is not compact.
To see this, let

X = {(an)n≥1 | an ∈ {−1, 0, 1} for all n}

and consider the set
U = {B(x⃗, 1) | x⃗ ∈ X}.

Clearly U is an open cover of B. However, U has no finite subcover of B
as for x⃗1, x⃗2 ∈ X, x⃗1 ∈ B(x⃗2, 1) if and only if x⃗1 = x⃗2. Therefore, as X is
not finite (specifically uncountable), U has no finite subcover of B. Hence
conclusion (3) of Corollary 4.2.5 can fail for infinite dimensional normed
linear spaces. Note we will generalize this example in Theorem 4.4.5.

Example 4.2.8. Let (X , ∥ · ∥) be an infinite dimensional normed linear space
over R with basis {x⃗n}∞

n=1. By scaling if necessary, we may assume that
∥x⃗n∥ = 1 for all n ∈ N (i.e. scaling each element in a linearly independent
spanning set preserves linear independence and spanning). Define a linear
map T : X → R by defining T (x⃗n) = n and by extending the definition of
T by linearity. As |T (x⃗n)| ≥ n and ∥x⃗n∥ = 1, we see that T is unbounded.
Hence conclusion (4) of Corollary 4.2.5 can fail for infinite dimensional
normed linear spaces.

Using Corollary 4.2.5 together with the Baire Category Theorem (The-
orem 3.2.7), we can characterize the cardinality of any basis of a infinite
dimensional Banach space. In particular, any infinite dimensional normed
linear space with a countable basis cannot possibly be a Banach space.

©For use through and only available at pskoufra.info.yorku.ca.



4.2. FINITE DIMENSIONAL NORMED LINEAR SPACES 105

Theorem 4.2.9. Every vector space basis of an infinite dimensional Banach
space is uncountable.

Proof. Suppose (X , ∥ · ∥) is an infinite dimensional Banach space with a
countable basis {x⃗n}∞

n=1. For each n ∈ N, let

Fn = span({x⃗1, . . . , x⃗n}).

Clearly each Fn is a finite dimensional vector space and thus is closed by
Corollary 4.2.5.

We claim that int(Fn) = ∅ for each n ∈ N. Indeed, if int(Fn) ̸= ∅, then
there exists an element x⃗ ∈ Fn and an ϵ > 0 such that B(x⃗, ϵ) ⊆ Fn. However,
since Fn is a subspace and closed under translation and scaling, this implies
B(⃗0, ϵ) ⊆ Fn by translation and B(⃗0, r) ⊆ Fn for all r > 0 by scaling. As the
later implies Fn = X , we would obtain X is finite dimensional contradicting
the fact that X is infinite dimensional. Thus int(Fn) = ∅ for each n ∈ N.

The above shows each Fn is nowhere dense. Since {x⃗n}∞
n=1 is a basis for

X and
X =

∞⋃
n=1

Fn,

X is a countable union of nowhere dense sets. Hence X is of first category
which contradicts the Baire Category Theorem (Theorem 3.2.7) as X is a
Banach space. As we have a contradiction, the proof is complete.

To conclude our discussions on the differences between finite and infinite
dimensional normed linear spaces, we note that every finite dimensional
normed linear spaces is a Banach space by Corollary 4.2.5 and all norms
on a finite dimensional Banach space are equivalent by Corollary 4.2.4. Of
course this is not the case for an infinite dimensional Banach space.

Proposition 4.2.10. Let (X , ∥ · ∥) be an infinite dimensional Banach space.
Then there exists another norm ∥ · ∥0 : X → [0, ∞) such that (X , ∥ · ∥0) is a
Banach space, yet ∥ · ∥ and ∥ · ∥0 are not equivalent.

Proof. By Example 4.2.8 there exists a linear map f : X → K and a vector
y⃗ ∈ X such that f(y⃗) = 1 and f is not bounded. Define S : X → X by

S(x⃗) = x⃗ − 2f(x⃗)y⃗

for all x⃗ ∈ X . Clearly S is well-defined and linear as f : X → K is linear.
We claim that S2 is the identity map on X . To see this, notice for all

x⃗ ∈ X that

S2(x⃗) = S(x⃗ − 2f(x⃗)y⃗)
= (x⃗ − 2f(x⃗)y⃗) − 2f(x⃗)(y⃗ − 2f(y⃗)y⃗)
= (x⃗ − 2f(x⃗)y⃗) − 2f(x⃗)(−y⃗) = x⃗.
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Therefore, as x⃗ ∈ X was arbitrary, S2 is the identity map on X .
Define ∥ · ∥0 : X → [0, ∞) by

∥x⃗∥0 = ∥S(x⃗)∥0

for all x⃗ ∈ X . We claim that ∥ · ∥0 is norm on X . To see this, first notice
since ∥ · ∥ : X → [0, ∞) and S : X → X that ∥ · ∥0 : X → [0, ∞). Next, notice
for all x⃗ ∈ X that ∥x⃗∥0 = 0 if and only if ∥S(x⃗)∥ = 0 if and only if S(x⃗) = 0⃗.
Clearly if x⃗ = 0⃗ then S(x⃗) = 0⃗ and thus

∥∥∥⃗0∥∥∥
0

= 0. Otherwise, if ∥x⃗∥0 = 0
then S(x⃗) = 0⃗ so x⃗ = S(S(x⃗)) = S (⃗0) = 0⃗ as S is linear. Hence ∥ · ∥0 satisfies
the first property of being a norm.

To see that ∥ · ∥0 satisfies scaling, let α ∈ K and let x⃗ ∈ X be arbitrary.
Then

∥αx⃗∥0 = ∥S(αx⃗)∥ = ∥αS(x⃗)∥ = |α| ∥S(x⃗)∥ = |α| ∥x⃗∥0 .

Hence, as α ∈ K and x⃗ ∈ X were arbitrary, ∥ · ∥0 satisfies the scaling property
of a norm.

Finally, to see that ∥ · ∥0 satisfies the triangle inequality, notice for all
x⃗1, x⃗2 ∈ X that

∥x⃗1 + x⃗2∥0 = ∥S(x⃗1 + x⃗2)∥
= ∥S(x⃗1) + S(x⃗2)∥
≤ ∥S(x⃗1)∥ + ∥S(x⃗2)∥
= ∥x⃗1∥0 + ∥x⃗2∥0 .

Hence ∥ · ∥0 satisfies the triangle inequality and thus is a norm on X .
We claim that (X , ∥ · ∥0) is complete. To see this, let (x⃗n)n≥1 be an

arbitrary Cauchy in (X , ∥ · ∥0). We claim that (S(x⃗n))n≥1 is Cauchy in
(X , ∥ · ∥). To see this, let ϵ > 0. Since (x⃗n)n≥1 is Cauchy in (X , ∥ · ∥0), there
exists an N ∈ N such that ∥x⃗n − x⃗m∥0 < ϵ for all n, m ≥ N . Hence for all
n, m ≥ N we have that

∥S(x⃗n) − S(x⃗m)∥ = ∥S(x⃗n − x⃗m)∥ = ∥x⃗n − x⃗m∥0 < ϵ.

Therefore, as ϵ > 0 was arbitrary, (S(x⃗n))n≥1 is Cauchy in (X , ∥ · ∥).
Since (X , ∥ · ∥) is complete, (S(x⃗n))n≥1 is converges in (X , ∥ · ∥). Hence

there exists a vector z⃗ ∈ X such that limn→∞ ∥S(x⃗n) − z⃗∥ = 0. We claim
that (x⃗n)n≥1 converges in (X , ∥ · ∥0) to S(z⃗). To see this, notice that

∥x⃗n − S(z⃗)∥0 = ∥S(x⃗n − S(z⃗))∥ =
∥∥∥S(x⃗n) − S2(z⃗)

∥∥∥ = ∥S(x⃗n) − z⃗∥

for all n ∈ N. Therefore, since limn→∞ ∥S(x⃗n) − z⃗∥ = 0 we obtain that
limn→∞ ∥x⃗n − S(z⃗)∥ = 0. Hence (x⃗n)n≥1 converges in (X , ∥ · ∥0) to S(z⃗).
Therefore, as (x⃗n)n≥1 was arbitrary, (X , ∥ · ∥0) is complete.
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Finally, we claim that ∥ · ∥ and ∥ · ∥0 are not equivalent; that is, there
does not exist c1, c2 > 0 such that

∥x⃗∥ ≤ c1 ∥x⃗∥0 and ∥x⃗∥0 ≤ c2 ∥x⃗∥

for all x⃗ ∈ X . To see this, it suffices to prove only one of these inequalities
by Corollary 3.3.4. We will show that there does not exist a constant c2 ∈ R
such that ∥x⃗∥0 ≤ c2 ∥x⃗∥ for all x⃗ ∈ X .

To see this, suppose to the contrary that there exists a constant C ∈ R
such that

∥S(x⃗)∥ = ∥x⃗∥0 ≤ C ∥x⃗∥

for all x⃗ ∈ X . However, if {x⃗n}∞
n=1 are the vectors from Example 4.2.8, we

see that

C = C ∥x⃗n∥ ≥ ∥S(x⃗n)∥
= ∥x⃗n − T (x⃗n)y⃗∥
= ∥x⃗n − ny⃗∥
≥ n ∥y⃗∥ − ∥x⃗n∥
≥ n − 1

for all n ∈ N. As this is clearly a contradiction, the proof is complete.

4.3 The Finite Intersection Property

In this section, we will begin to produce other characterization of compact
sets. Although some of these characterizations we will eventually study do
not hold in general topological spaces, the one in this section does. For our
first alternate characterization of compactness, our goal is to exchange unions
and open sets with intersections and closed sets.

Definition 4.3.1. Let (X , d) be a metric space. A collection {Fα}α∈I is
said to have the finite intersection property if

⋂n
k=1 Fαk

≠ ∅ for every finite
subset {α1, . . . , αn} ⊆ I.

As the complement of a union of open sets is an intersection of closed
sets, the following result is not surprising.

Theorem 4.3.2. Let (X , d) be a metric space. The following are equivalent:

1. X is compact.

2. Whenever {Fα}α∈I is a collection of closed subsets of X with the finite
intersection property,

⋂
α∈I Fα ̸= ∅.
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Proof. Suppose X is compact and let {Fα}α∈I be a collection of closed
subsets of X with the finite intersection property. To see that

⋂
α∈I Fα ̸= ∅

suppose to the contrary that
⋂

α∈I Fα = ∅. For each α ∈ I, let Uα = F c
α,

which are open subsets of X . Since

⋃
α∈I

Uα =
⋃
α∈I

F c
α =

(⋂
α∈I

Fα

)c

= ∅c = X ,

we see that {Uα}α∈I is an open cover of X . However, for any n ∈ N and
α1, . . . , αn ∈ I, we see that

n⋃
m=1

Uαm =
n⋃

m=1
F c

αm
=
(

n⋂
m=1

Fαm

)c

and, as {Fα}α∈I has the finite intersection property,

∅ ≠
n⋂

m=1
Fαm so X ⊈

(
n⋂

m=1
Fαm

)c

.

Therefore {Uα}α∈I is an open subcover of X without any finite subcovers
which contradicts the fact that X is compact. Hence it must have be the
case that

⋂
α∈I Fα ̸= ∅.

For the other direction, suppose any collection of closed subsets of X with
the finite intersection property has non-trivial intersection. To see that X is
compact, suppose to the contrary that there exists an open cover {Uα}α∈I

of X without any finite subcovers. For each α ∈ I let Fα = U c
α which is a

closed subset of X . If n ∈ N and α1, . . . , αn ∈ I, then by assumption

n⋃
k=1

Uαk
⊊ X so

n⋂
k=1

Fαk
=
(

n⋃
k=1

Uαk

)c

̸= ∅.

Hence {Fα}α∈I are closed subsets of X with the finite intersection property.
Thus, by assumption,

⋂
α∈I

Fα ̸= ∅ so
⋃
α∈I

Uα =
(⋂

α∈I

Fα

)c

̸= X .

As this contradicts the fact that {Uα}α∈I is an open cover of X , it must be
the case that X is compact.

Of course, the reason why Theorem 4.3.2 is useful is that it is much nicer
to deal with closed sets when discussing notions of convergence.
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4.4 Sequential Compactness

In this section, we will begin a discussion of another notion of compactness
for metric spaces. In particular, the following is often how compactness may
be defined (incorrectly) in a first course in analysis.

Definition 4.4.1. A subset A of a metric space (X , d) is said to be sequen-
tially compact if every sequence of elements of A has a subsequence that
converges to an element of A.

Remark 4.4.2. Again, it is elementary to see that A is a sequentially
compact subset of (X , d) if and only if A is a sequentially compact subset
of (A, d|A). Thus sequential compactness is a property of the set and the
metric, not the encompassing space the set lives in.

For examples of sequentially compact sets, we need look no farther that
compact sets.

Theorem 4.4.3. Every compact metric space is sequentially compact.

Proof. Let (X , d) be a compact metric space. To see that X is sequentially
compact, let (xn)n≥1 be an arbitrary sequence of elements of X . For each
n ∈ N, let

Fn = {xk | k ≥ n}.

Therefore {Fn}∞
n=1 is a collection of closed subsets of X which has the finite

intersection property since if n1, . . . , nq ∈ N, then

q⋂
k=1

Fnq = Fmax{n1,...,nq}.

Hence, by Theorem 4.3.2,
⋂∞

n=1 Fn ̸= ∅ as X is compact.
Let x ∈

⋂∞
n=1 Fn be arbitrary. We claim there exists a subsequence of

(xn)n≥1 that converges to x. To see this, notice since x ∈ F1 that there
exists an n1 ∈ N such that d(x, xn1) ≤ 1 by Corollary 1.5.23. Hence since
x ∈ Fn1+1, there exists an n2 > n1 such that d(x, xn2) ≤ 1

2 by Corollary
1.5.23. By repeating this process ad infinitum, there exists an increasing
sequence (nk)k≥1 of natural numbers such that d(x, xnk

) ≤ 1
k . Hence (xnk

)k≥1
is a subsequence of (xn)n≥1 that converges to x. Therefore, as (xn)n≥1 was
an arbitrary sequence in X , X is sequentially compact.

Using the fact that compact sets are sequentially compact, we have an
immediate use of sequential compactness as it can be used to extend Example
4.2.7 and show that many closed balls in infinite dimensional Banach spaces
are not compact. To do this, we will follow the idea of Example 4.2.7 and
show that we can find unit vectors that are far from other vectors.
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Lemma 4.4.4. Let (X , ∥ · ∥) be an infinite dimensional Banach space and
let Y be a finite dimensional subspace of X . There exists an element x⃗ ∈ X
such that ∥x⃗∥ = 1 yet ∥x⃗ − y⃗∥ ≥ 1

2 for all y⃗ ∈ Y.

Proof. Since X is infinite dimensional and Y is finite dimensional, there
exists a vector x⃗0 ∈ X \ Y. Since Y is closed by Corollary 4.2.5 and since
x⃗0 /∈ Y,

R = dist(x⃗0, Y) > 0

by Lemma 1.6.12. By the definition of the distance function, there exists a
y⃗0 ∈ Y such that ∥x⃗0 − y⃗0∥ ≤ 2R. Therefore if

x⃗ = 1
∥x⃗0 − y⃗0∥

(x⃗0 − y⃗0)

then ∥x⃗∥ = 1 and for all y⃗ ∈ Y,

∥x⃗ − y⃗∥ =
∥∥∥∥ 1

∥x⃗0 − y⃗0∥
x⃗0 − 1

∥x⃗0 − y⃗0∥
y⃗0 − y⃗

∥∥∥∥
= 1

∥x⃗0 − y⃗0∥
∥x⃗0 − (y⃗0 + ∥x⃗0 − y⃗0∥ y⃗)∥

≥ 1
∥x⃗0 − y⃗0∥

R as Y is a subspace

≥ 1
2R

R = 1
2

as desired.

Theorem 4.4.5. Every non-trivial closed ball in every infinite dimensional
Banach space is not compact.

Proof. Let (X , ∥ · ∥) be an infinite dimensional Banach space. To prove the
result, it suffices to show that the ball B = B [⃗0, 1] is not compact as both
balls, open subsets of X , and open covers are invariant under translation
and non-trivial scaling.

To see that B is not compact, first note we may choose an x⃗1 ∈ B such
that ∥x⃗1∥ = 1 as X is not zero dimensional. Let F1 = span({x⃗1}). Since F1
is one-dimensional, Lemma 4.4.4 implies there exists an x⃗2 ∈ B such that
∥x⃗2∥ = 1 and ∥x⃗2 − x⃗1∥ ≥ 1

2 .
Let F2 = span({x⃗1, x⃗2}). Since F2 is two-dimensional, Lemma 4.4.4

implies there exists a x⃗3 ∈ B such that ∥x⃗3∥ = 1 and ∥x⃗3 − x⃗k∥ ≥ 1
2 for

each k ∈ {1, 2}. Hence, by repeating this process ad infinitum, there exists
a sequence (x⃗n)n≥1 of elements of B such that ∥x⃗n∥ = 1 for all n ∈ N and
∥x⃗n − x⃗m∥ ≥ 1

2 for all n, m ∈ N with n ̸= m. Clearly the sequence (x⃗n)n≥1
does not have any convergent subsequences since it does not have any Cauchy
subsequences. Hence B cannot be sequentially compact so B is not compact
by Theorem 4.4.3.
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Note the proof of Theorem 4.4.5 also shows that if X is a Banach space
and

S = {x⃗ ∈ X | ∥x⃗∥ = 1}

(i.e. the unit sphere in X ), then S is not compact. Hence a Banach space
is infinite dimensional if and only the unit sphere (or any non-trivial closed
unit ball) is not compact.

4.5 Totally Bounded Sets
As Theorem 4.4.3 tells us compact sets are sequentially compact and we
have seen one application of sequential compactness, it is natural to ask
whether the converse holds. To answer this question, we must examine a
notion related to sequential compactness. This turns out to be the correct
notion of ‘boundedness’ to correct the result ‘compact if and only if closed
and bounded’ as we will see in a subsequent section.

In order to develop this correct notion of ‘boundedness’, we note that
we can always cover a metric space with open balls of a certain radius.
Consequently, if a metric space (X, d) is compact there must be a finite cover
of (X, d) using open balls of a specific radii. This causes us to define the
following two terms.

Definition 4.5.1. Let (X , d) be a metric space, let A ⊆ X be non-empty,
and let ϵ > 0. A subset {xα | α ∈ I} is said to be an ϵ-net of A in X if
xα ∈ A for all α ∈ I and A ⊆

⋃
α∈I B(xα, ϵ); that is, for all a ∈ A there

exists an α ∈ I such that d(a, xα) < ϵ.

For example, if A ⊆ X , clearly A is an ϵ-net of A for every ϵ > 0. Similarly
{ k

n}n
k=1 is an ϵ-net of [0, 1] for every ϵ > 1

2n . However, we prefer the later
example as it only requires a finite subset of the set under consideration.
In particular, given a set we are interested in finding a finite ϵ-net for ever
ϵ > 0.

Definition 4.5.2. A subset A of a metric space (X , d) is said to be totally
bounded if A has a finite ϵ-net for all ϵ > 0; that is, for each ϵ > 0 there
exists {a1, . . . , an} ⊆ A such that A ⊆

⋃n
k=1 B(ak, ϵ).

Remark 4.5.3. Let (X , d) be a metric space and let A ⊆ X . As any ϵ-net
of A in (X , d) is automatically an ϵ-net of A in (A, d|A) and vice versa, we
see that A is totally bounded in (X , d) if and only if A is totally bounded in
(A, d|A). Hence the notion of total boundedness is a notion of the set and
the metric, not the space where the set resides.

Example 4.5.4. It is not difficult to see that [0, 1] is totally bounded. Indeed
for every ϵ > 0, choose n ∈ N with 1

n < ϵ and consider the 1
n -net { k

n}n
k=1,

which is clearly an ϵ-net. Similarly (0, 1) is totally bounded.
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For more examples of totally bounded sets, we note the following.

Proposition 4.5.5. Every sequentially compact metric space is totally
bounded. Thus compact sets are totally bounded by Theorem 4.4.3.

Proof. Let (X , d) be a sequentially compact metric space. To see that X is
totally bounded, suppose to the contrary that there exists an ϵ > 0 such that
X does not have a finite ϵ-net.

Let x1 ∈ X be arbitrary. Since {x1} is not an ϵ-net, there exists an
x2 ∈ X \ B(x1, ϵ). Since {x1, x2} is not an ϵ-net, there exists an x3 ∈ X \
(B(x1, ϵ)∪B(x2, ϵ)); that is, d(x3, xj) ≥ ϵ for all j ∈ {1, 2}. By repeating this
process ad infinitum, there exists a sequence (xn)n≥1 such that d(xn, xm) ≥ ϵ
for all n, m ∈ N with n ≠ m. Clearly the sequence (xn)n≥1 does not have any
convergent subsequences since it does not have any Cauchy subsequences.
Hence X cannot be sequentially compact, which is a contradiction. Hence
sequentially compact metric spaces are totally bounded.

Remark 4.5.6. It may be very tempting to claim that every totally bounded
metric space (X , d) is automatically compact as if one has an open cover
of (X , d) then we would hope that there is an ϵ-net of X where each ball
is contained in a single element of the open cover. However, this argument
clearly has the flaw in that how do we know we can cover (X , d) with balls
of size at most ϵ so that that each ϵ-ball is contained in a single element of
the given open cover?

To see that totally bounded metric spaces need not be compact consider
X = (0, 1) with the absolute value metric. Then (0, 1) is totally bounded.
Indeed for every ϵ > 0, choose n ∈ N with 1

n < ϵ and consider the set { k
n}n

k=1,
which is clearly an ϵ-net of (0, 1). Hence (0, 1) is totally bounded but not
compact by the Heine-Borel Theorem (Theorem 4.1.11) as (0, 1) is not closed.
Moreover, a similar argument can be used to show that any bounded subset
of Kn is totally bounded.

Remark 4.5.7. In theory, checking a metric space (X , d) is totally bounded
is easier than it is to check (X , d) is compact using the definitions of open
covers. Indeed it quite difficult to describe all open covers of a metric space
and determine whether each open cover has a finite subcover. However,
checking a metric space has a finite ϵ-net for every ϵ > 0 is often not too
difficult as one need to simply find a correct set of points in the metric space
for a given ϵ > 0.

Our goal is to connect the notions of totally boundedness and compact-
ness in metric spaces. To do so, we begin by developing the properties of
totally bounded metric spaces. In particular, it is not surprising that total
boundedness is a strengthening of the notion of boundedness.

Proposition 4.5.8. Every totally bounded subset of a metric space is
bounded.
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Proof. Let (X , d) be a metric space and let A ⊆ X be a totally bounded
subset of X . Since A is totally bounded, there exists a finite 1-net for A.
Hence there exists an n ∈ N and elements {a1, . . . , an} ⊆ A such that for all
a ∈ A there exists a k ∈ {1, . . . , n} such that d(a, ak) < 1.

Let
M = max{1 + d(ak, a1) | k ∈ {1, . . . , n}}.

We claim that d(a, a1) ≤ M for all a ∈ A which implies A is bounded
by definition. To see this, let a ∈ A be arbitrary. Then there exists a
k ∈ {1, . . . , n} such that d(a, ak) < 1. As

d(a, a1) ≤ d(a, ak) + d(ak, a1) < 1 + d(ak, a1) ≤ M,

the result is complete.

Proposition 4.5.9. Let (X , d) be a metric space and suppose A1 ⊆ A2 ⊆ X .
If A2 is totally bounded, then A1 is totally bounded

Proof. The caveat of this result is that the elements of each ϵ-net for A1
must come from A1 and, a priori, they only come from A2.

To see that A1 is totally bounded, let ϵ > 0 be arbitrary. Since A2 is
totally bounded, there exists a finite ϵ

2 -net for A2, say {x1, . . . , xn} ⊆ A2.
Hence

A1 ⊆
n⋃

k=1
B

(
xk,

ϵ

2

)
.

Let I ⊆ {1, . . . , n} consist of all indices k such that A1 ∩ B
(
xk, ϵ

2
)

̸= ∅. For
each k ∈ I, choose ak ∈ A1 ∩ B

(
xk, ϵ

2
)
.

We claim that {ak}k∈I is an ϵ-net for A1. To see this, note the claim is
trivial if A1 = ∅. Otherwise, let a ∈ A1 be arbitrary. Therefore there exists
a k0 ∈ {1, . . . , n} such that a ∈ B

(
xk0 , ϵ

2
)
. Hence k0 ∈ I and

d(a, ak0) ≤ d(a, xk0) + d(ak0 , xk0) <
ϵ

2 + ϵ

2 = ϵ

as a, ak0 ∈ B
(
xk0 , ϵ

2
)
, Therefore, as a ∈ A1 was arbitrary,

{ak}k∈I

is an ϵ-net for A1 by definition. Hence as ϵ > 0 was arbitrary, A1 is totally
bounded.

Proposition 4.5.10. Let (X , d) be a metric space. If A ⊆ X is totally
bounded, then A is totally bounded.

Proof. Let ϵ > 0 be arbitrary. Since A is totally bounded, there exists a
finite ϵ

2 -net for A, say {a1, . . . , an} ⊆ A. Hence a1, . . . , an ∈ A and we claim
that {a1, . . . , an} is an ϵ-net for A. To see this, let x ∈ A be arbitrary. By
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Lemma 1.5.23 there exists an a ∈ A such that d(x, a) < ϵ
2 . As {a1, . . . , an}

is an ϵ
2 -net for A, there exists a k ∈ {1, . . . , n} such that d(a, ak) < ϵ

2 . Hence
d(x, ak) < ϵ by the triangle inequality. Therefore, as x ∈ A was arbitrary,
{a1, . . . , an} is an ϵ-net for A. Since ϵ > 0 was arbitrary, A is totally bounded
by definition.

Proposition 4.5.11. Every totally bounded metric space is separable.

Proof. Let (X , d) be a totally bounded metric space. To see that X is
separable, we must find a countable dense subset of X . Since X is totally
bounded, for each n ∈ N there exists a finite subset An of X that is an 1

n -net.
We claim that A =

⋃∞
n=1 An is a countable dense subset. The fact that A is

countable follows as the countable union of countable sets is countable and
the fact that A is dense follows as if x ∈ X and ϵ > 0 then there exists an
n ∈ N such that 1

n < ϵ so x is within ϵ of an element of An as An was an
1
n -net. Hence X is separable.

4.6 The Borel-Lebesgue Theorem
As sequentially compact sets are totally bounded by Proposition 4.5.5, we
will use the properties of totally bounded sets to show that sequentially
compact sets are compact. In order to prove sequentially compact sets are
compact, we require two results. The first demonstrates that the Extreme
Value Theorem holds for sequentially compact sets.

Lemma 4.6.1 (Extreme Value Theorem - Sequential Compactness).
Let (X , dX ) and (Y, dY) be metric spaces and let f : X → Y be continuous.
If X is sequentially compact, then f(X ) is sequentially compact in Y. Hence,
if Y = R, there exists x1, x2 ∈ X such that f(x1) ≤ f(x) ≤ f(x2) for all
x ∈ X .

Proof. To see that f(X ) is sequentially compact, let (yn)n≥1 be an arbitrary
sequence of elements of f(X ). Hence there exists a sequence (xn)n≥1 such
that yn = f(xn) for all n ∈ N. Since X is sequentially compact, there
exists a subsequence (xkn)n≥1 that converges to some element x ∈ X . As
f is continuous, limn→∞ ykn = limn→∞ f(xkn) = f(x). Hence (ykn)n≥1 is
a convergent subsequence of (yn)n≥1. Therefore, as (yn)n≥1 was arbitrary,
f(X ) is sequentially compact by definition.

To see the later claim, suppose Y = R. Since f(X ) is sequentially
compact, f(X ) is totally bounded by Proposition 4.5.5 and thus bounded by
Proposition 4.5.8. Hence inf(f(X )) and sup(f(X )) are finite. Since f(X ) is
sequentially compact, the limits of any convergent sequences with elements in
f(X ) must be elements of f(X ). As we may construct sequences of elements
of f(X ) converging to inf(f(X )) and sup(f(X )) and respectively, we obtain
that sup(f(X )), inf(f(X )) ∈ f(X ). Hence there exists x1, x2 ∈ X such that
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f(x1) = inf(f(X )) and f(x2) = sup(f(X )) so f(x1) ≤ f(x) ≤ f(x2) for all
x ∈ X as desired.

Our next lemma enables us to choose ‘large’ open balls inside any open
cover. In particular, once we demonstrate the notions of compact and
sequentially compact sets are the same, we may apply the following lemma
to any open cover.

Lemma 4.6.2. Let (X , d) be a sequentially compact metric space. If {Uα}α∈I

is an open cover of X , then there exists an δ0 > 0 (called the Lebesgue number
for {Uα}α∈I) such that for any 0 < δ < δ0 and any x ∈ X there exists an
αx ∈ I such that B(x, δ) ⊆ Uαx.

Proof. To begin, note (X , d) is totally bounded by Proposition 4.5.5 and
thus bounded by Proposition 4.5.8. Hence there exists an x0 ∈ X and an
R > 0 such that B(x0, R) = X by Remark 1.7.2. Hence for any x ∈ X,
B(x, 2R) = X by the triangle inequality.

Fix an open cover {Uα}α∈I of X and consider a function φ : X → R
defined by

φ(x) = sup{r ∈ R | r ≤ 2R, B(x, r) ⊆ Uα for some α ∈ I}

for all x ∈ X . To see that φ is well-defined, we claim that φ(x) > 0 for all
x ∈ X . To see this, notice if x ∈ X then x ∈

⋃
α∈I Uα. Hence there exists

an αx ∈ I such that x ∈ Uαx . Since Uαx is open, there exists an r > 0 such
that B(x, r) ⊆ Uαx and thus φ(x) ≥ r > 0.

We claim that φ is continuous. To see this, let x, y ∈ X be arbitrary. By
definition of φ, if r < φ(x) then there exists an α ∈ I such that B(x, r) ⊆ Uα.
Thus if r < φ(x) and r − d(x, y) > 0 then B(y, r − d(x, y)) ⊆ Uα by the
triangle inequality so φ(y) ≥ r − d(x, y). Otherwise, if r − d(x, y) ≤ 0 then
clearly φ(y) ≥ 0 ≥ r − d(x, y). In either case, φ(y) ≥ r − d(x, y) for all
r < φ(x) so φ(y) ≥ φ(x) − d(x, y). By replacing the roles of x and y, we see
that

|φ(x) − φ(y)| ≤ d(x, y).

Therefore, as x, y ∈ X were arbitrary, φ is clearly continuous.
Since (X , d) is sequentially compact, Lemma 4.6.1 implies there exists

an x0 ∈ X such that φ(x0) ≤ φ(x) for all x ∈ X . Hence if δ0 = φ(x0), then
δ0 > 0. Furthermore, for all 0 < δ < δ0 and x ∈ X we see that δ < φ(x) so by
the definition of φ there exists an αx ∈ I with B(x, δ) ⊆ Uαx as desired.

With the completion of our construction of the Lebesgue number, we can
finally prove the equivalence of compactness and sequential compactness in
metric spaces.

Theorem 4.6.3 (Borel-Lebesgue Theorem). A metric space is compact
if and only if it is sequentially compact.
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Proof. As compact metric spaces are sequentially compact by Theorem 4.4.3,
one direction is complete.

For the other direction, suppose (X , d) is a sequentially compact metric
space. To see that X is compact, let {Uα}α∈I be an arbitrary open cover
of X . Therefore, by Lemma 4.6.2 there exists an δ0 > 0 such that for any
0 < δ < δ0 and any x ∈ X there exists an αx ∈ I such that B(x, δ) ⊆ Uαx .

Since X is sequentially compact, X is totally bounded by Proposition
4.5.5. Hence there exists a finite δ0

2 -net for X , say {x1, . . . , xn}. Hence

X =
n⋃

k=1
B

(
xk,

δ0
2

)

By the above paragraph there exists α1, . . . , αn ∈ I such that B
(
xk, δ0

2

)
⊆

Uαk
for all k ∈ {1, . . . , n}. Hence

X =
n⋃

k=1
Uαk

so {Uα1 , . . . , Uαn} is a finite subcover of X . Therefore, as {Uα}α∈I was
arbitrary, X is compact by definition.

Before moving onto applications of the Borel-Lebesgue Theorem (Theorem
4.6.3), we note that the notions of compact and sequentially compact sets
need not agree for general topological spaces. In particular, compactness
always implies sequential compactness (the proof of Theorem 4.4.3 pretty
much works once the distance functions are changed with open sets) but the
converse need not hold. To correct the converse, one needs to generalize the
notion of sequences, which we will avoid.

Onto properties of compact sets. Note all but completeness are trivial.

Corollary 4.6.4. Every compact metric space is complete, totally bounded,
and separable.

Proof. Let (X , d) be a compact metric space. Since X is sequentially compact
by Theorem 4.6.3, X is totally bounded by Proposition 4.5.5. Thus X is
separable by Proposition 4.5.11.

To see that X is complete, let (xn)n≥1 be an arbitrary Cauchy sequence
in X . Since X is sequentially compact, (xn)n≥1 has a convergent subsequence
and thus converges by Lemma 2.1.7. Therefore, as (xn)n≥1 was arbitrary, X
is complete.

4.7 Compactness and Completeness
In previous sections, we have seen the notions of compactness and sequen-
tially compactness are equal and for finite dimensional spaces, these are
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equivalent to the notion of closed and bounded sets. Clearly completeness is a
generalization of closed sets by Theorem 2.1.12 and total boundedness is a gen-
eralization of boundedness by Proposition 4.5.5. Since compact/sequentially
compact sets are complete and totally bounded by Proposition 2.5.18, it is
natural to ask where the converse is true. As it so happens, it is.

Theorem 4.7.1. Let (X , d) be a metric space. Then the following are
equivalent:

1. X is compact.

2. X is complete and totally bounded.

Proof. Since compact metric spaces are complete and totally bounded by
Proposition 4.6.4, one direction is complete.

For the other direction, suppose (X , d) is complete and totally bounded.
To show that (X , d) is compact, we will demonstrate that (X , d) is sequentially
compact and apply the Borel-Lebesgue Theorem (Theorem 4.6.3).

To see that (X , d) is sequentially compact, let (xn)n≥1 be an arbitrary
sequence of elements of X . Since (X , d) is totally bounded, F1 = {xn}∞

n=1
is totally bounded by Proposition 4.5.9. Hence F1 has a finite 1-net. This
implies there exists an n1 ∈ N such that xn1 ∈ F1 and

I1 = {n ∈ N | n > n1 and xn ∈ B(xn1 , 1)}

is infinite. Let F2 = {xn}n∈I1 . Since (X , d) is totally bounded, F2 is totally
bounded by Proposition 4.5.9 and thus F2 has finite 1

2 -net. As I1 is infinite,
there exists a n2 ∈ N such that n2 ∈ I1 (so n2 > n1) such that xn2 ∈ F2 and

I2 =
{

n ∈ N
∣∣∣∣n > n2 and xn ∈ B

(
xn2 ,

1
2

)}
is infinite. Let F3 = {xn}n∈I2 . By repeating this process ad infinitum, there
exists infinite subsets In of I1 and an increasing sequence (nk)k≥1 of natural
number such that xnk

∈ Fm for all k ≥ m and xnk
∈ B(xnm , 1

m) for all
k > m. Hence, as diam(B(xnm , 1

m)) ≤ 2
m , (xnk

)k≥1 is a Cauchy subsequence
of (xn)n≥1. Since (X , d) is complete, (xnk

)k≥1 is a convergent subsequence of
(xn)n≥1. Therefore, as (xn)n≥1 was arbitrary, (X , d) is sequentially compact
as desired.

As it is easy to verify sets are complete and totally bounded than it is to
verify compactness or sequential compactness directly, Theorem 4.7.1 is an
excellent tool for verify metric spaces are compact.

Example 4.7.2. Let

K =
{

(xn)n≥1 ∈ ℓ2(N,R)
∣∣∣∣∣

∞∑
n=1

n2|xn|2 ≤ 1
}

.
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We claim that K is a compact subspace of (ℓ2(N,R), ∥ · ∥2). To see this, it
suffices by Theorem 4.7.1 to show that K is complete and totally bounded
with respect to ∥ · ∥2. To see that K is complete, we note since (ℓ2(N,R), ∥ · ∥2)
is complete, it suffices to prove that K is a closed subset of (ℓ2(N,R), ∥ · ∥2).

To see that K is closed in (ℓ2(N,R), ∥ · ∥2), let (v⃗k)k≥1 be an arbitrary
sequence of elements of K that converges to some x⃗ ∈ ℓ2(N,R). For each
k ∈ N write

v⃗k = (xk,n)n≥1 and x⃗ = (xn)n≥1.

Since

lim
k→∞

∥v⃗k − x⃗∥2 = 0 and |xk,n − xn| ≤ ∥v⃗k − x⃗∥2 for all k, n ∈ N,

we obtain that limk→∞ |xk,n − xn| = 0 for all n ∈ N. Furthermore, v⃗k ∈ K
for all k ∈ N, we obtain by the definition of K that

∞∑
n=1

n2|xk,n|2 ≤ 1

for all k ∈ N. Hence for all N ∈ N we see that

N∑
n=1

n2|xn|2 = lim
k→∞

N∑
n=1

n2|xk,n|2 ≤ lim sup
k→∞

∞∑
n=1

n2|xk,n|2 ≤ 1.

Therefore, since the above holds for all N ∈ N, we obtain that
∑∞

n=1 n2|xn|2 ≤
1 and thus x⃗ ∈ K. Thus, as (v⃗k)k≥1 was arbitrary, we obtain that K is
closed.

To see that K is totally bounded, let ϵ > 0 be arbitrary. Without loss
of generality, we may assume that ϵ < 1. To see that K has an ϵ-net, first
notice if x⃗ = (xn)n≥1 ∈ K then

∑∞
n=1 n2|xn|2 ≤ 1 so n2|xn|2 ≤ 1 for all

n ∈ N and thus |xn| ≤ 1
n for all n ∈ N. To begin to use this, we note since∑∞

n=1
1

n2 < ∞ there exists and N ∈ N such that

∞∑
n=N+1

1
n2 <

ϵ2

2 .

Hence, if x⃗ = (xn)n≥1 ∈ K then the above shows that

∞∑
n=N+1

|xn|2 <
ϵ2

2 .

Consider the set

K0 =
{

(x1, . . . , xN ) ∈ RN

∣∣∣∣∣
N∑

n=1
n2|xn|2 ≤ 1

}
⊆ RN .
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By the same arguments used above, K0 is a closed subset of RN . Furthermore,
if (x1, . . . , xN ) ∈ K0, then |xn| ≤ 1

n for all n ≥ N and thus

∥(x1, . . . , xN )∥2 ≤
(

N∑
n=1

1
n2

) 1
2

.

Therefore K0 is bounded in (R2, ∥ · ∥2) and hence compact by the Heine-Borel
Theorem. Thus K0 is totally bounded.

Let v⃗1, . . . , v⃗m be a finite ϵ√
2 -net for K0. Clearly each v⃗k defines an

element of K by extending the N -tuple to a sequence by letting every term
in the sequence with index greater than N be zero. We claim that v⃗1, . . . , v⃗m

then forms an ϵ-net of K. To see this, let x⃗ = (xn)n≥1 ∈ K be arbitrary.
Then

(x1, . . . , xN ) ∈ K0 by construction and
∞∑

n=N+1
|xn|2 <

ϵ2

2 .

Since v⃗1, . . . , v⃗m is a finite ϵ√
2 -net for K0, there exists a k ∈ {1, . . . , m} such

that
∥v⃗k − (x1, . . . , xN )∥2 <

ϵ√
2

.

Hence

∥v⃗k − x⃗∥2
2 = ∥v⃗k − (x1, . . . , xN )∥2

2 +
∞∑

n=N+1
|xn|2

<
ϵ2

2 + ϵ2

2 = ϵ2.

Therefore ∥v⃗k − x⃗∥2 < ϵ. Hence, as x⃗ ∈ K was arbitrary, v⃗1, . . . , v⃗m is an
ϵ-net of K. Therefore, since ϵ > 0 was arbitrary, K is totally bounded.
Consequently, K is compact as desired.

4.8 Compactness and Continuous Functions
Using the above, we can see that compact sets are very well-behaved with
respect to continuous functions. For example if (X , dX ) and (Y, dY) are
metric spaces with X compact, then we can see that

Cb(X , Y) = C(X , Y).

Indeed if f ∈ C(X , Y), then f(X ) is a compact subsets of Y by Theorem
4.1.13, thus totally bounded (by Theorem 4.7.1), and thus bounded (by
Proposition 4.5.8). In particular, if X is compact and Y is a complete
normed linear space, C(X , Y) is a Banach space.

Furthermore, there is a stronger notion of continuity that will hold when
consider continuous functions on compact sets.
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Definition 4.8.1. Let (X , dX ) and (Y, dY) be metric spaces and let f :
X → Y. It is said that f is uniformly continuous if for every ϵ > 0 there
exists a δ > 0 such that if x1, x2 ∈ X are such that if dX (x1, x2) < δ then
dY(f(x1), f(x2)) < ϵ.

That is, there is one δ to rule them all!

Remark 4.8.2. Again, as with continuity and convergence of sequences,
either or both of the < δ and < ϵ in Definition 4.8.1 may be replaced with ≤ δ
and ≤ ϵ respectively. Additionally, note the main use of uniform continuity
is that for each ϵ > 0 one may find a δ that works for ANY elements of X .

Example 4.8.3. Let (X , dX ) and (Y, dY) be metric spaces and let f : X → Y .
It is said that f is Lipschitz if there exists a k ≥ 0 (called a Lipschitz constant)
such that

dY(f(x1), f(x2)) ≤ kdX (x1, x2)

for all x1, x2 ∈ X . It is not difficult to see that Lipschitz functions are
uniformly continuous (indeed, given ϵ > 0, take δ = ϵ

k+1). Hence bounded
linear maps between normed linear spaces are uniformly continuous. Similarly,
if f : [a, b] → R is differentiable such that |f ′(x)| ≤ k for all x ∈ [a, b], then
the Mean Value Theorem implies that

|f(x1) − f(x2)| ≤ k|x1 − x2|

for all x1, x2 ∈ [a, b] so f is Lipschitz and thus uniformly continuous.

To obtain some examples of continuous functions that are not uniformly
continuous, first note the follow.

Remark 4.8.4. Note that if (X , dX ) and (Y, dY) are metric spaces and
f : X → Y is not uniformly continuous, then there exists a ϵ0 > 0 and
sequences (xn)n≥1 and (x′

n)n≥1 of elements of X such that dX (xn, x′
n) < 1

n
yet dY(f(xn), f(x′

n)) ≥ ϵ0 for all n ∈ N. This observation is useful in
demonstrating functions are not uniformly continuous.

Example 4.8.5. The function f : (0, 1) → R defined by f(x) = 1
x is not

uniformly continuous. To see this for each n ∈ N let xn = 1
n and yn = 2

n .
Then |xn − yn| < 1

n−1 yet

|f(xn) − f(yn)| =
∣∣∣∣∣ 11

n

− 1
2
n

∣∣∣∣∣ =
∣∣∣∣n − n

2

∣∣∣∣ = n

2 ≥ 1.

Hence f is not uniformly continuous on (0, 1).

Although we could spend time and develop the theory of uniformly
continuous functions on R, we desire the following demonstrating continuous
functions on compact sets are automatically uniformly continuous. Hence
continuous functions on compact sets are especially nice functions.
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Theorem 4.8.6. Let (X , dX ) and (Y, dY) be metric spaces and let f : X → Y
be continuous. If X is compact, then f is uniformly continuous.

Proof. Suppose to the contrary that f is not uniformly continuous. Hence
there exists a ϵ0 > 0 and sequences (xn)n≥1 and (x′

n)n≥1 of elements of X
such that dX (xn, x′

n) < 1
n yet dY(f(xn), f(x′

n)) ≥ ϵ0 for all n ∈ N.
Since X is compact, X is sequentially compact by Theorem 4.6.3. There-

fore there exists a subsequence (xkn)n≥1 of (xn)n≥1 that converges to some
element z ∈ X . Consider the subsequence (x′

kn
)n≥1 of (x′

n)n≥1. Notice for
all n ∈ N that

dX (x′
kn

, z) ≤ dX (x′
kn

, xkn) + dX (xkn , z)

≤ 1
kn

+ dX (xkn , z)

≤ 1
n

+ dX (xkn , z).

Therefore, since limn→∞ dX (xkn , z) = 0, (x′
kn

)n≥1 converges to z in X .
Since f is continuous, there exists N1, N2 ∈ N such that dY(f(z), f(xkn)) <

ϵ0
2 for all n ≥ N1 and dY(f(z), f(x′

kn
)) < ϵ0

2 for all n ≥ N2. Therefore, if
n = max{N1, N2}, we obtain that

dY(f(xkn), f(x′
kn

)) ≤ dY(f(xkn), f(z)) + dY(f(z), f(x′
kn

)) <
ϵ0
2 + ϵ0

2 = ϵ0

which is a contradiction. Hence it must have been the case that f is uniformly
continuous.

Example 4.8.7. There are (uniformly) continuous functions on compact
metric spaces that are not Lipschitz. Indeed consider the function f : [0, 1] →
[0, 1] defined by f(x) =

√
x for all x ∈ [0, 1]. Then f is clearly continuous and

thus uniformly continuous by Theorem 4.8.6 as [0, 1] is compact. However, if
x, y ∈ [0, 1] and y = 0, then

|f(x) − f(y)| = |f(x)| =
√

x whereas |x − y| = |x| = x.

Since
lim
x→0

|f(x) − f(y)|
|x − y|

= lim
x→0

√
x

x
= ∞,

it is impossible that f is Lipschitz.

4.9 Equicontinuity
Now that we have characterized the compact metric spaces as those that are
complete and totally bounded in Theorem 4.7.1, we turn our attention back
to continuous function spaces. Indeed, recall from Theorem 2.5.14 that every
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metric space is isomorphic to a subset of a continuous function space. Thus
by studying compactness in continuous function spaces, we are studying
compactness for all metric spaces!

Thus the remaining goal of the remainder of the chapter is to derive
simple conditions to determine when subsets of C(X ,R) are compact when
X is a compact metric space. Thus to simplify notation, throughout this
section for a compact metric space (X , d), we will use C(X ) to denote C(X ,R)
equipped with the sup-norm.

A characterization of compact subsets of C(X ) is particularly useful in
deriving properties of functions from other functions. For example, suppose
we have a compact set of functions Φ with a specific property. Then, if
we construct a sequence of functions from Φ in a specific way, we know
by sequential compactness that this sequence then has a subsequence that
converges to an element of Φ and thus must have the same properties.

Of course, we will want to study closed subsets of C(X ) because Theorem
2.1.12 implies the closed set is complete and Theorem 4.7.1 implies being
complete is necessary for being compact. As often one desires only to
describes a collection of functions that happen not to be closed, we define
the following.

Definition 4.9.1. Let (X , d) be a metric space. A subset A ⊆ X is said to
be relatively compact if A is compact.

Remark 4.9.2. Notice that if (X , d) is a complete metric space and A ⊆ X ,
then A is relatively compact if and only if A is totally bounded by Theorem
2.1.12, Theorem 4.7.1, and Proposition 4.5.9.

Thus, if we want to study relatively compact subsets of C(X ), we need only
study which collections of functions are totally bounded. Of course, verifying
totally boundedness from definition is easier than verifying compactness from
definition, but it still is not simple. Thus we desire to find simpler conditions
to verify a collection of functions is totally bounded.

Of course, if a collection of functions is totally bounded with respect to
the sup metric, every function will be close to another function from a finite
collection. Knowing how each element of this finite collection is continuous at
a point then yields information about how the entire collection is continuous
at a point. This leads us to the following notion of a collection of functions
being ‘equally continuous’.

Definition 4.9.3. Let (X , d) be a compact metric space, let x0 ∈ X , and
let F ⊆ C(X ). It is said that F is equicontinuous at x0 if for all ϵ > 0 there
exists a δ > 0 such that if x ∈ X and d(x, x0) < δ then |f(x) − f(x0)| < ϵ
for all f ∈ F .

If F is equicontinuous at every point in X , it is said that F is equicon-
tinuous.
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Again, as with continuity, uniform continuity, and convergence of se-
quences, either or both of the < δ and < ϵ in Definition 4.9.3 may be
replaced with ≤ δ and ≤ ϵ respectively.

Example 4.9.4. For each n ∈ N let fn : [−1, 1] → R be defined by fn(x) =
xn for all x ∈ [−1, 1]. The collection F = {fn}∞

n=1 is equicontinuous at 0.
Indeed if ϵ > 0 let δ = min{ϵ, 1} > 0. Then if |x| < δ then

|fn(x)| = |xn| ≤ δn ≤ ϵ.

Hence F is equicontinuous at 0. However, F is not equicontinuous at 1. To
see this, notice for all δ > 0,

lim
n→∞

|fn(1) − fn(1 − δ)| = lim
n→∞

|1 − (1 − δ)n| = 1

so no δ can work in Definition 4.9.3 for ϵ = 1
2 .

Example 4.9.5. Let F be a collection of functions on [0, 1] with Lipschitz
functions with Lipschitz constant at most 1 (see Example 4.8.3). It is
not difficult to check that F is equicontinuous. Hence, if F consists of all
differentiable functions f on [0, 1] with |f ′(x)| ≤ 1 for all x ∈ [0, 1], then F
is equicontinuous.

To emphasize the idea that equicontinuity should stem from total bound-
edness, we note the following lemma.

Lemma 4.9.6. Let (X , dX ) be a metric space and let F ⊆ C(X ) be totally
bounded. Then F is equicontinuous.

Proof. To see that F is equicontinuous, let ϵ > 0 and x0 ∈ X be arbitrary.
Since F is totally bounded, there exists a finite ϵ

3 -net for F . Hence there
exists an n ∈ N and f1, f2, . . . , fn ∈ F such that

F ⊆
n⋃

k=1
B

(
fk,

ϵ

3

)
.

Since fk is continuous at x0 for all k ∈ {1, . . . , n}, there exists a δk > 0 such
that

dY (fk(x), fk(x0)) <
ϵ

3
for all x ∈ X such that dX (x, x0) < δk. Let

δ = min{δk | k ∈ {1, . . . , n}} > 0.

We claim that δ works for ϵ in Definition 4.9.3 to show that F is equicontinu-
ous at x0. To see this, let f ∈ F be arbitrary. Hence, as F ⊆

⋃n
k=1 B

(
fk, ϵ

3
)
,

there exists a k ∈ {1, . . . , n} such that

∥f − fk∥∞ <
ϵ

3 .
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Thus |f(x) − fk(x)| < ϵ
3 for all x ∈ X . Therefore, for all x ∈ X such that

dX (x, x0) < δ, we obtain from above that

|f(x) − f(x0)| ≤ |f(x) − fk(x)| + |fk(x) − fk(x0)| + |fk(x0) − f(x0)|

<
ϵ

3 + ϵ

3 + ϵ

3 = ϵ.

Therefore, as f ∈ F , ϵ > 0, and x0 ∈ X were arbitrary, F is equicontinuous
as desired.

Unfortunately, equicontinuity does not immediately imply total bounded-
ness.

Example 4.9.7. For each a ∈ R, let fa : [0, 1] → R be defined by f(x) = x+a
for all x ∈ [0, 1]. Clearly {fa}a∈R is equicontinuous as

|fa(x) − fa(y)| = |f0(x) − f0(y)|

for all x, y ∈ [0, 1]. However {fa}a∈R cannot be totally bounded in C[0, 1]
since ∥fa∥∞ = a + 1 for all a ≥ 0 so {fa}a∈R is not bounded with respect to
∥ · ∥∞ and thus cannot be totally bounded by Proposition 4.5.8.

Thus the problem is that equicontinuity does not yield any information
about a collection of functions behaving like a bounded collection of functions.
Of course we could just ask that the collection of functions is bounded with
respect to the sup norm. However, there is also a much simpler notion of
boundedness we can ask for.

Before we discuss the correct notion of boundedness to add to equiconti-
nuity, we note that equicontinuity is a nice property as it passes to closures of
sets; something we expect as we are studying relative compactness in C(X ).

Proposition 4.9.8. Let (X , d) be a compact metric space and let F ⊆ C(X )
be equicontinuous. Then F is equicontinuous.

Proof. To see that F is equicontinuous, fix an arbitrary element x0 ∈ X and
let ϵ > 0 be arbitrary. Since F is equicontinuous, there exists a δ > 0 such
that if x ∈ X and dX (x, x0) < δ then |f(x) − f(x0)| < ϵ

3 for all f ∈ F .
To see that δ works with respect to ϵ for F in Definition 4.9.3, let g ∈ F be

arbitrary. By Corollary 1.5.23 there exists an f ∈ F such that ∥g − f∥∞ < ϵ
3 .

Therefore, if x ∈ X and dX (x, x0) < δ, then

|g(x) − g(x0)| ≤ |g(x) − f(x)| + |f(x) − f(x0)| + |f(x0) − g(x0)|

≤ ϵ

3 + ϵ

3 + ϵ

3 = ϵ.

Therefore, as g ∈ F , ϵ > 0, and x0 ∈ X were arbitrary, we obtain that F is
equicontinuous.
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As uniform continuity is preferable to continuity as the same δ works for
every point in the space, we also desire a strengthening of equicontinuous
collections of functions in precisely the same way.

Definition 4.9.9. Let (X , d) be a compact metric space and let F ⊆ C(X ).
It is said that F is uniformly equicontinuous if for all ϵ > 0 there exists a
δ > 0 such that if x1, x2 ∈ X and d(x1, x2) < δ then |f(x1) − f(x2)| < ϵ for
all f ∈ F .

As continuous functions on compact sets are automatically uniformly
continuous, it is unsurprising that equicontinuous functions on compact sets
are automatically uniformly equicontinuous. Of course, the benefit of this
theorem is that one obtains the stronger notion of uniformly equicontinuous
by just verifying the equicontinuous condition pointwise.

Theorem 4.9.10. Let (X , d) be a compact metric space and let F ⊆ C(X )
be equicontinuous. Then F is uniformly equicontinuous.

Proof. Our proof will be quite similar to Theorem 4.8.6. Suppose to the
contrary that F is not uniformly equicontinuous. Hence there exists a ϵ0 > 0,
sequences (xn)n≥1 and (x′

n)n≥1 of elements of X , and elements fn ∈ F such
that d(xn, x′

n) < 1
n yet |fn(xn) − fn(x′

n)| ≥ ϵ0 for all n ∈ N.
Since X is compact, X is sequentially compact by Theorem 4.6.3. There-

fore there exists a subsequence (xkn)n≥1 of (xn)n≥1 that converges to some
element z ∈ X . Consider the subsequence (x′

kn
)n≥1 of (x′

n)n≥1. Notice for
all n ∈ N that

d(x′
kn

, z) ≤ d(x′
kn

, xkn) + d(xkn , z) ≤ 1
kn

+ d(xkn , z) ≤ 1
n

+ d(xkn , z).

Therefore, since limn→∞ d(xkn , z) = 0, (x′
kn

)n≥1 converges to z in X .
Since F is equicontinuous, there exists a δ > 0 such that if x ∈ X and

d(x, z) < δ then |f(x) − f(z)| < ϵ0
2 for all f ∈ F . Since both (xkn)n≥1 and

(x′
kn

)n≥1 converge to z, there exists an N ∈ N such that d(xkN
, z) < δ and

d(x′
kN

, z) < δ. Hence

|fkN
(xkN

) − fkN
(x′

kN
)| ≤ |fkN

(xkN
) − fkN

(z)| + |fkN
(z) − fkN

(x′
kN

)|

<
ϵ0
2 + ϵ0

2 = ϵ0

which is a contradiction. Hence F is uniformly equicontinuous.

4.10 The Arzelà-Ascoli Theorem
In this section, we will obtain a characterization of compact subsets of C(X ).
Of course we desire to obtain conditions that are as easy to check as possible.
This was the advantage of proving Theorem 4.9.10 as we obtain uniform
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equicontinuous from just equicontinuous. As Theorem 4.7.1 demonstrated
that compactness was the same as completeness and total boundedness,
and as equicontinuous has a ‘completeness’ feel to it, we desire a notion of
boundedness. Of course, the simplest notion of boundedness to check is the
following.

Definition 4.10.1. Let (X , d) be a compact metric space and let F ⊆ C(X ).
It is said that F is pointwise bounded if

sup
f∈F

|f(x)| < ∞

for all x ∈ X .

However, there no immediate connection between pointwise boundedness
and boundedness (and hence total boundedness) of collections of functions.

Example 4.10.2. For each n ∈ N, let fn ∈ C[0, 1] be defined by

fn(x) =


n2x if x ∈

[
0, 1

n

]
n2
(

2
n − x

)
if x ∈

[
1
n , 2

n

]
0 otherwise

for all x ∈ [0, 1]. We claim the collection F = {fn}∞
n=1 is pointwise bounded.

To see this, notice fn(0) = 0 for all n ∈ N so F is bounded at 0. Otherwise,
if x ∈ (0, 1], choose N ∈ N such that 2

N < x. Then it is easy to see that F is
bounded by

max{f1(x), f2(x), . . . , fN−1(x), fN (x) = 0}.

Hence F is pointwise bounded. However, F is not bounded with respect to
the sup norm as |fn

(
1
n

)
| = n for all n ∈ N so ∥fn∥∞ ≥ n for all n ∈ N.

Of course (because we are discussing this), the reason Example 4.10.2
gives a pointwise bounded collection of functions that is not bounded is
because the functions fluctuate too much. Thus we have equicontinuity to
the rescue.

Proposition 4.10.3. Let (X , d) be a compact metric space and let F ⊆ C(X ).
If F is equicontinuous and pointwise bounded, then F is bounded.

Proof. Let ϵ = 1. Since F is equicontinuous, F is uniformly equicontinuous
by Theorem 4.9.10. Hence there exists a δ > 0 such that if x1, x2 ∈ X and
d(x1, x2) < δ then |f(x1) − f(x2)| ≤ ϵ = 1 for all f ∈ F .

Since X is compact, X is totally bounded by Theorem 4.7.1. Hence X
has a finite δ-net, say x′

1, . . . , x′
n. Note for each k ∈ {1, . . . , n}, we obtain

that
Mk = sup

f∈F
|f(x′

k)| < ∞
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as F is pointwise bounded. Let M = 1 + max{M1, . . . , Mn}.
We claim that ∥f∥∞ ≤ M for all f ∈ F . To see this, let f ∈ F be

arbitrary. If x ∈ X , then as {x′
1, . . . , x′

n} is a δ-net for X , there exists a
k0 ∈ {1, . . . , n} such that d(x, x′

k0
) < δ. Hence |f(x) − f(x′

k0
)| ≤ 1 so

|f(x)| ≤ 1 + |f(x′
k0)| ≤ 1 + Mk0 ≤ M.

Hence, as this holds for all x ∈ X , ∥f∥∞ ≤ M . Hence, as f was arbitrary, F
is bounded.

Using Remark 4.9.2 and the concepts developed above, we can finally
prove a characterization of compact sets of functions.

Theorem 4.10.4 (The Arzelà-Ascoli Theorem). Let (X , d) be a compact
metric space and let F ⊆ C(X ). The following are equivalent:

1. F is relatively compact.

2. F is equicontinuous and pointwise bounded.

Proof. To begin, suppose F is relatively compact. Hence F is compact and
thus complete and totally bounded by Theorem 4.7.1. Thus F is bounded
with respect to ∥ · ∥∞ by Proposition 4.5.8 so F is bounded with respect to
∥ · ∥∞ and hence pointwise bounded. To see that F is equicontinuous, we
note that since F is totally bounded, F is totally bounded by Proposition
4.5.9. Hence F is equicontinuous by Lemma 4.9.6. Hence the first direction
of the proof is complete.

For the other direction, suppose F is equicontinuous and pointwise
bounded. By Remark 4.9.2, it suffices to prove that F is totally bounded.
Thus let ϵ > 0 be arbitrary. Our goal is to divide up X and the range of F
into suitably small pieces, take one function that maps each piece of X into
a chosen piece of the range of F , and show this is an ϵ-net for F .

Since F is equicontinuous, F is uniformly equicontinuous by Theorem
4.9.10. Hence there exists a δ > 0 such that if x1, x2 ∈ X and d(x1, x2) < δ
then |f(x1) − f(x2)| < ϵ

3 for all f ∈ F . Since X is compact, X is totally
bounded. Hence there exists an n ∈ N and x′

1, . . . , x′
n ∈ X such that

{x′
1, . . . , x′

n} is a δ-net for X .
Since F is equicontinuous and pointwise bounded, F is bounded by

Proposition 4.10.3. Hence there exists an M > 0 such that ∥f∥∞ ≤ M for
all f ∈ F . Choose numbers

−M = m1 < m2 < · · · < mq+1 = M

such that |mk+1 − mk| < ϵ
3 for all k ∈ {1, . . . , q}.

For each n-tuple (k1, . . . , kn) ∈ {1, . . . , q}n, let

F(k1,...,kn) = {f ∈ F | f(x′
j) ∈ [mkj

, mkj+1] for all j ∈ {1, . . . , n}}.
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Clearly
F =

⋃
(k1,...,kn)∈{1,...,q−1}n

F(k1,...,kn)

by construction.
For each (k1, . . . , kn) ∈ {1, . . . , q}n for which F(k1,...,kn) ̸= ∅, choose an

f(k1,...,kn) ∈ F(k1,...,kn). We claim the collection of all f(k1,...,kn) (which is a
finite set) is an ϵ-net for F . To see this, let f ∈ F be arbitrary. Hence
f ∈ F(k1,...,kn) for some (k1, . . . , kn) ∈ {1, . . . , q}n. To see that∥∥∥f − f(k1,...,kn)

∥∥∥
∞

≤ ϵ,

let x ∈ X be arbitrary. Hence, as {x′
1, . . . , x′

n} is a δ-net for X , there exists
a j ∈ {1, . . . , n} such that d(x, x′

j) < δ. Therefore, by the selection of δ,

|f(x) − f(x′
j)| <

ϵ

3 and |f(k1,...,kn)(x) − f(k1,...,kn)(x′
j)| <

ϵ

3 .

However, as f ∈ F(k1,...,kn), the fact that |mk+1 − mk| < ϵ
3 for all k ∈

{1, . . . , q} implies that

|f(x′
j) − f(k1,...,kn)(x′

j)| <
ϵ

3 .

Hence the triangle inequality implies

|f(x) − f(k1,...,kn)(x)| < ϵ.

Therefore, as x ∈ X was arbitrary,
∥∥∥f − f(k1,...,kn)

∥∥∥
∞

≤ ϵ. Therefore, as
f ∈ F was arbitrary, we have proven the existence of an ϵ-net for F . Hence,
as ϵ > 0 was arbitrary, F is totally bounded as desired.

To complete our discussion of the Arzelà-Ascoli Theorem (Theorem 4.10.4)
we note it is a powerful tool to verify sets of functions are relatively compact.
Indeed verifying a set of functions is pointwise bounded is generally trivial
and verify a collection of functions is equicontinuous is no more difficult
then verifying a single function is continuous. Consequently, if one desires to
verify a collection of function is actually compact, one need only verify the
collection is relatively compact and closed. One example of this is as follows.

Example 4.10.5. Let

K =
{

f ∈ C[0, 1]
∣∣∣∣ |f(x) − f(y)| ≤

√
|x − y| ∀ x, y ∈ [0, 1] and f(0) = 0

}
.

Then K is a compact subset of C[0, 1]. To see this via the Arzelà-Ascoli
Theorem (Theorem 4.10.4), we need to show that K is equicontinuous,
pointwise bounded, and closed in (C[0, 1], ∥ · ∥∞). To prove that K is a
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compact subset of (C[0, 1], ∥ · ∥∞), we will show that K is closed and relatively
compact as this implies K = K is compact.

To see that K is a closed subset of (C[0, 1], ∥ · ∥∞), let (fn)n≥1 be an
arbitrary sequence in K that converges to some f ∈ C[0, 1] with respect to
∥ · ∥∞. By the definition of the infinity norm, we see that (fn)n≥1 converges
pointwise to f . Therefore, since

|fn(x) − fn(y)| ≤
√

|x − y| for all x, y ∈ [0, 1] and fn(0) = 0

for all n ∈ N due to the defining properties of K, we obtain that

|f(x) − f(y)| ≤
√

|x − y| for all x, y ∈ [0, 1] and f(0) = 0

so f ∈ K by definition. Therefore, since (fn)n≥1 was arbitrary, K is closed
in (C[0, 1], ∥ · ∥∞).

To see that K is relatively compact in (C[0, 1], ∥ · ∥∞), it suffices to show
by the Arzelà-Ascoli Theorem (Theorem 4.10.4) that K is equicontinuous
and pointwise bounded. To see that K is pointwise bounded, notice for all
f ∈ K and x ∈ [0, 1] that

|f(x)| = |f(x) − f(0)| ≤
√

x − 0 =
√

x.

Consequently, K is clearly pointwise bounded. To see that K is equicontinu-
ous, let ϵ > 0 and x ∈ [0, 1] be arbitrary. Since the function g : [0, 1] → R
defined by g(y) =

√
|x − y| is continuous and vanishes at x, there exists a

δ > 0 such that if y ∈ [0, 1] and |x − y| < δ then g(y) < ϵ. Hence for all
f ∈ K and y ∈ [0, 1] such that |x − y| < δ, we obtain that

|f(x) − f(y)| ≤
√

|x − y| < ϵ.

Therefore, since f ∈ K, ϵ > 0, and x ∈ [0, 1] were arbitrary, K is equicontin-
uous as desired.
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Chapter 5

Dense Subsets of Continuous
Functions

The notion of relative compactness raises the question about how one goes
about taking the closure of a set of functions with respect to the sup metric.
In particular, as an element x is in the closure of a set if and only if there
is a sequence from the set converging to x, and as a sequence of functions
converges with respect to the sup norm if and only if it converges uniformly,
we are asking when one function can be uniformly approximated by other
functions. This is often useful as there may be a nice collection of functions
one understands that approximate all other functions. Hence one may use
this nice collection to understand all functions! Thus the goal of this chapter
is to develop the theory of dense subsets of C(X ).

5.1 Weierstrass Approximation Theorem

As has been demonstrated in previous analysis courses, every infinitely differ-
entiable function on R can be approximated ‘well’ in a little neighbourhood
by its Taylor polynomial. Thus it is natural to ask, “How well can we
approximate continuous functions using polynomials?”

In this section, we will demonstrate the Weierstrass Approximation
Theorem (Theorem 5.1.3) which states every real-valued continuous function
on a finite closed interval may be uniformly approximated by a polynomial.
To prove the Weierstrass Approximation Theorem (Theorem 5.1.3) we need
two ingredients in addition to our previously developed technology on C(X )
with a delicate proof. The first ingredient says we can study any particular
finite closed interval we choose.

Lemma 5.1.1. Consider the linear map T : C[a, b] → C[0, 1] defined by

T (f)(x) = f(a + (b − a)x)
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for all x ∈ [0, 1] and f ∈ C[a, b]. Then T is an isometric isomorphism such
that T (p) is a polynomial if and only if p is a polynomial.

Proof. Clearly T (f) is well-defined and a continuous function on [0, 1] for all
f ∈ C[a, b]. It is elementary to see that T is linear and that ∥T (f)∥∞ = ∥f∥∞
for all f ∈ C[a, b]. Therefore, as T −1 : C[0, 1] → C[a, b], defined by

T −1(f)(x) = f

(
x − a

b − a

)
for all x ∈ [a, b] and f ∈ C[0, 1], exists, we see that T is an isometric
isomorphism. In addition, it is clear that if p is a polynomial then T (p) is
polynomial and T −1(p) is a polynomial. Hence the result follows.

Our second ingredient is a technical result for a function we will encounter
and is proved using elementary calculus.

Lemma 5.1.2. If x ∈ [−1, 1] and n ∈ N, then

(1 − x2)n ≥ 1 − nx2.

Proof. Clearly it suffices to consider x ∈ [0, 1] as (1 − (−x)2)n = (1 − x2)n

and 1 − n(−x)2 = 1 − nx2 for all x ∈ [−1, 1].
Consider the functions f, g : [0, 1] → R defined by

f(x) = (1 − x2)n and g(x) = 1 − nx2

for all x ∈ [0, 1]. Clearly f(0) = 1 = g(0). Furthermore, f and g are
differentiable with

f ′(x) = n(1 − x2)(−2x) and g′(x) = −2nx.

As −2nx ≤ 0 and 0 ≤ 1 − x2 ≤ 1 for all x ∈ [0, 1], we see that f ′(x) ≥ g′(x)
for all x ∈ [0, 1]. Hence it follows that f(x) ≥ g(x) for all x ∈ [0, 1] as
desired.

The above is the little preparation we need to prove the main theorem of
this section.

Theorem 5.1.3 (Weierstrass Approximation Theorem). Let a, b ∈ R
be such that a < b. The set of polynomials is dense in (C[a, b], ∥ · ∥∞); that
is, for each f ∈ C[a, b] and ϵ > 0 there exists a polynomial p such that
|f(x) − p(x)| < ϵ for all x ∈ [a, b].

Proof. By Lemma 5.1.1 we may assume without loss of generality that a = 0
and b = 1.

Let g ∈ C[0, 1] be arbitrary. Define the function f : [0, 1] → R by

f(x) = g(x) − (g(0) + (g(1) − g(0))x)
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for all x ∈ [0, 1]. Clearly f ∈ C[0, 1] and f(0) = f(1) = 0. We will
demonstrate there exists a sequence (pn)n≥1 of polynomials such that

lim
n→∞

∥f − pn∥∞ = 0.

This will complete the proof as rn(x) = pn(x) + (g(0) + (g(1) − g(0))x) are
polynomials such that limn→∞ ∥g − rn∥∞ = 0.

To see that f is a uniform limit of polynomials on [0, 1], let ϵ > 0 be
arbitrary. First note that as f ∈ C[0, 1] and f(0) = 0 = f(1), we can
extend f to be a continuous function on R by defining f(x) = 0 for all
x ∈ (−∞, 0) ∪ (1, ∞). Since f is then continuous on [−2, 2], f is uniformly
continuous on [−2, 2] by Theorem 4.8.6 so there exists a 0 < δ < 1 such that
if x ∈ [−1, 1] and |t| < δ then

|f(x + t) − f(x)| <
1
2ϵ.

Notice for each n ∈ N that∫ 1

−1
(1 − x2)n dx > 0

as (1 − x2)n > 0 for all x ∈ (−1, 1). Hence for each n ∈ N there exists a
cn > 0 such that

cn

∫ 1

−1
(1 − x2)n dx = 1.

Therefore, by Lemma 5.1.2,

1
cn

=
∫ 1

−1
(1 − x2)n dx

= 2
∫ 1

0
(1 − x2)n dx

≥ 2
∫ 1√

n

0
(1 − x2)n dx

≥ 2
∫ 1√

n

0
1 − nx2 dx

= 2
(

x − n

3 x3
)∣∣∣∣ 1√

n

x=0

= 4
3
√

n
≥ 1√

n
.

Hence 0 < cn ≤
√

n for all n ∈ N.
For each n ∈ N define qn : R → R by

qn(x) = cn(1 − x2)n

©For use through and only available at pskoufra.info.yorku.ca.



134 CHAPTER 5. DENSE SUBSETS OF CONTINUOUS FUNCTIONS

for all x ∈ R. Thus qn(x) ≥ 0 for all x ∈ [−1, 1] and

∫ 1

−1
qn(x) dx = 1

by the definition of cn. Notice by the definition of qn that if x ∈ [−1, −δ]∪[δ, 1],
then

qn(x) = cn(1 − x2)n ≤ cn(1 − δ2)n ≤
√

n(1 − δ2)n.

For each n ∈ N, define the function f ∗ qn : [0, 1] → R by

(f ∗ qn)(x) =
∫ 1

−1
f(x + t)qn(t) dt.

Due to the translation invariance of the Riemann (Lebesgue) integral, for all
x ∈ [0, 1] we see using the substitution u = x + t that

(f ∗ qn)(x) =
∫ 1

−1
f(x + t)qn(t) dt

=
∫ 1−x

−x
f(x + t)qn(t) dt f is 0 on [0, 1]c

=
∫ 1

0
f(u)qn(u − x) du.

Thus, as qn(u − x) is a polynomial in x with coefficients being continuous
functions in u, f(u)qn(u−x) is a polynomial with coefficients being continuous
functions in u. Hence integrating f(u)qn(u−x) with respect to u is performed
by integrating the coefficients of the polynomial in x with respect to u thereby
resulting in a polynomial in x. Hence f ∗ qn is a polynomial on [0, 1].

Finally, we claim that limn→∞ ∥(f ∗ qn) − f∥∞ = 0. To see this, note for
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each x ∈ [0, 1] that

|(f ∗ qn)(x) − f(x)|

=
∣∣∣∣∫ 1

−1
f(x + t)qn(t) dt − f(x)

∣∣∣∣
=
∣∣∣∣∫ 1

−1
f(x + t)qn(t) dt − f(x)

∫ 1

−1
qn(t) dt

∣∣∣∣ as
∫ 1

−1
qn(x) dx = 1

=
∣∣∣∣∫ 1

−1
(f(x + t) − f(x))qn(t) dt

∣∣∣∣
≤
∫ 1

−1
|f(x + t) − f(x)|qn(t) dt as qn(x) ≥ 0 on [−1, 1]

=
∫

[−1,−δ]∪[δ,1]
|f(x + t) − f(x)|qn(t) dt +

∫ δ

−δ
|f(x + t) − f(x)|qn(t) dt

≤
∫

[−1,−δ]∪[δ,1]
2 ∥f∥∞

√
n(1 − δ2)n dt +

∫ δ

−δ
|f(x + t) − f(x)|qn(t) dt

= 4
√

n ∥f∥∞ (1 − δ2)n(1 − δ) +
∫ δ

−δ
|f(x + t) − f(x)|qn(t) dt

≤ 4
√

n ∥f∥∞ (1 − δ2)n(1 − δ) +
∫ δ

−δ

ϵ

2qn(t) dt by uniform continuity

≤ 4
√

n ∥f∥∞ (1 − δ2)n(1 − δ) + ϵ

2

∫ 1

−1
qn(t) dt

= 4
√

n ∥f∥∞ (1 − δ2)n(1 − δ) + ϵ

2 .

Therefore, as 0 < 1 − δ2 < 1 so

lim
n→∞

4
√

n ∥f∥∞ (1 − δ2)n(1 − δ) = 0,

we see that for sufficiently large n that ∥(f ∗ qn) − f∥∞ < ϵ. Hence, as ϵ > 0
was arbitrary, the result follows.

In the proof of Theorem 5.1.3, functions with similar properties to the
qn and to f ∗ qn are used in Fourier analysis. In particular, the qn are nice
as they are positive functions which integrate to 1 with all of their mass
being closer and closer to zero. Such collections of functions are known
as summability kernels, the most famous of which is Fejér’s kernel. The
functions f ∗ qn then serve as an ‘averaging’ of f and we showed they tend
to f uniformly.

5.2 Stone-Weierstrass Theorem, Lattice Form
Although the Weierstrass Approximation Theorem (Theorem 5.1.3) is pow-
erful, it is limited as for an arbitrary compact metric space we need not
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have a notion of polynomials. In this section, we will develop one of two
theorems which will produce dense subsets of C(X ). The theorem of this
section (Theorem 5.2.10) will be motivated by a poset structure on C(X ).

Given two functions f, g ∈ C(X ) for some compact metric space (X , d),
is it easy to define a poset structure on C(X ) by defining f ≤ g if and only
if f(x) ≤ g(x) for all x ∈ X . However this poset structure is something
stronger in that maximums and minimums occur.

Definition 5.2.1. Let (X , d) be a compact metric space and let f, g ∈ C(X ).
The functions f ∨ g, f ∧ g : X → R defined by

(f ∨ g)(x) = max({f(x), g(x)}) = 1
2f(x) + 1

2g(x) − 1
2 |f(x) − g(x)|

(f ∧ g)(x) = min({f(x), g(x)}) = −((−f) ∨ (−g))(x)

for all x ∈ X are continuous functions (as they are a combination of com-
positions, sums, and scalar multiples of continuous functions) called the
maximum and minimum functions respectively.

It is elementary to see that f ∨ g is the smallest function in C(X ) that
is larger than both f and g and f ∧ g is the largest function in C(X ) that
is smaller than both f and g. In particular, we will be interested in the
following subspaces of C(X ).

Definition 5.2.2. Let (X , d) be a compact metric space. A vector subsspace
F ⊆ C(X ) is said to be a lattice if f ∨ g ∈ F whenever f, g ∈ F .

Example 5.2.3. It is elementary to see that C(X ) is lattice.
For a, b ∈ R with a < b, consider the subspace F of C[a, b] consisting of

all piecewise linear functions; that is;

F =
{

f : [a, b] → R
∣∣∣ f∈C[a,b] and there exists a partition {tk}n

k=0
such that f is linear on [tk−1,tk] for all k.

}
.

It is not difficult to check that F is lattice in C[a, b] (i.e. the max of two
linear functions is linear and the union of two partitions is a partition). In
fact, it is not difficult to check that F is the smallest lattice in C[a, b] that
contains the functions f(x) = x and g(x) = 1 for all x ∈ [a, b].

Remark 5.2.4. The reason we require a lattice of C(X ) to be a vector
subspace is that we know C(X ) is a vector space so it would be difficult to
approximate a general function from a set that is not a vector subspace of
C(X ). This is not too much of a restriction since we may always take the
span of a given a subset of C(X ).

Remark 5.2.5. As it is not difficult to see that (−f) ∨ (−g) = −(f ∧ g),
we have that any lattice in C(X ) is closed under taking the maximum and
minimum of the functions it contains (as lattices are subspaces and thus
closed under scalar multiplication).
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Of course, not every lattice can be dense in C(X ) as the constant functions
are clearly a lattice. The additional property required of our lattices is as
follow.

Definition 5.2.6. Let (X , dX ) be a compact metric space and let (Y, dY)
be a metric space. A collection of continuous functions F ⊆ C(X , Y) is said
to separates points if for all x1, x2 ∈ X with x1 ̸= x2 there exists a function
f ∈ F such that f(x1) ̸= f(x2).

Of course it is not difficult to find examples of sets of continuous functions
that separate points.

Example 5.2.7. For a, b ∈ R with a < b, clearly the piecewise linear
functions on C[a, b] separate points as the function f(x) = x is (piecewise)
linear and clearly separates points.

Example 5.2.8. If (X , d) is a compact metric space, then C(X ) separates
points. Indeed if x1, x2 ∈ X are such that x1 ̸= x2, then the function
f : X → R defined by f(x) = d(x, x1) for all x ∈ X is continuous, f(x1) = 0,
and f(x2) = d(x1, x2) > 0 = f(x1).

Using the above example, we may obtain the following.

Proposition 5.2.9. If (X , d) be a compact metric space and F be a dense
subset of C(X ), then F separates points.

Proof. Let F be a dense subset of C(X ). To see that F separates points, let
x1, x2 ∈ X such that x1 ≠ x2 be arbitrary. Define the function f : X → R
by f(x) = d(x, x1) for all x ∈ X . Clearly f is continuous, f(x1) = 0 and
f(x2) = d(x1, x2) > 0.

Let ϵ = 1
3d(x1, x2) > 0. Since F is dense in C(X ), there exists a g ∈ F

such that ∥f − g∥∞ < ϵ. Hence

3ϵ = d(x2, x1) = |f(x1) − f(x2)|
≤ |f(x1) − g(x1)| + |g(x1) − g(x2)| + |g(x2) − f(x2)|
≤ 2ϵ + |g(x1) − g(x2)|

Hence |g(x1) − g(x2)| ≥ ϵ > 0 so g(x1) ̸= g(x2). Hence, as x1, x2 ∈ X were
arbitrary, we obtain that F separates points.

In fact, the following theorem demonstrates (after adding in the constant
functions) that ‘separating points’ is the only obstacle for a lattice to be
dense in C(X ).

Theorem 5.2.10 (Stone-Weierstrass Theorem - Lattice Version).
Let (X , d) be compact metric space and let F ⊆ C(X ) be such that

1. 1 ∈ F (the constant function that is one everywhere),
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2. F separates points, and

3. F is a lattice.

Then F is dense in C(X ).

Proof. First we claim that for all x1, x2 ∈ X with x1 ̸= x2 and for all α, β ∈ R
there exists a function h ∈ F such that

h(x1) = α and h(x2) = β.

To see this, let x1, x2 ∈ X be arbitrary points such that x1 ̸= x2. Since
F separates points, there exists a function g ∈ F such that g(x1) ̸= g(x2).
Hence if we define h : X → R by

h(x) = α + β − α

g(x2) − g(x1)(g(x) − g(x1)),

then clearly h ∈ F as F is a vector subspace and 1 ∈ F , h(x1) = α,
and h(x2) = β as desired. We will use these functions to build-up our
approximates.

To prove that F is dense in (C(X ), ∥ · ∥∞), let f ∈ C(X ) be arbitrary and
let ϵ > 0 be arbitrary. To begin, we will demonstrate that for each z ∈ X
there exists a function hz ∈ F such that hz(z) = f(z) and hz(x) < f(x) + ϵ
for all x ∈ X (and thus hz − f < ϵ, which is close to what we want).

To the function hz ∈ F exists, fix z ∈ X . By the above paragraph for each
y ∈ X there exists a hz,y ∈ F such that hz,y(z) = f(z) and hz,y(y) = f(y).
Since the function hz,y − f is continuous and hz,y(y) − f(y) = 0, there exists
a open set Uy containing y such that hz,y(x) − f(x) < ϵ for all x ∈ Uy.
However, since {Uy}y∈X is an open cover of X and as X is compact, there
exists an n ∈ N and y1, . . . , yn ∈ X such that X ⊆

⋃n
k=1 Uyk

. Let

hz = hz,y1 ∧ hz,y2 ∧ · · · ∧ hz,yn ,

which is an element of F as F is a lattice. In addition, as hz,yk
(z) = f(z)

for all k ∈ {1, . . . , n}, we clearly see that hz(z) = f(z). Moreover if x ∈ X is
an arbitrary element, then there exists a k0 ∈ {1, . . . , n} such that x ∈ Uyk0
and thus

hz(x) ≤ hz,yk0
(x) < f(x) + ϵ.

Hence, as x ∈ X was arbitrary, hz has the desired properties.
We may now use the hz ∈ F along with a similar technique to obtain

an h ∈ F such that ∥f − h∥∞ ≤ ϵ. To see this, notice for each z ∈ X that
hz − f is continuous and hz(z) − f(z) = 0 so thee exists an open set Vz

containing z such that hz(x) − f(x) > −ϵ for all x ∈ Vz. However, since
{Vz}z∈X is an open cover of X and as X is compact, there exists an m ∈ N
and z1, . . . , zm ∈ X such that X ⊆

⋃m
k=1 Vzk

. Let

h = hz1 ∨ hz2 ∨ · · · ∨ hzm .
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which is an element of F as F is a lattice. Furthermore, as hzk
(x) < f(x) + ϵ

for all x ∈ X and for all k ∈ {1, . . . , m}, we see that h(x) < f(x) + ϵ for all
x ∈ X by the definition of the maximum. Moreover, if x ∈ X is arbitrary
then there exists a k0 ∈ {1, . . . , m} such that x ∈ Vzk0

and thus

h(x) ≥ hzk
(x) > f(x) − ϵ.

Therefore, as x ∈ X was arbitrary, we have that

f(x) − ϵ < h(x) < f(x) + ϵ

for all x ∈ X . Hence ∥h − f∥∞ ≤ ϵ. Therefore, as ϵ > 0 and f ∈ C(X ) were
arbitrary, the result follows.

Using Theorem 5.2.10, Example 5.2.3, and Example 5.2.7 imply that
the piecewise linear functions on C[a, b] are dense in C[a, b]. Of course, one
could verify the density of piecewise linear functions in C[a, b] directly using
uniform continuity. Indeed given f ∈ C[a, b] and an ϵ > 0, choose the δ from
uniform continuity. Then choose a partition with intervals of length at most
δ and define a piecewise linear function g that takes the values that f does at
each end of each interval in the partition. Uniform continuity and piecewise
linearity will then implies that ∥f − g∥∞ ≤ 2ϵ.

5.3 Stone-Weierstrass Theorem, Subalgebra Form

Of course constructing a vector subspace that is a lattice in C(X ) may not
be an easy task as making a vector subspace be closed under maximum
and minimum is highly non-trivial. In this section, we will discuss another
version of the Stone-Weierstrass Theorem (Theorem 5.3.5) that is vastly
easier to verify in general. Furthermore, note the lattice version of the
Stone-Weierstrass Theorem (Theorem 5.2.10) cannot possible extend to
complex-valued functions as there is no natural ordering on C. However,
using our new version of the Stone-Weierstrass Theorem (Theorem 5.3.5) we
will be able to develop a version of the Stone-Weierstrass Theorem (Theorem
5.3.7) for complex-valued functions.

To replace the lattice structure for dense subsets, we will consider the
following structure.

Definition 5.3.1. Let (X , d) be a compact metric space. A vector subspace
A ⊆ C(X,K) is said to be a subalgebra of C(X,K) if whenever f, g ∈ A it is
the case that fg ∈ A.

Example 5.3.2. Clearly C(X,K) is a subalgebra of C(X,K) and any ideal
of C(X,K) is a subalgebra of C(X,K). Furthermore, it is clear that the
polynomials are a subalgebra of C[a, b].

©For use through and only available at pskoufra.info.yorku.ca.



140 CHAPTER 5. DENSE SUBSETS OF CONTINUOUS FUNCTIONS

Example 5.3.3. Let
T = {z ∈ C | |z| = 1}.

The trigonometric polynomials on T is the subset of C(T,C) defined by

Trig(T) = spanC({fn : T → C | n ∈ Z, fn(z) = zn for all z ∈ T}).

As fnfm = fn+m for all n, m ∈ Z, clearly Trig(T) is a subalgebra of C(T,C).
There are many other ways to view Trig(T). Indeed notice that if z ∈ T

then fn(z) = zn if n ≥ 0 and fn(z) = z−n if n < 0. Therefore, it is easy to
see that

Trig(T) = {p(z, z) : T → C | p a polynomial in two variables}.

Finally, to see why these are called the trigonometric polynomials, recall
if z ∈ T then z = eiθ for some θ ∈ [0, 2π]. Therefore, we see that

fn(z) = einθ = cos(nθ) + i sin(nθ)

for all n ∈ Z. Therefore, as

1
2(fn(z) + f−n(z)) = cos(nθ) and 1

2i
(fn(z) − f−n(z)) = sin(nθ),

we see that

Trig(T) = span{cos(nθ), sin(nθ) : [0, 2π] → C | n ∈ N ∪ {0}}.

This is why Trig(T) is called the trigonometric polynomials.

As the closure of a vector subspace is a vector subspace and as we appear
to want to show that specific algebras are dense in C(X,K), which is an
algebra, it is not difficult to believe the closure of a subalgebra is a subalgebra.

Lemma 5.3.4. Let (X , d) be a compact metric space and let A ⊆ C(X ,K)
be a subalgebra of C(X ,K). Then A is a subalgebra of C(X ,K)

Proof. To begin, notice for all functions f, g ∈ C(X ,K) that

∥fg∥∞ ≤ ∥f∥∞ ∥g∥∞

due to the definition of the sup-norm.
To see that A is a subalgebra, let f, g ∈ A be arbitrary. Therefore

there exists sequences (fn)n≥1 and (gn)n≥1 of functions in A such that
limn→∞ ∥f − fn∥∞ = 0 = limn→∞ ∥g − gn∥∞. Clearly for all α ∈ K the
sequence (αfn + gn)n≥1 consists of elements of A as A is a subspace and

lim
n→∞

∥(αf + g) − (αfn + gn)∥∞ ≤ lim sup
n→∞

|α| ∥f − fn∥∞ + ∥g − gn∥∞ = 0.
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Therefore αf + g ∈ A so A is subspace. To see that A is a subalgebra, notice
the sequence (fngn)n≥1 consists of elements of A as A is subalgebra. Since
supn≥1 ∥fn∥∞ < ∞ as 0 = limn→∞ ∥f − fn∥∞, we obtain that

lim
n→∞

∥fg − fngn∥∞ ≤ lim sup
n→∞

∥fg − fng∥∞ + ∥fng − fngn∥∞

≤ lim sup
n→∞

∥f − fn∥∞ ∥g∥∞ + ∥fn∥∞ ∥g − gn∥∞

= 0.

Therefore fg ∈ A so A is a subalgebra.

Using nothing but Lemma 5.3.4, the Weierstrass Approximation Theorem
(Theorem 5.1.3), and the lattice version of the Stone-Weierstrass Theorem
(Theorem 5.2.10), we obtain the following Stone-Weierstrass Theorem with
next to no difficulty.

Theorem 5.3.5 (Stone-Weierstrass Theorem - Algebra Version). Let
(X , d) be compact metric space and let A ⊆ C(X ) be a subalgebra such that

1. 1 ∈ A and

2. A separates points.

Then A is dense in C(X ).

Proof. By Lemma 5.3.4 it is clear that A is a closed subalgebra of C(X ) that
contains one and separates points. Our goal is to prove that A = C(X ).

First we claim that if f ∈ A then |f | ∈ A. To see this, consider
the function a : [− ∥f∥∞ , ∥f∥∞] → R defined by a(x) = |x| for all x ∈
[− ∥f∥∞ , ∥f∥∞]. As a ∈ C[− ∥f∥∞ , ∥f∥∞], the Weierstrass Approximation
Theorem (Theorem 5.1.3) implies there exists a sequence of polynomials pn

such that limn→∞ ∥pn − a∥∞ = 0 as continuous functions on [− ∥f∥∞ , ∥f∥∞].
Hence, as f : X → [− ∥f∥∞ , ∥f∥∞], we see that

lim
n→∞

∥pn ◦ f − a ◦ f∥∞ = 0

as continuous functions on X . Clearly a ◦ f = |f |. Moreover, notice for any
polynomial p(x) = amxm+am−1xm−1+· · ·+a1x+a0 where a0, a1, . . . , am ∈ R
that

p ◦ f = amfm + am−1fm−1 + · · · + a1f + a01 ∈ A

as 1, f ∈ A and A is a subalgebra. Hence we see that pn ◦ f ∈ A for all
n ∈ N and hence |f | ∈ A.

Next let f, g ∈ A be arbitrary. Then f + g, f − g ∈ A as A is subspace so
|f − g| ∈ A by the above paragraph. Hence, as A is a subspace, we see that

f ∨ g = 1
2(f + g) + 1

2 |f − g| ∈ A.
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Hence A is a lattice that contains one and separates points. Therefore the
lattice form of the Stone-Weierstrass Theorem (Theorem 5.2.10 implies that
A is dense in C(X ). Therefore, as A is closed, we obtain that A = C(X ) so
A is dense in C(X ) as desired.

Example 5.3.6. As it is not difficult to verify that

A = span{xn | n ∈ {0, 3, 6, 9, . . .}}

is a subalgebra of C[0, 1] that separates points and contains 1, the Stone-
Weierstrass Theorem (Theorem 5.3.5) implies that F is dense in C[0, 1].

It is not difficult to develop a version of the Stone-Weierstrass Theorem
(Theorem 5.3.5) for complex-valued functions now. To do so, recall that
if f ∈ C(X ,C), then the function f : X → C defined by f(x) = f(x) (the
complex conjugate) is a continuous function being the composition of two
continuous functions.

Theorem 5.3.7 (Stone-Weierstrass Theorem - Complex Version).
Let (X , d) be compact metric space and let A ⊆ C(X ,C) be a subalgebra such
that

1. 1 ∈ A,

2. A separates points, and

3. f ∈ A whenever f ∈ A.

Then A is dense in C(X ,C).

Proof. Consider the set

A0 = {f ∈ A | f(X ) ⊆ R}.

Clearly A0 is a subalgebra of C(X ,R) that contains the constant function
1. We claim that A0 separates points. To see this, let x1, x2 ∈ X be
arbitrary points such that x1 ̸= x2. Since A separates points, there exists
an f ∈ A such that f(x1) ̸= f(x2). Hence it must be the case that either
Re(f)(x1) ̸= Re(f)(x2) or Im(f)(x1) ̸= Im(f)(x2). Since Re(f), Im(f) ∈ A0
as A is a vector subspace closed under complex conjugates, we obtain that
A0 separates points.

By the algebra version of the Stone-Weierstrass Theorem (Theorem 5.3.5),
we obtain that A0 is dense in C(X ,R). To see that A is dense in C(X ,C), let
f ∈ C(X ,C) be arbitrary and let ϵ > 0 be arbitrary. Since Re(f), Im(f) ∈
C(X ,R) and since A0 is dense in C(X ,R), there exists g1, g2 ∈ A0 such that

∥Re(f) − g1∥∞ <
ϵ

2 and ∥Im(f) − g2∥∞ <
ϵ

2 .
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As A is a subalgebra over C, we see that g1 + ig2 ∈ A and

∥f − (g1 + ig2)∥∞ = ∥(Re(f) + iIm(f)) − (g1 + ig2)∥∞

≤ ∥Re(f) − g1∥∞ + |i| ∥Im(f) − g2∥∞ <
ϵ

2 + ϵ

2 = ϵ.

Hence, as f ∈ C(X ,C) and ϵ > 0 were arbitrary, we obtain that A is dense
in C(X ,C).

Corollary 5.3.8. The trigonometric polynomials Trig(T) is dense in C(T,C).

Proof. By Example 5.3.3 we know that Trig(T) is a subalgebra of C(T,C).
Since z0 = 1 for all z ∈ T, clearly 1 ∈ Trig(T). Furthermore, as every z ∈ T
can be written as z = eiθ for some θ ∈ [0, 2π], we see that

zn = einθ = e−inθ = z−n

for all n ∈ Z and z ∈ T. Hence Trig(T) is closed under complex conjugates.
Finally, to see that Trig(T) separates points, we note that the function
f(z) = z for all z ∈ T is an element of Trig(T) and clearly separate points.
Hence, by the Stone-Weierstrass Theorem (Theorem 5.3.7), we obtain that
Trig(T) is dense in C(T,C).
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Chapter 6

Hilbert Spaces

As we have seen, Banach spaces are nice because their norm structure
produces many analytical results and their completeness structure furthers
these results. In this chapter, we will begin an investigation of a more specific
structure that enables a far deeper theory. In particular, we will study
Banach spaces whose norm is induced by an inner product. These so called
Hilbert spaces have an incredible rich structure. In particular, we will be able
to complete describe in very simple terms all Hilbert spaces. Furthermore,
we will see that the structure of bounded linear maps between Hilbert spaces
is incredibly nice.

6.1 Inner Product Spaces

To begin our study of Hilbert spaces, we recall the relevant facts about inner
product spaces.

Definition 6.1.1. Let V be a vector space over K. An inner product on V
is a map ⟨ ·, · ⟩ : V × V → K such that

1. ⟨v⃗, v⃗⟩ ≥ 0 for all v⃗ ∈ V ,

2. ⟨v⃗, v⃗⟩ = 0 if and only if v⃗ = 0⃗,

3. ⟨x⃗ + λy⃗, v⃗⟩ = ⟨x⃗, v⃗⟩ + λ⟨y⃗, v⃗⟩ for all v⃗, x⃗, y⃗ ∈ V and λ ∈ K (i.e. ⟨ ·, · ⟩)
is linear in the first entry), and

4. ⟨x⃗, y⃗⟩ = ⟨y⃗, x⃗⟩ for all x⃗, y⃗ ∈ V (where z is the complex conjugate of z).

Remark 6.1.2. Combining properties (3) and (4) in Definition 6.1.1, we
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obtain for all v⃗, x⃗, y⃗ ∈ V and λ ∈ K that

⟨v⃗, x⃗ + λy⃗⟩ = ⟨x⃗ + λy⃗, v⃗⟩
= ⟨x⃗, v⃗⟩ + λ⟨y⃗, v⃗⟩
= ⟨x⃗, v⃗⟩ + λ⟨y⃗, v⃗⟩
= ⟨v⃗, x⃗⟩ + λ⟨v⃗, y⃗⟩.

That is, every inner product is conjugate linear in the second entry.

Remark 6.1.3. Notice that if ⟨ ·, · ⟩ is an inner product on a vector space
V , the fact that ⟨ ·, · ⟩ is linear in the first entry and conjugate linear in the
second entries implies that ⟨⃗0, v⃗⟩ = ⟨v⃗, 0⃗⟩ = 0 for all v⃗ ∈ V .

As we are interested in the vector space together with a fixed inner
product, we make the following definition.

Definition 6.1.4. An inner product space is a pair (V, ⟨ ·, · ⟩) where V is a
vector space over K and ⟨ ·, · ⟩ is an inner product on V .

Remark 6.1.5. Again, we will often abuse notation by said that V is an
inner product space without specifying ⟨ ·, · ⟩.

Example 6.1.6. Let n ∈ N. Define ⟨ ·, · ⟩2 : Kn × Kn → K by

⟨(z1, . . . , zn), (w1, . . . , wn)⟩2 =
n∑

k=1
zkwk

for all (z1, . . . , zn), (w1, . . . , wn) ∈ Kn. It is elementary to verify that ⟨ ·, · ⟩ is
an inner product on Kn. We call ⟨ ·, · ⟩ the standard inner product on Kn.

Example 6.1.7. Let n ∈ N and let Mn(K) denote the set of n × n matrices
with entries in K. Define ⟨ ·, · ⟩ : Mn(K) × Mn(K) → K by

⟨A, B⟩ = Tr(AB∗)

for all A, B ∈ Mn(K) where B∗ is the conjugate transpose of B and Tr :
Mn(K) → K is the trace. As the trace is linear, it is elementary to verify
that ⟨ ·, · ⟩ is an inner product on Mn(K).

Notice if we write A = [ai,j ] and B = [bi,j ] then

⟨A, B⟩ =
n∑

i,j=1
ai,jbi,j .

Therefore, by comparing with Example 6.1.6, it is elementary to see that there
is an invertible linear map φ : Mn(K) → Kn2 such that ⟨φ(A), φ(B)⟩Kn2 =
Tr(AB∗) for all A, B ∈ Mn(K). In particular, Mn(K) with this inner
product is really Kn2 with the standard inner product in disguise.
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Example 6.1.8. Let n ∈ N and let ⟨ ·, · ⟩ be an inner product on Kn. It is
then possible to show that there exists a matrix A = [ai,j ] ∈ Mn(K) such
that A is invertible and positive definite, and

⟨(z1, . . . , zn), (w1, . . . , wn)⟩ =
n∑

i,j=1
ai,jzjwi

for all (z1, . . . , zn), (w1, . . . , wn) ∈ Kn. We leave the proof as an exercise that
will make use of the theory we will develop in this chapter and the fact that

⟨(z1, . . . , zn), (w1, . . . , wn)⟩ = ⟨A(z1, . . . , zn), (w1, . . . , wn)⟩2

where ⟨ ·, · ⟩2 is the standard inner product from Example 6.1.6 and where
A(z1, . . . , zn) represents the vector obtained by matrix multiplication of A
against the column vector with entries (z1, . . . , zn). Note if A is the identity
matrix, then the standard inner product is recovered.

Example 6.1.9. Define ⟨ ·, · ⟩ : C[0, 1] × C[0, 1] → R by

⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx

for all f, g ∈ C[0, 1]. It is elementary to verify that ⟨ ·, · ⟩ is an inner product
on C[0, 1].

Example 6.1.10. Define ⟨ ·, · ⟩ : ℓ2(N) × ℓ2(N) → K by

⟨(zn)n≥1, (wn)n≥1⟩ =
∞∑

n=1
znwn

for all (zn)n≥1, (wn)n≥1 ∈ ℓ2(N). It is not difficult to see that ⟨ ·, · ⟩ will satisfy
the conditions in Definition 6.1.1 provided the sum under consideration
actually converges in K. Since

∞∑
n=1

|znwn| ≤ ∥(zn)n≥1∥2 ∥(wn)n≥1∥2

by Hölder’s Inequality (Theorem 1.2.9), and since K is complete (so absolutely
summable series converge by Theorem 2.3.6), the sum is finite.

We desire to show that each inner product space has a norm induced
by the inner product, which happens to be the 2-norm in (almost) all of
the above examples. To do this, we first prove the following very useful
inequality.

Theorem 6.1.11 (Cauchy-Schwarz Inequality). Let (V, ⟨ ·, · ⟩) be an
inner product space. For all x⃗, y⃗ ∈ V ,

|⟨x⃗, y⃗⟩| ≤ ⟨x⃗, x⃗⟩
1
2 ⟨y⃗, y⃗⟩

1
2 .

Furthermore, the above inequality is an equality if and only if {x⃗, y⃗} is linearly
dependent.
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Proof. First notice if x⃗ = 0⃗ or y⃗ = 0⃗, then the proof is trivial by Remark
6.1.3. Thus we may assume that x⃗, y⃗ ̸= 0⃗.

Choose λ ∈ K with |λ| = 1 such that

⟨λx⃗, y⃗⟩ = λ⟨x⃗, y⃗⟩ = |⟨x⃗, y⃗⟩|,

and notice for all t ∈ R that

0 ≤ ⟨λx⃗ + ty⃗, λx⃗ + ty⃗⟩
= |λ|2⟨x⃗, x⃗⟩ + t⟨y⃗, λx⃗⟩ + t⟨λx⃗, y⃗⟩ + t2⟨y⃗, y⃗⟩
= ⟨x⃗, x⃗⟩ + 2t|⟨x⃗, y⃗⟩| + t2⟨y⃗, y⃗⟩.

By substituting
t0 = −|⟨x⃗, y⃗⟩|

⟨y⃗, y⃗⟩
which is well-defined as y⃗ ̸= 0, we obtain that

0 ≤ ⟨x⃗, x⃗⟩ − 2 |⟨x⃗, y⃗⟩|2

⟨y⃗, y⃗⟩
+ |⟨x⃗, y⃗⟩|2

⟨y⃗, y⃗⟩
which clearly implies the inequality.

For the additional claim, notice if x⃗ = αy⃗ for some α ∈ K, then

|⟨x⃗, y⃗⟩| = |α|⟨y⃗, y⃗⟩ = α
1
2 α

1
2 ⟨y⃗, y⃗⟩

1
2 ⟨y⃗, y⃗⟩

1
2 = ⟨x⃗, x⃗⟩

1
2 ⟨y⃗, y⃗⟩

1
2 .

For the other direction, notice if the Cauchy-Schwarz inequality is an equality
then the above proof shows

⟨λx⃗ + t0y⃗, λx⃗ + t0y⃗⟩ = 0.

Hence λx⃗ + t0y⃗ = 0⃗ so {x⃗, y⃗} is linearly dependent (as λ ̸= 0).

Theorem 6.1.12. Let (V, ⟨ ·, · ⟩) be an inner product space. Then V is a
normed linear space with a norm ∥ · ∥ : V → [0, ∞) defined by

∥v⃗∥ =
√

⟨v⃗, v⃗⟩

for all v⃗ ∈ V .
Proof. It is elementary using Definition 6.1.1 to see that ∥ · ∥ is well-defined,
∥v⃗∥ ≥ 0 for all v⃗ ∈ V , ∥v⃗∥ = 0 if and only if v⃗ = 0⃗, and ∥αv⃗∥ = |α| ∥v⃗∥ for
all v⃗ ∈ V and α ∈ K. To see that ∥ · ∥ satisfies the triangle inequality, notice
for all x⃗, y⃗ ∈ V that

∥x⃗ + y⃗∥2 = ⟨x⃗ + y⃗, x⃗ + y⃗⟩
= ⟨x⃗, x⃗⟩ + ⟨x⃗, y⃗⟩ + ⟨y⃗, x⃗⟩ + ⟨y⃗, y⃗⟩
= ∥x⃗∥2 + 2Re(⟨x⃗, y⃗⟩) + ∥y⃗∥2

≤ ∥x⃗∥2 + 2|⟨x⃗, y⃗⟩| + ∥y⃗∥2

≤ ∥x⃗∥2 + 2 ∥x⃗∥ ∥y⃗∥ + ∥y⃗∥2 by Cauchy-Schwarz (Theorem 6.1.11)
= (∥x⃗∥ + ∥y⃗∥)2 .
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Hence the triangle inequality follows.

Remark 6.1.13. For the triangle inequality to be an equality, notice we
require equality in the Cauchy-Schwarz inequality which implies x⃗ and y⃗ are
linearly dependent. Furthermore, we notice we require Re(⟨x⃗, y⃗⟩) = |⟨x⃗, y⃗⟩|
will then occur only if x⃗ = αy⃗ or y⃗ = αx⃗ for some α ∈ [0, ∞). Clearly this
later condition implies equality in the triangle inequality.

Remark 6.1.14. By the Cauchy-Schwarz inequality |⟨x⃗, y⃗⟩| ≤ ∥x⃗∥ ∥y⃗∥, we
see that the inner product is simultaneously continuous in its entry. Indeed
if x⃗ = limn→∞ x⃗n and y⃗ = limn→∞ y⃗n, then

lim sup
n→∞

|⟨x⃗, y⃗⟩ − ⟨x⃗n, y⃗n⟩| ≤ lim sup
n→∞

|⟨x⃗, y⃗⟩ − ⟨x⃗, y⃗n⟩| + |⟨x⃗, y⃗n⟩ − ⟨x⃗n, y⃗n⟩|

≤ lim sup
n→∞

∥x⃗∥ ∥y⃗ − y⃗n∥ + ∥x⃗ − x⃗n∥ ∥y⃗n∥ = 0

as x⃗ = limn→∞ x⃗n and y⃗ = limn→∞ y⃗n, with the later implying that (y⃗n)n≥1
is bounded.

Remark 6.1.15. The proof of Theorem 6.1.12 also enables us to develop
a notion of an angle. To motivate this, recall the cosine law for a triangle
which states

c2 = a2 + b2 − 2ab cos(θ)

for a triangle with sides a, b, c and angle θ opposite to c. Thinking of a
‘triangle’ formed by two vectors x⃗, y⃗ and their difference in a real inner
product space, the proof of Theorem 6.1.12 demonstrates

∥x⃗ − y⃗∥2 = ∥x⃗∥2 + ∥y⃗∥2 − 2⟨x⃗, y⃗⟩.

Thus, for a real inner product space, we would like to define the angle θ
between x⃗ and y⃗ to be such that

cos(θ) = ⟨x⃗, y⃗⟩
∥x⃗∥ ∥y⃗∥

which exists by the Cauchy-Schwarz Inequality.

Using the above notion of an angle, we obtain the definition of what it
means for two vectors to be perpendicular.

Definition 6.1.16. Let (V, ⟨ ·, · ⟩) be an inner product space. Two vectors
v⃗, w⃗ ∈ V are said to be orthogonal if ⟨v⃗, w⃗⟩ = 0.

Using the properties of the inner product, it is nearly trivial to obtain
the following theorems. Thus we omit the proofs.
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Theorem 6.1.17 (Pythagorean Theorem). Let (V, ⟨ ·, · ⟩) be an inner
product space. If {v⃗k}n

k=1 is a set of orthogonal vectors, then∥∥∥∥∥
n∑

k=1
v⃗k

∥∥∥∥∥
2

=
n∑

k=1
∥v⃗k∥2 .

Theorem 6.1.18 (Parallelogram Law). Let (V, ⟨ ·, · ⟩) be an inner product
space. If x⃗, y⃗ ∈ V , then

∥x⃗ + y⃗∥2 + ∥x⃗ − y⃗∥2 = 2 ∥x⃗∥2 + 2 ∥y⃗∥2 .

Remark 6.1.19. It is difficult but possible to show that any norm on any
vector space over K that satisfies the Parallelogram Law actually comes from
an inner product.

Theorem 6.1.20 (Polarization Identity). Let (V, ⟨ ·, · ⟩) be an inner
product space. If x⃗, y⃗ ∈ V , then

• ⟨x⃗, y⃗⟩ = 1
4 ∥x⃗ + y⃗∥2 − 1

4 ∥x⃗ − y⃗∥2 if K = R, and

• ⟨x⃗, y⃗⟩ = 1
4
∑4

k=1 ik
∥∥∥x⃗ + iky⃗

∥∥∥2
if K = C.

6.2 Definition of a Hilbert Space
Now that we have norms induced by inner products, it is natural to ask
whether these normed linear spaces are complete (i.e. Banach spaces). As
these are a special type of Banach spaces, they are given a special name.

Definition 6.2.1. A Hilbert space is a complete inner product space.

Often we will use H to denote a Hilbert space abusing notation by not
mentioning the norm nor inner product.

Already we have seen several examples of Hilbert spaces including
(Kn, ∥ · ∥2) and (ℓ2(N), ∥ · ∥2). However, (C[0, 1], ∥ · ∥2) is an inner product
product space that is not complete by Example 2.2.9. Therefore, it is natural
to ask, “Is the completion of (C[0, 1], ∥ · ∥2) a Hilbert space?”

Theorem 6.2.2. Let (V, ⟨ ·, · ⟩) be an inner product space and let H be the
normed linear space completion of V from Theorem 2.5.22. There exists an
inner product ⟨ ·, · ⟩H : H × H → K such that ⟨x⃗, y⃗⟩H = ⟨x⃗, y⃗⟩ for all x⃗, y⃗ ∈ V .

Proof. To prove this result, we could proceed in one of two ways. The first
way would be to complete Remark 6.1.19 and show that the norm on the
completion of an inner product space then satisfies the the Parallelogram
Law. Instead we will use an argument similar to Proposition 2.5.18 to define
an inner product on the completion.
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Let (V, ⟨ ·, · ⟩) be an inner product space and let H be the normed linear
space completion of V from Theorem 2.5.22. Define ⟨ ·, · ⟩H : H × H → K
as follows: Given x⃗, y⃗ ∈ H, choose sequences (x⃗n)n≥1 and (y⃗n)n≥1 such that
x⃗ = limn→∞ x⃗n and y⃗ = limn→∞ y⃗n. We then define

⟨x⃗, y⃗⟩H = lim
n→∞

⟨x⃗n, y⃗n⟩.

To complete the proof, we will first need to demonstrate three things: that
the above limit exists, that the definition did not depend on the sequences
selected, and that the resulting definition does indeed yield an inner product.

To see that the limit exists, notice for all n, m ∈ N that

|⟨x⃗n, y⃗n⟩ − ⟨x⃗m, y⃗m⟩| ≤ |⟨x⃗n, y⃗n⟩ − ⟨x⃗n, y⃗m⟩| + |⟨x⃗n, y⃗m⟩ − ⟨x⃗m, y⃗m⟩|
= |⟨x⃗n, y⃗n − y⃗m⟩| + |⟨x⃗n − x⃗m, y⃗m⟩|
≤ ∥x⃗n∥ ∥y⃗n − y⃗m∥ + ∥x⃗n − x⃗m∥ ∥y⃗m∥

with the last inequality coming from the Cauchy-Schwarz inequality. Since
(x⃗n)n≥1 and (y⃗n)n≥1 converge in H, (x⃗n)n≥1 and (y⃗n)n≥1 are bounded and
Cauchy. Hence the above inequality demonstrates that (⟨x⃗n, y⃗n⟩)n≥1 is
Cauchy in K and thus converges. Hence the limit exists.

Similarly, if (x⃗′
n)n≥1 and (y⃗′

n)n≥1 are such that x⃗ = limn→∞ x⃗′
n and

y⃗ = limn→∞ y⃗′
n, the above computation shows that∣∣⟨x⃗n, y⃗n⟩ − ⟨x⃗′

n, y⃗′
n⟩
∣∣ ≤

∣∣⟨x⃗n, y⃗n⟩ − ⟨x⃗n, y⃗′
n⟩
∣∣+ ∣∣⟨x⃗n, y⃗′

n⟩ − ⟨x⃗′
n, y⃗′

n⟩
∣∣

=
∣∣⟨x⃗n, y⃗n − y⃗′

n⟩
∣∣+ ∣∣⟨x⃗n − x⃗′

n, y⃗′
n⟩
∣∣

≤ ∥x⃗n∥
∥∥y⃗n − y⃗′

n

∥∥+
∥∥x⃗n − x⃗′

n

∥∥ ∥∥y⃗′
n

∥∥ .

Hence we see that
lim

n→∞
⟨x⃗n, y⃗n⟩ = lim

n→∞
⟨x⃗′

n, y⃗′
n⟩.

Thus the definition of ⟨x⃗, y⃗⟩H does not depend on the sequences representing
x⃗ and y⃗.

To see that ⟨ ·, · ⟩H is an inner product on H, first we notice that ⟨x⃗, x⃗⟩H ≥
0 as the limit of positive real numbers is positive. Furthermore, notice
that ⟨x⃗, x⃗⟩H = 0 if and only if there exists a sequence (x⃗n)n≥1 such that
x⃗ = limn→∞ x⃗n and limn→∞⟨x⃗n, x⃗n⟩ = 0. As the later is equivalent to
limn→∞ ∥x⃗n∥ = 0, we see that ⟨x⃗, x⃗⟩H = 0 if and only if x⃗ = 0⃗. Moreover

⟨x⃗, y⃗⟩H = lim
n→∞

⟨x⃗n, y⃗n⟩ = lim
n→∞

⟨y⃗n, x⃗n⟩ = ⟨y⃗, x⃗⟩H.

Finally, we see for all α ∈ K and x⃗, y⃗, v⃗ ∈ H that (x⃗)n≥1, (y⃗n)n≥1, and
(v⃗n)n≥1 are sequences in V that converge to x⃗, y⃗, and v⃗ respectively, then

⟨x⃗ + αy⃗, v⃗⟩H = lim
n→∞

⟨x⃗n + αy⃗n, v⃗n⟩

= lim
n→∞

⟨x⃗n, v⃗n⟩ + α⟨y⃗n, v⃗n⟩

= ⟨x⃗, v⃗⟩H + α⟨y⃗, v⃗⟩H.

Hence ⟨ ·, · ⟩H is an inner product.

©For use through and only available at pskoufra.info.yorku.ca.



152 CHAPTER 6. HILBERT SPACES

Thus the completion of (C[0, 1], ∥ · ∥2) is a Hilbert space. But this still
does not answer the question, “What is the completion of (C[0, 1], ∥ · ∥2)?”
Unfortunately, technology from MATH 4012 is required to answer this
question.

6.3 Orthogonal Projections
Hilbert spaces are nice as their inner products provide an additional structure
for the norm that Banach spaces do not have. Hence Hilbert spaces will
automatically have ‘nicer geometry’ than Banach spaces. In this section, we
will begin to exploit this geometry.

Our first geometric result enables us to minimize the distance from a
point to the following specific type of sets.

Definition 6.3.1. Let (X , ∥ · ∥) be a normed linear space. A non-empty
subset C ⊆ X is said to be convex if λa⃗ + (1 − λ)⃗b ∈ C for every a⃗, b⃗ ∈ C
and λ ∈ [0, 1] (that is, the line connecting a⃗ to b⃗ is contained in C).

Example 6.3.2. Clearly every vector subspace of a normed linear space is
a convex subset. Furthermore, every open (closed) ball in a normed linear
space is a convex subset. Indeed if r > 0 and x⃗ ∈ X , let λ ∈ [0, 1] and
a⃗, b⃗ ∈ B(x⃗, r) be arbitrary. Thus ∥a⃗ − x⃗∥ < r and

∥∥∥⃗b − x⃗
∥∥∥ < r. Therefore∥∥∥λa⃗ + (1 − λ)⃗b − x⃗

∥∥∥ ≤ ∥λ(⃗a − x⃗)∥ +
∥∥∥(1 − λ)(⃗b − x⃗)

∥∥∥
≤ λ ∥a⃗ − x⃗∥ + (1 − λ)

∥∥∥⃗b − x⃗
∥∥∥

< λr + (1 − λ)r = r

and thus λa⃗ + (1 − λ)⃗b ∈ B(x⃗, r).

Moreover, convex sets have a property we seen previously in this course.

Proposition 6.3.3. Let (X , ∥ · ∥) be a normed linear space and let C be a
convex set. Then C is connected.

Proof. Let C be an arbitrary convex subset of a Hilbert space H. If C is
empty, then C is connected trivially. Hence we may assume without loss of
generality that C is non-empty.

To see that C is connected, suppose to the contrary that C is not
connected. Hence C is disconnected. Therefore there exists non-empty
disjoint open subsets U and V of H such that U ∩ C ̸= ∅, V ∩ C ̸= ∅, and
C ⊆ U ∪ V .

Let x⃗ ∈ U ∩ C and y⃗ ∈ V ∩ C. Define f : [0, 1] → H by

f(λ) = λx⃗ + (1 − λ)y⃗
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for all λ ∈ [0, 1]. Since x⃗, y⃗ ∈ C and C is convex, we have that f : [0, 1] → C.
Moreover, note that U and V are open subsets of H such that x⃗ ∈ U ∩f([0, 1]),
y⃗ ∈ V ∩ f([0, 1]), and f([0, 1]) ⊆ C ⊆ U ∪ V . Hence f([0, 1]) is disconnected.
However, since scalar multiplication, vector addition, and composition of
continuous functions are continuous functions, f is continuous. Hence f([0, 1])
must be a connected subset of C by the Intermediate Value Theorem. As this
contradicts the fact that f([0, 1]) is disconnected, we have a contradiction.
Hence C must be connected.

The reason convex sets are so nice in Hilbert spaces is the following.

Theorem 6.3.4. Let H be a Hilbert space and let C ⊆ H be a non-empty,
closed, convex subset of H. For each x⃗ ∈ H there exists a unique point y⃗ ∈ C
that is closest to x⃗; that is

∥x⃗ − z⃗∥ = dist(x⃗, C)

if and only if z⃗ = y⃗.

Proof. To begin, let d = dist(x⃗, C). We will first demonstrate there exists a
point y⃗ ∈ C such that ∥x⃗ − y⃗∥ = d. By definition of the distance, for each
n ∈ N there exists y⃗n ∈ C such that

∥x⃗ − y⃗n∥2 < d2 + 1
n

.

We claim that (y⃗n)n≥1 is Cauchy in H. To see this, notice by the Parallelo-
gram Law we have for all n, m ∈ N that

∥y⃗n − y⃗m∥2 = ∥(x⃗ − y⃗m) − (x⃗ − y⃗n)∥2

= 2 ∥x⃗ − y⃗m∥2 + 2 ∥x⃗ − y⃗n∥2 − ∥(x⃗ − y⃗m) + (x⃗ − y⃗n)∥2

= 2 ∥x⃗ − y⃗m∥2 + 2 ∥x⃗ − y⃗n∥2 − 4
∥∥∥∥x⃗ − y⃗m + y⃗n

2

∥∥∥∥2

≤ 2
(

d2 + 1
n

)
+ 2

(
d2 + 1

m

)
− 4d2

= 2
n

+ 2
m

(where the third to fourth line follows as y⃗m+y⃗n

2 ∈ C since C was convex).
Hence we obtain that (y⃗n)n≥1 is Cauchy in H. Therefore y⃗ = limn→∞ y⃗n

exists as H is complete. Since C was closed in H, we obtain that y⃗ ∈ C.
Furthermore, as

∥x⃗ − y⃗∥ = lim
n→∞

∥x⃗ − y⃗n∥ ≤ d,

we obtain that ∥x⃗ − y⃗∥ = d.
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To see that y⃗ is the unique vector with this property, suppose z⃗ ∈ C is
such that ∥x⃗ − z⃗∥ = d. A similar computation to the one above show that

∥y⃗ − z⃗∥2 = 2 ∥x⃗ − y⃗∥2 + 2 ∥x⃗ − z⃗∥2 − 4
∥∥∥∥x⃗ − y⃗ + z⃗

2

∥∥∥∥2

≤ 2d2 + 2d2 − 4d2 = 0.

Hence y⃗ = z⃗ as desired.

Of course it would be nice to be able to determine the vector y⃗ in Theorem
6.3.4. In general this is a difficult task for arbitrary closed convex subsets of
Hilbert spaces. However, closed vector subspaces of a Hilbert space are an
abundant collection of examples of closed convex sets for which we can solve
this problem!

To begin, we must use the geometry of Hilbert spaces and the following.

Definition 6.3.5. Let (V, ⟨ ·, · ⟩) be an inner product space and let S ⊆ V .
The orthogonal complement of S in V is the set

S⊥ = {x⃗ ∈ V | ⟨x⃗, z⃗⟩ = 0 for all z⃗ ∈ S}.

Example 6.3.6. The orthogonal complement of the x-axis in R2 with
respect to the standard inner product is the y-axis. Similarly, the orthogonal
complement of the y-axis in R3 with respect to the standard inner product
is the yz-plane.

Remark 6.3.7. Clearly if S ⊆ V , then S⊥ is a closed vector subspace of
V . Furthermore S⊥ = (span(S))⊥ and S⊥ = (S)⊥. Thus the notion of the
orthogonal complement is really a notion for closed vector subspaces of inner
product spaces.

Returning to Theorem 6.3.4, we can obtain a description of the closed
vector using orthogonal complements.

Theorem 6.3.8. Let H be a Hilbert space and let K be a closed subspace of H.
Given x⃗ ∈ H and y⃗ ∈ K, ∥x⃗ − y⃗∥ = dist(x⃗, K) and and only if x⃗ − y⃗ ∈ K⊥.

Proof. First suppose y⃗ ∈ K is such that ∥x⃗ − y⃗∥ = dist(x⃗, K). To see that
x⃗ − y⃗ ∈ K⊥, suppose to the contrary that there exists a z⃗ ∈ K such that
α = ⟨x⃗ − y⃗, z⃗⟩ ̸= 0. Note this implies z⃗ ̸= 0⃗. By scaling z⃗ if necessary
(changing the value of α), we may assume that ∥z⃗∥ = 1.

Consider the vector v⃗ = y⃗ + αz⃗ which is an element of K as K is a vector
subspace. Then

∥x⃗ − v⃗∥2 = ⟨x⃗ − y⃗ − αz⃗, x⃗ − y⃗ − αz⃗⟩
= ∥x⃗ − y⃗∥2 − α⟨z⃗, x⃗ − y⃗⟩ − α⟨x⃗ − y⃗, z⃗⟩ + |α|2 ∥z⃗∥2

= ∥x⃗ − y⃗∥2 − |α|2

< dist(x⃗, K)2,
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which is a contradiction as v⃗ ∈ K. Hence it must be the case that x⃗− y⃗ ∈ K⊥.
Conversely, suppose x⃗ − y⃗ ∈ K⊥. Clearly ∥x⃗ − y⃗∥ ≥ dist(x⃗, K) whereas

for all z⃗ ∈ K,

∥x⃗ − z⃗∥2 = ∥(x⃗ − y⃗) − (z⃗ − y⃗)∥2

= ∥x⃗ − y⃗∥2 + ∥z⃗ − y⃗∥2 ≥ ∥x⃗ − y⃗∥2

by the Pythagorean Theorem since z⃗ − y⃗ ∈ K (as K is a vector subspace)
and x⃗ − y⃗ ∈ K⊥. Hence ∥x⃗ − y⃗∥ = dist(x⃗, K).

Using the above, given a Hilbert space H and a closed subspace K, we
can decompose H nicely.

Theorem 6.3.9. Let H be a Hilbert space and let K be a closed vector
subspace of H. Then H = K ⊕ K⊥; that is, every element x⃗ ∈ H can be
written uniquely as a sum of elements from K and K⊥. Moreover, for all
y⃗ ∈ K and z⃗ ∈ K⊥, ∥y⃗ + z⃗∥ ≤

√
∥y⃗∥2 + ∥z⃗∥2.

Proof. Let x⃗ ∈ H. By Theorems 6.3.4 and 6.3.8, there exists a unique vector
y⃗ ∈ K such that z⃗ = x⃗ − y⃗ ∈ K⊥. Hence as x⃗ = y⃗ + z⃗, we obtain that
H = K + K⊥. Furthermore, the uniqueness follows from the uniqueness of y⃗.
The norm inequality then follows from the Pythagorean Theorem.

Corollary 6.3.10. Let H be a Hilbert space and let K be a closed vector
subspace of H. There is a unique linear map P : H → K ⊆ H such that
P (x⃗) = x⃗ for all x⃗ ∈ K and P (y⃗) = 0⃗ for all y⃗ ∈ K⊥. The linear map
P is called the orthogonal projection of H onto K. Furthermore, P is
bounded with ∥P∥ ≤ 1 (with equality whenever K ≠ {⃗0}), P 2 = P , and
∥x⃗ − P (x⃗)∥ = dist(x⃗, K) for all x⃗ ∈ H.

Proof. For each x⃗ ∈ H, by Theorem 6.3.9 we may write x⃗ = y⃗ + z⃗ with y⃗ ∈ K
(such that ∥x⃗ − y⃗∥ = dist(x⃗, K)) and z⃗ ∈ K⊥, and define P (x⃗) = y⃗. It is
elementary to verify that P is a well-defined linear map such that P (x⃗) = x⃗
for all x⃗ ∈ K and P (y⃗) = 0⃗ for all y⃗ ∈ K⊥. To see that P is bounded, notice

∥P (x⃗)∥2 = ∥y⃗∥2 ≤ ∥y⃗∥2 + ∥z⃗∥2 = ∥x⃗∥2

so ∥P∥ ≤ 1. Clearly ∥P∥ = 1 when K ̸= {⃗0} and clearly P 2 = P . Finally the
fact that ∥x⃗ − P (x⃗)∥ = dist(x⃗, K) for all x⃗ ∈ H follows by construction.

It is elementary to verify that if P is the orthogonal projection onto
a subspace K and IH : H → H is the identity map, then IH − P is the
orthogonal projection on K⊥.

We will see how useful orthogonal projections are in the following section.
For now, we can use the concept of a direct sum in Hilbert spaces to prove
the following.
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Corollary 6.3.11. Let H be a Hilbert space and let S ⊆ H be non-empty.
Then (S⊥)⊥ = span(S).

Proof. To begin, let x⃗ ∈ span(S) be arbitrary. Thus there exists a sequence
(x⃗n)n≥1 of elements of span(S) such that x⃗ = limn→∞ x⃗n. Let y⃗ ∈ S⊥ be
arbitrary. Then

⟨x⃗, y⃗⟩ = lim
n→∞

⟨x⃗n, y⃗⟩ = 0

as y⃗ ∈ S⊥ and x⃗n ∈ span(S) for all n. Therefore, as y⃗ ∈ S⊥ was arbitrary,
x⃗ ∈ (S⊥)⊥. Thus, as x⃗ ∈ span(S) was arbitrary, span(S) ⊆ (S⊥)⊥.

For the other inclusion, let x⃗ ∈ (S⊥)⊥ be arbitrary. Since span(S)
is a closed vector subspace, Theorem 6.3.8 implies there exists a vector
y⃗ ∈ span(S) such that x⃗ − y⃗ ∈ span(S)⊥. Notice for all z⃗ ∈ span(S) that

⟨x⃗ − y⃗, z⃗⟩ = 0

as x⃗ − y⃗ ∈ span(S)⊥. Similarly, if z⃗ ∈ span(S)⊥ then z⃗ ∈ S⊥ so

⟨x⃗ − y⃗, z⃗⟩ = ⟨x⃗, z⃗⟩ − ⟨y⃗, z⃗⟩ = 0 − 0 = 0.

Therefore, as every vector in H can be written as the sum of elements from
span(S) and span(S), we obtain that ⟨x⃗ − y⃗, z⃗⟩ = 0 for all z⃗ ∈ H. Hence
by choosing z⃗ = x⃗ − y⃗, we obtain that x⃗ = y⃗ ∈ span(S). Therefore, as
x⃗ ∈ (S⊥)⊥ was arbitrary, we obtain that (S⊥)⊥ ⊆ span(S) as desired.

6.4 Orthonormal Bases
Using the theory of orthogonal projections, we can develop a notion of bases
for Hilbert spaces that is far superior to taking a vector space basis. In
particular, recall from Theorem 4.2.9 that any vector space basis for an
infinite dimensional Banach space must be uncountable. Thus we desire ‘nice’
bases for Hilbert spaces that to avoid this problem and use the geometry of
Hilbert spaces. Thus we begin with the following.

Definition 6.4.1. Let (X , ∥ · ∥) be a normed linear space. An element x⃗ ∈ X
is said to be a unit vector if ∥x⃗∥ = 1.

Definition 6.4.2. Let H be a Hilbert space. A subset {eα}α∈Λ is said to be
an orthonormal set if each eα is a unit vector and ⟨eα, eβ⟩ = 0 α, β ∈ Λ with
α ̸= β (i.e. an orthogonal set of unit vectors).

Remark 6.4.3. It is not difficult to see that every orthonormal set of
vectors is automatically linearly independent. Indeed suppose {eα}α∈Λ is
orthonormal and there exists α1, . . . , αn ∈ Λ and a1, . . . , an ∈ K are such
that

n∑
k=1

akeαk
= 0⃗.
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For each j ∈ {1, . . . , n}, taking the inner product with eαj produces

0 = ⟨⃗0, eαj ⟩ =
n∑

k=1
ak⟨eαk

, eαj ⟩ = aj .

Hence aj = 0 for all j ∈ {1, . . . , n} so {eα}α∈Λ is linearly independent.

We desire to construct special orthonormal sets. Unfortunately, unlike
with finite dimensional theory that students may have seen previously, the
notion of spanning orthonormal sets is not the correct notion for infinite
dimensional Hilbert spaces.

For the correct notion, given a Hilbert space H, let EH denote the set of
all orthonormal subsets of H. Notice we may place a partial ordering on EH
via inclusion. Since the union of any chain of orthonormal sets under this
ordering is an upper bound for the chain (and as EH ̸= ∅), Zorn’s Lemma
(Axiom A.5.10) implies there is a maximal element of EH under inclusion.
These are the objects we are after.

Definition 6.4.4. Let H be a Hilbert space. An orthonormal basis of H is
a maximal orthonormal set.

Example 6.4.5. For n ∈ N, consider the vectors e⃗1, . . . , e⃗n ∈ Kn where for
each j ∈ {1, . . . , n}

e⃗j = (0, 0, . . . , 0, 1, 0, . . . , 0)

where the unique 1 occurs in the jth spot. Clearly E = {e⃗1, . . . , e⃗n} is
orthonormal with respect to the standard inner product. Suppose that
E were not a maximal orthonormal set. Then there would exist a vector
x⃗ = (x1, . . . , xn) ∈ E⊥ with ∥x⃗∥ = 1. The fact that x⃗ ∈ E⊥ implies

0 = ⟨x⃗, e⃗j⟩ = xj

for all j ∈ {1, . . . , n}. Thus x⃗ = 0⃗, an obvious contradiction. Hence E is an
orthonormal basis for Kn.

Example 6.4.6. For each n ∈ N, let e⃗n ∈ ℓ2(N) be the sequence e⃗n =
(en,k)k≥1 where en,n = 1 and en,k = 0 for all k ̸= n. By the same arguments
as above, E = {e⃗n}∞

n=1 is an orthonormal basis for ℓ2(N). However, it is
elementary to see that E does not span ℓ2(N) (indeed the sequence ( 1

n)n≥1 ∈
ℓ2(N) is not a finite linear combination of elements of E).

Remark 6.4.7. Using the argument preceding Definition 6.4.4, it is easy
to see if F is an orthonormal subset of a Hilbert space H then there exists
an orthonormal basis E for H containing F (i.e. restrict the Zorn’s Lemma
argument to orthonormal sets containing F).

In the finite dimensional world, we every have an algorithm for construct-
ing orthonormal bases.
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Theorem 6.4.8 (Gram-Schmidt Orthogonalization Process). Let V
be an inner product space and let L = {v⃗1, . . . , v⃗n} be a linearly independent
subset of V . Then there exists an orthonormal set O = {e⃗1, . . . , e⃗n} such
that span(L) = span(O).

Proof. As v⃗1 ̸= 0⃗ as L is linearly independent, let e⃗1 = 1
∥v⃗1∥ v⃗1. Then

∥e⃗1∥ =
∥∥∥∥ 1

∥v⃗1∥
v⃗1

∥∥∥∥ = 1
∥v⃗1∥

∥v⃗1∥ = 1.

Suppose for some k ∈ {1, . . . , n − 1} we have constructed e⃗1, . . . , e⃗k such
that {e⃗1, . . . , e⃗k} is orthonormal and {e⃗1, . . . , e⃗k, v⃗k+1, . . . , v⃗n} is linearly
independent with the same span as L. Let

x⃗k+1 = v⃗k+1 −
k∑

j=1
⟨v⃗k+1, e⃗j⟩e⃗j .

Since {e⃗1, . . . , e⃗k} is orthonormal, it is easy to see that x⃗k+1 is orthogonal to
{e⃗1, . . . , e⃗k}. Furthermore, as {e⃗1, . . . , e⃗k, v⃗k+1} is linearly independent, we
see that x⃗k is non-zero and {e⃗1, . . . , e⃗k, x⃗k+1, v⃗k+2, . . . , v⃗n} is linearly inde-
pendent. If we define e⃗k+1 = 1

∥x⃗k+1∥ x⃗k+1, we easily obtain that {e⃗1, . . . , e⃗k+1}
is orthonormal and {e⃗1, . . . , e⃗k+1, v⃗k+2, . . . , v⃗n} is linearly independent with
the same span as L. The proof is then complete by recursion.

Remark 6.4.9. The proof of the Gram-Schmidt Orthogonalization Process
actually makes use of a formula for the orthogonal projection onto a finite
subspace. Notice that if K is a finite dimensional vector subspace of a
Hilbert space H, K is closed by Corollary 4.2.5 and the Gram-Schmidt
Orthogonalization Process implies K has a orthonormal basis which is a
vector space basis, say {e⃗1, . . . , e⃗n}. If P is the orthogonal projection onto
K, we claim that

P (x⃗) =
n∑

k=1
⟨x⃗, e⃗k⟩e⃗k

for all x⃗ ∈ H. Indeed if y⃗ denotes the right-hand side of the above expression,
clearly x⃗ − y⃗ is orthogonal to each e⃗k and thus x⃗ − y⃗ ∈ K⊥. As P (x⃗) is the
unique vector such that x⃗ − P (x⃗) ∈ K⊥ by Theorems 6.3.4 and 6.3.8, and by
Corollary 6.3.10, we obtain that y⃗ = P (x⃗).

Although orthonormal bases for finite dimensional vector subspaces are
useful for the above projection formula, as orthonormal bases need not be
vector space bases in infinite dimensional Hilbert spaces, we must ask, “How
close are orthonormal bases to actual vector spaces bases?” We will see that
orthonormal bases are ‘bases with respect to analytic conditions’. To begin,
we first note the following result for countable orthonormal bases.

©For use through and only available at pskoufra.info.yorku.ca.



6.4. ORTHONORMAL BASES 159

Theorem 6.4.10 (Bessel’s Inequality, Countable). Let H be a Hilbert
space and let {eα}α∈Λ be an orthonormal set with Λ countable. For each
x⃗ ∈ H, ∑

α∈Λ
|⟨x⃗, eα⟩|2 ≤ ∥x⃗∥2 .

Proof. Without loss of generality Λ = N (the proof of the result for finite Λ
is contained within). For each n ∈ N, let Kn = span({e1, . . . , en}). Then, if
Pn is the orthogonal projection onto Kn, we obtain for all x⃗ ∈ H that

∥x⃗∥2 ≥ ∥P (x⃗)∥2

=
∥∥∥∥∥

n∑
k=1

⟨x⃗, ek⟩ek

∥∥∥∥∥
2

=
n∑

k=1
|⟨x⃗, eα⟩|2

by the Pythagorean Theorem (Theorem 6.1.17), Corollary 6.3.10 and Remark
6.4.9. Hence the result follows by taking the limit as n tends to infinity.

Using Bessel’s Inequality for countable orthonormal sets, we obtain the
following important result in the case of uncountable orthonormal bases.

Lemma 6.4.11. Let H be a Hilbert space and let {eα}α∈Λ be an orthonormal
set. For each x⃗ ∈ H, the set {α ∈ Λ | ⟨x⃗, eα⟩ ≠ 0} is countable.

Proof. For each n ∈ N let

En =
{

α ∈ Λ
∣∣∣∣ |⟨x⃗, eα⟩| >

1
n

}
.

We claim that each En is finite. Indeed suppose to the contrary that En is
infinite. Hence there exists a collection {αm}m∈N ⊆ En such that αm ̸= αk

whenever k ̸= m. By Theorem 6.4.10 we obtain that

∥x⃗∥2 ≥
∑

m∈N
|⟨x⃗, eαm⟩|2 ≥

∑
m∈N

1
n2 ,

which is impossible. Hence each En must be finite.
Since

{α ∈ Λ | ⟨x⃗, eα⟩ ≠ 0} =
⋃

n∈N
En,

the set under consideration is a countable union of countable sets and thus
is countable.
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Using the above, we immediately obtain a version of Bessel’s Inequality
for uncountable sets. In that which follows, we will be summing over an
uncountable set. However, as only countable many terms in the sum are
non-zero, by summing over this uncountable set we mean summing over the
countable number of non-zero terms and, as all the terms are positive, the
sum converges absolutely so the order of summation does not matter. There
is a formal way to sum over uncountable sets, but this would take us into a
deep realm of topology.

Theorem 6.4.12 (Bessel’s Inequality). Let H be a Hilbert space and let
{eα}α∈Λ be an orthonormal set. For each x⃗ ∈ H,∑

α∈Λ
|⟨x⃗, eα⟩|2 ≤ ∥x⃗∥2 .

Corollary 6.4.13. Let H be a Hilbert space and let {eα}α∈Λ be an orthonor-
mal set. For each x⃗ ∈ H, the sum∑

α∈Λ
⟨x⃗, eα⟩eα

converges.

Proof. By Lemma 6.4.11, only a countable number of coefficients are non-zero
in the desired sum are non-zero. Thus, to show the sum converges, we can
assume without loss of generality that Λ = N.

For each N ∈ N, consider the partial sum SN =
∑N

n=1⟨x, en⟩en. To see
that (SN )N≥1 is Cauchy and thus converges as H is complete, let ϵ > 0.
Since

∑
α∈Λ |⟨x, eα⟩|2 converges by Bessel’s Inequality, there exists an N0 ∈ N

such that
∑∞

n=N0 |⟨x, en⟩|2 < ϵ2. Notice for all M, N ∈ N with M ≥ N ≥ N0
that

∥SM − SN ∥2 =

∥∥∥∥∥∥
M∑

n=N+1
⟨x, en⟩en

∥∥∥∥∥∥
2

=
M∑

n=N+1
∥⟨x, en⟩en∥2 by the Pythagorean Theorem

=
M∑

n=N+1
|⟨x, en⟩|2

≤
∞∑

n=N0

|⟨x, en⟩|2 < ϵ2.

Therefore (SN )N≥1 is Cauchy and thus converges. Hence the desired sum
converges.
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Finally, we obtain another characterization of an orthonormal basis that
shows orthonormal bases are good analytical bases for Hilbert spaces.

Theorem 6.4.14. Let {eα}α∈Λ be an orthonormal set in a Hilbert space H.
The following are equivalent:

(1) {eα}α∈Λ is an orthonormal basis for H.

(2) span({eα}α∈Λ) is dense in H.

(3) For all x⃗ ∈ H, x⃗ =
∑

α∈Λ⟨x⃗, eα⟩eα.

(4) For all x⃗ ∈ H, ∥x⃗∥2 =
∑

α∈Λ |⟨x⃗, eα⟩|2.

Proof. To see that (1) implies (2), suppose {eα}α∈Λ is an orthonormal basis
for H. If span({eα}α∈Λ) is not dense in H, then K = span({eα}α∈Λ) is
a closed vector subspace of H that is not equal to H. Hence K⊥ ≠ ∅ by
Theorem 6.3.9 soK⊥ must contain a vector x⃗ of length 1. Since x⃗ is orthogonal
to each element of K and thus each eα, we obtain that {x⃗} ∪ {eα}α∈Λ is an
orthonormal set, which is larger than {eα}α∈Λ. As this contradicts the fact
that {eα}α∈Λ is a maximal orthonormal set, we have obtained a contradiction.
Hence (1) implies (2).

To see that (2) implies (3), let x⃗ ∈ H be arbitrary. By Corollary 6.4.13
the vector y⃗ =

∑
α∈Λ⟨x⃗, eα⟩eα is an element of H. Hence there exists an

increasing sequence of finite subsets Λn of Λ such that

y⃗ = lim
n→∞

∑
α∈Λn

⟨x⃗, eα⟩eα.

Therefore, by the continuity of the inner product, we obtain that

⟨x⃗ − y⃗, eα⟩ = lim
n→∞

〈
x⃗ −

∑
α∈Λn

⟨x⃗, eα⟩eα, eβ

〉

= lim
n→∞

⟨x⃗, eβ⟩ −
∑

α∈Λn

⟨x⃗, eα⟩⟨eα, eβ⟩

= 0

for all β ∈ Λ. Hence x⃗ − y⃗ ∈ (span({eα}α∈Λ))⊥ = H⊥ = {⃗0}. Thus x⃗ = y⃗ as
desired. Therefore, as x⃗ ∈ H was arbitrary, (2) implies (3).

To see that (3) implies (4), let x⃗ ∈ H be arbitrary. Notice there exists an
increasing sequence of finite subsets Λn of Λ such that

x⃗ = lim
n→∞

∑
α∈Λn

⟨x⃗, eα⟩eα and
∑
α∈Λ

|⟨x⃗, eα⟩|2.
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Thus, by the continuity of the inner product

∥x⃗∥2 = lim
n→∞

〈 ∑
α∈Λn

⟨x⃗, eα⟩eα,
∑

α∈Λn

⟨x⃗, eα⟩eα

〉

= lim
n→∞

∑
α∈Λn

|⟨x⃗, eα⟩|2

=
∑
α∈Λ

|⟨x⃗, eα⟩|2.

Hence (3) implies (4).
Finally, to see that (4) implies (1), suppose to the contrary that {eα}α∈Λ

was not an orthonormal basis. Thus there exists a vector x⃗ ∈ H such that
∥x⃗∥2 = 1 yet x⃗ is orthogonal to each eα. However, the formula in (4) then
implies 1 = 0 which is impossible. Hence {eα}α∈Λ is an orthonormal basis.

Using the same arguments as in Remark 6.4.9, we obtain a version of the
orthogonal projection formula for infinite dimensional subspaces.

Corollary 6.4.15. Let K be a closed vector subspace of a Hilbert space H.
If {eα}α∈Λ is an orthonormal basis for K and P is the orthogonal projection
of H onto K, then for all x⃗ ∈ H

P (x⃗) =
∑
α∈Λ

⟨x⃗, eα⟩eα.

6.5 Isomorphisms of Hilbert Spaces
We have seen in the previous section that every Hilbert space has an orthonor-
mal basis and some of the properties of orthonormal bases. One question
becomes, “Can we use orthonormal bases to distinguish Hilbert spaces?” The
following is our first step.

Proposition 6.5.1. If H is a Hilbert space, then any two orthonormal basis
for H have the same cardinality.

Proof. If H has a finite orthonormal basis, then H is finite dimensional. Since
each orthonormal basis for a finite dimensional Hilbert space is a vector space
basis, the result trivial follows. Hence we will assume H has only infinite
dimensional orthonormal bases.

Let {eα}α∈E and {fβ}β∈F be orthonormal bases for H. Recall for each
α ∈ E the set

Fα = {β ∈ F | ⟨eα, fβ⟩ ≠ 0}
is countable by Lemma 6.4.11. Furthermore, by Theorem 6.4.14 applied to
{eα}α∈E , for each β ∈ F there exists an α ∈ E such that β ∈ Fα. Therefore
F =

⋃
α∈E Fα so, as |Fα| ≤ |N|,

|F| ≤ |N||E| = |E|
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by cardinality theory. By replacing the roles of F and E , we obtain that
|E| ≤ |F| so |E| = |F| as desired.

Because of Proposition 6.5.1, we can now make the following definition.

Definition 6.5.2. The dimension of a Hilbert space H, denoted dim(H), is
the cardinality of an orthonormal basis for H.

One interesting question is, “Does the dimension of a Hilbert space
uniquely determines the Hilbert space?" In order to answer this question, we
must ask what it means for two Hilbert spaces to be the same. Modelling
Example 6.1.7, we easily see the following is the correct maps to use to
determine when two Hilbert spaces are the same.

Definition 6.5.3. Let H1 and H2 be Hilbert spaces. A unitary operator
from H1 to H2 is a surjective map U : H1 → H2 such that

⟨U(x⃗), U(y⃗)⟩H2 = ⟨x⃗, y⃗⟩H1

for all x⃗, y⃗ ∈ H1.

Definition 6.5.4. Two Hilbert spaces H1 and H2 are said to be isomorphic
if there exists a unitary operator from H1 to H2.

Remark 6.5.5. Clearly ∥Ux⃗∥H2
= ∥x⃗∥H1

so unitary operators are injective
(and thus bijective). Notice since

⟨U(x⃗ + αz⃗), U(y⃗)⟩H2 = ⟨x⃗ + αz⃗, y⃗⟩H1

= ⟨x⃗, y⃗⟩H1 + α⟨z⃗, y⃗⟩H1

= ⟨U(x⃗), U(y⃗)⟩H1 + α⟨U(z⃗), U(y⃗)⟩H2

= ⟨U(x⃗) + αU(z⃗), U(y⃗)⟩H2

for all x⃗, z⃗, y⃗ ∈ H1 and α ∈ K, the fact that U is surjective (so for each
v⃗ ∈ H2 there is a y⃗ ∈ H1 such that U(y⃗) = v⃗) implies that U is linear.
Hence U ∈ B(H1, H2) by the first part of the proof and the inverse of U
is also linear and can also clearly be seen to be a unitary. Thus, as the
composition of unitaries is clearly a unitary, isomorphism for Hilbert spaces
is an equivalence relation.

The following demonstrates that dimension of a Hilbert space completely
determines the Hilbert space.

Theorem 6.5.6. Let H1 and H2 be Hilbert spaces. Then H1 and H2 are
isomorphic if and only if dim(H1) = dim(H2).
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Proof. First suppose H1 and H2 are isomorphic. Therefore there exists a
unitary operator U : H1 → H2. Let {eα}α∈Λ be an orthonormal basis for
H1. By the definition and properties of a unitary (see Remark 6.5.5), we
see that {U(eα)}α∈Λ is an orthonormal set. Furthermore, Theorem 6.4.14
implies that span({eα}α∈Λ) is dense in H1. Therefore, as U is a linear map
and a homeomorphism, span({U(eα)}α∈Λ) must also be dense in H2. Hence
{U(eα)}α∈Λ is an orthonormal basis of H2. Hence dim(H1) = |Λ| = dim(H2)
as desired.

For the converse direction, we note that since isomorphism of Hilbert
spaces is an equivalence relation that it suffices to prove the following.

Corollary 6.5.7. Let H be a Hilbert space and let Λ be a set such that
|Λ| = dim(H). Then H is isomorphic to the Hilbert space

ℓ2(Λ,K) =
{

f : Λ → K
∣∣∣∣ {α∈Λ | f(α)̸=0}is countable

and
∑

α∈Λ |f(α)|2<∞

}

equipped with the inner product

⟨f, g⟩ℓ2(Λ,K) =
∑
α∈Λ

f(α)g(α).

Proof. First we must proof that ℓ2(Λ,K) together with the inner product
described is indeed a Hilbert space. The proof that ⟨f, g⟩ℓ2(Λ,K) is a well-
defined inner product is as in Example 6.1.10. The proof that ℓ2(Λ,K) is
a Banach space follows the proof given in Proposition 2.2.2 using the fact
that a countable union of countable sets is countable so that given a Cauchy
sequence there are only a countable number of entries of Λ that need to be
considered when demonstrating convergence. Hence ℓ2(Λ,K) is a Hilbert
space.

To complete the proof, it suffices to show that H is isomorphic to such a
space. Let {eα}α∈Λ be an orthonormal basis of H. Define U : H → ℓ2(Λ,K)
by U(h)(α) = ⟨h, eα⟩H for all α ∈ Λ and h ∈ H. Note if h ∈ H then U(h) is
indeed an element of ℓ2(Λ,K) by Bessel’s inequality (Theorem 6.4.12). Hence
U is a well-defined linear map that maps the orthonormal basis {eα}α∈Λ to
the orthonormal basis {fα}α∈Λ where

fα(β) =
{

1 β = α

0 β ̸= α
.

Hence Theorem 6.4.14 implies that U is surjective. To see that U is a unitary
(and thus injective), notice for all x⃗, y⃗ ∈ H that by Theorem 6.4.14 and the
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fact that the inner product is continuous in each entry, we have

⟨U(x⃗), U(y⃗)⟩ℓ2(Λ,K) =
∑
α∈Λ

⟨x⃗, eα⟩H⟨eα, y⃗⟩H

=
∑
α∈Λ

⟨⟨x⃗, eα⟩Heα, ⟨eα, y⃗⟩Heα⟩H

=
∑

α,β∈Λ
⟨⟨x⃗, eα⟩Heα, ⟨eβ, y⃗⟩Heβ⟩H

=
〈∑

α∈Λ
⟨x⃗, eα⟩Heα,

∑
β∈Λ

⟨eβ, y⃗⟩Heβ

〉
H

= ⟨x⃗, y⃗⟩H

Hence U is a unitary so H is isomorphic to ℓ2(Λ,K).

This completes the proof of Theorem 6.5.6.

6.6 The Riesz-Representation Theorem

Orthonormal bases are important structures for Hilbert spaces. For example,
orthonormal bases are a central part of Fourier Analysis. Instead of heading
in that direction, we turn our focus to another important structure of Hilbert
spaces; the structure of all continuous linear maps from a Hilbert space to
the complex numbers. As such linear maps are also important outside of
Hilbert spaces, we make the following definition.

Definition 6.6.1. Let (X , ∥ · ∥) be a normed linear space. The dual space
of X is X ∗ = B(X ,K) and an element of X ∗ is called a linear functional.

Recall that the norm on X ∗ is given by

∥f∥ = sup{|f(x⃗)| | x⃗ ∈ X , ∥x⃗∥ ≤ 1}.

Furthermore, it is useful to note the following result whose proof is trivial
(based on Theorem 1.5.7) and thus is omitted.

Lemma 6.6.2. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) are normed linear spaces and
let T ∈ B(X , Y). Then

ker(T ) = {x⃗ ∈ X | T (x⃗) = 0⃗}

is a closed vector subspace of X .

One fascinating thing about a Hilbert space H is that H∗ is H in a
specific way.
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Theorem 6.6.3 (Riesz Representation Theorem). Let H be a Hilbert
space and let φ ∈ H∗. Then there exists a unique vector y⃗ ∈ H such that

φ(x⃗) = ⟨x⃗, y⃗⟩

for all x⃗ ∈ H. Moreover ∥φ∥ = ∥y⃗∥H.

Proof. First, let y⃗ ∈ H be arbitrary and define φy⃗ : H → C by φy⃗(x⃗) = ⟨x⃗, y⃗⟩
for all x⃗ ∈ H. Let us check that φy⃗ is a linear functional and compute its
norm. It is elementary to see that φy⃗ is a linear map. To see that φ is
continuous, note by the Cauchy-Schwarz inequality that

|φy⃗(x⃗)| ≤ ∥x⃗∥ ∥y⃗∥ .

Hence φ is continuous and ∥φ∥ ≤ ∥y⃗∥. For the other inequality, notice said
inequality is trivial if y⃗ = 0⃗. Otherwise let z⃗ = 1

∥y⃗∥ y⃗ so that z⃗ is a unit vector.
Since

φy⃗(z⃗) =
〈 1

∥y⃗∥
y⃗, y⃗

〉
= ∥y⃗∥ ,

the other inequality follows.
Now let φ ∈ H∗ be arbitrary. If φ(x⃗) = 0 for all x⃗ ∈ H, then clearly

φ = φ0⃗. Otherwise, suppose φ is not the zero linear functional. Therefore,
by Lemma 6.6.2, ker(φ) is a closed vector subspace of H that does not equal
H. Hence there exists a vector z⃗ ∈ ker(φ)⊥ \ {⃗0}. As φ(z⃗) ̸= 0, by scaling if
necessary we may assume that φ(z⃗) = 1.

We claim that span({z⃗}) = ker(φ)⊥. To see this, it suffices to show that
if z⃗1 ∈ ker(φ)⊥ \ {⃗0} and φ(z⃗1) = 1, then z⃗ = z⃗1. Indeed if z⃗1 has the desired
properties, then z⃗ − z⃗1 ∈ ker(φ)⊥ and

φ(z⃗ − z⃗1) = 1 − 1 = 0

so z⃗ − z⃗1 ∈ ker(φ). Hence z⃗ − z⃗1 ∈ ker(φ) ∩ ker(φ)⊥ = {⃗0} so z⃗ = z⃗1 as
desired. Hence span({z⃗}) = ker(φ)⊥ and thus {z⃗}⊥ = ker(φ)

As z⃗ ̸= 0⃗, let y⃗ = 1
∥z⃗∥2 z⃗. Therefore {y⃗}⊥ = {z⃗}⊥ = ker(φ). We claim

that φ = φy⃗. To see this, we notice for all x⃗ ∈ ker(φ) that x⃗ ∈ {y⃗}⊥ so

⟨x⃗, y⃗⟩ = 0 = φ(x⃗).
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Otherwise, if x⃗ = βy⃗ for some β ∈ K, we see that

φ(x⃗) = βφ(y⃗)

= β
1

∥z⃗∥2 φ(z⃗)

= β

∥z⃗∥2

= β

∥z⃗∥4 ⟨z⃗, z⃗⟩

= β⟨y⃗, y⃗⟩
= ⟨x⃗, y⃗⟩.

Therefore, as H = ker(φ) ⊕ ker(φ)⊥ = ker(φ) ⊕ span({y⃗}) by Theorem 6.3.9,
it follows that φ = φy⃗ as desired.

Finally, for uniqueness, suppose there exists y⃗1, y⃗2 ∈ H such that φy⃗1 =
φy⃗2 . Then

⟨x⃗, y⃗1⟩ = ⟨x⃗, y⃗2⟩ for all x⃗ ∈ H ⇒ ⟨x⃗, y⃗1 − y⃗2⟩ = 0 for all x⃗ ∈ H.

By selecting x⃗ = y⃗1 − y⃗2, we obtain that ∥y⃗1 − y⃗2∥ = 0 so y⃗1 = y⃗2 as
desired.

The above description of H∗ is useful in many ways. First we note the
following result which allows us to use the elements of H∗ to compute the
norm of elements of H. Note the following also has an analogue for Banach
spaces which we will not have time to develop.

Lemma 6.6.4. Let H be a Hilbert space. If x⃗ ∈ H then

∥x⃗∥ = sup{|f(x⃗)| | f ∈ H∗, ∥f∥ ≤ 1}.

Proof. First notice for all f ∈ H∗ with ∥f∥ ≤ 1 that

|f(x⃗)| ≤ ∥f∥ ∥x⃗∥ ≤ ∥x⃗∥

so we obtain that

∥x⃗∥ ≥ sup{|f(x⃗)| | f ∈ H∗, ∥f∥ ≤ 1}.

For the other inequality, notice if x⃗ = 0⃗ then the inequality is trivial. If
x⃗ ≠ 0⃗, let y⃗ = 1

∥x⃗∥ x⃗ ∈ H so that ∥y⃗∥ = 1. Hence if we define φy⃗ : H → C by

φy⃗(z⃗) = ⟨z⃗, y⃗⟩

for all z⃗ ∈ H, then
∥∥φy⃗

∥∥ = 1 by the Riesz Representation Theorem (Theorem
6.6.3). Since

|φy⃗(x⃗)| =
∣∣∣∣〈x⃗,

1
∥x⃗∥

x⃗

〉∣∣∣∣ = ∥x⃗∥2

∥x⃗∥
= ∥x⃗∥

the other inequality follows.
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Using Lemma 6.6.4 and the definition of the operator norm, we obtain
the following useful description of the operator norm of a linear map between
Hilbert spaces.

Lemma 6.6.5. Let H and K be Hilbert spaces and let T : H → K be linear.
Then

∥T∥ = sup{|⟨T (x⃗), y⃗⟩K| | x⃗ ∈ H, y⃗ ∈ K, ∥x⃗∥H , ∥y⃗∥K ≤ 1}

(with both sides being infinity if T is not bounded).

The above norm description of a bounded linear map is quite useful. For
example, using the Riesz Representation Theorem (Theorem 6.6.3), when
given a linear map we can construct a nice ‘reverse’ linear map that plays
well with respect to the inner product.

Theorem 6.6.6. Let H and K be Hilbert spaces and let T ∈ B(H, K). Then
there exists a unique linear map T ∗ ∈ B(K, H), called the adjoint of T , such
that

⟨T ∗(y⃗), x⃗⟩H = ⟨y⃗, T (x⃗)⟩K

for all x⃗ ∈ H and y⃗ ∈ K. Furthermore ∥T ∗∥ = ∥T∥.

Proof. Fix T ∈ B(H, K). For each y⃗ ∈ K, consider the linear map fy⃗ : K → C
defined by

fy⃗(x⃗) = ⟨T (x⃗), y⃗⟩K

for all x⃗ ∈ H. Since

|fy⃗(x⃗)| = |⟨T (x⃗), y⃗⟩K| ≤ ∥T (x⃗)∥K ∥y⃗∥K ≤ ∥T∥ ∥x⃗∥K ∥y⃗∥K

via the Cauchy-Schwarz inequality, we see that fy⃗ is a bounded linear map.
Therefore, by the Riesz Representation Theorem (Theorem 6.6.3) there exists
a unique vector, denoted T ∗

y⃗ ∈ H such that

⟨T (x⃗), y⃗⟩K = fy⃗(x⃗) = ⟨x⃗, T ∗
y⃗ ⟩H

for all x⃗ ∈ H.
We claim that the map T ∗ : K → H defined by T ∗(y⃗) = T ∗

y⃗ is a bounded
linear map. To see linearity, notice for all x⃗ ∈ H, y⃗1, y⃗2 ∈ K, and α ∈ K that

⟨x⃗, T ∗
y⃗1+αy⃗2⟩H = ⟨T (x⃗), y⃗1 + αy⃗2⟩K

= ⟨T (x⃗), y⃗1⟩K + α⟨T (x⃗), y⃗2⟩K

= ⟨x⃗, T ∗
y⃗1⟩H + α⟨x⃗, T ∗

y⃗2⟩H

= ⟨x⃗, T ∗
y⃗1 + αT ∗

y⃗2⟩H.
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Therefore, as the above holds for all x⃗ ∈ H, we see (for example, by the
uniqueness part of the Riesz Representation Theorem (Theorem 6.6.3)) that

T ∗
y⃗1+αy⃗2 = T ∗

y⃗1 + αT ∗
y⃗2 .

Therefore, as y⃗1, y⃗2 ∈ K and α ∈ K were arbitrary, T ∗ is linear.
To see that T ∗ is bounded, we notice that

sup{|⟨T ∗(y⃗), x⃗⟩H| | x⃗ ∈ H, y⃗ ∈ K, ∥x⃗∥H , ∥y⃗∥K ≤ 1}
= sup{|⟨y⃗, T (x⃗)⟩K| | x⃗ ∈ H, y⃗ ∈ K, ∥x⃗∥H , ∥y⃗∥K ≤ 1}
= sup{|⟨T (x⃗), y⃗⟩K| | x⃗ ∈ H, y⃗ ∈ K, ∥x⃗∥H , ∥y⃗∥K ≤ 1}
= ∥T∥ .

Thus it follows from Lemma 6.6.5 that T ∗ is bounded with ∥T ∗∥ = ∥T∥.
Finally, uniqueness of T ∗ comes from construction and the uniqueness in the
Riesz Representation Theorem.

Often it will be the case that we consider K = H in Theorem 6.4.14. This
means the adjoint becomes an operator on B(H, H). Often we will use B(H)
to denote B(H, H) for simplicity.

It turns out that many standard operations and linear maps we have
seen are related to the adjoint.

Example 6.6.7. Let A ∈ Mn(K) and define LA : Kn → Kn by LA(x⃗) =
Ax⃗ for all x⃗ ∈ Kn (where we write x⃗ as a column vector and use matrix
multiplication). Then, with respect to the standard inner product on Kn,
(LA)∗ = LA∗ where A∗ is the conjugate transpose of A. To see this, write
A = [ai,j ]. Then for each x⃗ = (x1, . . . , xn), y⃗ = (y1, . . . , yn) ∈ Kn,

⟨(LA)∗x⃗, y⃗⟩ = ⟨x⃗, LA(y⃗)⟩

=
〈

(x1, . . . , xn),

 n∑
j=1

a1,jyj , . . . ,
n∑

j=1
an,kyj

〉

=
n∑

i,j=1
xiai,jyj

=
n∑

i,j=1
ai,jxiyj

=
〈(

n∑
i=1

ai,1xi, . . . ,
n∑

i=1
ai,nxi

)
, (y1, . . . , yn)

〉
= ⟨LA∗(x⃗), y⃗⟩ .

Therefore, as the above holds for all y⃗ ∈ Kn, we see (for example, by the
uniqueness part of the Riesz Representation Theorem (Theorem 6.6.3)) that
(LA)∗(x⃗) = LA∗(x⃗) for all x⃗ ∈ Kn. Hence (LA)∗ = LA∗ as claimed.
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One very important result in operator theory is the following result.

Theorem 6.6.8. Let H be a Hilbert space and let T ∈ B(H). Then ∥T∥2 =
∥T ∗T∥.

Proof. First, we note for all x⃗ ∈ H that

∥T ∗(T (x⃗))∥H ≤ ∥T ∗∥ ∥T (x⃗)∥H ≤ ∥T ∗∥ ∥T∥ ∥x⃗∥H .

Hence ∥T ∗T∥ ≤ ∥T ∗∥ ∥T∥ = ∥T∥2 as ∥T ∗∥ = ∥T∥ by Theorem 6.6.6.
To see the other inequality, notice that

∥T∥2 = sup{∥T (x⃗)∥2 | x⃗ ∈ H, ∥x⃗∥H ≤ 1}
= sup{⟨T (x⃗), T (x⃗)⟩H | x⃗ ∈ H, ∥x⃗∥H ≤ 1}
= sup{⟨T ∗T (x⃗), x⃗⟩H | x⃗ ∈ H, ∥x⃗∥H ≤ 1}
≤ sup{⟨T ∗T (x⃗), y⃗⟩H | x⃗, y⃗ ∈ H, ∥x⃗∥H , ∥y⃗∥H ≤ 1}
= ∥T ∗T∥

by Lemma 6.6.5. Hence the proof is complete.

Our next goal is to use the adjoint to describe orthogonal projections.
To do this, we first note the following.

Lemma 6.6.9. Let H and K be Hilbert spaces and let T ∈ B(H, K). Then
(T ∗)∗ = T and

(Im(T ))⊥ = ker(T ∗).

Hence Im(T ) = ker(T ∗)⊥.

Proof. The fact that (T ∗)∗ follows trivially from the definition of the adjoint
and clearly Im(T ) = ker(T ∗)⊥ will follow from (Im(T ))⊥ = ker(T ∗) using
Corollary 6.3.11.

To prove that (Im(T ))⊥ = ker(T ∗), let x⃗ ∈ ker(T ∗) be arbitrary. Let
y⃗ ∈ Im(T ) be arbitrary. Then there exists a vector z⃗ ∈ H such that y⃗ = T (z⃗).
Hence

⟨y⃗, x⃗⟩K = ⟨T (z⃗), x⃗⟩K = ⟨z⃗, T ∗(x⃗)⟩H = ⟨z⃗, 0⃗⟩H = 0.

Therefore, as y⃗ ∈ Im(T ) was arbitrary, it follows that x⃗ ∈ (Im(T ))⊥. Hence,
as x⃗ ∈ ker(T ∗) was arbitrary, ker(T ∗) ⊆ (Im(T ))⊥.

For the other direction, let x⃗ ∈ (Im(T ))⊥ be arbitrary. Then for all y⃗ ∈ H
we see that

⟨T ∗(x⃗), y⃗⟩H = ⟨x⃗, T (y⃗)⟩K = 0

as T (y⃗) ∈ Im(T ) and x⃗ ∈ (Im(T ))⊥. Therefore, as y⃗ ∈ H was arbitrary,
we see (for example, by the uniqueness part of the Riesz Representation
Theorem (Theorem 6.6.3)) that x⃗ ∈ ker(T ∗). Hence, as x⃗ ∈ (Im(T ))⊥ was
arbitrary, ker(T ∗) = (Im(T ))⊥ as desired.
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Using this characterization, we obtain the following.

Proposition 6.6.10. Let H be a Hilbert space. An element P ∈ B(H) is
an orthogonal projection onto a closed vector subspace of H if and only if
P 2 = P and P ∗ = P .

Proof. Suppose P is the orthogonal projection onto a closed vector subspace
K of H. As we have previously seen that P 2 = P , it suffices to show that
P ∗ = P . To see this, let x⃗, y⃗ ∈ H be arbitrary. By Theorem 6.3.9 we can
write x⃗ = x⃗P + x⃗0 and y⃗ = y⃗P + y⃗0 where x⃗P , y⃗P ∈ K and x⃗0, y⃗0 ∈ K⊥.
Therefore we have that

P (x⃗P ) = x⃗P , P (y⃗P ) = y⃗P , P x⃗0 = 0⃗, and P y⃗0 = y⃗0.

Hence

⟨P ∗(x⃗), y⃗⟩ = ⟨x⃗, P (y⃗)⟩
= ⟨x⃗P + x⃗0, P (y⃗P + y⃗0)⟩
= ⟨x⃗P + x⃗0, y⃗P ⟩
= ⟨x⃗P , y⃗P ⟩ + ⟨x⃗0, y⃗P ⟩
= ⟨x⃗P , y⃗P ⟩
= ⟨x⃗P , y⃗P ⟩ + ⟨x⃗P , y⃗0⟩
= ⟨x⃗P , y⃗P ⟩ + y⃗0⟩
= ⟨P (x⃗P + x⃗0), y⃗P ⟩ + y⃗0⟩
= ⟨P (x⃗), y⃗⟩.

Therefore, as the above holds for all y⃗ ∈ H, we see (for example, by the
uniqueness part of the Riesz Representation Theorem (Theorem 6.6.3)) that
P ∗(x⃗) = P (x⃗) for all x⃗ ∈ H. Hence P ∗ = P as claimed.

For the other direction, let P ∈ B(H, H) be such that P 2 = P = P ∗. Let
K = ker(P ), which is a closed vector subspace by Lemma 6.6.2. Notice by
Lemma 6.6.9 that

K⊥ = ker(P )⊥ = Im(P ∗) = Im(P ).

We claim that P is the orthogonal projection onto Im(P ). To see this, first
we notice that

Im(P )⊥ = (K⊥)⊥ = K

by Corollary 6.3.11. Therefore, as P (x⃗) = 0⃗ for all x⃗ ∈ K, it suffices to show
that P is the identity on Im(P ). If x⃗ ∈ Im(P ), then x⃗ = P (y⃗) for some
y⃗ ∈ H and thus

P (x⃗) = P 2(y⃗) = P (y⃗) = x⃗.

Therefore, P is the identity on Im(P ). Hence P is the identity on Im(P ) by
continuity. Thus the result follows.
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Finally, we can re-discuss unitary operators in the context of adjoints.
First we note the following for isometries.

Proposition 6.6.11. Let H and K be Hilbert spaces and let V ∈ B(H, K).
The following are equivalent:

1. V ∗V = IH.

2. ∥V (x⃗)∥K = ∥x⃗∥H for all x⃗ ∈ H (that is, V is an isometry).

3. ⟨V (x⃗), V (y⃗)⟩K = ⟨x⃗, y⃗⟩H for all x⃗, y⃗ ∈ H.

Proof. First, to see that (1) implies (2), suppose (1) holds. Then for all
x⃗ ∈ H

∥V (x⃗)∥2
K = ⟨V (x⃗), V (x⃗)⟩K = ⟨V ∗V (x⃗), x⃗⟩H = ⟨x⃗, x⃗⟩H = ∥x⃗∥2

H .

Hence (2) holds so (1) implies (2)
Next, to see that (2) implies (3), suppose that (2) holds. By the same

proof of the Polarization Identity (Theorem 6.1.20), we see that

⟨V (x⃗), V (y⃗)⟩K = 1
4 ∥V (x⃗) + V (y⃗)∥2 − 1

4 ∥V (x⃗) − V (y⃗)∥2

= 1
4 ∥V (x⃗ + y⃗)∥2 − 1

4 ∥V (x⃗ − y⃗)∥2

= 1
4 ∥x⃗ + y⃗∥2 − 1

4 ∥x⃗ − y⃗∥2

= ⟨x⃗, y⃗⟩H

if K = R and

⟨V (x⃗), V (y⃗)⟩K = 1
4

4∑
k=1

∥∥∥V (x⃗) + ikV (y⃗)
∥∥∥2

= 1
4

4∑
k=1

∥∥∥V (x⃗ + iky⃗)
∥∥∥2

= 1
4

4∑
k=1

∥∥∥x⃗ + iky⃗
∥∥∥2

= ⟨x⃗, y⃗⟩H

if K = C. Hence (3) follows so (2) implies (3)
Finally, to see that (3) implies (1), suppose (3) holds. Then for all

x⃗, y⃗ ∈ H

⟨IH(x⃗), y⃗⟩H = ⟨x⃗, y⃗⟩H = ⟨V (x⃗), V (y⃗)⟩K = ⟨V ∗V (x⃗), y⃗⟩H.

Hence it follows that V ∗V = I as desired.
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Using the above, we obtain the following.

Corollary 6.6.12. Let H and K be Hilbert spaces and let U ∈ B(H, K). The
following are equivalent:

1. U∗U = IH and UU∗ = IK.

2. ∥U(x⃗)∥K = ∥x⃗∥H for all x⃗ ∈ H and U is surjective.

3. ⟨U(x⃗), U(y⃗)⟩K = ⟨x⃗, y⃗⟩H for all x⃗, y⃗ ∈ H and U is surjective (i.e. U is
a unitary).

Hence, if U ∈ B(H, K) is a unitary, then ∥U∥ = 1.

Proof. Clearly (1) implies (2) and (2) implies (3) by Proposition 6.6.11.
Suppose (3) holds. Then U∗U = IH by Proposition 6.6.11. Since (3) holds,
we obtain U is an isometry by Proposition 6.6.11. Hence U is injective and
thus invertible as a linear map between vector spaces. Therefore, due to the
uniqueness of the inverses, we obtain that UU∗ = IK.

Using all of the above (in fact, using substantially less technology), we
can prove the following.

Theorem 6.6.13. Let A ∈ Mn(K) and define LA : Kn → Kn by LA(x⃗) =
Ax⃗ for all x⃗ ∈ Kn (where we write x⃗ as a column vector and use matrix
multiplication). Then

∥LA∥ = max
{√

λ | λ an eigenvalue for A∗A
}

.

Proof. First, consider the case A = diag(d1, d2, . . . , dn) and let M = max{|d1|, |d2|, . . . , |dn|}.
To see that ∥LA∥ = M , first notice for all k ∈ {1, . . . , n} that if e⃗k is the
vector in Cn with a 1 in the kth entry and 0s elsewhere, then ∥e⃗k∥2 = 1 and

∥LA(e⃗k)∥2 = ∥dke⃗k∥2 = |dk|.

Hence ∥LA∥ ≥ M .
To see the reverse inequality, notice for all x⃗ = (x1, x2, . . . , xn) ∈ Cn such
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that ∥x⃗∥2 =
√∑n

k=1 |xk|2 ≤ 1 that

∥LA(x⃗)∥2 = ∥(d1x1, d2x2, . . . , dnxn)∥2

=

√√√√ n∑
k=1

|dkxk|2

=

√√√√ n∑
k=1

|dk|2|xk|2

≤

√√√√ n∑
k=1

M2|xk|2

= M

√√√√ n∑
k=1

|xk|2 = M.

Hence ∥LA∥ ≤ M so ∥LA∥ = M as desired.
Next,l et A ∈ Mn(C) be arbitrary and let U ∈ Mn(C) be an arbitrary

unitary matrix. Then LU∗AU = LU∗LALU = L∗
U LALU and LU is a unitary

operator. Hence

∥LU∗AU ∥ = ∥L∗
U LALU ∥ ≤ ∥L∗

U ∥ ∥LA∥ ∥LU ∥ = ∥LA∥

as unitary operators have norm 1. Moreover, since LU∗AU = L∗
U LALU implies

LA = LU LU∗AU LU∗

as (L∗
U )−1 = LU and (LU )−1 = LU∗ , we also have that

∥LA∥ = ∥LU LU∗AU L∗
U ∥ ≤ ∥LU ∥ ∥LU∗AU ∥ ∥L∗

U ∥ = ∥LA∥

Hence ∥LU∗AU ∥ = ∥LA∥ as desired.
Since A∗A is a self-adjoint matrix and positive semi-definite, the Spectral

Theorem for Self-Adjoint Matrices implies there exists a unitary matrix
U ∈ Mn(C) and a diagonal matrix D = diag(d1, d2, . . . , dn) such that
A∗A = U∗DU and λ1, . . . , λn ∈ [0, ∞) are the eigenvalues of A∗A. Hence we
have that

∥LA∥ = ∥L∗
ALA∥

1
2

= ∥LA∗A∥
1
2

= ∥LU∗DU ∥
1
2

= ∥LD∥
1
2

= max{|λ1|, |λ2|, . . . , |λn|}
1
2

= max
{√

λ | λ an eigenvalue for A∗A
}

as desired.
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Appendix A

Basic Set Theory

All mathematics must contain some notation in order for one to adequately
describe the objects of study. As such, we begin the notation for the most
basic structures in this course.

A.1 Sets
One of the most natural mathematical objects is the following:

Heuristic Definition. A set is a collection of distinct objects.

The following table list several sets, the symbol used to represent the set,
and a set notational way to describe the set.

Set Symbol Set Notation
natural numbers N {1, 2, 3, 4, . . .}
integers Z {0, 1, −1, 2, −2, 3, −3, . . .}
rational numbers Q

{
a
b | a, b ∈ Z, b ̸= 0

}
real numbers R {real numbers}
complex numbers C {a + bi | a, b ∈ R}

Notice two different types of notation are used in the above table to describe
sets: namely {objects} and {objects | conditions on the objects}. Further-
more, the symbol ∅ will denote the empty set; that is, the set with no
elements.

Given a set X and an object x, we say that x is an element of X, denoted
x ∈ X, when x is one of the objects that make up X. Furthermore, we will
use x /∈ X when x is not an element of X. For example,

√
2 ∈ R yet

√
2 /∈ Q

and 0 ∈ Z but 0 /∈ N. Furthermore, given two sets X and Y , we say that Y
is a subset of X, denoted Y ⊆ X, if each element of Y is an element of X;
that is, if a ∈ Y then a ∈ X. For example N ⊆ Z ⊆ Q ⊆ R. Furthermore,
note the empty set is a subset of all sets, and if X ⊆ Y and Y ⊆ X then
X = Y .
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One important question that has not been addressed is, “What exactly
is a set?” This questions must be asked as we have not provided a rigorous
definition of a set. This leads to some interesting questions, such as, “Does
the collection of all sets form a set?”

Let us suppose that there is a set of all sets; that is

Z = {X | X is a set}

makes sense. Note Z has the interesting property that Z ∈ Z. Furthermore,
if Z exists, then

Y = {X | X is a set and X /∈ X}

would be a valid subset of Z. However, we clearly have two disjoint cases:
either Y ∈ Y or Y /∈ Y (that is, either Y is an element of Y or Y is not an
element of Y ).

If Y ∈ Y , then the definition of Y implies Y /∈ Y which is a contradiction
since we cannot have both Y ∈ Y and Y /∈ Y . Thus, if Y ∈ Y is false, then
it must be the case that Y /∈ Y .

However, Y /∈ Y implies by the definition of Y that Y ∈ Y . Again this is
a contradiction since we cannot have both Y /∈ Y and Y ∈ Y . This argument
is known as Russell’s Paradox and demonstrates that there cannot be a set
of all sets.

The above paradox illustrates the necessity of a rigorous definition of a
set. However, said definition takes us in a different direction than desired in
this course. That being said, a rigorous definition of a set would provide us
with the ability to take subsets of a given set and would permit the following
operations on sets.

Definition A.1.1. Let X be a set. The power set of X, denote P(X), is

P(X) = {A | A ⊆ X}.

Note ∅ ∈ P(X) and X ∈ P(X).

Definition A.1.2. Let {Xα}α∈I denote a collection of subsets of a set X
indexed by a set I.

• The union of {Xα}α∈I , denoted
⋃

α∈I Xα, is the set⋃
α∈I

Xα = {a | a ∈ Xα for at least one α ∈ I}.

• The intersection of {Xα}α∈I , denoted
⋂

α∈I Xα, is the set⋂
α∈I

Xα = {a | a ∈ Xα for all α ∈ I}.
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Definition A.1.3. Given two sets X and Y , the set difference of X and Y ,
denoted X \ Y , is the set

X \ Y = {a | a ∈ X and a /∈ Y }.

In this course, we will often have a set X and will be considering subsets
of X. Consequently, given a subset Y of X, the set difference X \ Y will be
called the complement of Y (in X) and will be denoted Y c for convenience.

To conclude this section, we note the following set inequalities that will
be used surprisingly often in this course.

Theorem A.1.4 (De Morgan’s Laws). Let X and I be non-empty sets
and for each α ∈ I let Xα be a subset of X. Then

X \
(⋃

α∈I

Xα

)
=
⋂
α∈I

(X \ Xα) and X \
(⋂

α∈I

Xα

)
=
⋃
α∈I

(X \ Xα).

Proof. Notice that

x ∈
(⋃

i∈I

EXi

)c

⇐⇒ x /∈
⋃
i∈I

Xi

⇐⇒ x /∈ Xi for all i ∈ I

⇐⇒ x ∈ Xc
i for all i ∈ I

⇐⇒ x ∈
⋂
i∈I

Xc
i

which completes the proof since we have shown that x ∈ (
⋃

i∈I Xi)c if and
only if x ∈

⋂
i∈I Xc

i (which implies the sets are the same).
We can play a similar game to prove that(⋂

i∈I

Xi

)c

=
⋃
i∈I

Xc
i .

Alternatively, we can use the first result to prove the second. To do this,
we must first show that if E ⊆ X and F = Ec, then F c = E. Indeed notice
x ∈ F c if and only if x /∈ F if and only if x /∈ Ec if and only if x ∈ E. Hence
F c = E.

To prove this new equality using the old, for each i ∈ I let Fi = Xc
i . By

applying the first equation using the Fi’s instead of the Xi’s, we obtain that(⋃
i∈I

Fi

)c

=
⋂
i∈I

F c
i .

Since Fi = Xc
i so F c

i = Xi by the above proof, we have that(⋃
i∈I

Xc
i

)c

=
⋂
i∈I

Xi.
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Hence ⋃
i∈I

Xc
i =

(⋂
i∈I

Xi

)c

by taking the complement of both sides and using the proof in the above
paragraph.

A.2 Functions
In any analysis course, functions will play a fundamental role. The most
useful and accurate method for defining functions is to use the following
operation on sets (which is also valid by the actual definition of what a set
is).

Definition A.2.1. Given two non-empty sets X and Y , the Cartesian
product of X and Y , denoted X × Y , is the set

X × Y = {(x, y) | x ∈ X, y ∈ Y }.

Definition A.2.2. Given two non-empty sets X and Y , a function f from
X to Y , denoted f : X → Y , is a subset S of X × Y such that for each
x ∈ X there is an unique element denoted f(x) ∈ Y such that (x, f(x)) ∈ S
(that is, a function is defined by its graph).

Example A.2.3. Given two non-empty sets X and Y , there is a natural
way to view

X × Y = {f : {1, 2} → X ∪ Y | f(1) ∈ X, f(2) ∈ Y }.

Indeed, a function f : {1, 2} → X ∪ Y is uniquely determined by the values
f(1) and f(2). Consequently, an f : {1, 2} → X ∪ Y as defined in the above
set can be viewed as the pair (f(1), f(2)). Conversely a pair (x, y) ∈ X × Y
can be represented by the function f : {1, 2} → X ∪ Y defined by f(1) = x
and f(2) = y.

The above example can be extended from a pair of sets to a finite number
of sets. Let X1, . . . , Xn be non-empty sets. We define the product of these
sets to be

X1 × · · · × Xn = {(x1, . . . , xn) | xj ∈ Xj for all j ∈ {1, . . . , n}}.

If X = X1 = · · · = Xn, we will write Xn for X1 × · · · × Xn.
Notice we can view X1 ×· · ·×Xn as a set of functions in a similar manner

to Example A.2.3. Indeed

X1 × · · · × Xn =
{

f : {1, . . . , n} →
n⋃

k=1
Xk

∣∣∣∣∣ f(j) ∈ Xj ∀ j ∈ {1, . . . , n}
}

.
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But what happens if we want to take a product of an infinite number of sets?
Given a non-empty set I and a collection of non-empty sets {Xα}α∈I , we

define the product

∏
α∈I

Xα =
{

f : I →
⋃
α∈I

Xα

∣∣∣∣∣ f(i) ∈ Xi for all i ∈ I

}
.

However, we must ask, “Is the above set non-empty?” That is, how do we
know there is always such a function? The answer is, because we add an
axiom to make it so.

Axiom A.2.4 (The Axiom of Choice). Given a non-empty set I and
a collection of non-empty sets {Xα | α ∈ I}, the product

∏
α∈I Xα is non-

empty. Any function f ∈
∏

α∈I Xα is called a choice function.

One may ask, “Why Mr. Anderson? Why? Why do we include the
Axiom of Choice?” The short answer is, of course, “Because I choose to.”

It turns out that the Axiom of Choice is independent from the axioms
of (Zermelo–Fraenkel) set theory. This means that if one starts with the
standard axioms of set theory, one can neither prove nor disprove the Axiom
of Choice. Thus we have the option on whether to include or exclude the
Axiom of Choice from our theory. We will allow the use of the Axiom of
Choice (and almost surely you have made use of it in a previous analysis
course and didn’t even know it!).

A.3 Bijections

As we will be using functions throughout the remainder of the course, we
will need some notation and definitions.

Given a function f : X → Y and A ⊆ X, we define

f(A) = {f(x) | x ∈ A} ⊆ Y.

Definition A.3.1. Given a function f : X → Y , the range of f is f(X).

Using the notion of the range, we can define an important property we
may desire our functions to have.

Definition A.3.2. A function f : X → Y is said to be surjective (or onto) if
f(X) = Y ; that is, for each y ∈ Y there exists an x ∈ X such that f(x) = y.

To illustrate when a function is surjective or not, consider the following
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diagrams.

X Y−→
f

f is surjective

X Y−→
f

f is not surjective

Example A.3.3. Consider the function f : [0, 1] → [0, 2] defined by f(x) =
x2. Notice f is not surjective since f(x) ̸= 2 for all x ∈ [0, 1]. However, the
function g : [0, 1] → [0, 1] defined by g(x) = x2 is surjective. Consequently,
the target set (known as the co-domain) matters.

One useful tool when dealing with functions is to be able to describe all
points in the initial space that map into a predetermined set. Thus we make
the following definition.

Definition A.3.4. Given a function f : X → Y and a B ⊆ Y , the preimage
of B under f is the set

f−1(B) = {x ∈ X | f(x) ∈ B} ⊆ X.

Note the notation used for the preimage does not assume the existence
of an inverse of f (see Theorem A.3.8). Using preimages, we can define an
important property we may desire our functions to have.

Definition A.3.5. A function f : X → Y is said to be injective (or one-to-
one) if for all y ∈ Y , the preimage f−1({y}) has at most one element; that
is, if x1, x2 ∈ X are such that f(x1) = f(x2), then x1 = x2.

To illustrate when a function is injective or not, consider the following
diagrams.

YX −→
f

f is injective

YX −→
f

f is not injective
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Example A.3.6. Consider the function f : [−1, 1] → [0, 1] defined by
f(x) = x2. Notice f is not injective since f(−1) = f(1). However, the
function g : [0, 1] → [0, 1] defined by g(x) = x2 is injective. Consequently,
the initial set (known as the domain) matters.

We desire to combine the notions of injective and surjective.

Definition A.3.7. A function f : X → Y is said to be a bijection if f is
injective and surjective.

Using the above examples, we have seen several functions that are not
bijective. Furthermore, we have seen that f : [0, 1] → [0, 1] defined by
f(x) = x2 is bijective. One way to observe that f is injective is to consider
the function g : [0, 1] → [0, 1] defined by g(x) =

√
x. Notice that f and g

‘undo’ what the other function does. In fact, this is true of all bijections.

Theorem A.3.8. A function f : X → Y is a bijection if and only if there
exists a function g : Y → X such that

• g(f(x)) = x for all x ∈ X, and

• f(g(y)) = y for all y ∈ Y .

Furthermore, if f is a bijection, there is exactly one function g : Y → X that
satisfies these properties, which is called the inverse of f and is denoted by
f−1 : Y → X. Notice this implies f−1 is also a bijection with (f−1)−1 = f .

Proof. Suppose that f is a bijection. Since f is surjective, for each y ∈ Y
there exists an zy ∈ X such that f(zy) = y. Furthermore, note zy is the
unique element of X that f maps to y since f is injective.

Define g : Y → X by g(y) = zy. Clearly g is a well-defined function.
To see that g satisfies the two properties, first let x ∈ X be arbitrary.

Then y = f(x) ∈ Y . However, since f(zy) = y = f(x), it must be the case
that zy = x as f is injective. Therefore

g(f(x)) = g(y) = zy = x

as desired. For the second property, let y ∈ Y be arbitrary. Then

f(g(y)) = f(zy) = y

by the definition of zy. Hence g satisfies the desired properties.
Conversely, suppose g : Y → X satisfies the two properties. To see that

f is injective, suppose x1, x2 ∈ X are such that f(x1) = f(x2). Then

x1 = g(f(x1)) = g(f(x2)) = x2

as desired. To see that f is surjective, let y ∈ Y be arbitrary. Then g(y) ∈ X
so

y = f(g(y)) ∈ f(X).
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Since y ∈ Y is arbitrary, we have Y ⊆ f(X). Hence f(X) = Y so f is
surjective. Therefore, as f is both injective and surjective, f is bijective by
definition.

Finally, suppose f is bijective and g : Y → X satisfies the above properties.
Suppose h : Y → X is another function such that h(f(x)) = x for all x ∈ X,
and f(h(y)) = y for all y ∈ Y . Then for all y ∈ Y ,

h(y) = g(f(h(y))) = g(y)

(where we have used g(f(x1)) = x1 when x1 = h(y) and f(h(y)) = y).
Therefore g = h as desired.

Remark A.3.9. If f : X → Y is injective, consider the function g : X →
f(X) defined by g(x) = f(x) for all x ∈ X. Clearly g is injective since f is,
and, by construction, g is surjective. Hence g is bijective and thus has an
inverse g−1 : f(X) → X. The function g−1 is called the inverse of f on its
image.

A.4 Equivalence Relations

Using the same idea as we used for defining functions (i.e. as subsets of a
Cartesian product), we can define another useful notion in mathematics.

Definition A.4.1. Given two non-empty sets X and Y , a relation is a subset
of the product X × Y . Given a relation R, we write xRy if (x, y) ∈ R.

Given a non-empty set X, by a relation on X we will mean a relation on
X × X.

Using a specific type of relation, we can generalize the notion of equality.

Definition A.4.2. Let X be a set. A relation ∼ on the elements of X is
said to be an equivalence relation if:

(1) (reflexive) x ∼ x for all x ∈ X,

(2) (symmetric) if x ∼ y, then y ∼ x for all x, y ∈ X, and

(3) (transitive) if x ∼ y and y ∼ z, then x ∼ z for all x, y, z ∈ X.

Given an x ∈ X, the set {y ∈ X | y ∼ x} is called the equivalence class of x
and is denoted [x].

Notice that [x] ∩ [y] ̸= ∅ if and only if x ∼ y. Thus by taking an index
set consisting of one element from each equivalence class, the set X can be
written as the disjoint union of its equivalence classes.
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Example A.4.3. Let V be a vector space and let W be a subspace of V . It
is elementary to check that if we define x⃗ ∼ y⃗ if and only if x⃗− y⃗ ∈ W , then ∼
is an equivalence relation on V . Note that the equivalence classes of V then
become a vector space, denoted V/W , with the operations [x⃗] + [y⃗] = [x⃗ + y⃗]
and α[x⃗] = [αx⃗]. Note the necessity of checking that these operations are
well-defined; that is, for addition to make sense, one must show that if
x⃗1 ∼ x⃗2 and y⃗1 ∼ y⃗2 then x⃗1 + y⃗1 ∼ x⃗2 + y⃗2.

A.5 Zorn’s Lemma

In this section, we will briefly review Zorn’s Lemma. We begin with the
basics.

Definition A.5.1. Let X be a set. A relation ⪯ on the elements of X is
called a partial ordering if:

(1) (reflexivity) a ⪯ a for all a ∈ X,

(2) (antisymmetry) if a ⪯ b and b ⪯ a, then a = b for all a, b ∈ X, and

(3) (transitivity) if a, b, c ∈ X are such that a ⪯ b and b ⪯ c, then a ⪯ c.

Clearly ≤ is a partial ordering on R. Here is another example:

Example A.5.2. Given a set X, the relation ⪯ on P(X) defined by

Z ⪯ Y if and only if Z ⊆ Y

is a partial ordering on P(X).

The partial ordering in the previous example is not as nice as our ordering
on R. To see this, consider the sets Z = {1} and Y = {2}. Then Z ⪯̸ Y
and Y ⪯̸ Z; that is, we cannot use the partial ordering to compare X and
Z. However, if x, y ∈ R, then either x ≤ y or y ≤ x. Consequently, a partial
ordering is nicer if it has the following property:

Definition A.5.3. Let X be a set. A partial ordering ⪯ on X is called a
total ordering if for all x, y ∈ X, either x ⪯ y or y ⪯ x (or both).

Of course, we desire to equip a set with a partial ordering. Thus we give
the following name to such an object.

Definition A.5.4. A partially ordered set (or poset) is a pair (X, ⪯) where
X is a non-empty set and ⪯ is a partial ordering on X.

Our main focus is a ‘result’ about totally ordered subsets of partially
ordered sets:
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Definition A.5.5. Let (X, ⪯) be a partially ordered set. A non-empty
subset Y ⊆ X is said to be a chain if Y is totally ordered with respect to ⪯;
that is, if a, b ∈ Y , then either a ⪯ b or b ⪯ a.

Clearly any non-empty subset of a totally ordered set is a chain. Here is
a less obvious example.

Example A.5.6. Recall that the power set P(R) of R has a partial ordering
⪯ where

A ⪯ B ⇐⇒ A ⊆ B.

If Y = {An}∞
n=1 ⊆ P(R) are such that An ⊆ An+1 for all n ∈ N, then Y is a

chain.

Like with the real numbers, upper bounds play an important role with
respect to chains.

Definition A.5.7. Let (X, ⪯) be a partially ordered set. A non-empty
subset Y ⊆ X is said to be a bounded above if there exists a z ∈ X such that
y ≤ z for all y ∈ Y . Such an element z is said to be an upper bound for Y .

Example A.5.8. Recall from Example A.5.6 that if Y = {An}∞
n=1 ⊆ P(R)

are such that An ⊆ An+1 for all n ∈ N, then Y is a chain with respect to the
partial ordering defined by inclusion. If

A =
∞⋃

n=1
An

then clearly A ∈ P(R) and An ⊆ A for all n ∈ N. Hence A is an upper
bound for Y .

Recall there are optimal upper bounds of subsets of R called least upper
bounds which need not be in the subset. We desire a slightly different object
when it comes to partially ordered sets as the lack of a total ordering means
there may not be a unique ‘optimal’ upper bound.

Definition A.5.9. Let X be a non-empty set and let ⪯ be a partial ordering
on X. An element x ∈ X is said to be maximal if there does not exist a
y ∈ X \ {x} such that x ⪯ y; that is, there is no element of X that is larger
than x with respect to ⪯.

Notice that R together with its usual ordering ≤ does not have a maximal
element (by, for example, the Archimedean Property). However, many
partially ordered sets do have maximal elements. For example ([0, 1], ≤) has
1 as a maximal element (although ((0, 1), ≤) does not).

For an example involving a partial ordering that is not a total ordering,
suppose X = {x, y, z, w} and ⪯ is defined such that a ⪯ a for all a ∈ X, a ⪯ b
for all a ∈ {x, y} and b ∈ {z, w}, and a ⪯̸ b for all other pairs (a, b) ∈ X × X.
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It is not difficult to see that z and w are maximal elements and x and y
are not maximal elements. Thus it is possible, when dealing with a partial
ordering that is not a total ordering, to have multiple maximal elements.

The result we require for the next subsection may now be stated using
the above notions.

Axiom A.5.10 (Zorn’s Lemma). Let (X, ⪯) be a non-empty partially
ordered set. If every chain in X has an upper bound, then X has a maximal
element.

We will not prove Zorn’s Lemma. To do so, we would need to use the
Axiom of Choice. In fact, Zorn’s Lemma and the Axiom of Choice are
logically equivalent; that is, assuming the axioms of (Zermelo-Fraenkel) set
theory, one may use the Axiom of Choice to prove Zorn’s Lemma, and one
may use Zorn’s Lemma to prove the Axiom of Choice.

As a simple example of the use of Zorn’s Lemma, we present the following.

Example A.5.11. Let V be a (non-zero) vector space. We claim that V
has a basis; that is, a linearly independent spanning set. To see this, let
L denote the collection of all linearly independent subsets of V (which is
clearly non-empty) and define a partial ordering on L by A ⪯ B if and only
if A ⊆ B (clearly this is a partial ordering on L).

To invoke Zorn’s Lemma (Axiom A.5.10), we need to demonstrate that
every chain in L has an upper bound. Let {Aα}α∈I be an arbitrary chain in
L and let

A =
⋃
α∈I

Aα.

We claim that A ∈ L. To see this, suppose v⃗1, . . . , v⃗n ∈ A and a1v⃗1 +
· · · anv⃗n = 0 for some scalars ak. By the definition of A and the fact that
{Aα}α∈I is a chain, there exists an i ∈ I such that v⃗1, . . . , v⃗n ∈ Ai (that is,
each v⃗k is in some Aα and as the Aα are totally ordered, take the largest).
Hence, as Ai is a linearly independent set, a1v⃗1 + · · · anv⃗n = 0 implies
a1 = · · · = an = 0. Hence A ∈ L. As A is clearly an upper bound for
{Aα}α∈I , ever chain in L has an upper bound.

By Zorn’s Lemma there exists a maximal element B ∈ L. We claim that
B is a basis for V . To see this, suppose to the contrary that span(B) ̸= V .
Thus there exists a non-zero vector v⃗ ∈ V \ span(B). This implies that
B ∪ {v⃗} is linearly independent. However, as B ⪯ B ∪ {v⃗} and B ̸= B ∪ {v⃗},
we have a contradiction to the fact that B is a maximal element in L. Hence
it must have been the case that span(B) = V and thus B is a basis for V .
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Index

2-norm, tuple, 7
ϵ-net, 111
∞-norm ℓ∞, 12
∞-norm, tuple, 7
p-norm, tuple, 8
1-norm, tuple, 6

absolutely summable, 61
adjoint, Hilbert space, 168
Alzelá-Ascoli Theorem, 127
Axiom of Choice, 179

Baire’s Category Theorem, 83
Banach Contractive Mapping Theorem, 78
Banach space, 53
Banach-Steinahaus Theorem, 92
Bessel’s Inequality, 159, 160
Bolzano-Weierstrass Theorem, 51
Borel-Lebesgue Theorem, 115
boundary point, 26
bounded above, general, 184
bounded function, metric space, 41
bounded set, metric space, 40
bounded, linear map, 42

Cantor set, 28
Cantor’s Theorem, completeness, 59
Cartesian product, 178
Cartesian product, multiple, 178
Cauchy sequence, 50
Cauchy-Schwarz Inequality, 147
chain, 184
closed ball, 16
Closed Graph Theorem, 89
closed set, 21
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cluster point, 26
compact set, 96
complete, 51
Completeness of R, 51
completion, metric space, 71
completion, normed linear space, 73
complex numbers, 175
conjugate linear, 146
conjugate pair, 9
connected set, 46
continuous function, 34
contraction, 77
converge, sequence, 23
convex, 152

De Morgan’s Laws, 177
dense, 33
diameter, 59
dimension, 163
disconnected set, 46
discontinuous, 34
discrete metric, 3
discrete topology, 16
distance to a set, 37
dual space, 165

empty set, 175
equicontinuous, 122
equivalence class, 182
equivalence relation, 182
equivalent norms, 102
Euclidean metric, 5
Euclidean norm, 7
Extreme Value Theorem, 100

Fσ set, 84
finite intersection property, 107
first category set, 82
function, 178
function, bijection, 181
function, co-domain, 180
function, domain, 181
function, injective, 180
function, maximum, 136
function, one-to-one, 180
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function, onto, 179
function, preimage, 180
function, range, 179
function, surjective, 179

Gδ set, 84
Gram-Schmidt Orthogonalization Process, 158

Hölder’s Inequality, continuous functions, 13
Hölder’s Inequality, sequences, 12
Hölder’s Inequality, tuples, 9
Heine-Borel Theorem, 97
Hilbert space, 150
homeomorphic, metric spaces, 68
homeomorphism, 68

inner product, 145
inner product space, 146
integers, 175
interior point, 26
Intermediate Value Theorem, 48
Inverse Mapping Theorem, 88
isometry, metric spaces, 69
isometry, normed linear spaces, 73
isomorphic, Hilbert space, 163
isomorphic, metric spaces, 69
isomorphic, normed linear spaces, 73
isomorphism, metric spaces, 69
isomorphism, normed linear spaces, 73

lattice, continuous functions, 136
Lebesgue number, 115
limit point, 26
limit, sequence, 23
linear functional, 165
Lipschitz constant, 120
Lipschitz function, 120

maximal element, 184
metric, 2
metric space, 2
Minkowski’s Inequality, 10
Minkowski’s Inequality, continuous functions, 14

natural numbers, 175
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neighbourhood, 31
norm, 5
normed linear space, 5
nowhere dense, 82

open ball, 16
open cover, 95
Open Mapping Theorem, 87
open set, 16
operator norm, 42
orthogonal, 149
orthogonal complement, 154
orthogonal projection, 155
orthonormal basis, 157
orthonormal set, 156

p-norm, ℓp, 12
Parallelogram Law, 150
partial ordering, 183
partially ordered set, 183
Picard’s Theorem, 79
pointwise bounded collection of functions, 126
pointwise convergence, 55
Polarization Identity, 150
poset, 183
power set, 176
product metric, 4
Pythagorean Theorem, 150

rational numbers, 175
real numbers, 175
relation, 182
relatively compact, 122
residual, 82
Reverse triangle inequality, 6
Riesz Representation Theorem, 166

second category set, 82
separable, 33
separates points, 137
sequentially compact, 109
set, 175
set, compliment, 177
set, difference, 177
set, element, 175
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set, intersection, 176
set, subset, 175
set, union, 176
Stone-Weierstrass Theorem, algebra, 141
Stone-Weierstrass Theorem, complex, 142
Stone-Weierstrass Theorem, lattice, 137
subalgebra, continuous functions, 139
subcover, 96
subsequence, 25
summable, 61
sup-norm, 7, 41
sup-norm, ℓ∞, 12

Tietz’s Extension Theorem - Bounded Version, 63
Tietz’s Extension Theorem - Unbounded Version, 66
Tietze’s Extension Theorem - R, 62
topology, 16
total ordering, 183
totally bounded, 111
triangle inequality, metric, 2
triangle inequality, norm, 5
trigonometric polynomials, 140
trivial topology, 16

Uniform Boundedness Principle, 90
Uniform Boundedness Principle, Banach Space, 91
uniform convergence, 24, 55
uniform metric, Cb(X , Y), 41
uniform metric, C[a, b], 3
uniformly continuous function, 120
uniformly equicontinuous, 125
unit vector, 156
unitary operator, 163
upper bound, arbitrary, 184
Urysohn’s Lemma, 38

Weierstrass M-Test, 62
Werierstrass Approximation Theorem, 132

Young’s Inequality, tuples, 9

Zorn’s Lemma, 185
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