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Preface:
These are the first edition of these lecture notes for MATH 6461 (Functional
Analysis I). Consequently, there may be several typographical errors, missing
exposition on necessary background, and more advance topics for which
there will not be time in class to cover. Future iterations of these notes will
hopefully be fairly self-contained provided one has the necessary background.
If you come across any typos, errors, omissions, or unclear explanations,
please feel free to contact me so that I may continually improve these notes.
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Chapter 1

Normed Linear Spaces

The most challenging aspects of a functional analysis course is where to
begin and how deep to go into each topic. Functional analysis, being
the study of infinite dimensional topological vector spaces over the real
and complex numbers, requires substantial knowledge from linear algebra,
analysis, measure theory, and topology. At the graduate level, it is expected
that students are familiar with linear algebra (specifically, vector spaces,
subspaces, spans, linear independent, bases, dimension, linear maps, and
spectral theory for normal matrices) and have some exposure to analysis.
The questions remain, “how much analysis, measure theory, and topology
will students have seen, and how much detail should be provided on each
topic?”

In this section, we desire to examine the basics of normed linear spaces,
whereas we will leave essential study of Banach spaces to Chapter 2. For some
students, this will be mostly a review. For others, there may be many topics
that are quite new and challenging. While proceeding through this chapter,
we will assume that students have seen the basics of metric spaces (definitions,
convergent sequences, the metric topology, completeness, continuity) and the
only topological notions required for this section are those for metric spaces.
A few results will be mentioned using general topology and measure theory,
but students unfamiliar with measure theory will be able to proceed without
issue.

Thus we begin this chapter by reviewing the concept of a normed linear
space including many standard examples and results minimal proof. Then
we will transition to constructing other normed linear spaces, such as the
bounded linear maps between normed linear spaces and examining further
constructions on these spaces. Often we will include results that are more
advanced than one might see at the undergraduate level and the results and
examples that are more essential to the study of functional analysis.

1



2 CHAPTER 1. NORMED LINEAR SPACES

1.1 Normed Linear Spaces
Again, we begin by reviewing the concept of a normed linear space. As often
we will want to discuss results for both the real numbers R and the complex
numbers C, we will use K to denote the real or complex numbers (i.e. any
result where K is used works for both the real and complex numbers). We
chose K over F as F is usually used to denote an arbitrary field in mathematics
whereas results in functional analysis require the real or complex numbers.

We begin with the concept of a norm, which is a simple generalization of
the absolute value on K to vector spaces over K.

Definition 1.1.1. Let V be a vector space over K. A norm on V is a function
∥ · ∥ : V → [0,∞) such that

1. for v⃗ ∈ V, ∥v⃗∥ = 0 if and only if v⃗ = 0⃗,

2. ∥αv⃗∥ = |α| ∥v⃗∥ for all α ∈ K and v⃗ ∈ V, and

3. (triangle inequality) ∥v⃗ + w⃗∥ ≤ ∥v⃗∥ + ∥w⃗∥ for all v⃗, w⃗ ∈ V.

Of course, we desire to study vector spaces with a fixed pre-described
norm, so we make the following definition.

Definition 1.1.2. A normed linear space is a pair (V, ∥ · ∥) where V is a
vector space over K and ∥ · ∥ is a norm on V.

Note we will often abuse notation by saying that V is a normed linear
space without specifying the norm.

Remark 1.1.3. Any normed linear space (V, ∥ · ∥) automatically becomes a
metric space with respect to the metric d : V × V → [0,∞) defined by

d(x⃗, y⃗) = ∥x⃗− y⃗∥ .

As such, the basic topological properties of metric spaces immediately apply
to normed linear spaces. In particular:

• a sequence (x⃗n)n≥1 of elements of V converges to x⃗ ∈ V if

lim
n→∞

∥x⃗n − x⃗∥ = 0;

that is, for every ϵ > 0 there exists an n ∈ N such that ∥x⃗n − x⃗∥ < ϵ
for all n ≥ N .

• the open ball centred at x⃗ ∈ V of radius r > 0 is the set

B(x⃗, r) = {v⃗ ∈ V | ∥v⃗ − x⃗∥ < r}.

• a subset A ⊆ V is open in V if for all x⃗ ∈ A there exists an r > 0 such
that B(x⃗, r) ⊆ A.

©For use through and only available at pskoufra.info.yorku.ca.



1.1. NORMED LINEAR SPACES 3

• a subset F ⊆ V is closed in V if F c = V \ F is open in V.

• a subset F ⊆ V is closed if and only if whenever (x⃗n)n≥1 is a sequence
of elements of F that converges to some element x⃗ ∈ V, then x⃗ ∈ F .

• a sequence (x⃗n)n≥1 of elements of V is Cauchy if for every ϵ > 0 there
exists an N ∈ N such that ∥x⃗n − x⃗m∥ < ϵ for all n,m ≥ N .

• V is said to be complete if every Cauchy sequence in V converges in V .

• if W is a normed linear space, a function f : V → W is said to be
continuous at a point v⃗ ∈ V if for every ϵ > 0 there exists a δ > 0
such that if x⃗ ∈ V and ∥x⃗− v⃗∥V < δ, then ∥f(x⃗) − f(v⃗)∥W < ϵ.
Consequently, it can be show that f is continuous (i.e. continuous at
every point in V) if and only if f−1(U) is open in V for every open
subset U ⊆ W.

The immediate added benefit of looking at normed linear spaces over
metric spaces is that the norm properties intertwine with the vector space
operations with respect to continuity and convergence.

Proposition 1.1.4. Let (V, ∥ · ∥) be a normed linear space over K. If
(x⃗n)n≥1 and (y⃗n)n≥1 are sequences of elements of V that converge to x⃗ and
y⃗ respectively, and let (αn)n≥1 be a sequence of elements of K that converge
to α, then

• (x⃗n + y⃗n)n≥1 converges to x⃗+ y⃗, and

• (αnx⃗n)n≥1 converges to αx⃗.

Proof. Let ϵ > 0. Since

∥(x⃗n + y⃗n) − (x⃗− y⃗)∥ ≤ ∥x⃗n − x⃗∥ + ∥y⃗n − y⃗∥ and
∥αnx⃗n − αx⃗∥ ≤ |αn| ∥x⃗n − x⃗∥ + |αn − α| ∥x⃗∥

for all n, and since convergence sequences are bounded in their norms by
a simple triangle inequality argument, we may chose N sufficiently large
so that the right-hand sides of both inequalities is less than ϵ and thus the
result follows.

Proposition 1.1.5. Let (V, ∥ · ∥) be a normed linear space over K. For all
x⃗, y⃗ ∈ V, we have

|∥x⃗∥ − ∥y⃗∥| ≤ ∥x⃗− y⃗∥ .

This inequality is often called the reverse triangle inequality. Consequently,
the function f : V → R defined by f(x⃗) = ∥x⃗∥ for all x⃗ ∈ V is continuous.

©For use through and only available at pskoufra.info.yorku.ca.



4 CHAPTER 1. NORMED LINEAR SPACES

Proof. Given x⃗, y⃗ ∈ V , notice by the triangle equality that

∥x⃗∥ = ∥y⃗ + (x⃗− y⃗)∥ ≤ ∥y⃗∥ + ∥x⃗− y⃗∥ and
∥y⃗∥ = ∥x⃗+ (y⃗ − x⃗)∥ ≤ ∥x⃗∥ + ∥y⃗ − x⃗∥ = ∥x⃗∥ + ∥x⃗− y⃗∥

as ∥−z⃗∥ = | − 1| ∥z⃗∥ = ∥z⃗∥ for all z⃗ ∈ V. By rearranging this equation, we
obtain the reverse triangle inequality. The continuity of the norm immediately
follows from the reverse triangle inequality and the definition of continuity.

1.2 Examples of Normed Linear Spaces

Of course, having a mathematical object is only good if there is a plethora
of examples. In this section, we will look at some of the most important
examples of normed linear spaces in functional analysis. Note it is necessary
for each example to not only verify that the defined norm is indeed a norm, but
the set is actually a vector space. We note that the vector space operations
on each normed linear space is the canonical one.

Example 1.2.1. The absolute value function | · | : K → [0,∞) is a norm on
K (where K is viewed as a vector space over K with the canonical operations).
In fact, every norm on K is clearly seen to be a positive scalar multiple of
the absolute value function. As such, when we refer to K as a normed linear
space, we always do so with the absolute value function as the norm.

Although there is only one norm on K upto multiples, if we go up in
vector space dimension, several norms that are not multiples are in existence.

Example 1.2.2. For n ∈ N, recall Kn is a vector space over K with respect
to coordinate-wise addition and scalar multiplication. For a p ∈ [1,∞), define
∥ · ∥p : Kn → [0,∞) by

∥(z1, . . . , zn)∥p =
(

n∑
k=1

|zk|p
) 1

p

for all (z1, . . . , zn) ∈ Kn. Then ∥ · ∥p is a norm on Kn called the p-norm. In
the case p = 2, the above norm is called the Euclidean norm.

Example 1.2.3. For n ∈ N, recall Kn is a vector space over K with respect
to coordinate-wise addition and scalar multiplication. Define ∥ · ∥∞ : Kn →
[0,∞) by

∥(z1, . . . , zn)∥∞ = sup
1≤k≤n

|zk|

for all (z1, . . . , zn) ∈ Kn. We call ∥ · ∥∞ the sup-norm or the ∞-norm.

©For use through and only available at pskoufra.info.yorku.ca.



1.2. EXAMPLES OF NORMED LINEAR SPACES 5

Of course, it is necessary to check that the p-norms are indeed norms.
Other than the triangle inequality, all other properties of a norm are easy
to verify. To see that the triangle inequality holds, we refer the reader to
Appendix D.

Furthermore, it is elementary to see that the various p-norms on Kn are
not multiples of each other. Indeed notice that

∥(1, 0, . . . , 0)∥p = 1 whereas ∥(1, 1, . . . , 1)∥p =

n
1
p if p ̸= ∞

1 if p = ∞

and thus no p-norm on Kn is a multiple of the other. However, the various
p-norms are related to each other in another topological way.

Definition 1.2.4. Let V be a vector space over K. Two norms ∥ · ∥1 and
∥ · ∥2 on V are said to be equivalent if there exists k1, k2 ∈ (0,∞) such that

k1 ∥v⃗∥1 ≤ ∥v⃗∥2 ≤ k2 ∥v⃗∥1

for all v⃗ ∈ V .

It is elementary to verify that the notion of equivalent norms from Defini-
tion 1.2.4 is an equivalence relation on the set of norms on V. Furthermore,
it is elementary to see that if two norms on V are equivalent, then they
define the same topology on V and they have the same set of Cauchy se-
quences. Thus, for almost all intents and purposes in functional analysis,
two equivalent norms on a vector space “produce the same” normed linear
space.

Example 1.2.5. For a fixed n ∈ N and p ∈ [1,∞), notice for all (z1, z2, . . . , zn) ∈
Kn that

∥(z1, z2, . . . , zn)∥∞ ≤ ∥(z1, z2, . . . , zn)∥p ≤ n
1
p ∥(z1, z2, . . . , zn)∥∞

simply by using the fact that ∥(z1, z2, . . . , zn)∥p = (
∑n

k=1 |zk|p)
1
p . Hence all

of the p-norms on Kn are equivalent.
However, this raises another question that we will answer later: “Are

there other norms on Kn that are not equivalent to the Euclidean norm?”

For now, we turn our attention to infinite dimensions where the p-norms
produce different vector spaces and thus different normed linear spaces.

Example 1.2.6. Given a measure space (X,A, µ) and a p ∈ [1,∞), the
Lp-space of (X,A, µ), denote Lp(X,µ), is the normed linear space over K of
all measurable functions f : X → K such that∫

X
|f |p dµ < ∞

©For use through and only available at pskoufra.info.yorku.ca.



6 CHAPTER 1. NORMED LINEAR SPACES

modulo the set of all functions equal to zero µ almost everywhere equipped
with pointwise addition, pointwise scalar multiplication, and the p-norm
∥ · ∥p : Lp(X,µ) → [0,∞) defined by

∥f∥p =
(∫

X
|f |p dµ

) 1
p

for all f ∈ Lp(X,µ).

Example 1.2.7. Given a measure space (X,A, µ), the L∞-space of (X,A, µ),
denote L∞(X,µ), is the normed linear space over K of all measurable func-
tions f : X → K for which there exists an M ≥ 0 such that

µ({x ∈ X | |f(x)| > M}) = 0

modulo the set of all functions equal to zero µ almost everywhere equipped
with pointwise addition, pointwise scalar multiplication, and the ∞-norm
∥ · ∥∞ : L∞(X,µ) → [0,∞) defined by

∥f∥∞ = inf{M ∈ [0,∞) | µ({x ∈ X | |f(x)| > M}) = 0}

for all f ∈ L∞(X,µ).

Of course, it is necessary to verify that Lp-spaces are indeed vector spaces
and the norms as defined are indeed norms. We refer an interested reader to
Appendix D.

Remark 1.2.8. For most measure spaces (X,A, µ), Lp(X,µ) are different
vector spaces for each value of p. Indeed in the case that (X,A, µ) is the
Lebesgue measure on R, if q ∈ [1,∞) and f : R → R is defined by

fq(x) =

0 if x < 1
x

− 1
q if x ≥ 1

,

then fq ∈ Lp(X,µ) if and only if p > q.

Example 1.2.9. Let p ∈ [1,∞] and let n ∈ N. If X is an n-point space,
A = P(X), and µ is the counting measure on X, then Lp(X,µ) = Kn

equipped with the p-norm. Hence Examples 1.2.2 and 1.2.3 are subsumed
by Lp-spaces.

Example 1.2.10. Let p ∈ [1,∞), let X = N, let A = P(X), and let µ be
the counting measure on X. Then Lp(X,µ) can be identified with the set of
all sequences (zn)n≥1 of elements of K such that

∞∑
k=1

|zk|p < ∞.

©For use through and only available at pskoufra.info.yorku.ca.



1.2. EXAMPLES OF NORMED LINEAR SPACES 7

We use ℓp(N) (or ℓp(N,K) to specify the field K) to denote the space of all
such sequence. Thus ℓp(N) is a normed linear space with respect to entry-wise
addition, entry-wise scalar multiplication, and norm ∥ · ∥p : ℓp(N) → [0,∞)
defined by

∥(zn)n≥1∥p =
( ∞∑

k=1
|zk|p

) 1
p

.

Example 1.2.11. Let X = N, let A = P(X), and let µ be the counting
measure on X. Then L∞(X,µ) can be identified with the set of all bounded
sequences (zn)n≥1 of elements of K. We use ℓ∞(N) (or ℓ∞(N,K) to specify
the field K) to denote the space of all such sequence. Thus ℓ∞(N) is a
normed linear space with respect to entry-wise addition, entry-wise scalar
multiplication, and norm ∥ · ∥∞ : ℓ∞(N) → [0,∞) defined by

∥(zn)n≥1∥∞ = sup
n∈N

|zn|.

Remark 1.2.12. It is not difficult to see that ℓ1(N) ⊆ ℓp(N) ⊆ ℓq(N) ⊆
ℓ∞(N) for all p, q ∈ (1,∞) with p < q.

Often in this course we will stick with these “little” ℓp-spaces oppose
to the measure theoretic Lp-spaces due to convenience for those that have
not taken measure theory. Surprisingly, most results that work for ℓp-spaces
can be extended to Lp-spaces provided the measures involved are sufficiently
nice.

While we are on the topic of sequence spaces, we note we can produce
new normed linear spaces in a very simple way.

Proposition 1.2.13. Let (V, ∥ · ∥) be a normed linear space and let W be a
vector subspace of V. The restriction of ∥ · ∥ to W is a norm on W. Hence
(W, ∥ · ∥ |W) is a normed linear space.

Example 1.2.14. Let c (or c(K) if we desire to specify the field) be the set

c =
{

(zn)n≥1
∣∣∣ zn ∈ K, lim

n→∞
zn exists

}
.

As c is a vector subspace of ℓ∞(N,K), c is a normed linear space with respect
to the ∞-norm. We call c the convergent sequence space.

Example 1.2.15. Let c0 (or c if we desire to specify the field) be the set

c0 =
{

(zn)n≥1
∣∣∣ zn ∈ K, lim

n→∞
zn = 0

}
.

As c0 is a vector subspace of ℓ∞(N,K), c0 is a normed linear space with
respect to the ∞-norm. We call c0 the convergent to 0 sequence space.

©For use through and only available at pskoufra.info.yorku.ca.



8 CHAPTER 1. NORMED LINEAR SPACES

Example 1.2.16. Let c00 (or c00 if we desire to specify the field) be the set

c00 = {(zn)n≥1 ∈ c | there exists an N ∈ N such that zn = 0 for all n ≥ N}.

As c00 is a vector subspace of ℓ∞(N,K), c00 is a normed linear space with
respect to the ∞-norm. We call c00 the eventually 0 sequence space.

Example 1.2.17. Let (X,A) be a measurable space and let MC(X,A) be
the set of all complex measures on (X,A). Then MC(X,A) is a vector
space over C with respect to pointwise addition and scalar multiplication.
Moreover, if we define ∥ · ∥ : MC(X,A) → [0,∞) by

∥µ∥ = sup
{ ∞∑

n=1
|µ(An)|

∣∣∣∣∣ {An}∞
n=1 ∈ A pairwise disjoint with union X

}

for all µ ∈ MC(X,A), then ∥ · ∥ is a norm on MC(X,A) called the total
variation norm. Hence MC(X,A) is a normed linear space.

In fact, it can be shown that for any µ ∈ MC(X,A) that there exists a
unique measure |µ| : A → [0,∞) and a measurable function φ : X → C such
that |φ(x)| = 1 for all x ∈ X that is unique upto µ-measure zero sets such
that

µ(A) =
∫

A
φd|µ|

for all A ∈ A. It can be verified that ∥µ∥ = |µ|(X).

Example 1.2.18. Let (X,A) be a measurable space and let MR(X,A) be
the set of finite signed measures. Then MR(X,A) is a real vector subspace
of MC(X,A) with respect to pointwise addition and scalar multiplication
and thus a normed linear space with the restriction of the total variation
norm. In fact, if µ ∈ MR(X,A), it is known there exists a unique pair of
singular finite measures µ± : A → [0,∞) such that µ(A) = µ+(A) − µ−(A)
for all A ∈ A. In this case, it can be verified that ∥µ∥ = µ+(X) + µ−(X).

To end our initial set of examples of normed linear spaces, we include
the most obvious: continuous functions.

Example 1.2.19. Let (X, T ) be a topological space and let (Y, ∥ · ∥Y ) be a
normed linear space over K. A continuous function f : X → Y is said to be
bounded if there exists an M ∈ R such that ∥f(x)∥Y ≤ M for all x ∈ X.

The set of all bounded continuous functions from X to Y, denoted
Cb(X,Y), is a normed linear space over K with respect to pointwise addition,
pointwise scalar multiplication, and the norm ∥ · ∥∞ : Cb(X,Y) → [0,∞)
defined by

∥f∥∞ = sup {∥f(x)∥Y | x ∈ X}

for all f ∈ Cb(X,Y). The norm ∥ · ∥∞ often called the sup-norm or the
∞-norm as it agrees with the one from Example 1.2.7.

©For use through and only available at pskoufra.info.yorku.ca.



1.3. CONSTRUCTING NORMED LINEAR SPACES 9

Example 1.2.20. If X = N is equipped with the discrete topology, then
Cb(X,K) = ℓ∞(N,K) and the two infinity norms agree.

Example 1.2.21. Let (X, T ) be a compact topological space and let
(Y, ∥ · ∥Y ) be a normed linear space over K. As every continuous function
f : X → Y is automatically bounded, Cb(X,Y) is the set of all continuous
functions from X to Y and is denoted by C(X,Y). Thus C(X,Y) is a normed
linear space with the infinity norm from Example 1.2.19.

In the case that X is the closed interval [a, b] and Y = R, we will use
C[a, b] to denote C([a, b],R).

Example 1.2.22. Let (X, T ) be a locally compact Hausdorff topological
space and let (Y, ∥ · ∥Y ) be a normed linear space over K. A continuous
function f : X → Y is said to be vanish at infinity if for all ϵ > 0 there exists
a compact subset K ⊆ X such that ∥f(x)∥Y < ϵ for all x ∈ X \K. The set
of all continuous functions from X to Y that vanish at infinity is denoted
C0(X,Y).

As it is not difficult to verify that C0(X,Y) is a vector subspace of
Cb(X,Y), we obtain that C0(X,Y) is a normed linear space with respect to
the ∞-norm.

Example 1.2.23. If X = N is equipped with the discrete topology, then
C0(X,K) = c0 and the two infinity norms agree.

1.3 Constructing Normed Linear Spaces
As seen above, there are many normed linear spaces. Furthermore, we have
already examined one way of creating normed linear spaces from others; take
a vector subspace. In this section, we will examine how to take direct sums
of normed linear spaces and quotients of normed linear spaces to obtain new
normed linear spaces.

Proposition 1.3.1. For each n ∈ N, let (Xn, ∥ · ∥n) be a normed linear space
over K. Let

X = {(x⃗n)n≥1 | x⃗n ∈ Xn for all n ∈ N}.

1. For p ∈ [1,∞), let
p⊕

n∈N
Xn =

{
(x⃗n)n≥1 ∈ X

∣∣∣∣∣
∞∑

n=1
∥x⃗n∥p

n < ∞
}
.

Then
⊕p

n∈N Xn is a normed linear space over K together with the norm
∥ · ∥p :

⊕p
n∈N Xn → [0,∞) defined by

∥(x⃗n)n≥1∥p =
( ∞∑

n=1
∥x⃗n∥p

n

) 1
p
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10 CHAPTER 1. NORMED LINEAR SPACES

for all (x⃗n)n≥1 ∈
⊕p

n∈N Xn. The space
⊕p

n∈N Xn is called the ℓp-direct
sum of {(Xn, ∥ · ∥n)}∞

n=1.

2. Let ∞⊕
n∈N

Xn =
{

(x⃗n)n≥1 ∈ X
∣∣∣∣ sup

n=1
∥x⃗n∥n < ∞

}
.

Then
⊕∞

n∈N Xn is a normed linear space over K together with the norm
∥ · ∥∞ :

⊕∞
n∈N Xn → [0,∞) defined by

∥(x⃗n)n≥1∥∞ = sup
n∈N

∥x⃗n∥n

for all (x⃗n)n≥1 ∈
⊕∞

n∈N Xn. The space
⊕∞

n∈N Xn is called the ℓ∞-direct
sum of {(Xn, ∥ · ∥n)}∞

n=1.

3. Let
c0(X ) =

{
(x⃗n)n≥1 ∈ X

∣∣∣ lim
n→∞

∥x⃗n∥n = 0
}
.

Then c0(X ) is a vector subspace of
⊕∞

n∈N Xn and thus a normed linear
space with the ∞-norm. The space c0(X ) is called the c0-direct sum of
{(Xn, ∥ · ∥n)}∞

n=1.

Proof. The proof that all of these spaces are vector spaces and that the
described norms are indeed norms is straightforward (very similar to the
proof in Appendix D that the p-norms are indeed norms).

Remark 1.3.2. It is not difficult to see that the ℓp-direct sum and c0-direct
sum of N copies of K are ℓp(N,K) and c0(K) respectively.

Opposed to building bigger spaces, we can mod-out normed linear spaces
by closed subspaces.

Theorem 1.3.3. Let (V, ∥ · ∥) be a normed linear space over K and let W
be a closed vector subspace of V . Consider the quotient space V/W; that is

V/W = {v⃗ + W | v⃗ ∈ V},

where
v⃗ + W = {v⃗ + w⃗ | w⃗ ∈ W}.

Then V/W is a vector space over K together with the operations

(v⃗1 + W) + (v⃗2 + W) = (v⃗1 + v⃗2) + W and α · (v⃗ + W) = (αv⃗) + W.

Define p : V/W → [0,∞) by

p(v⃗ + W) = inf{∥v⃗ + w⃗∥ | w⃗ ∈ W}

for all v⃗ ∈ V. Then p is a well-defined norm on V/W called the quotient
norm.
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1.3. CONSTRUCTING NORMED LINEAR SPACES 11

Proof. It is necessary to demonstrate that p is well-defined. Indeed if v⃗1, v⃗2 ∈
V are such that v⃗1 + W = v⃗2 + W, then v⃗1 = v⃗2 + w⃗0 for some w⃗0 ∈ W.
Hence

inf{∥v⃗1 + w⃗∥ | w⃗ ∈ W} = inf{∥v⃗2 + w⃗0 + w⃗∥ | w⃗ ∈ W}
= inf{

∥∥v⃗2 + w⃗′∥∥ | w⃗′ ∈ W}

as W is a vector subspace of V. Hence p is well-defined.
To see that p is a norm, notice if v⃗ ∈ V then clearly

0 ≤ inf{∥v⃗ + w⃗∥ | w⃗ ∈ W} ≤
∥∥∥v⃗ + 0⃗

∥∥∥ < ∞

as 0⃗ ∈ W . Hence p : V/W → [0,∞). Next clearly p(⃗0 + W) = 0. Conversely,
suppose v⃗ ∈ V is such that p(v⃗+W) = 0. Then for each n ∈ N there exists an
w⃗n ∈ W such that ∥v⃗ + w⃗n∥ < 1

n . Hence v⃗ = limn→∞ −w⃗n. Since −w⃗n ∈ W
for all n ∈ N as W is a vector subspace, and since W is closed, v⃗ ∈ W . Hence
v⃗ + W = 0⃗ + W as desired.

To see the second property of a norm, let v⃗ ∈ V and α ∈ K be arbitrary.
If α = 0, clearly

p(α · (v⃗ + W)) = p((αv⃗) + W) = p(⃗0 + W) = 0 = |α|p(v⃗ + W).

Otherwise, if α ̸= 0 notice that{ 1
α
w⃗

∣∣∣∣ w⃗ ∈ W
}

= W

as W is a vector subspace. Thus

p(α · (v⃗ + W)) = p((αv⃗) + W)
= inf{∥αv⃗ + w⃗∥ | w⃗ ∈ W}

= inf
{

|α|
∥∥∥∥v⃗ + 1

α
w⃗

∥∥∥∥ ∣∣∣∣ w⃗ ∈ W
}

= |α| inf
{∥∥∥∥v⃗ + 1

α
w⃗

∥∥∥∥ ∣∣∣∣ w⃗ ∈ W
}

= |α| inf
{∥∥v⃗ + w⃗′∥∥ ∣∣ w⃗′ ∈ W

}
= |α|p(v⃗ + W).

Hence p satisfies the second property of being a norm.
Finally, to see that p satisfies the triangle inequality, notice for all v⃗1, v⃗2 ∈

V that

p((v⃗1 + W) + (v⃗2 + W)) = p((v⃗1 + v⃗2) + W)
= inf{∥v⃗1 + v⃗2 + w⃗∥ | w⃗ ∈ W}
= inf{∥v⃗1 + v⃗2 + w⃗1 + w⃗2∥ | w⃗1, w⃗2 ∈ W}
≤ inf{∥v⃗1 + w⃗1∥ + ∥v⃗2 + w⃗2∥ | w⃗1, w⃗2 ∈ W}
= inf{∥v⃗1 + w⃗1∥ | w⃗1 ∈ W} + inf{∥v⃗2 + w⃗2∥ | w⃗2 ∈ W}
= p(v⃗1 + W) + p(v⃗2 + W)
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12 CHAPTER 1. NORMED LINEAR SPACES

(where the third equality followed as W is a vector subspace). Hence p is a
norm on V/W.

Example 1.3.4. It is not difficult to show that the quotient space c(K)/c0(K)
is simply K in disguise via the map that sends (zn)n≥1 + c0(K) 7→ limn→∞ zn.

1.4 Bounded Linear Operators
Of course there are many other ways to construct normed linear spaces.
One of the most important ways for functional analysis is to look at the
morphisms between normed linear spaces. In particular, a morphism between
two normed linear spaces should preserve the vector space structure and
thus be a linear map. Moreover, to preserve the norm, we would expect
some form of continuity. Continuous linear maps are a staple of functional
analysis and thus will be introduced in this section for use throughout the
course. To begin, we first desire to put a norm structure on certain linear
maps between two normed linear spaces.

Definition 1.4.1. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces
over K. A linear map T : X → Y is said to be bounded if

sup
{

∥T (x⃗)∥Y | x⃗ ∈ X , ∥x⃗∥X ≤ 1
}
< ∞.

If T is bounded, we write

∥T∥ = sup{∥T (x⃗)∥Y | x⃗ ∈ X , ∥x⃗∥X ≤ 1}.

The quantity ∥T∥ is called the operator norm of T . Furthermore, the set of
bounded linear maps from X to Y is denoted B(X ,Y).

Remark 1.4.2. Note we can only discuss bounded linear maps between
normed linear spaces over the same field. Thus throughout these notes, this
will be a standing assumption when discussing bounded linear maps.

In addition, note that ∥T∥ is a measure of how large the unit ball (the
ball of radius 1 centred at 0⃗) in X is scaled by applying T .

Unsurprisingly, the operator is in fact a norm thereby yielding the follow-
ing.

Theorem 1.4.3. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces over
K. Then B(X ,Y) is a normed linear space over K with the operator norm
as defined in Definition 1.4.1.

To see that the operator norm is indeed a norm, we note that the only
non-trivial property of Definition 1.1.1 to verify is that if ∥T∥ = 0, then T is
the zero linear map. Note the following lemma yields the result.
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Lemma 1.4.4. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces over
K and let T ∈ B(X ,Y). Then

∥T (x⃗)∥Y ≤ ∥T∥ ∥x⃗∥X

for all x⃗ ∈ X .

Proof. Since
∥∥∥T (⃗0)

∥∥∥
Y

=
∥∥∥⃗0∥∥∥

X
= 0, the result holds when x⃗ = 0⃗. If x⃗ ̸= 0⃗,

then ∥x⃗∥X ̸= 0. Consequently, as∥∥∥∥∥ 1
∥x⃗∥X

x⃗

∥∥∥∥∥
X

= 1
∥x⃗∥X

∥x⃗∥X = 1,

we obtain from the definition of the operator norm that

1
∥x⃗∥X

∥T (x⃗)∥Y =
∥∥∥∥∥ 1

∥x⃗∥X
T (x⃗)

∥∥∥∥∥
Y

=
∥∥∥∥∥T
(

1
∥x⃗∥X

x⃗

)∥∥∥∥∥
Y

≤ ∥T∥ .

Therefore ∥T (x⃗)∥Y ≤ ∥T∥ ∥x⃗∥X as desired.

This easily yields that the composition of bounded linear maps is bounded.

Corollary 1.4.5. Let (X , ∥ · ∥X ), (Y, ∥ · ∥Y), and (Z, ∥ · ∥Z) be normed linear
spaces over K. If T ∈ B(X ,Y) and S ∈ B(Y,Z), then ST ∈ B(X ,Z) with
∥ST∥ ≤ ∥S∥ ∥T∥.

Proof. Notice for all x⃗ ∈ X that

∥(ST )(x⃗)∥Z = ∥S(T (x⃗))∥Z ≤ ∥S∥ ∥T (x⃗)∥Y ≤ ∥S∥ ∥T∥ ∥x⃗∥X .

Thus taking the supremum of this over all x⃗ ∈ X with ∥x⃗∥X ≤ 1 yields the
result.

The reason we have been analyzing bounded linear maps in reference to
continuous linear maps is the following.

Theorem 1.4.6. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces over
K and let T : X → Y be linear. The following are equivalent:

(1) T is continuous.

(2) T is continuous at 0.

(3) T is bounded.
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14 CHAPTER 1. NORMED LINEAR SPACES

Proof. Clearly (1) implies (2). To see that (2) implies (3), let ϵ = 1. Since
T is continuous at 0, there exists a δ > 0 such that if ∥x⃗∥X ≤ δ then
∥T (x⃗)∥Y ≤ 1. Therefore, if x⃗ ∈ X is such that ∥x⃗∥X ≤ 1, then ∥δx⃗∥X ≤ δ so

δ ∥T (x⃗)∥Y = ∥δT (x⃗)∥Y = ∥T (δx⃗)∥Y ≤ 1.

Hence ∥x⃗∥X ≤ 1 implies ∥T (x⃗)∥Y ≤ δ−1 so T is bounded with ∥T∥ ≤ δ−1 by
definition.

To see that (3) implies (1), let x⃗0 ∈ X be arbitrary. To see that T is
continuous at x, let ϵ > 0 and let δ = ϵ

∥T ∥+1 > 0. If x⃗ ∈ X is such that
∥x⃗− x⃗0∥X < δ, then Lemma 1.4.4 implies that

∥T (x⃗) − T (x⃗0)∥Y = ∥T (x⃗− x⃗0)∥Y ≤ ∥T∥ ∥x⃗− x⃗0∥X < ∥T∥ ϵ

∥T∥ + 1 < ϵ.

Therefore T is continuous at x⃗0 as ϵ > 0 was arbitrary. Therefore, as x⃗0 ∈ X
was arbitrary, T is continuous on X .

Perhaps it is surprising at this point in the course, but B(X ,Y) is one of
the most important normed linear spaces! Thus it is useful to include some
examples. Note it is often quite difficult to actually compute the operator
norm of a bounded linear map. However, in the finite dimensional world,
things are not too bad (in theory; in practice, computing the necessary
quantities can be challenging in dimensions exceeding 4).

Theorem 1.4.7. Let A ∈ Mn(C) and define LA : Cn → Cn by LA(x⃗) =
Ax⃗ for all x⃗ ∈ Cn (where we write x⃗ as a column vector and use matrix
multiplication). Then

∥LA∥ = max
{√

λ | λ an eigenvalue for A∗A
}
.

Proof. Exercise.

Example 1.4.8. For p ∈ [1,∞], define F,B : ℓp(N) → ℓp(N) by

F ((x1, x2, x3, . . .)) = (0, x1, x2, . . .)
B((x1, x2, x3, . . .)) = (x2, x3, x4, . . .).

Then F and B are bounded linear operators with ∥F∥ = ∥B∥ = 1. The
operator F is called the unilateral forward shift and the operator B is called
the unilateral backward shift.

Example 1.4.9. For p ∈ [1,∞], define F,B : ℓp(Z) → ℓp(Z) by

F ((xn)n∈Z) = (xn−1)n∈Z

B((xn)n∈Z) = (xn+1)n∈Z.

Then F and B are bounded linear operators with ∥F∥ = ∥B∥ = 1. The
operator F is called the bilateral forward shift and the operator B is called
the bilateral backward shift.
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1.4. BOUNDED LINEAR OPERATORS 15

Example 1.4.10. Given a compact Hausdorff space (X, T ) and a fixed
f ∈ C(X), define Mf : C(X) → C(X) by

(Mf (g))(x) = f(x)g(x)

for all x ∈ X and g ∈ C(X). Clearly Mf is a linear map such that
∥Mf (g)∥∞ ≤ ∥f∥∞ ∥g∥∞ for all g ∈ C(X). Moreover, by setting g(x) = 1
for all x ∈ X, we see that ∥g∥∞ = 1 and ∥Mf (g)∥∞ = ∥f∥∞. Hence Mf is a
bounded linear map with ∥Mf ∥ = ∥f∥∞ when C(X) is equipped with the
infinity norm.

Example 1.4.11. Let (X,A, µ) be a measure space, let p ∈ [1,∞], and fix
f ∈ L∞(X,µ). Define Mf : Lp(X,µ) → Lp(X,µ) by

(Mf (g))(x) = f(x)g(x)

for all x ∈ X and Lp(X,µ). We note that Mf will be well-defined as the
product of measurable functions is measurable and as

∥Mf (g)∥p =
(∫

X
|f(x)g(x)|p dµ

) 1
p

≤
(∫

X
∥f∥p

∞ |g(x)|p dµ
) 1

p

= (∥f∥p
∞)

1
p

(∫
X

|g(x)|p dµ
) 1

p

= ∥f∥∞ ∥g∥p .

As Mf is clearly linear, we see that Mf is a bounded linear map with
∥Mf ∥ ≤ ∥f∥∞.

Using techniques from measure theory, it is not difficult to verify that
∥Mf ∥ = ∥f∥∞ in the case that µ is inner regular.

Example 1.4.12. Let (V, ∥ · ∥) be a normed linear space and let W be a
closed subspace of V. Recall V/W is a normed linear space with respect to
the quotient norm from Theorem 1.3.3. Define q : V → V/W by q(v⃗) = v⃗+W .
Clearly q is a linear map. Moreover, as ∥q(v⃗)∥ ≤ ∥v⃗∥ by definition, q is a
bounded linear map with ∥q∥ ≤ 1.

Of course, there are a plethora and inexhaustible list of bounded linear
maps that cannot possibly be written down. To complete this section, there
are a couple additional examples that should be discussed. In particular, not
every nice linear map is bounded.

Example 1.4.13. Let P(R) denote the set of polynomials with real coeffi-
cients. As P(R) ⊆ C[0, 1], we see that P(R) is a normed linear space when
equipped with the infinity norm. Define D : P(R) → P(R) by

D(p) = p′
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16 CHAPTER 1. NORMED LINEAR SPACES

for all p ∈ P(R) (i.e. take the derivative). Clearly D is a linear map. However,
D is not bounded since ∥xn∥∞ = 1 for all n ∈ N yet D(xn) = nxn−1 so
∥D(xn)∥∞ = n for all n ∈ N.

Example 1.4.14. Define T : c00 → K by

T ((zn)n≥1) =
∞∑

n=1
zn

for all (zn)n≥1 ∈ c00. Clearly T is a well-defined linear map as for all
(zn)n≥1 ∈ c00 there exists an N ∈ N such that zn = 0 for all n ≥ N . However,
T is not bounded. To see this, note if x⃗m = (zm,n)n≥1 ∈ c00 are defined such
that

zm,n =
{

1 if n ≤ m

0 if n > m
,

then ∥x⃗m∥∞ = 1 whereas |T (x⃗m)| = m. Hence ∥T∥ ≥ m for every m ∈ N
and thus T is not bounded.

However, the question of whether or not a linear map is bounded depends
completely on the norms under consideration.

Example 1.4.15. Fix x0 ∈ [0, 1] and define Tx0 : C[0, 1] → R by

Tx0(f) = f(x0)

for all f ∈ C[0, 1]. Clearly Tx0 is a linear map. Whether Tx0 is bounded or
not depends on the norm we place on C[0, 1] (we will always use the absolute
value on R).

If C[0, 1] is equipped with the infinity norm, then Tx0 is bounded with
∥Tx0∥ = 1. To see this, notice for all f ∈ C[0, 1] that

|Tx0(f)| = |f(x0)| ≤ ∥f∥∞

by definition of the infinity norm. Hence Tx0 is bounded with ∥Tx0∥ ≤ 1.
To see that ∥Tx0∥ = 1, notice the function g(x) = 1 for all x ∈ [0, 1] is an
element of C[0, 1] with ∥g∥∞ = 1. Since

|Tx0(g)| = |g(x0)| = 1,

However, if C[0, 1] is equipped with the 1-norm, then Tx0 is not bounded.
To see this, for each n ∈ N, define fn ∈ C[0, 1] by

fn(x) =


2n2

(
x−

(
x0 − 1

2n

))
if x ∈

[
x0 − 1

2n , x0
]

−2n2
(
x−

(
x0 + 1

2n

))
if x ∈

[
x0, x0 + 1

2n

]
0 otherwise
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1.5. DUAL SPACES 17

for all x ∈ [0, 1]. It is not difficult to see that

∥fn∥1 =
∫ 1

0
|f(x)| dx ≤ 1

regardless of the value of x0 (in fact, if x0 ∈ {0, 1} then ∥fn∥1 = 1 for all
n ∈ N, and if x0 /∈ {0, 1} then ∥fn∥1 = 1 for sufficiently large n). Furthermore,
as

|Tx0(fn)| = |fn(x0)| = n

we obtain that

sup{|Tx0(f)| | f ∈ C[0, 1], ∥f∥1 ≤ 1} = ∞

so Tx0 is unbounded.

1.5 Dual Spaces

Not only does Example 1.4.15 show the norm under consideration affects
whether or not a linear map is bounded, but it leads us to an important class
of bounded linear maps. Given any normed linear space, the bounded linear
maps into the scalars play a vital role in functional analysis as will be seen
in this course. Thus they deserve some special treatment.

Definition 1.5.1. Given a normed linear space (X , ∥ · ∥) over K, the dual
space of (X , ∥ · ∥), denoted X ∗, is X ∗ = B(X ,K). The elements of X ∗ are
called continuous linear functionals.

Of course there are many examples of continuous linear functionals. We
begin in the finite dimensional world.

Example 1.5.2. Let X = Cn equipped with the Euclidean norm. Recall
if f : X → C is a non-zero linear function, then there exists a unique
a⃗ = (a1, . . . , an) ∈ Cn such that

f((z1, . . . , zn)) =
n∑

k=1
akzk

for all (z1, . . . , zn) ∈ Cn. By the Cauchy-Schwarz inequality, we know for all
z⃗ ∈ Cn that

|f(z⃗)| ≤ ∥a⃗∥2 ∥z⃗∥2

with equality if and only if z⃗ is a multiple of a⃗. Hence we easily see that
∥f∥ ≤ ∥a⃗∥2 so every linear functional is continuous. Furthermore, we see
by taking z⃗ = 1

∥a⃗∥2
a⃗ (so ∥z⃗∥2 = 1) that |f(z⃗)| = ∥a⃗∥2 and hence ∥f∥ =
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18 CHAPTER 1. NORMED LINEAR SPACES

∥a⃗∥2. Thus X ∗ is isometrically isomorphic to X via the map that sends
(a1, . . . , an) ∈ Cn to the linear functional f : X → C defined by

f((z1, . . . , zn)) =
n∑

k=1
akzk

for all (z1, . . . , zn) ∈ Cn

For another example, Example 1.4.15 can be extended.

Example 1.5.3. Let (X, T ) be a compact Hausdorff space and let x0 ∈ X
be fixed. Define δx0 : C(X) → R by

δx0(f) = f(x0)

for all f ∈ C(X). Then δx0 is a continuous linear functional with ∥δx0∥ = 1
when C(X) is equipped with the infinity norm. We call δx0 the point-mass
linear functional at x0.

Of course, there are more interesting continuous linear functionals to
consider. In fact, for post ℓp-spaces, we can completely describe their dual
spaces with other ℓp-spaces.

Theorem 1.5.4 (Riesz Representation Theorem, ℓp(N)). Let p ∈ [1,∞)
and q ∈ (1,∞] be such that 1

p + 1
q = 1. For each vector y⃗ = (yn)n≥1 ∈ ℓq(N),

define φy⃗ : ℓp(N) → K by

φy⃗((xn)n≥1) =
∞∑

n=1
xnyn

for all (xn)n≥1 ∈ ℓp(N). Then φy⃗ ∈ (ℓp(N))∗. Moreover, the map Φ : ℓq(N) →
(ℓp(N))∗ defined by

Φ(y⃗) = φy⃗

for all y⃗ ∈ ℓq(N) is a bijective linear map such that ∥Φ(y⃗)∥ = ∥y⃗∥q for all
y⃗ ∈ ℓq(N).

Proof. To see that φy⃗ is a well-defined bounded continuous linear func-
tional, note since y⃗ = (yn)n≥1 ∈ ℓq(N) we have for all (xn)n≥1 ∈ ℓp(N) that
(xnyn)n≥1 ∈ ℓ1(N) by Hölders’ inequality. Hence

∞∑
n=1

|xnyn| < ∞

and thus φy⃗((xn)n≥1) is a well-defined element of K. Hence φy⃗ is well-
defined. Furthermore, the fact that φy⃗ is linear follows from basic properties
of convergent series.
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To see that φy⃗ is bounded, notice for all (xn)n≥1 ∈ ℓp(N) that

|φy⃗((xn)n≥1)| =
∣∣∣∣∣

∞∑
n=1

xnyn

∣∣∣∣∣ ≤
∞∑

n=1
|xnyn| ≤ ∥(xn)n≥1∥p ∥y⃗∥q

by Hölder’s inequality. Hence we easily see that φy⃗ is bounded and
∥∥φy⃗

∥∥ ≤
∥y⃗∥q.

The above implies that Φ is well-defined. Moreover, it is elementary
to verify that Φ is a linear map. Hence it remains only to show that Φ is
bijective and that ∥Φ(y⃗)∥ = ∥y⃗∥q for all y⃗ ∈ ℓq(N). We will show that Φ is
surjective and in the process show that ∥Φ(y⃗)∥ ≥ ∥y⃗∥q thereby completing
the equality. The result will then follow as the norm equality shows the
kernel of Φ is simply the zero vector and thus Φ will be injective.

Let φ ∈ (ℓp(N))∗ be arbitrary. For each n ∈ N, let e⃗n be the sequence
with a 1 in the nth entry and zeros everywhere else. As e⃗n ∈ ℓp(N) for all
n ∈ N, the element

yn = φ(e⃗n) ∈ K

is well-defined.
Let y⃗ = (yn)n≥1. We claim that y⃗ ∈ ℓq(N) and that φ = φy⃗. To see that

y⃗ ∈ ℓq(N), first consider the case where p = 1 and q = ∞. As ∥e⃗n∥1 = 1 for
all n ∈ N, we obtain that

|yn| = |φ(e⃗n)| ≤ ∥φ∥

for all n ∈ N. Hence y⃗ ∈ ℓ∞(N) with ∥y⃗∥∞ ≤ ∥φ∥. Thus, once φ = φy⃗ is
established, we will have that

∥y⃗∥∞ ≤ ∥φ∥ =
∥∥φy⃗

∥∥ ≤ ∥y⃗∥∞

thereby completing the norm equality.
For p ̸= 1, for each n ∈ N let

xn =
{

0 if yn = 0
yn(|yn|)

p
p−1 −2 if yn ̸= 0

and for N ∈ N consider the sequence

z⃗N = (x1, x2, . . . , xn, 0, 0, . . .).
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Clearly Z⃗N ∈ ℓp(N) with

∥z⃗N ∥p =
(

N∑
n=1

|xn|p
) 1

p

=
(

N∑
n=1

|yn|p+ p2
p−1 −2p

) 1
p

=
(

N∑
n=1

|yn|
p

p−1

) 1
p

=
(

N∑
n=1

|yn|q
) 1

p

as 1
p + 1

q = 1 so q = p
p−1 . Therefore, as

φ(z⃗N ) =
N∑

n=1
xnyn =

N∑
n=1

|yn|
p

p−1

due to linearity, we obtain that

N∑
n=1

|yn|q =
N∑

n=1
|yn|

p
p−1 = ∥φ(z⃗N )∥ ≤ ∥φ∥ ∥z⃗N ∥p = ∥φ∥

(
N∑

n=1
|yn|q

) 1
p

.

Hence (
N∑

n=1
|yn|q

) 1
q

=
(

N∑
n=1

|yn|q
)1− 1

p

≤ ∥φ∥

for every N ∈ N. Therefore, by taking the supremum over N , we obtain
y⃗ ∈ ℓq(N) and ∥y⃗∥q ≤ ∥φ∥. Thus, once φ = φy⃗ is established, we will have
that

∥y⃗∥q ≤ ∥φ∥ =
∥∥φy⃗

∥∥ ≤ ∥y⃗∥q

thereby completing the norm equality.
To see that φ = φy⃗, let x⃗ = (xn)n≥1 ∈ ℓp(N) be arbitrary. For each

N ∈ N, let
x⃗N = (x1, x2, . . . , xN , 0, 0, . . .).

Clearly x⃗N ∈ ℓp(N), limN→∞ ∥x⃗− x⃗N ∥p = 0 as p ≠ ∞, and φ(x⃗N ) = φy⃗(x⃗N )
for all N ∈ N by the definition of y⃗ and by linearity. Therefore, as φ and φy⃗

are bounded linear functionals and thus continuous, we obtain that

φ(x⃗) = lim
N→∞

φ(x⃗N ) = lim
N→∞

φy⃗(x⃗N ) = φy⃗(x⃗).

Hence, as x⃗ ∈ ℓp(N) was arbitrary, φ = φy⃗ thereby completing the proof. (i.e.
c00(N) is dense in ℓp(N) for p ̸= ∞ and thus as φ and φy⃗ agree on c00(N) by
linearity, continuity yields the result.)
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The map Φ in Theorem 1.5.4 is an important example of maps that
preserve the vector space and norm structures between normed linear spaces
and thus deserves a name.

Definition 1.5.5. Let (X , ∥ · ∥X) and (Y, ∥ · ∥Y ) be normed linear spaces.
A map Φ : X → Y is said to be an isomorphism if Φ is a bijective bounded
linear map with bounded inverse. In this case (X , ∥ · ∥X) and (Y, ∥ · ∥Y ) are
said to be isomorphic.

In the case that ∥Φ(x⃗)∥Y = ∥x⃗∥X for all x⃗ ∈ X , it is said that Φ is an
isometric isomorphism and that (X , ∥ · ∥X) and (Y, ∥ · ∥Y ) are said to be
isometrically isomorphic.

Remark 1.5.6. It is clear that if (X , ∥ · ∥X) and (Y, ∥ · ∥Y ) are normed
linear spaces and Φ : X → Y is an isometric isomorphism, then (X , ∥ · ∥X)
and (Y, ∥ · ∥Y ) are truly the same normed linear space as Φ being a bijective
linear map means X and Y are the same vector space and Φ being isometric
implies the norms are identical under this identification.

When Φ is only an isomorphism, notice for all x⃗ ∈ X that

∥Φ(x⃗)∥Y ≤ ∥Φ∥ ∥x⃗∥X

and
∥x⃗∥X =

∥∥∥Φ−1(Φ(x⃗))
∥∥∥

X
≤
∥∥∥Φ−1

∥∥∥ ∥Φ(x⃗)∥Y .

Hence
1

∥Φ−1∥
∥x⃗∥X ≤ ∥Φ(x⃗)∥Y ≤ ∥Φ∥ ∥x⃗∥X

for all x⃗ ∈ X (note
∥∥Φ−1∥∥ ̸= 0 for otherwise Φ−1 would be the zero linear

map). This shows, upto identifying the vector spaces X and Y, the norms
∥ · ∥X and ∥ · ∥Y are equivalent.

Of course, there are other dual spaces of sequence spaces we can identify.

Theorem 1.5.7 (Riesz Representation Theorem, c0). For each vector
y⃗ = (yn)n≥1 ∈ ℓ1(N), define φy⃗ : c0 → K by

φy⃗((xn)n≥1) =
∞∑

n=1
xnyn

for all (xn)n≥1 ∈ c0. Then φy⃗ ∈ (c0)∗. Moreover, the map Φ : ℓ1(N) → (c0)∗

defined by
Φ(y⃗) = φy⃗

for all y⃗ ∈ ℓ1(N) is a bijective linear map such that ∥Φ(y⃗)∥ = ∥y⃗∥1 for all
y⃗ ∈ ℓ1(N).
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Proof. To see that φy⃗ is a well-defined bounded linear functional, note
since y⃗ = (yn)n≥1 ∈ ℓ1(N) we have for all (xn)n≥1 ∈ c0 ⊆ ℓ∞(N) that
(xnyn)n≥1 ∈ ℓ1(N) by Hölders’ inequality. Hence

∞∑
n=1

|xnyn| < ∞

and thus φy⃗((xn)n≥1) is a well-defined element of K. Hence φy⃗ is well-
defined. Furthermore, the fact that φy⃗ is linear follows from basic properties
of convergent series.

To see that φy⃗ is bounded, notice for all (xn)n≥1 ∈ c0 that

|φy⃗((xn)n≥1)| =
∣∣∣∣∣

∞∑
n=1

xnyn

∣∣∣∣∣ ≤
∞∑

n=1
|xnyn| ≤ ∥(xn)n≥1∥∞ ∥y⃗∥1

by Hölder’s inequality. Hence we easily see that φy⃗ is bounded and
∥∥φy⃗

∥∥ ≤
∥y⃗∥1.

The above implies that Φ is well-defined. Moreover, it is elementary
to verify that Φ is a linear map. Hence it remains only to show that Φ is
bijective and that ∥Φ(y⃗)∥ = ∥y⃗∥1 for all y⃗ ∈ ℓ1(N). We will show that Φ is
surjective and in the process show that ∥Φ(y⃗)∥ ≥ ∥y⃗∥1 thereby completing
the equality. The result will then follow as the norm equality shows the
kernel of Φ is simply the zero vector and thus Φ will be injective.

Let φ ∈ (c0)∗ be arbitrary. For each n ∈ N, let e⃗n be the sequence with a
1 in the nth entry and zeros everywhere else. As e⃗n ∈ c0 for all n ∈ N, the
element

yn = φ(e⃗n) ∈ K

is well-defined.
Let y⃗ = (yn)n≥1. We claim that y⃗ ∈ ℓ1(N) and that φ = φy⃗. To see that

y⃗ ∈ ℓ1(N), for each n ∈ N let

xn =
{

0 if yn = 0
|yn|
yn

if yn ̸= 0

and for N ∈ N consider the sequence

z⃗N = (x1, x2, . . . , xn, 0, 0, . . .).

Clearly x⃗N ∈ c0 with ∥z⃗N ∥∞ = 1. Therefore, as

φ(z⃗N ) =
N∑

n=1
xnyn =

N∑
n=1

|yn|

due to linearity, we obtain that
N∑

n=1
|yn| = |φ(z⃗N )| ≤ ∥φ∥ ∥z⃗N ∥∞ = ∥φ∥
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for every N ∈ N. Therefore, by taking the supremum over N , we obtain
y⃗ ∈ ℓ1(N) and ∥y⃗∥1 ≤ ∥φ∥. Thus, once φ = φy⃗ is established, we will have
that

∥y⃗∥1 ≤ ∥φ∥ =
∥∥φy⃗

∥∥ ≤ ∥y⃗∥1

thereby completing the norm equality.
To see that φ = φy⃗, let x⃗ = (xn)n≥1 ∈ c0 be arbitrary. For each N ∈ N,

let
x⃗N = (x1, x2, . . . , xN , 0, 0, . . .).

Clearly x⃗N ∈ c0, limN→∞ ∥x⃗− x⃗N ∥∞ = 0 as x⃗ ∈ c0, and φ(x⃗N ) = φy⃗(x⃗N )
for all N ∈ N by the definition of y⃗ and by linearity. Therefore, as φ and φy⃗

are bounded linear functionals and thus continuous, we obtain that

φ(x⃗) = lim
N→∞

φ(x⃗N ) = lim
N→∞

φy⃗(x⃗N ) = φy⃗(x⃗).

Hence, as x⃗ ∈ c0 was arbitrary, φ = φy⃗ thereby completing the proof. (i.e.
c00 is dense in c0 and thus as φ and φy⃗ agree on c0 by linearity, continuity
yields the result.)

However, there is another normed linear space that has ℓ1(N) as its dual
space.

Theorem 1.5.8 (Riesz Representation Theorem, c). Let N0 = N∪ {0}.
For each vector y⃗ = (yn)n≥0 ∈ ℓ1(N0), define φy⃗ : c → K by

φy⃗((xn)n≥1) = y0
(

lim
n→∞

xn

)
+

∞∑
n=1

xnyn

for all (xn)n≥1 ∈ c. Then φy⃗ ∈ c∗. Moreover, the map Φ : ℓ1(N) → c∗

defined by
Φ(y⃗) = φy⃗

for all y⃗ ∈ ℓ1(N) is a bijective linear map such that ∥Φ(y⃗)∥ = ∥y⃗∥1 for all
y⃗ ∈ ℓ1(N).

Proof. Exercise.

Remark 1.5.9. The above Riesz Representation Theorems raise the question
on what exactly is (ℓ∞(N))∗? Of course, it is not too difficult to see that if
y⃗ = (yn)n≥1 ∈ ℓ1(N), then φy⃗ : ℓ∞(N) → K defined by

φy⃗((xn)n≥1) =
∞∑

n=1
xnyn

for all (xn)n≥1 ∈ ℓ∞(N) is a bounded linear map with
∥∥φy⃗

∥∥ = ∥y⃗∥1 by the
same arguments as used in Theorem 1.5.7 and Theorem 1.5.8. The issue
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comes down demonstrating every continuous linear functional is of this form
as, in fact, it is not true.

To construct the dual space of ℓ∞(N), one actually requires some measure
theory which we leave to Appendix D.4. In fact, there are generalizations of
the above Riesz Representation Theorems to Lp(X,µ) using measure theory
that can also be found in Appendix D.4.

Alternatively, in topology it can be shown that ℓ∞(N) is isometrically
isomorphic to the continuous functions on the Stone-Čech compactification of
the natural numbers. Thus it is possible to describe the dual space of ℓ∞(N)
using the dual space of the continuous functions on a compact Hausdorff
space. Unfortunately, describing such dual spaces also requires measure
theory (see Theorem D.4.9) and we note are related to MK(X,A) where A
is the Borel σ-algebra.

1.6 Canonical Embedding and Adjoints
We can take things a step farther with dual spaces. Indeed, the dual space
of a normed linear space is a normed linear space and thus has a dual space.
Such dual spaces are surprisingly useful and worthy of a name.

Definition 1.6.1. The double dual space (or second dual space) of a normed
linear space (X , ∥ · ∥) is the normed linear space (X ∗)∗ and is denoted X ∗∗.

Example 1.6.2. By Theorem 1.5.4, we see for all p ∈ (1,∞) that

(ℓp(N))∗∗ = (ℓq(N))∗ = ℓp(N)

where q ∈ (1,∞) is such that 1
p + 1

q = 1. Similarly, by Theorem 1.5.4, Theorem
1.5.7, and Theorem 1.5.8, we see that (c0)∗∗ = ℓ∞(N) and c∗∗ = ℓ∞(N).

In Remark 1.5.9 we saw that every element of ℓ1(N) defined an element
of (ℓ∞(N))∗. However, we know that (ℓ1(N))∗ = ℓ∞(N) by Theorem 1.5.4.
Combining these two facts, every element of ℓ1(N) defines an element of
(ℓ∞(N))∗ = (ℓ1(N))∗∗. Similarly, Example 1.6.2 shows that (c0)∗∗ = ℓ∞(N)
and c∗∗ = ℓ∞(N). Therefore, since c0 ⊆ c ⊆ ℓ∞(N), ever element of c0 and c
define elements of their second dual spaces. This is not a coincidence as the
following shows (and note we will now often drop the vector notation as it
will become cumbersome).

Theorem 1.6.3 (Canonical Embedding into Double Dual). Let (X , ∥ · ∥)
be a normed linear space. For each x ∈ X , define x̂ : X ∗ → K by

x̂(f) = f(x)

for all f ∈ X ∗. Then x̂ ∈ X ∗∗ and ∥x̂∥ ≤ ∥x∥ for all x ∈ X . Moreover, if
J : X → X ∗∗ is defined by

J (x) = x̂
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for all x ∈ X , then J is a contractive linear map. We call J the canonical
embedding of X into X ∗∗.

Proof. It is elementary to see that if x ∈ X , then x̂ is a well-defined linear
map on X ∗. Moreover, for all f ∈ X ∗, we see that

|x̂(f)| = |f(x)| ≤ ∥f∥ ∥x∥

so x̂ is bounded (and thus in X ∗∗) with ∥x̂∥ ≤ ∥x∥. The fact that J is linear
follows as for all x, y ∈ X and α ∈ K,

α̂x+ y(f) = f(αx+ y) = αf(x) + f(y) = αx̂(f) + ŷ(f)

for all f ∈ X ∗ so α̂x+ y = αx̂+ ŷ.

Remark 1.6.4. Recall by Theorem 1.5.4 that if p, q ∈ (1,∞) are such that
1
p + 1

q = 1, then (ℓp(N))∗ = ℓq(N) via the map Φ : ℓq(N) → (ℓp(N))∗ defined
by

Φ((xn)n≥1)((yn)n≥1) =
∞∑

n=1
xnyn

for all (xn)n≥1 ∈ ℓq(N) and (yn)n≥1 ∈ ℓp(N). Moreover, by reversing the roles
of p and q, we know that (ℓq(N))∗ = ℓp(N) via the map Ψ : ℓp(N) → (ℓq(N))∗

defined by

Ψ((yn)n≥1)((xn)n≥1) =
∞∑

n=1
xnyn

for all (xn)n≥1 ∈ ℓq(N) and (yn)n≥1 ∈ ℓp(N). Therefore, if x = (xn)n≥1 ∈
ℓq(N) and y = (yn)n≥1 ∈ ℓp(N), we see that

ŷ(Φ(x)) =
∞∑

n=1
xnyn = Ψ(y)(x)

so the canonical embedding is the identity map (upto identifying (ℓp(N))∗∗ =
(ℓq(N))∗ = Ψ(ℓp(N))). Such spaces are some of the nicest in functional
analysis and are worthy of a name.

Definition 1.6.5. A normed linear space (X , ∥ · ∥) is said to be reflexive if
the canonical embedding is an isometric isomorphism of X onto X ∗∗.

Remark 1.6.6. In fact, using Theorem 1.5.4, Theorem 1.5.7, and Theorem
1.5.8, several canonical embeddings are isometric. Indeed recall that c∗

0 =
ℓ1(N), c∗ = ℓ1(N), and (ℓ1(N))∗ = ℓ∞(N). If one considers the canonical
embeddings J : c0 → (c0)∗∗ = ℓ∞(N) and J : c → c∗∗ = ℓ∞(N), by the same
idea as used in Remark 1.6.4 we see that these maps are isometric.

©For use through and only available at pskoufra.info.yorku.ca.



26 CHAPTER 1. NORMED LINEAR SPACES

This raises the question, “Is the canonical embedding always isometric?”
Note for this to occur, we would need to show for any normed linear space
(X , ∥ · ∥) and any x⃗ ∈ X that

∥x⃗∥ = sup {|φ(x⃗)| | φ ∈ X ∗, ∥φ∥ ≤ 1} .

The main issue is, “How does one construct a continuous linear functional of
norm at most 1 that almost sends x to ∥x⃗∥?"

For now we turn to another construction via dual spaces.

Theorem 1.6.7 (Adjoint of a Linear Map). Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y)
be normed linear spaces and let T ∈ B(X ,Y). Define T ∗ : Y∗ → X ∗ by

T ∗(f) = f ◦ T

for all f ∈ Y ∗. Then T ∗ is a well-defined element of B(Y∗,X ∗). Moreover
∥T ∗∥ ≤ ∥T∥. The map T ∗ is called the adjoint of T .

Proof. To see that T ∗ is well-defined map note for all f ∈ Y∗ that T ∗(f) is
a bounded linear map with norm at most ∥T∥ ∥f∥ being the composition of
bounded linear maps by Corollary 1.4.5. As T ∗ is clearly linear and

∥T ∗(f)∥ ≤ ∥T∥ ∥f∥ ,

we see that T ∗ ∈ B(Y∗,X ∗) with ∥T ∗∥ ≤ ∥T∥ as desired.

Remark 1.6.8. In a similar vein to Remark 1.6.6, we can ask, “Is ∥T ∗∥ =
∥T∥?” Indeed we know

∥T ∗∥ = sup{∥f ◦ T∥ | f ∈ Y∗, ∥f∥ ≤ 1}
= sup{|f(T (x))| | f ∈ Y∗, x ∈ X , ∥f∥ ≤ 1, ∥x∥X ≤ 1}.

If the answer to Remark 1.6.6 was in the affirmative, this would allow us to
conclude

∥T ∗∥ = sup{∥T (x))∥Y | x ∈ X , ∥x∥X ≤ 1}
= ∥T∥ .

This question will be addressed in a future Chapter.

For now, we finish with a quick study of some of the fundamental proper-
ties of the adjoint.

Proposition 1.6.9. Let (X , ∥ · ∥X ), (Y, ∥ · ∥Y), (Z, ∥ · ∥Z) be normed linear
spaces, let S, T ∈ B(X ,Y), and let R ∈ B(Y,Z). Then

(1) (αS + T )∗ = αS∗ + T ∗ for all α ∈ K, and
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(2) (R ◦ S)∗ = S∗ ◦R∗.

Proof. For (1), notice for all f ∈ Y∗ that

(αS + T )∗(f) = f ◦ (αS + T ) = α(f ◦ S) + (f ◦ T ) = αS∗(f) + T ∗(f)

as f is linear. Hence (1) follows.
For (2), notice for all f ∈ Z∗ that

(R ◦ S)∗(f) = f ◦ (R ◦ S) = (f ◦R) ◦ S = S∗(f ◦R) = S∗(R∗(f)).

Hence (2) follows.
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Chapter 2

Banach Spaces

Not all normed linear spaces are created equal. In particular, many of the
spaces examined in Chapter 1 have additional properties that are useful in
functional analysis. One such property is based on convergence of sequences.
As it is often difficult to verify whether or not a sequence converges as one
must ‘guess’ the limit and show the sequence converges to the limit, the
notion of a complete normed linear space where every Cauchy sequence
converges bipasses these difficulties. These so called Banach spaces form
some of the nicest objects in functional analysis and provide some of the
deepest theorems.

In this chapter, we will study Banach spaces. After demonstrating that
most of the spaces developed in Chapter 1 are Banach spaces, we will examine
several properties of Banach spaces. Specifically we will prove some of the
most important theorems for Banach spaces: the Baire Category Theorem
(Theorem 2.3.1), the Open Mapping Theorem (Theorem 2.4.2), and the
Principle of Uniform Boundedness (Theorem 2.5.3).

2.1 Banach Spaces

To be formal, we define the object of study in this chapter.

Definition 2.1.1. A Banach space is a complete normed linear space.

Of course K is complete by undergraduate real analysis. In addition, we
have the following.

Corollary 2.1.2. For every p ∈ [1,∞] and n ∈ N, (Kn, ∥ · ∥p) is a Banach
space.

Proof. If a sequence in (Kn, ∥ · ∥p) is Cauchy, it is Cauchy in each entry. As K
is complete, each entry of our sequence converges. As a sequence in (Kn, ∥ · ∥p)
converges if and only if it converges entrywise, the result follows.

29
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In infinite dimensions, things become more complicated as entrywise
convergence does not imply convergence of the entire sequence. However,
most of the normed linear spaces we studied above are Banach spaces. As
we will see, the proofs of these results all follow the same pattern: take a
Cauchy sequence, deduce it converges ‘entrywise’, stitch together the results,
check the proposed limit is in the space under consideration, and check the
sequences does indeed converge to the proposed limit.

Theorem 2.1.3. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces. If
Y is a Banach space, then (B(X ,Y), ∥ · ∥) is a Banach space.

Proof. Let (Tn)n≥1 be an arbitrary Cauchy sequence in B(X ,Y). For each
x⃗ ∈ X , notice

∥Tn(x⃗) − Tm(x⃗)∥Y ≤ ∥Tn − Tm∥ ∥x⃗∥X

for all n,m ∈ N. Hence it is elementary to see that (Tn(x⃗))n≥1 is a Cauchy
sequence in Y for all x⃗ ∈ X . Therefore, since Y is complete, for each x⃗ ∈ X
there exists an T (x⃗) ∈ Y such that T (x⃗) = limn→∞ Tn(x⃗).

To complete the proof, it suffices to verify three things: that T : X → Y
is linear, that T is bounded, and that limn→∞ ∥T − Tn∥ = 0. To see that T
is linear, notice for all x⃗1, x⃗2 ∈ X and α ∈ K that

T (αx⃗1+x⃗2) = lim
n→∞

Tn(αx⃗1+x⃗2) = lim
n→∞

αTn(x⃗1)+Tn(x⃗2) = αT (x⃗1)+T (x⃗2).

Hence T is linear.
To see that T is bounded, notice for all x⃗ ∈ X with ∥x⃗∥X ≤ 1 and m ∈ N

that

∥T (x⃗) − Tm(x⃗)∥Y = lim
n→∞

∥Tn(x⃗) − Tm(x⃗)∥Y ≤ lim sup
n→∞

∥Tn − Tm∥

Since (Tn)n≥1 is Cauchy we know that (Tn)n≥1 is bounded and therefore
lim supn→∞ ∥Tn − Tm∥ is finite. In particular, we obtain that there exists a
constant M such that

∥T (x⃗)∥Y ≤ ∥T1(x⃗)∥Y +M ≤ ∥T1∥ +M

for all x⃗ ∈ X with ∥x⃗∥X ≤ 1. Hence T is bounded with ∥T∥ ≤ ∥T1∥ +M .
To see that limn→∞ ∥T − Tn∥ = 0, let ϵ > 0 be arbitrary. Since (Tn)n≥1

is Cauchy, there exists an N ∈ N such that ∥Tm − Tj∥ ≤ ϵ for all m, j ≥ N .
Hence if j ≥ N , the above implies ∥T (x⃗) − Tj(x⃗)∥ ≤ ϵ for all x⃗ ∈ X with
∥x⃗∥X ≤ 1 and thus

∥T − Tj∥ ≤ ϵ

for all n ≥ N . Therefore, as ϵ > 0 was arbitrary, we obtain that (Tn)n≥1
converges to T in B(X ,Y). Hence, as (Tn)n≥1 was arbitrary, B(X ,Y) is
complete.
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Corollary 2.1.4. The dual space of any normed linear space is a Banach
space.

Proof. As X ∗ = B(X ,K) and K is complete, X ∗ is complete by Theorem
2.1.3.

To see other normed linear spaces consisting of functions are Banach
spaces, we recall a stronger notion of convergence.

Definition 2.1.5. Let (X, T ) be a topological space and let (Y, d) be a
metric space. For each n ∈ N let fn : X → Y . Given f : X → Y , it is said
that the sequence (fn)n≥1 converges uniformly to f if (fn)n≥1 converges to
f with respect to the uniform metric (provided it makes sense); that is, for
all ϵ > 0 there exists an N ∈ N such that dY (f(x), fn(x)) < ϵ for all n ≥ N
and for all x ∈ X .

The following result is a staple of a first course in analysis (at least for
continuous functions on and to R) whose proof is a standard important
argument.

Theorem 2.1.6. Let (X, T ) be a topological space and let (Y, d) be a metric
space and let f : X → Y . If (fn)n≥1 is a sequence of continuous functions
from X to Y that converge to f uniformly, then f is continuous.

Proof. To see that f is continuous, let x0 ∈ X be arbitrary. To see that
f is continuous at x0 let ϵ > 0 be arbitrary. Since (fn)n≥1 converges to
f uniformly, there exists an N ∈ N such that dY (f(x), fN (x)) < ϵ

3 for all
x ∈ X . Since fN is continuous at x0, there exists an open set U ∈ T such
that x0 ∈ U and if x ∈ U then dY (fN (x), fN (x0)) < ϵ

3 . Hence if x ∈ X and
x ∈ U , then, by the triangle inequality,

dY (f(x), f(x0)) ≤ dY (f(x), fN (x)) + dY (fN (x), fN (x0)) + dY (fN (x0), f(x0))

<
ϵ

3 + ϵ

3 + ϵ

3 = ϵ.

Hence, as ϵ > 0 was arbitrary, f is continuous at x0. Thus, as x0 was
arbitrary, f is continuous on X.

Using the above, we obtain the following result for metric spaces.

Theorem 2.1.7. Let (X, T ) be a topological space and let (Y, ∥ · ∥Y) be a
Banach space. Then (Cb(X,Y), ∥ · ∥∞) is a Banach space.

Proof. Let (fn)n≥1 be an arbitrary Cauchy sequence in Cb(X,Y). For each
x ∈ X, notice

∥fn(x) − fm(x)∥Y ≤ ∥fn − fm∥∞

for all n,m ∈ N. Hence it is elementary to see that (fn(x))n≥1 is a Cauchy
sequence in Y for all x ∈ X. Therefore, since Y is complete, for each
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x ∈ X there exists an f(x) ∈ Y such that f(x) = limn→∞ fn(x). Clearly the
function x 7→ f(x) defines a function f : X → Y.

To complete the proof, it suffices to verify three things: that f is bounded,
that f : X → Y is continuous, and that limn→∞ ∥f − fn∥∞ = 0. For the
first, notice for all x ∈ X and m ∈ N that

∥f(x) − fm(x)∥Y = lim
n→∞

∥fn(x) − fm(x)∥Y ≤ lim sup
n→∞

∥fn − fm∥∞ .

Since (fn)n≥1 is Cauchy we know that (fn)n≥1 is bounded and therefore
lim supn→∞ ∥fn − fm∥∞ is finite. Therefore, by taking the supremum over
all x ∈ X, we obtain that

sup{∥f(x) − fm(x)∥Y | x ∈ X} ≤ lim sup
n→∞

∥fn − fm∥∞

for all m ∈ N. Thus, by taking m = 1 and using the fact that f1 is bounded,
we easily see that f is bounded.

To see that f is continuous, we will show that (fn)n≥1 converges uniformly
to f using the above. Indeed let ϵ > 0 be arbitrary. Since (fn)n≥1 is Cauchy in
Cb(X,Y), there exists an N ∈ N such that ∥fj − fm∥∞ ≤ ϵ for all m, j ≥ N .
Hence if m ≥ N , the above implies

sup{∥f(x) − fm(x)∥Y | x ∈ X} < ϵ.

Thus (fn)n≥1 converges to f uniformly on X. Hence f is continuous by
Theorem 2.1.6.

As the above shows that limm→∞ ∥f − fm∥∞ = 0, (fn)n≥1 converges to
f in Cb(X,Y). Thus, as (fn)n≥1 was an arbitrary Cauchy sequence, Cb(X,Y)
is complete and thus a Banach space.

Corollary 2.1.8. Let (X, T ) be a topological space. Then (Cb(X,K), ∥ · ∥∞)
is a Banach space.

Corollary 2.1.9. Let (X, T ) be a compact Hausdorff space and let (Y, ∥ · ∥)
be a Banach space. Then (C(X,Y), ∥ · ∥∞) is a Banach space.

To discuss C0(X,Y) when X is a locally compact Hausdorff topological
space and Y is a Banach space, it is first helpful to make a remark.

Remark 2.1.10. Given a Banach space (X , ∥ · ∥), if Y is a vector subspace
of X , then (Y, ∥ · ∥ |Y) is a Banach space if and only if Y is closed. Indeed if
Y is closed, then it is complete (closed subsets of complete metric spaces are
complete) and if Y is not closed there is a sequence in Y that converges in
X (and thus is Cauchy in X and Y) that is does not converges in Y thereby
showing Y is not complete.

For this reason, we often restrict our attention to closed subspaces in
functional analysis. We warn the reader that in main texts in functional
analysis that a ‘subspace’ means a ‘closed subspace’ for just this reason.
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Corollary 2.1.11. Let (X, T ) be a locally compact Hausdorff space and
let (Y, ∥ · ∥) be a Banach space. Then (C0(X,Y), ∥ · ∥∞) is a Banach space.
Hence c0 = C0(N,K) is a Banach space.

Proof. Recall C0(X,Y) is a closed subspace of Cb(X,Y) and thus a Banach
space.

Although we know ℓp(N) are dual spaces by Theorem 1.5.4 (and Theorem
1.5.7 for ℓ1(N)) and thus Banach spaces, we note the spaces from Proposition
1.3.1 are Banach spaces.

Theorem 2.1.12. For each n ∈ N, let (Xn, ∥ · ∥n) be a Banch space over K.
Let

X = {(x⃗n)n≥1 | x⃗n ∈ Xn for all n ∈ N}.

Then
⊕p

n∈N Xn is a Banach space for all p ∈ [1,∞] and c0(X ) is a Banach
space.

Proof. Fix p ∈ [1,∞]. For notational purposes, let Yp =
⊕p

n∈N Xn. To see
that Yp is complete, let (y⃗k)k≥1 be an arbitrary Cauchy sequence in Yp. For
each k ∈ N, write y⃗k = (xk,n)n≥1 where xk,n ∈ Xn for all n ∈ N and k ∈ N.
Since for all m, k, n ∈ N,

∥xk,n − xm,n∥n ≤ ∥y⃗k − y⃗m∥p ,

we see that for each n ∈ N the sequence (xk,n)k≥1 is Cauchy in Xn. Therefore,
as Xn is complete, xn = limk→∞ xk,n exists in Xn for each n ∈ N.

Let y⃗ = (xn)n≥1. To complete the proof, it suffices to verify two things:
that y⃗ ∈ Yp, and that limk→∞ ∥y⃗ − y⃗k∥p = 0. We will only discuss the case
p ̸= ∞ and the case p = ∞ is similar and uses the same sorts of arguments
as the proof of Theorem 2.1.7.

For p ̸= ∞ notice for all N,m ∈ N that

(
N∑

n=1
|xn − xm,n|p

) 1
p

= lim
k→∞

(
N∑

n=1
|xk,n − xm,n|p

) 1
p

≤ lim sup
k→∞

∥x⃗k − x⃗m∥p .

Since (x⃗n)n≥1 is Cauchy it follows that (x⃗n)n≥1 is bounded and therefore
lim supk→∞ ∥x⃗k − x⃗m∥p is finite. Therefore, by taking the limit as N tends
to infinity, we obtain that

( ∞∑
n=1

|xn − xm,n|p
) 1

p

≤ lim sup
k→∞

∥x⃗k − x⃗m∥p .

By setting m = 1, we see that z⃗ = (xn − x1,n)n≥1 ∈ Yp. Therefore, as
y⃗ = z⃗ + y⃗1, we obtain that y⃗ ∈ Yp.
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To see that limk→∞ ∥y⃗ − y⃗k∥p = 0, let ϵ > 0 be arbitrary. Note the above
shows for all m ∈ N that

∥y⃗ − y⃗m∥p ≤ lim sup
k→∞

∥x⃗k − x⃗m∥p .

Since (x⃗n)n≥1 is Cauchy there exists an N ∈ N such that ∥y⃗k − y⃗m∥p ≤ ϵ for
all m, k ≥ N . Hence if m ≥ N , the above implies ∥y⃗ − x⃗m∥p ≤ ϵ. Therefore,
as ϵ > 0 was arbitrary, we obtain that limk→∞ ∥y⃗ − y⃗k∥p = 0. Hence (y⃗k)k≥1
converges in Yp so, as (y⃗k)k≥1 was arbitrary, Yp is complete and thus a
Banach space.

As c0(X ) is a closed vector subspace of
⊕∞

n∈N Xn, it follows that c0(X ) is
a Banach space.

Corollary 2.1.13. For all p ∈ [1,∞], ℓp(N) is a Banach space.

Corollary 2.1.14. The space c is a Banach space.

Proof. As c is a closed subspace of ℓ∞(N), it follows that c is a Banach
space.

We also note that the measure-theoretic spaces mentioned above are
indeed Banach spaces. For the proof that Lp(X,µ) is a Banach space,
see Theorem D.2.1 and Theorem D.2.4. The proof that MC(X,A) and
MR(X,A) are Banach spaces follows from similar arguments to those used
above. Moreover, these spaces provide a nice example of a normed linear
space that is not a Banach space.

Example 2.1.15. Let p ∈ [1,∞) and consider C[0, 1] as a vector subspace
of Lp([0, 1], λ) where λ is the Lebesgue measure. We claim that C[0, 1] is not
closed and thus not a Banach space with respect to ∥ · ∥p. To see this, for
each n ∈ N let fn ∈ C[0, 1] be defined by

fn(x) =


1 if x ∈

[
0, 1

2

]
1 − n

(
x− 1

2

)
if x ∈

[
1
2 ,

1
2 + 1

n

]
0 otherwise

.

We claim that (fn)n≥1 is a Cauchy sequence that does not converge. To see
that (fn)n≥1 is Cauchy, notice if n,m ∈ N with n > m then

∥fn − fm∥p =
(∫ 1

0
|fn(x) − fm(x)|p dx

) 1
p

=
(∫ 1

2 + 1
m

1
2

|fn(x) − fm(x)|p dx
) 1

p

≤
(∫ 1

2 + 1
m

1
2

1 dx
) 1

p

≤ 1
m

1
p
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as |fn(x) − fm(x)| ≤ 1 for all x ∈ [0, 1]. Therefore, as limm→∞
1

m
1
p

= 0, we
obtain that (fn)n≥1 is Cauchy in (C[0, 1], ∥ · ∥p).

To see that (fn)n≥1 does not have a limit in (C[0, 1], ∥ · ∥p), suppose to
the contrary that f ∈ C[0, 1] is a limit of (fn)n≥1. Then for all a, b ∈ [0, 1]
with a < b, we have that

lim sup
n→∞

(∫ b

a
|fn(x) − f(x)|p dx

) 1
p

≤ lim sup
n→∞

(∫ 1

0
|fn(x) − f(x)|p dx

) 1
p

= lim sup
n→∞

∥fn − f∥p = 0

as the integral of a positive function is positive and the function x 7→ x
1
p is

increasing on [0,∞). Thus for each a, b ∈
[
0, 1

2

]
with a < b we obtain that

0 = lim sup
n→∞

(∫ b

a
|fn(x) − f(x)|p dx

) 1
p

=
(∫ b

a
|1 − f(x)|p dx

) 1
p

However, as f is continuous on [0, 1], this implies that f(x) = 1 for all
x ∈

[
0, 1

2

]
. Similarly, if 1

2 < a < b ≤ 1, we obtain by selecting n large enough
so that 1

2 + 1
n < a that

0 = lim sup
n→∞

(∫ b

a
|fn(x)|p dx

) 1
p

=
(∫ b

a
|f(x)|p dx

) 1
p

.

Hence, the same arguments imply that f(x) = 0 for all x ∈
(

1
2 , 1
]
. Thus,

as f is continuous at 1
2 , we have obtained that 0 = f

(
1
2

)
= 1 which is

a contradiction. Thus (fn)n≥1 does not have a limit in (C[0, 1], ∥ · ∥p) so
(C[0, 1], ∥ · ∥p) is not complete.

Of course C[0, 1] is dense in Lp([0, 1], λ) for p ̸= ∞ by Theorem D.3.2
so by adding in ‘a few more functions’, we can turn (C[0, 1], ∥ · ∥p) into a
Banach space. This is the notion of a completion of a normed linear space.
Such completions always exist as Appendix C shows.

2.2 Banach Space Properties
One example from Chapter 1 that has not been studied in the Banach space
setting are the quotient spaces from Theorem 1.3.3. In particular, how does
V being a Banach space or not relate to whether V/W is a Banach space or
not for a closed subspace W of V? One method for answering this question
is to look at a useful property of a Banach space which is motivated by
connecting Cauchy sequences and sums as one would in undergraduate real
analysis.
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Definition 2.2.1. Let (X , ∥ · ∥) be a normed linear space. A series
∑∞

n=1 x⃗n

is said to be summable if the sequence of partial sums (sn)n≥1 converges
(where sn =

∑n
k=1 x⃗k).

A series
∑∞

n=1 x⃗n is said to be absolutely summable if
∑∞

n=1 ∥x⃗n∥ < ∞.

Theorem 2.2.2. Let (X , ∥ · ∥) be a normed linear space. Then X is a Banach
space if and only if every absolutely summable series is summable.

Proof. Suppose X is a Banach space. Let
∑∞

n=1 x⃗n be an arbitrary absolutely
summable series in (X , ∥ · ∥). To see that

∑∞
n=1 x⃗n is summable, let ϵ > 0

be arbitrary. Since
∑∞

n=1 ∥x⃗n∥ < ∞, there exists an N ∈ N such that∑∞
n=N ∥x⃗n∥ < ϵ. Therefore, if k,m ≥ N and, without loss of generality,

m ≥ k, then

∥sm − sk∥ =
∥∥∥∥∥

m∑
n=1

x⃗n −
k∑

n=1
x⃗n

∥∥∥∥∥
=

∥∥∥∥∥∥
m∑

n=k+1
x⃗n

∥∥∥∥∥∥
≤

m∑
n=k+1

∥x⃗n∥

≤
∞∑

n=N

∥x⃗n∥ < ϵ.

Therefore, as ϵ > 0 was arbitrary, the sequence of partial sums (sn)n≥1 is
Cauchy. Hence (sn)n≥1 converges as X is complete. Thus, as

∑∞
n=1 x⃗n was

arbitrary, every absolutely summable series in X is summable.
For the converse, suppose every absolutely summable sequence in X

is summable. To see that X is complete, let (x⃗n)n≥1 be an arbitrary
Cauchy sequence. Since (x⃗n)n≥1 is Cauchy, there exists an n1 ∈ N such that
∥x⃗m − x⃗j∥ < 1

2 for all m, j ≥ n1. Similarly, since (x⃗n)n≥1 is Cauchy, there
exists an n2 ∈ N such that n2 > n1 and ∥x⃗m − x⃗j∥ < 1

22 for all m, j ≥ n2.
By repeating the above process, for each k ∈ N there exists an nk ∈ N such
that nk < nk+1 for all k and ∥x⃗m − x⃗j∥ < 1

2k for all m, j ≥ nk.
For each k ∈ N let y⃗k = x⃗nk+1 − x⃗nk

. Thus we have that

∞∑
k=1

∥y⃗k∥ ≤
∞∑

k=1

1
2k

< ∞

so
∑∞

k=1 y⃗k is an absolutely summable series in X . Therefore, by the assump-
tions on X ,

∑∞
k=1 y⃗k is summable in X .

Let x⃗ = x⃗n1 +
∑∞

k=1 y⃗k. We claim that (x⃗nk
)k≥1 converges to x⃗. To see

this, let ϵ > 0 be arbitrary. Then there exists a M ∈ N such that if m ≥ M
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then ∥∥∥∥∥
∞∑

k=1
y⃗k −

m∑
k=1

y⃗k

∥∥∥∥∥ < ϵ.

Therefore, if m ≥ M ,

∥∥x⃗− x⃗nm+1

∥∥ ≤
∥∥∥∥∥

∞∑
k=1

y⃗k −
m∑

k=1
y⃗k

∥∥∥∥∥+
∥∥∥∥∥x⃗n1 − x⃗nm+1 +

m∑
k=1

y⃗k

∥∥∥∥∥
< ϵ+

∥∥∥∥∥x⃗n1 − x⃗nm+1 +
m∑

k=1
x⃗nk+1 − x⃗nk

∥∥∥∥∥
= ϵ.

Therefore, as ϵ > 0 was arbitrary, (x⃗nk
)k≥1 converges to x⃗. Thus, as (x⃗n)n≥1

is Cauchy, (x⃗n)n≥1 converges to x⃗. Therefore, as (x⃗n)n≥1 was an arbitrary
Cauchy sequence, X is complete.

As an immediate corollary, we obtain the following result pertaining to
convergence of series of continuous functions.

Corollary 2.2.3 (Weierstrass M-Test). Let (X, T ) be a topological space
and let (fn)n≥1 be a sequence of functions from Cb(X,R). Suppose there
exists an M ∈ R such that

∑∞
n=1 ∥fn∥∞ < M . Then

∑∞
n=1 fn converges

uniformly on X to a continuous function.

Proof. As (fn)n≥1 is absolutely summable in the Banach space Cb(X,R),∑∞
n=1 fn converges in Cb(X,R).

Using the characterization of Banach spaces involving absolutely summable
series, we can describe when quotients of normed linear spaces will be Banach
spaces.

Theorem 2.2.4. Let (V, ∥ · ∥) be a normed linear space and let W be a closed
subspace of V. Then V is a Banach space if and only if W and V/W are
Banach spaces.

Proof. Suppose V is a Banach space. By Remark 2.1.10 that W is a Banach
space. To see that V/W is a Banach space, we will appeal to Theorem 2.2.2.

Let
∑∞

n=1 v⃗n + W be an absolutely summable series in V/W. For each
n ∈ N, by the definition of the quotient norm we can find a w⃗n ∈ W such
that

∥v⃗n + w⃗n∥ ≤ 1
2n

+ ∥v⃗n + W∥ .

Therefore, since
∑∞

n=1 v⃗n + W be an absolutely summable series in V/W we
see that

∑∞
n=1 v⃗n+w⃗n is absolutely summable series in V . Hence

∑∞
n=1 v⃗n+w⃗n

converges in V to some vector v⃗ ∈ V.
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Since the quotient map q : V → V/W is continuous by Example 1.4.12,
we have that

q(v⃗) = lim
N→∞

q

(
N∑

n=1
v⃗n + w⃗n

)

= lim
N→∞

N∑
n=1

q (v⃗n + w⃗n)

= lim
N→∞

N∑
n=1

v⃗n + W.

Hence
∑∞

n=1 v⃗n + W converges to q(v⃗). Therefore, since
∑∞

n=1 v⃗n + W was
arbitrary, V/W is a Banach space by Theorem 2.2.2

Conversely, suppose that W and V/W are complete. To see that V is
complete, let (v⃗n)n≥1 be a Cauchy sequence in V. By the definition of the
quotient norm, we have that

∥(v⃗n + W) − (v⃗m + W)∥ = ∥(v⃗n − v⃗m) + W∥ ≤ ∥v⃗n − v⃗m∥

for all n,m ∈ N. Therefore, since (v⃗n)n≥1 be a Cauchy sequence in V we
obtain that (v⃗n + W)n≥1 is a Cauchy sequence in V/W.

Since V/W is complete, (v⃗n + W)n≥1 converges to some vector v⃗ + W ∈
V/W. Unfortunately, v⃗ is not the vector we want as we still need to correct
it by the appropriate vector from W. This is where the completeness of W
will come into play.

By the definition of the quotient norm, for each n ∈ N there exists a
w⃗n ∈ W such that

∥v⃗ − v⃗n + w⃗n∥ ≤ 1
2n

+ ∥(v⃗ − v⃗n) + W∥ .

Since limn→∞ ∥(v⃗ − v⃗n) + W∥ = 0, we see that (v⃗n − w⃗n)n≥1 converges to v⃗
in V and thus is Cauchy. As (v⃗n)n≥1 is Cauchy and the difference of two
Cauchy sequences is easily seen to be Cauchy by the triangle inequality, we
obtain that (w⃗n)n≥1 is Cauchy in V. However, as w⃗n ∈ W for all n ∈ N, we
see that (w⃗n)n≥1 is Cauchy in W and thus converges to some vector w⃗ ∈ W
as W is complete. Since

v⃗ + w⃗ = lim
n→∞

v⃗n − w⃗n + lim
n→∞

w⃗n = lim
n→∞

v⃗n,

we have that (v⃗n)n≥1 converges to v⃗ + w⃗ in V. Therefore, as (v⃗n)n≥1 was
arbitrary, V is complete.

2.3 The Baire Category Theorem
In this section, we will prove one of the most surprisingly useful theorems
pertaining to complete metric spaces (and thus Banach spaces). Although
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its uses will not be apparent from the statement of the theorem, we will see
in the subsequent sections some of its applications.

Theorem 2.3.1 (Baire’s Category Theorem). Let (X, d) be a complete
metric space. Suppose (Un)n≥1 is a sequence of open dense subsets of X.
Then

⋂∞
n=1 Un is dense in X.

Proof. To see that
⋂∞

n=1 Un is dense in X, let x ∈ X and ϵ > 0 be arbitrary.
We must show that there exists an element of

⋂∞
n=1 Un within ϵ of x. To do

this, it is first useful to note that if y ∈ X and r > 0 then for any 0 < r′ < r
we have that

B[y, r′] ⊆ B(y, r)
where B[y, r′] is the closed ball centred at y of radius r′.

Let r1 = 1
2ϵ. Since U1 is dense in X, there exists an element x1 ∈ U1

such that d(x1, x) < r1. Since U1 is open, by the above comment there exists
an 0 < r2 <

1
4ϵ such that B[x1, r2] ⊆ U1 (i.e. choose an open ball around x1

contained in U1 and then decrease the radius of the ball).
Since U2 is dense in X, there exists an element x2 ∈ U2 such that

d(x2, x1) < r2. Hence x2 ∈ B(x1, r2) so x2 ∈ U2 ∩ B(x1, r2). Hence, since
U2 ∩ B(x1, r2) is open, there exists an 0 < r2 <

1
23 ϵ such that B[x2, r3] ⊆

U2 ∩B(x1, r2).
By recursion, for each n ∈ N there exists an xn ∈ Un ∩ B(xn−1, rn)

and an 0 < rn+1 < 1
2n+1 ϵ such that d(xn, xn−1) < rn and B[xn, rn+1] ⊆

Un ∩B(xn−1, rn).
Notice for all n,m ∈ N with n ≥ m that

d(xn, xm) ≤
n−1∑
k=m

d(xk+1, xk) ≤
n−1∑
k=m

rk+1 ≤ 1
2m

ϵ.

Therefore, as limm→∞
1

2m ϵ = 0, we obtain that (xn)n≥1 is Cauchy in (X, d)
and thus converges to some element y ∈ X as (X, d) is complete.

For each m ∈ N, let Fm = B[xm, rm+1]. Since Fm+1 ⊆ Fm for all m ∈ N,
we see that (xn)n≥m is a sequence in Fm for all m ∈ N. Therefore, since Fm

is closed, we obtain that y ∈ Fm for all m ∈ N. Hence, as Fm ⊆ Um for all
m ∈ N, we obtain that y ∈

⋂∞
n=1 Un.

To see that d(x, y) < ϵ, we note that y ∈ F1 = B[a1, r2] so d(y, a1) ≤ r2.
Hence

d(x, y) ≤ d(x, a1) + d(a1, y) ≤ r1 + r2 < ϵ

by the triangle inequality. Hence the result follows.

Often in functional analysis one desires to work with closed sets as
convergent sequences have limits inside the set. As a set U is open and
dense if and only if its complement is closed and nowhere dense (which is
equivalent to having empty interior), we obtain the following implication of
the Baire Category Theorem (Theorem 2.3.1).
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Corollary 2.3.2. Let (X, d) be a complete metric space. If (Fn)n≥1 is a
sequence of closed sets such that X =

⋃∞
n=1 Fn, then there exists an N ∈ N

such that int(FN ) ̸= ∅.

Proof. Suppose to the contrary that int(Fn) = ∅ for all n ∈ N. Let Un =
X \ Fn for all n ∈ N. Since X =

⋃∞
n=1 Fn, it follows that

⋂∞
n=1 Un = ∅.

However, since each Fn is closed with empty interior, each Un is an open
dense subset of (X, d). As the Baire Category Theorem (Theorem 2.3.1)
implies

⋂∞
n=1 Un is dense and thus non-empty, we have a contradiction.

There are numerous uses of the Baire Category Theorem. We conclude
this section mentioning one interesting result about continuous functions on
R. First we require some notation.

Definition 2.3.3. Let (X, d) be a metric space. A subset A ⊆ X is said to be
Gδ if there exists a collection of open sets {Un}∞

n=1 such that A =
⋂∞

n=1 Un.
Similarly, a subset B ⊆ X is said to be Fσ if there exists a collection of

closed sets {Fn}∞
n=1 such that A =

⋃∞
n=1 Fn.

Remark 2.3.4. It is not difficult to see using De Morgan’s Laws that A is
Gδ if and only if Ac is Fσ.

Example 2.3.5. Every closed subset of a metric space is Gδ. To see this,
suppose F be a closed subset of a metric space (X, d). If F = ∅ then, as ∅ is
open and as

⋂∞
n=1 ∅ = ∅, we obtain that F is Gδ.

Otherwise, suppose F is not empty. For each n ∈ N, let

Un =
⋃

x∈F

B

(
x,

1
n

)
.

Clearly each Un is an open subset such that F ⊆ Un. Hence

F ⊆
∞⋂

n=1
Un.

For the other inclusion, suppose x ∈ F c. Therefore x /∈ F = F as F is closed.
Hence dist(x, F ) > 0. Choose n ∈ N such that

dist(x, F ) ≥ 1
n
> 0.

Hence d(x, y) ≥ 1
n for all y ∈ F . Thus, by the definition of Un, x /∈ Un.

Whence x /∈
⋂∞

n=1 Un. Hence

F =
∞⋂

n=1
Un

so F is Gδ.
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For another example, we prove the following.

Proposition 2.3.6. The rational numbers are not a Gδ subset of R.

Proof. Suppose to the contrary that Q is Gδ. Hence there exists a collection
of open sets {Un}∞

n=1 such that Q =
⋂∞

n=1 Un. Therefore Q ⊆ Un for all n so
each Un is dense in R. Hence each U c

n is closed and nowhere dense.
Notice that

R \ Q =
∞⋃

n=1
U c

n.

Since Q is countable, we may write Q = {rn | n ∈ N}. Thus

R = (R \ Q) ∪ Q =
( ∞⋃

n=1
U c

n

)
∪
( ∞⋃

n=1
{rn}

)
,

so R is a countable union of nowhere dense sets. As this contradicts the
Baire Category Theorem (Corollary 2.3.2), the result is complete.

To use Proposition 2.3.6 to show that certain sets cannot be the disconti-
nuities of a real-valued function, we must analyze the set of discontinuities.

Lemma 2.3.7. Let (X, dX) and (Y, dY ) be metric spaces, let f : X → Y ,
and let

D(f) = {x ∈ X | f is not continuous at x}.

For each n ∈ N let

Dn(f) =

x ∈ X

∣∣∣∣∣∣∣
for every δ > 0 there exists x1, x2 ∈ X such that

dX(x, x1) < δ, dX(x, x2) < δ, and
dY (f(x1), f(x2)) ≥ 1

n

 .
Then Dn(f) is closed for all n ∈ N and D(f) =

⋃∞
n=1Dn(f). Hence Dn(f)

is an Fσ subset of (X, dX).

Proof. Fix n ∈ N. To see that Dn(f) is closed, let (xn)n≥1 be an arbitrary
sequence of elements of Dn(f) that converges to some x ∈ X. To see that
x ∈ Dn(f), let δ > 0 be arbitrary. Since (xn)n≥1 converges to x, there
exists a N ∈ N such that dX(x, xN ) < 1

2δ. Furthermore, since xN ∈ Dn(f),
there exists a1, a2 ∈ X such that dX(xN , a1) < 1

2δ, dX(xN , a2) < 1
2δ, and

dY (f(a1), f(a2)) ≥ 1
n . As dX(x, a1) < δ and dX(x, a2) < δ by the triangle

inequality, and as dY (f(a1), f(a2)) ≥ 1
n , we obtain that x ∈ Dn(f) as δ > 0

was arbitrary. Hence as (xn)n≥1 was arbitrary, Dn(f) is closed.
To see that D(f) =

⋃∞
n=1Dn(f), first suppose x ∈

⋃∞
n=1Dn(f). Hence

x ∈ Dn(f) for some n ∈ N. To see that f is discontinuous at x, sup-
pose to the contrary that f is continuous at x. Notice by the definition
of Dn(f) that for each m ∈ N there exists points x1,m, x2,m ∈ X such
that dX(x, x1,m) < 1

m , dX(x, x2,m) < 1
m , and dY (f(x1,m, f(x2,m)) ≥ 1

n .
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Since (x1,m)m≥1 and (x2,m)m≥1 converge to x, the continuity of f im-
plies limm→∞ dY (f(x), f(x1,m)) = 0 = limm→∞ dY (f(x), f(x1,m)), which,
together with the triangle inequality, contradicts the fact that

dY (f(x1,m), f(x2,m)) ≥ 1
n

for all m ≥ 1. Hence we have obtained a contradiction so x ∈ D(f). Hence⋃∞
n=1Dn(f) ⊆ D(f).

For the other inclusion, notice if x ∈ D(f) then f is discontinuous at x.
Therefore there exists an ϵ > 0 such that for all δ > 0 there exists a x1 ∈ X
such that dX(x, x1) < δ yet dY (f(x), f(x1)) ≥ ϵ. Choose n ∈ N such that
1
n < ϵ. By taking x2 = x in the definition of Dn(f), we see that x ∈ Dn(f).
Hence, as x was arbitrary, D(f) ⊆

⋃∞
n=1Dn(f) as desired.

Theorem 2.3.8. There does not exists a function f : R → R that is
continuous at each point in Q yet discontinuous at each point in R \ Q.

Proof. Let f : R → R. By Lemma 2.3.7 the set of discontinuities of f are
Fσ. Thus the points where f is continuous must be a Gδ set. As Q is not
Gδ by Proposition 2.3.6, f cannot be continuous at each point in Q yet
discontinuous at each point in R \ Q.

The Baire Category Theorem (Theorem 2.3.1) has many applications. In
this section, we will look at the differences between finite dimensional and
infinite dimensional Banach spaces. Looking at finite dimensional normed
linear spaces, our first goal is to characterize which are Banach spaces. It
turns out the answer is all of them! More than that, upto consider the
equivalence of norms, there is only one n-dimensional Banach space.

To begin to see this, it helps to consider bounded linear maps between
an n-dimensional normed linear space and (Kn, ∥ · ∥∞).

Lemma 2.3.9. Let (X , ∥ · ∥X ) be an n-dimensional normed linear space over
K. If Kn is equipped with the ∞-norm, then there exists a bijective linear
map T : Kn → X and two numbers 0 < k1 ≤ k2 < ∞ such that

k1 ∥z⃗∥∞ ≤ ∥T (z⃗)∥X ≤ k2 ∥z⃗∥∞

for all z⃗ ∈ Kn.

Proof. Let {v⃗1, . . . , v⃗n} be a basis for X . Define T : Kn → X by

T ((z1, . . . , zn)) = z1v⃗1 + · · · + znv⃗n.
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for all (z1, . . . , zn) ∈ Kn. Clearly T is linear and bijective by construction.
Furthermore for all (z1, . . . , zn) ∈ Kn

∥T ((z1, . . . , zn))∥X = ∥z1v⃗1 + · · · + znv⃗n∥X

≤
n∑

k=1
|zk| ∥v⃗k∥X

≤
(

n∑
k=1

∥v⃗k∥X

)
∥(z1, . . . , zn)∥∞ .

Hence T is bounded with ∥T∥ ≤
∑n

k=1 ∥v⃗k∥X . Hence we may take k2 = ∥T∥.
To find k1 satisfying the other inequality, let

S1 = {z⃗ ∈ Kn | ∥z⃗∥∞ = 1}.

Clearly S1 is a closed bounded subset of Kn and therefore is compact by
the Heine-Borel Theorem. Hence T (S1) is a compact subset of X being the
continuous image of a compact set. Define f : T (S1) → R by

f(x⃗) = ∥x⃗∥X

for all x⃗ ∈ T (S1). Since f is continuous and since T (S1) is compact, by the
Extreme Value Theorem there exists a x⃗0 ∈ T (S1) such that

k1 = f(x⃗0) ≤ f(x⃗)

for all x⃗ ∈ T (S1). Since x⃗0 ∈ T (S1) and since T is a bijection, x⃗0 ̸= 0⃗ so
k1 > 0.

We claim that
k1 ∥z⃗∥∞ ≤ ∥T (z⃗)∥X

for all z⃗ ∈ Kn. Clearly the inequality holds when z⃗ = 0. Otherwise if z⃗ ̸= 0
then 1

∥z⃗∥∞
z⃗ ∈ S1 so

∥T (z⃗)∥X = ∥z⃗∥∞

∥∥∥∥∥T
(

1
∥z⃗∥∞

z⃗

)∥∥∥∥∥
X

≥ k1 ∥z⃗∥∞ .

Thus the result follows.

Note if T : Kn → X is as in Lemma 2.3.9, then we can identify the
underlying vector space of X with Kn and we can define a norm on Kn

via ∥z⃗∥ = ∥T (z⃗)∥X for all z⃗ ∈ Kn. The fact that T is linear and bijective
easily yields that this is indeed the norm. Hence (X , ∥ · ∥X ) is isomorphic to
(Kn, ∥ · ∥) for some norm ∥ · ∥. The conclusion of Lemma 2.3.9 is that this
norm is equivalent to the infinity norm. Therefore, as equivalence of norms
is an equivalence relation, we automatically have the following.
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Corollary 2.3.10. Let V be a finite dimensional vector space and let ∥ · ∥1
and ∥ · ∥2 be norms on V. Then ∥ · ∥1 and ∥ · ∥2 are equivalent.

This characterization of every norm on a finite dimensional normed linear
space being equivalent to the infinity norm on Kn yields some more results.
Corollary 2.3.11. Every finite dimensional normed linear space is a Banach
space.
Proof. Every finite dimensional normed linear space is isomorphic (Kn, ∥ · ∥)
for some norm ∥ · ∥. As ∥ · ∥ is equivalent to ∥ · ∥∞ and ∥ · ∥∞ is complete,
we easy see that ∥ · ∥ is complete. Indeed suppose (x⃗n)n≥1 is an arbitrary
Cauchy sequence in (Kn, ∥ · ∥). As there exists 0 < k1 ≤ k2 < ∞ such that

k1 ∥x⃗∥ ≤ ∥x⃗∥∞ ≤ k2 ∥x⃗∥

for all x⃗ ∈ Kn, the second inequality implies that (x⃗n)n≥1 is Cauchy in
(Kn, ∥ · ∥∞). As (Kn, ∥ · ∥∞) is complete, (x⃗n)n≥1 converges to some x⃗ ∈ Kn

with respect to ∥ · ∥∞. Hence the first inequality above implies (x⃗n)n≥1
converges to x⃗ ∈ Kn with respect to ∥ · ∥. Hence (Kn, ∥ · ∥) is complete.

Corollary 2.3.12. Every finite dimensional subspace of a normed linear
space is closed.
Proof. Let W be a finite dimensional subspace of a normed linear space
(V, ∥ · ∥). As ∥ · ∥ |W is a norm on W , we see that W is complete with respect
to ∥ · ∥ by Corollary 2.3.11. Hence W is closed in V.

Corollary 2.3.13. Every linear map from a finite dimensional normed linear
space into another normed linear space is bounded.
Proof. Let (X , ∥ · ∥X ) be a finite dimensional normed linear space of dimen-
sion n, let (Y, ∥ · ∥Y) be another normed linear space, and let S : X → Y be a
linear map. If Kn is equipped with the ∞-norm, by Lemma 2.3.9 there exists
a bounded linear map T : X → Kn such that T−1 : Kn → X is bounded. As

S = (S ◦ T−1) ◦ T,

if it can be demonstrated that S ◦ T−1 is bounded, then S is a composition
of continuous functions and thus will be continuous.

Let R = S ◦ T−1 : Kn → Y and for each k ∈ {1, . . . , n}, let

y⃗k = R((0, . . . , 0, 1, 0, . . . , 0))

where the 1 occurs in the kth position. Thus for all (z1, . . . , zn) ∈ Kn

∥R((z1, . . . , zn))∥Y = ∥z1y⃗1 + · · · + zny⃗n∥Y

≤
n∑

k=1
|zk| ∥y⃗k∥Y

≤
(

n∑
k=1

∥y⃗k∥Y

)
∥(z1, . . . , zn)∥∞ .
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Hence R is bounded with ∥R∥ ≤
∑n

k=1 ∥y⃗k∥Y as desired.

With the resolution of every norm on a finite dimensional vector space
yielding a Banach space, perhaps the next natural question is to examine
which finite dimensional vector spaces with countable vector space bases are
Banach spaces. It turns out the answer is none.

Theorem 2.3.14. Every vector space basis of an infinite dimensional Banach
space is uncountable.

Proof. Suppose (X , ∥ · ∥) is an infinite dimensional Banach space with a
countable basis {x⃗n}∞

n=1. For each n ∈ N, let

Fn = span({x⃗1, . . . , x⃗n}).

Clearly each Fn is a finite dimensional vector space and thus is closed by
Corollary 2.3.12.

We claim that int(Fn) = ∅ for each n ∈ N. Indeed, if int(Fn) ̸= ∅, then
there exists an element x⃗ ∈ Fn and an ϵ > 0 such that B(x⃗, ϵ) ⊆ Fn. However,
since Fn is a subspace and closed under translation and scaling, this implies
B(⃗0, ϵ) ⊆ Fn by translation and B(⃗0, r) ⊆ Fn for all r > 0 by scaling. As the
later implies Fn = X , we would obtain X is finite dimensional contradicting
the fact that X is infinite dimensional. Thus int(Fn) = ∅ for each n ∈ N.

The above shows each Fn is nowhere dense. Since {x⃗n}∞
n=1 is a basis for

X and
X =

∞⋃
n=1

Fn,

X is a countable union of nowhere dense sets. As this contradicts the Baire
Category Theorem (Corollary 2.3.2) as X is a Banach space, the proof is
complete.

To conclude our discussions on the differences between finite and infinite
dimensional normed linear spaces, we note that all norms on a finite dimen-
sional Banach space are equivalent by Corollary 2.3.10. Of course this is not
the case for an infinite dimensional Banach space.

Proposition 2.3.15. Let (X , ∥ · ∥) be an infinite dimensional Banach space.
Then there exists another norm ∥ · ∥0 : X → [0,∞) such that (X , ∥ · ∥0) is a
Banach space, yet ∥ · ∥ and ∥ · ∥0 are not equivalent.

Proof. Let (X , ∥ · ∥) be an infinite dimensional Banach space with basis
{x⃗λ}λ∈Λ. By scaling if necessary, we may assume that ∥x⃗λ∥ = 1 for all λ ∈ Λ.
As Λ must be infinite, choose distinct vectors {x⃗n}n≥1 from {x⃗λ}λ∈Λ. Define
a linear map f : X → K by defining f(x⃗n) = n for all n ∈ N, f(x⃗) = 0 for
all x⃗ ∈ {x⃗λ}λ∈Λ \ {x⃗n}n≥1, and by extending the definition of f by linearity.
As |f(x⃗n)| ≥ n and ∥x⃗n∥ = 1, we see that f is unbounded.
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Let y⃗ = x⃗1 so that f(y⃗) = 1. Define S : X → X by
S(x⃗) = x⃗− 2f(x⃗)y⃗

for all x⃗ ∈ X . Clearly S is well-defined and linear as f : X → K is linear.
We claim that S2 is the identity map on X . To see this, notice for all

x⃗ ∈ X that
S2(x⃗) = S(x⃗− 2f(x⃗)y⃗)

= (x⃗− 2f(x⃗)y⃗) − 2f(x⃗)(y⃗ − 2f(y⃗)y⃗)
= (x⃗− 2f(x⃗)y⃗) − 2f(x⃗)(−y⃗) = x⃗.

Therefore, as x⃗ ∈ X was arbitrary, S2 is the identity map on X .
Define ∥ · ∥0 : X → [0,∞) by

∥x⃗∥0 = ∥S(x⃗)∥0

for all x⃗ ∈ X . Since S2 is the identity, S must be bijective which implies
that ∥ · ∥0 is norm on X .

We claim that (X , ∥ · ∥0) is complete. To see this, let (x⃗n)n≥1 be an
arbitrary Cauchy in (X , ∥ · ∥0). We claim that (S(x⃗n))n≥1 is Cauchy in
(X , ∥ · ∥). To see this, let ϵ > 0. Since (x⃗n)n≥1 is Cauchy in (X , ∥ · ∥0), there
exists an N ∈ N such that ∥x⃗n − x⃗m∥0 < ϵ for all n,m ≥ N . Hence for all
n,m ≥ N we have that

∥S(x⃗n) − S(x⃗m)∥ = ∥S(x⃗n − x⃗m)∥ = ∥x⃗n − x⃗m∥0 < ϵ.

Therefore, as ϵ > 0 was arbitrary, (S(x⃗n))n≥1 is Cauchy in (X , ∥ · ∥).
Since (X , ∥ · ∥) is complete, (S(x⃗n))n≥1 is converges in (X , ∥ · ∥). Hence

there exists a vector z⃗ ∈ X such that limn→∞ ∥S(x⃗n) − z⃗∥ = 0. We claim
that (x⃗n)n≥1 converges in (X , ∥ · ∥0) to S(z⃗). To see this, notice that

∥x⃗n − S(z⃗)∥0 = ∥S(x⃗n − S(z⃗))∥ =
∥∥∥S(x⃗n) − S2(z⃗)

∥∥∥ = ∥S(x⃗n) − z⃗∥

for all n ∈ N. Therefore, since limn→∞ ∥S(x⃗n) − z⃗∥ = 0 we obtain that
limn→∞ ∥x⃗n − S(z⃗)∥ = 0. Hence (x⃗n)n≥1 converges in (X , ∥ · ∥0) to S(z⃗).
Therefore, as (x⃗n)n≥1 was arbitrary, (X , ∥ · ∥0) is complete.

Finally, we claim that ∥ · ∥ and ∥ · ∥0 are not equivalent. To see this, we
claim there exists not exist a constant C ∈ R such that

∥x⃗∥0 ≤ C ∥x⃗∥

for all x⃗ ∈ X . Indeed if {x⃗n}∞
n=1 are as above, then C ∥x⃗n∥ = C whereas

∥x⃗n∥0 = ∥S(x⃗n)∥
= ∥x⃗n − T (x⃗n)y⃗∥
= ∥x⃗n − ny⃗∥
≥ n ∥y⃗∥ − ∥x⃗n∥
≥ n− 1

for all n ∈ N. Hence such a C does not exist.
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2.4 Open Mapping Theorem

The Baire Category Theorem (Theorem 2.3.1) has many applications. In
this section, we will study surjective bounded linear maps between Banach
spaces. In particular, since bounded linear maps are continuous, the inverse
images of open sets are open. The goal of this section is to prove that
surjective bounded linear maps map open sets to open sets. This enables us
to prove that the inverses of bijective bounded linear maps are bounded and
characterize continuous linear maps using their graphs.

To begin, we require the following odd looking result that says if an open
ball is in the closure of the image of a bounded linear map of an open ball,
then we can expand the later open ball to obtain strict containment.

Lemma 2.4.1. Let (X , ∥ · ∥X ) be a Banach space, let (Y, ∥ · ∥Y) be a normed
linear space, and let T ∈ B(X ,Y). If BY (⃗0, 1) ⊆ T (BX (⃗0,m)) for some
m > 0, then BY (⃗0, 1) ⊆ T (BX (⃗0, 2m))

Proof. Let m > 0 be such that BY (⃗0, 1) ⊆ T (BX (⃗0,m)). Notice for all α ∈ R
(where for a set A, αA = {αa | a ∈ A}) that

BY (⃗0, α) = αBY (⃗0, 1) ⊆ αT (BX (⃗0,m))

= αT (BX (⃗0,m))

= T (αBX (⃗0,m)) = T (BX (⃗0, αm))

by linearity and continuity of T , and by properties of the norm.
To see that BY (⃗0, 1) ⊆ T (BX (⃗0, 2m)), let y⃗ ∈ BY (⃗0, 1) be arbitrary. Since

y⃗ ∈ T (BX (⃗0,m)) there exists an x⃗1 ∈ BX (⃗0,m) such that

∥y⃗ − T (x⃗1)∥Y <
1
2 .

Let y⃗1 = y⃗ − T (x⃗1) ∈ Y. Then y⃗1 ∈ BY (⃗0, 1
2) ⊆ T (BX (⃗0, 1

2m)). Hence there
exists an x⃗2 ∈ BX (⃗0, 1

2m) such that

∥y⃗1 − T (x⃗2)∥Y <
1
22 .

Repeating this process ad nauseum, we obtain a sequence of vectors (y⃗n)n≥1
in Y and a sequence of vectors (x⃗n)n≥1 in X such that y⃗n = y⃗n−1 − T (x⃗n),
y⃗n ∈ BY (⃗0, 1

2n ), x⃗n+1 ∈ BX (⃗0, 1
2nm), and

∥y⃗n − T (x⃗n+1)∥Y <
1
2n

for all n ∈ N.
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Since X is a Banach space and since

∞∑
n=1

∥x⃗n∥X <
∞∑

n=1

1
2n
m = 2m < ∞,

we obtain by Theorem 2.2.2 that x⃗ =
∑∞

n=1 x⃗n exists and is an element of
BX (⃗0, 2m). To see that T (x⃗) = y⃗ thereby completing the proof, notice since
T is continuous that

∥y⃗ − T (x⃗)∥Y = lim
n→∞

∥∥∥∥∥y⃗ − T

(
n∑

k=1
x⃗k

)∥∥∥∥∥
= lim

n→∞

∥∥∥∥∥y⃗ −
n∑

k=1
T (x⃗k)

∥∥∥∥∥
= lim

n→∞

∥∥∥∥∥y⃗1 −
n∑

k=2
T (x⃗k)

∥∥∥∥∥
= lim

n→∞

∥∥∥∥∥y⃗2 −
n∑

k=3
T (x⃗k)

∥∥∥∥∥
...
= lim

n→∞
∥y⃗n∥

≤ lim sup
n→∞

1
2n

= 0.

Hence T (x⃗) = y⃗. Therefore, since y⃗ ∈ BY (⃗0, 1) was arbitrary, BY (⃗0, 1) ⊆
T (BX (⃗0, 2m)).

Combining Lemma 2.4.1 together with the Baire Category Theorem
(Theorem 2.3.1), we obtain the following result.

Theorem 2.4.2 (Open Mapping Theorem). Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y)
be Banach spaces. If T ∈ B(X ,Y) is surjective and U ⊆ X is open, then
T (U) is open in Y.

Proof. Let T ∈ B(X ,Y) be surjective. First we will demonstrate that there
exists an r > 0 such that T (BX (⃗0, r)) is a neighbourhood of 0⃗ in Y.

To begin, for each m ∈ N consider the set Fm = T (BX (⃗0,m)) ⊆ Y.
Clearly each Fm is a closed subset of Y. Moreover, since T is surjective,

Y =
∞⋃

m=1
Fm.

Therefore, since Y is complete, the Baire Category Theorem (Corollary 2.3.2)
implies there must exists an m0 ∈ N such that Fm0 is not nowhere dense.

©For use through and only available at pskoufra.info.yorku.ca.



2.4. OPEN MAPPING THEOREM 49

Hence int(Fm0) ̸= ∅. Therefore there exists an y⃗0 ∈ Fm0 and a δ > 0 such
that BY(y⃗0, δ) ⊆ Fm0 = T (BX (⃗0,m)). Since

BY (⃗0, δ) ⊆ {y⃗ − y⃗0 | y⃗ ∈ BY(y⃗0, δ)}
⊆ {y⃗1 − y⃗2 | y⃗1, y⃗2 ∈ Fm0}

= {y⃗1 + y⃗2 | y⃗1, y⃗2 ∈ T (BX (⃗0,m))}
as T is linear, −BX (⃗0,m) = BX (⃗0,m)

⊆ T (BX (⃗0, 2m))
by continuity, linearity, and the triangle inequality,

we obtain by Lemma 2.4.1 that BY (⃗0, δ) ⊆ T (BX (⃗0, 4m)).
To complete the result, let U be an arbitrary open subset of X . To see

that T (U) is open in Y, let y⃗ ∈ T (U) be arbitrary. Thus there exists a
x⃗ ∈ X such that T (x⃗) = y⃗. Since U is open, there exists an ϵ > 0 such that
BX (x⃗, ϵ) ⊆ U . However since

BY

(
0⃗, ϵδ4m

)
= ϵ

4mBY (⃗0, δ) ⊆ ϵ

4mT (BX (⃗0, 4m)) = T (BX (⃗0, ϵ))

we have that

BY

(
y⃗,

ϵδ

4m

)
=
{
y⃗ + z⃗

∣∣∣∣ z⃗ ∈ BY

(
0⃗, ϵδ4m

)}
⊆
{
T (x⃗) + z⃗ | z⃗ ∈ T (BX (⃗0, ϵ))

}
=
{
T (x⃗) + T (w⃗) | w⃗ ∈ BX (⃗0, ϵ)

}
=
{
T (x⃗+ w⃗) | w⃗ ∈ BX (⃗0, ϵ)

}
= T (BX (x⃗, ϵ))

by the linearity of T . Hence T (U) contains an open neighbourhood around
y⃗. Therefore, since y⃗ ∈ T (U) was arbitrary, T (U) is open in Y. Hence since
U was an arbitrary open subset of X , the result follows.

The Open Mapping Theorem has several applications.

Theorem 2.4.3 (The Inverse Mapping Theorem). Let (X , ∥ · ∥X ) and
(Y, ∥ · ∥Y) be Banach spaces and let T ∈ B(X ,Y) be a bijection. Then
T−1 ∈ B(Y,X ).

Proof. Let T ∈ B(X ,Y) be a bijection. Therefore T−1 : Y → X exists. Since
T is linear, clearly T−1 is linear. To see that T−1 is bounded (i.e. continuous
via Theorem 1.4.6), let U ⊆ X be open. Then

(T−1)−1(U) = T (U)

is open in Y by the Open Mapping Theorem (Theorem 2.4.2). Hence T is
continuous.
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Using the Inverse Mapping Theorem (Theorem 2.4.3), we obtain the
following property relating different norms on Banach spaces.

Corollary 2.4.4. Let X be a vector space over K that is complete with
respect to each of two norms ∥ · ∥1 and ∥ · ∥2. If there exists a constant c1 ∈ R
such that

∥x⃗∥1 ≤ c1 ∥x⃗∥2

for all x⃗ ∈ X , then there exists a constant c2 ∈ R such that

∥x⃗∥2 ≤ c2 ∥x⃗∥1

for all x⃗ ∈ X .

Proof. Define T : (X , ∥ · ∥2) → (X , ∥ · ∥1) by T (x⃗) = x⃗. Clearly T is a linear
map. Moreover, since

∥x⃗∥1 ≤ c1 ∥x⃗∥2

for all x⃗ ∈ X , we see that T is a bounded linear map from (X , ∥ · ∥2) to
(X , ∥ · ∥1). Hence, by the Inverse Mapping Theorem (Theorem 2.4.3), T−1 is
a bounded linear map from (X , ∥ · ∥1) to (X , ∥ · ∥2). Since T−1(x⃗) = x⃗ for all
x⃗ ∈ X , we obtain that

∥x⃗∥2 =
∥∥∥T−1(x⃗)

∥∥∥
2

≤
∥∥∥T−1

∥∥∥ ∥x⃗∥1 .

Thus letting c2 =
∥∥T−1∥∥ completes the proof.

Another nice application of the Open Mapping Theorem (Theorem 2.4.2)
is the characterization of continuous linear maps via their graphs.

Theorem 2.4.5 (The Closed Graph Theorem). Let (X , ∥ · ∥X ) and
(Y, ∥ · ∥Y) be Banach spaces and let T : X → Y be linear. The graph

G(T ) = {(x⃗, T (x⃗)) | x⃗ ∈ X }

is closed in X ⊕1 Y if and only if T is continuous.

Proof. To see that G(T ) is closed when T is continuous, suppose T is con-
tinuous and let ((x⃗n, T (x⃗n)))n≥1 be an arbitrary sequence of elements of
G(T ) that converges to some element (x⃗, y⃗) ∈ X ⊕1 Y. Clearly this implies
(x⃗n)n≥1 converges to x⃗ in X and (T (x⃗n))n≥1 converges to y⃗ ∈ Y. Since T is
continuous, (x⃗n)n≥1 converging to x⃗ in X implies that (T (x⃗n))n≥1 converges
to T (x⃗). Therefore, due to uniqueness of limits, we must have that y⃗ = T (x⃗).
Hence (x⃗, y⃗) ∈ G(T ) so G(T ) is closed.

Conversely, suppose G(T ) is closed in X ⊕1 Y. Therefore, since G(T ) is
a vector subspace of X ⊕1 Y as T is linear, and since X ⊕1 Y is a Banach
space, G(T ) is also a Banach space.
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Define S : X → G(T ) by

S(x⃗) = (x⃗, T (x⃗))

for all x⃗ ∈ X . Clearly S is a linear map that is injective (by the first
coordinate) and surjective. Hence S is invertible with S−1 : G(T ) → X
defined by

S−1((x⃗, T (x⃗))) = x⃗.

Notice for all (x⃗, T (x⃗)) ∈ G(T ) that∥∥∥S−1((x⃗, T (x⃗)))
∥∥∥

X
= ∥x⃗∥X ≤ ∥x⃗∥X + ∥T (x⃗)∥Y = ∥(x⃗, T (x⃗))∥1 .

Therefore S−1 is bounded. Hence, as X and G(T ) are Banach spaces,
the Inverse Mapping Theorem (Theorem 2.4.3) implies that S is bounded.
Therefore, since

∥T (x⃗)∥Y ≤ ∥T (x⃗)∥Y + ∥x⃗∥X = ∥S(x⃗)∥1 ≤ ∥S∥ ∥x⃗∥X ,

we see that T is bounded as desired. Hence T is continuous as desired.

2.5 Principle of Uniform Boundedness

For our final major Banach space theorem of this chapter, we will use the
Baire Category Theorem (Theorem 2.3.1) to deduce collections of objects
are uniform boundedness from simply knowing they are pointwise bounded!

We begin with the following Uniform Boundness Principles for continuous
functions on complete metric spaces.

Theorem 2.5.1 (Uniform Boundedness Principle). Let (X , dX ) be a
complete metric space, let (Y, dY) be a metric space, let y ∈ Y be a fixed
element, and let F ⊆ C(X ,Y) be a non-empty set of functions such that for
each x ∈ X

Mx = sup
f∈F

dY(f(x), y) < ∞.

Then there exists a non-empty open subset U of X and a constant M > 0
such that

dY(f(x), y) ≤ M

for all f ∈ F and x ∈ U .

Proof. For each n ∈ N, let

Fn =
{
x ∈ X

∣∣∣∣∣ sup
f∈F

dY(f(x), y) ≤ n

}
.
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Clearly each Fn is a closed set as each element of F is continuous and the
distance function is continuous. Furthermore, if x ∈ X then x ∈ Fn for all
n ≥ Mx. Hence

X =
∞⋃

n=1
Fn.

Therefore, by the Baire Category Theorem (Corollary 2.3.2), there exists an
n0 ∈ N such that Fn0 is not nowhere dense in X . Therefore ∅ ≠ int(Fn0) =
int(Fn0) so there exists an open subset U of X with U ⊆ Fn0 . Hence for all
x ∈ U we have dY(f(x), y) ≤ n0 for all f ∈ F as desired.

Remark 2.5.2. It is actually possible to prove a version of Theorem 2.5.1
for continuous functions on compact Hausdorff spaces. Indeed one need
only verify that every compact Hausdorff space satisfies the Baire Category
Theorem. Such spaces are called Baire spaces in topology and behave in a
very similar fashion to metric spaces. We will not present the proof that
compact Hausdorff spaces are Baire here as to do so we would need to delve
into the separation actions in topology.

Note Theorem 2.5.1 is most useful when Y is a normed linear space and
y = 0⃗. In this case, the assumption becomes

Mx = sup
f∈F

∥f(x)∥Y < ∞

and the conclusion becomes

∥f(x)∥Y ≤ M

for all f ∈ F and x ∈ U .
Building on the above theorem, we obtain the following Uniform Bound-

edness Principle for bounded linear maps between Banach spaces

Theorem 2.5.3 (Uniform Boundedness Principle - Banach space
version). Let (X , ∥ · ∥X ) be a Banach space, (Y, ∥ · ∥Y) a normed linear space,
and let F ⊆ B(X ,Y) be non-empty. Suppose for each x⃗ ∈ X that

sup{∥T (x⃗)∥Y | T ∈ F} < ∞.

Then
sup{∥T∥ | T ∈ F} < ∞.

Proof. For each T ∈ F , consider the function fT : X → R defined by

fT (x⃗) = ∥T (x⃗)∥Y

for all x⃗ ∈ X . Since T and the norm are continuous functions on X , it is
elementary to see that fT ∈ C(X ,R) for all T ∈ F .
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Let
F0 = {fT | T ∈ F} ⊆ C(X ,R).

Since X is complete and since

sup
f∈F0

|f(x⃗)| < ∞

for all x⃗ ∈ X , Theorem 2.5.1 implies that there exists an M > 0 and a
non-empty open subset U of X such that

∥T (x⃗)∥ = |fT (x⃗)| ≤ M

for all x⃗ ∈ U and T ∈ F .
Since U is a non-empty open set of X , there exists a vector x⃗0 ∈ U and

an ϵ > 0 so that BX (x⃗0, ϵ) ⊆ U . To obtain the conclusion, let T ∈ F be
arbitrary. Notice if x⃗ ∈ BX (⃗0, ϵ), then

∥T (x⃗)∥Y ≤ ∥T (x⃗+ x⃗0)∥Y + ∥−T (x⃗0)∥Y ≤ M + ∥T (x⃗0)∥Y .

as x⃗+ x⃗0 ∈ BX (x⃗0, ϵ). Therefore, if z⃗ ∈ BX (⃗0, 1), then

∥T (z⃗)∥Y = 1
ϵ

∥T (ϵz⃗)∥Y ≤ 1
ϵ

(
M + ∥T (x⃗0)∥Y

)
as ϵz⃗ ∈ BX (⃗0, ϵ). Hence

∥T∥ ≤ 1
ϵ

(
M + ∥T (x⃗0)∥Y

)
.

Therefore, as T ∈ F was arbitrary and as supT ∈F ∥T (x⃗0)∥Y < ∞, the proof
is complete.

Of course we immediately obtain the following corollary.

Corollary 2.5.4. Let (X , ∥ · ∥) be a Banach space and let F ⊆ X ∗ be non-
empty. Then F is bounded if and only if

sup({f(x) | f ∈ F}) < ∞

for all x ∈ X .

The Uniform Boundedness Principle (Theorem 2.5.3) is particularly useful
to show the pointwise limit of bounded linear maps products a bounded
linear map.

Theorem 2.5.5 (The Banach-Steinhaus Theorem). Let (X , ∥ · ∥X ) be
a Banach space, let (Y, ∥ · ∥Y) be a normed linear space, and let (Tn)n≥1 be a
sequence of elements of B(X ,Y) such that for all x⃗ ∈ X

lim
n→∞

Tn(x⃗)

exists in Y. Then supn≥1 ∥Tn∥ < ∞ and the map T : X → Y defined by
T (x⃗) = limn→∞ Tn(x⃗) is an element of B(X ,Y).
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Proof. Since for each x⃗ ∈ X the limit limn→∞ Tn(x⃗) exists, the sequence
(T (x⃗n))n≥1 is bounded. Therefore, by the Principle of Uniform Boundedness
(Theorem 2.5.3), we obtain that supn≥1 ∥Tn∥ < ∞.

Define T : X → Y by T (x⃗) = limn→∞ Tn(x⃗). Clearly if x⃗1, x⃗2 ∈ X and
α ∈ K then

T (x⃗1 +αx⃗2) = lim
n→∞

Tn(x⃗1 +αx⃗2) = lim
n→∞

Tn(x⃗1)+αTn(x⃗2) = T (x⃗1)+αT (x⃗2)

so T is linear. To see that T is bounded, we note for all x⃗ ∈ X that

∥T (x⃗)∥ = lim
n→∞

∥Tn(x⃗)∥ ≤ lim sup
n→∞

∥Tn| ∥x⃗∥ ≤
(

sup
n≥1

∥Tn∥
)

∥x⃗∥ .

Therefore, as supn≥1 ∥Tn∥ < ∞, T is bounded.

Of course, there are many other uses of the Uniform Boundedness Princi-
ple (Theorem 2.5.3) and the Banach-Steinhaus Theorem (Theorem 2.5.5).
For example, one can use the Uniform Boundedness Principle (Theorem 2.5.3)
to prove that there exists a continuous function whose Fourier series does
not converge pointwise. In addition, there are many more uses in functional
analysis as we will see in later chapters.
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Chapter 3

Topological Vector Spaces

Although Banach spaces and normed linear spaces have essential properties
one wants when performing analytical computations, there are many other
types of convergence that occur in analysis that do not come from norms.
For example, pointwise convergence is very common in analysis. Although
pointwise convergence does not behave as nice as uniform convergence, it still
has its role to play. Thus we desire the appropriate structures to examine
different types of convergence in analysis.

As always, we want to be working in a vector space with a natural
topology making it possible to discuss convergence. To make the topology
‘compatible’ with the vector space structures, it is necessary that vector
addition and scalar multiplication are continuous. These so called topological
vector spaces will be the focus of this section. In particular, for these objects,
we will discuss their elementary properties, a natural way to generate them,
how they behave under various operations, how notions in normed linear
spaces generalize, and the structures of finite dimensional and of locally
convex topological vector spaces.

3.1 Introduction to Topological Vector Spaces
We begin with the central object of study of this chapter.

Definition 3.1.1. A topological vector space is a pair (V, T ) where V is a
vector space over K and T is a Hausdorff topology on V such that the maps
σ : V × V → V and ρ : K × V → V defined by

σ(x, y) = x+ y and ρ(α, x) = αx

for all x, y ∈ V and α ∈ K are continuous where V × V and K × V are
equipped with their product topologies.

Remark 3.1.2. It is work noting that some authors do not require topological
vector spaces to be Hausdorff. The rationale for why we force topological
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vector spaces to be Hausdorff is that we want unique limits. For those worried
that we are not being general enough and in the event one encounters such
a topology where Hausdorff is excluded, we note it is always possible to
consider a quotient vector space that will be Hausdorff.

By Proposition 1.1.4, it is clear that every normed linear space is a
topological vector space. Of course it is enough to consider sequences in
metric topologies and thus Proposition 1.1.4 suffices. For other topologies
that do others not from norms, one must consider nets when demonstrating
addition and scalar multiplication are continuous.

Of course the discrete topology on any vector space automatically pro-
duces a topological vector space, which is quite boring as every map is
continuous and nets converge if and only if they are eventually constant.
Before we get to looking at non-trivial examples of topological vector spaces
that are not normed linear spaces, it is useful to examine elementary proper-
ties satisfied by open sets in topological vector spaces so that we know what
behaviours occur and are necessary.
Remark 3.1.3. Let (V, T ) be a topological vector space and let x0 ∈ V be
fixed. Since the map f : V → V defined by f(x) = x+ x0 is clearly seen to
be a homeomorphism, we see that a subset U ⊆ V is a neighbourhood of a
vector y ∈ V if and and only if

x0 + U = {x0 + u | u ∈ U}

is a neighbourhood of x0 + y. By taking y = 0⃗, we see that neighbourhood
basis in (V, T ) at any point is in one-to-one correspondence with the neigh-
bourhood basis at 0⃗. Thus, when considering topological matters, it often
suffices to consider only neighbourhoods of 0⃗ by translating the problem.
Remark 3.1.4. Let (V, T ) be a topological vector space and let V be a
neighbourhood of 0⃗. Since addition is continuous, the set

A = {(x, y) ∈ V2 | x+ y ∈ V }

is a neighbourhood of (⃗0, 0⃗) in the product topology. Hence there exists sets
U1, U2 ∈ T such that (⃗0, 0⃗) ∈ U1 × U2 ⊆ A. Let U = U1 ∩ U2. Then 0 ∈ U
and

U + U = {x+ y | x, y ∈ U} ⊆ V.

Such open neighbourhoods are useful in many computations.
Remark 3.1.5. Let (V, T ) be a topological vector space and let α0 ∈ K\{0}
be fixed. Since the map f : V → V defined by f(x) = α0x is clearly seen to
be a homeomorphism, we see that a subset U ⊆ V is a (open) neighbourhood
of 0⃗ if and and only if

α0U = {α0u | u ∈ U}
is a (open) neighbourhood of 0⃗. Hence the neighbourhood basis in (V, T ) at
0⃗ is invariant under scaling.
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Recall in a normed linear space (V, ∥ · ∥) that balls of the form Bϵ(0)
form a nice neighbourhood basis of 0⃗. These balls are particularly nice when
it comes to scaling. In particular, for all α ∈ K with |α| ≤ 1, we know
that αBϵ(0) ⊆ Bϵ(0). As scaling is nice in topological vector spaces, it is
natural to ask whether there are nice neighbourhoods of 0⃗. To simplify these
discussions, it is useful to give these types of sets a name.

Definition 3.1.6. Let T be a topology on a vector space V . A neighbourhood
U of 0⃗ is said to be balanced if αU ⊆ U for all α ∈ K with |α| ≤ 1.

Lemma 3.1.7. Let (V, T ) be a topological vector space. Every neighbourhood
U of 0⃗ contains a balanced neighbourhood V of 0⃗ such that V + V ⊆ U .

Proof. Let U be a neighbourhood of 0. By Remark 3.1.5 there exists a
neighbourhood W of 0⃗ such that W + W ⊆ U . To complete the proof, it
suffices to find a balanced neighbourhood of 0⃗ contained in W .

Since scalar multiplication is continuous, the set

A = {(α, x) ∈ K × V | αx ∈ W}

is open in the product topology. Hence there exists an ϵ > 0 and V0 ∈ T
such that (0, 0) ∈ Bϵ(0) × V0 ⊆ A. Hence

{αx | x ∈ V0, 0 ≤ |α| < ϵ} ⊆ W.

Let
V =

⋃
0<|α|<ϵ

αV0.

By the above, we know that V ⊆ W and, by Remark 3.1.5, we know that
αV0 is a neighbourhood of 0⃗ for all 0 < |α| < ϵ. Hence V is a union of open
neighbourhoods of 0⃗ and thus a neighbourhood of 0⃗ contained in U . Thus it
remains only to show that V is balanced.

Notice if α′ ∈ K is such that |α′| ≤ 1, then for all 0 < |α| < ϵ we have that
α′αV0 ⊆ V as |α′α| < ϵ (and if α′ = 0, then α′αV0 = {0}). Thus α′V ⊆ V
for all α′ ∈ K such that |α′| ≤ 1. Hence V is balanced.

In all of the above remarks, the Hausdorff property of topological vector
spaces are not used. In particular, the above arguments allow us to prove
the following that shows it suffices to show that points are closed when
demonstrating the Hausdorff property for a potential topological vector
space. We reminder the reader that points are closed in any Hausdorff
topology.

Proposition 3.1.8. Let T be a topology on a vector space V such that
addition is continuous, scalar multiplication is continuous, and points in V
are closed with respect to T . Then T is a Hausdorff topology and thus (V, T )
is a topological vector space.
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Proof. To see that T is Hausdorff, let x, y ∈ V be such that x ̸= y. Since
{x} is a closed set, U = V \ {x} is a neighbourhood of y. Since addition is
continuous, by the same proof as Remark 3.1.3 there exists a neighbourhood
U0 of 0⃗ such that U = y+U0. Furthermore, as addition is continuous, by the
same proof as Remark 3.1.4 there exists a neighbourhood V of 0⃗ such that
V + V ⊆ U0. Finally, as scalar multiplication is continuous, Remark 3.1.5
implies that −V is a neighbourhood of 0⃗. Therefore, if W = V ∩ (−V ), then
W is a neighbourhood of 0⃗ such that −W = W and W +W ⊆ V + V ⊆ U0.

As addition is continuous, by the same proof as Remark 3.1.3 we obtain
that x+W and y+W are neighbourhoods of x and y respectively. We claim
that (x+W ) ∩ (y +W ) = ∅. To see this, suppose to the contrary that there
exists a z ∈ (x+W ) ∩ (y+W ). Therefore there exists w1, w2 ∈ W such that
z = x+ w1 = y + w2. Thus

x = y + (w2 − w1) ∈ y +W + (−W ) = y + (W +W ) ∈ y + U0 = U

which contradicts the fact that x /∈ U . Hence x+W and y +W are disjoint
neighbourhoods of x and y. Therefore, as x and y were arbitrary, T is
Hausdorff.

There is another property that open balls centred at 0⃗ in normed linear
spaces have. Indeed in a normed linear space (V, ∥ · ∥), if ϵ > 0, then for
all x ∈ V there exists a C = ∥x∥ 1

ϵ such that for all α ∈ K with |α| > C we
have that x ∈ αBϵ(0); that is, there is a neighbourhood basis of 0⃗ that can
be scaled to include every vector in the vector space. We encapsulate this
property in the following definition.

Definition 3.1.9. Let T be a topology on a vector space V . A neighbourhood
U of 0⃗ is said to be absorbing if for all x ∈ V there exists a C ∈ R such that
for all α ∈ K with |α| > C we have that x ∈ αU .

Lemma 3.1.10. Every neighbourhood of 0⃗ in a topological vector space is
absorbing.

Proof. Let (V, T ) be a topological vector space. By the definition of absorbing
and by Lemma 3.1.7, it suffices to show that if U is a balanced neighbourhood
of 0⃗, then U is absorbing.

To see this, let x ∈ V be arbitrary. Consider the function f : K → V
defined by

f(α) = αx

for all α ∈ K. As f is continuous by the properties of a topological vector
space, we know that (f( 1

n))n≥1 converges to 0⃗ in V. Hence there exists an
N ∈ N such that 1

nx ∈ U for all n ≥ N .
Let α ∈ K be such that |α| ≥ N . To see that x ∈ αU , note as 1

N x ∈ U

and as U is balanced that 1
αx = N

α

(
1
N x
)

∈ U as
∣∣∣Nα ∣∣∣ ≤ 1. Thus as x ∈ αU

as desired. Therefore, as x was arbitrary, U is absorbing.
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3.2 Generating Topological Vector Spaces
With our knowledge of the elementary properties of and requirements to have
a topological vector space, we turn our attention to generating some examples
of topological vector spaces. As it is not clear how to generate topologies
that are not norm topologies but still have these properties, perhaps we
should look at objects that are very close to being a norm.

Definition 3.2.1. Let V be a vector space over K. A seminorm on V is a
function p : V → [0,∞) such that

1. p(αv⃗) = |α|p(v⃗) for all α ∈ K and v⃗ ∈ V, and

2. p(v⃗ + w⃗) ≤ p(v⃗) + p(w⃗) for all v⃗, w⃗ ∈ V.

Remark 3.2.2. Note if p is a seminorm on a vector space V, then the first
property implies p(⃗0) = p(0⃗0) = 0p(⃗0) = 0. Thus the only difference between
a norm and a seminorm is that a seminorm does not require if p(v⃗) = 0 then
v⃗ = 0⃗. Of course we could mod out by all vectors in the null set of p and this
would give us a norm on a quotient space and thus a normed linear space,
but instead we would like to use seminorms on V to construct a topology
on V that turns V into a topological vector space. Note we would need to
mod out by the null set of p in order to ensure the Hausdorff property. As
we do not want to mod out, perhaps we should look at multiple seminorms
on vector spaces.

Of course, there are plenty of examples of seminorms that can be con-
structed using the objects discussed in previous chapters.

Example 3.2.3. Consider V = C(X) for some Hausdorff topological space
(X, T ). For each x ∈ X, define px : C(X) → [0,∞) by

px(f) = |f(x)|

for all f ∈ C(X). Clearly {px | x ∈ X} is a family of seminorms on C(X).

Example 3.2.4. Consider V = C0(X) for some locally compact Hausdorff
topological space (X, T ). For each K ⊆ X compact, define pK : C0(X) →
[0,∞) by

pK(f) = sup
x∈K

|f(x)|

for all f ∈ C0(X). Clearly {pK | K ⊆ X compact} is a family of seminorms
on C(X).

Example 3.2.5. Let H = ℓ2(N) and let V = B(H). For each h ∈ H, define
ph : B(H) → [0,∞) by

ph(T ) = ∥T (h)∥2

for all T ∈ B(H). Clearly {ph | h ∈ H} is a family of seminorms on B(H).
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Example 3.2.6. Let H = ℓ2(N) and let V = B(H). Define ⟨ ·, · ⟩ : H×H → K
by

⟨(xn)n≥1, (yn)n≥1⟩ =
∞∑

n=1
xnyn

for all (xn)n≥1, (yn)n≥1 ∈ H. Note ⟨ ·, · ⟩ is well-defined by Hölder’s inequality.
For all h, k ∈ H, define ph,k : B(H) → [0,∞) by

ph(T ) = ⟨T (h), k⟩

for all T ∈ B(H). Clearly {ph,k | h, k ∈ H} is a family of seminorms on
B(H).

Example 3.2.7. Let (X , ∥ · ∥) be a normed linear space. For all f ∈ X ∗,
define pf : X → [0,∞) by

pf (x) = |f(x)|

for all x ∈ X . Clearly {pf | f ∈ X ∗} is a family of seminorms on X .

Example 3.2.8. Let (X , ∥ · ∥) be a normed linear space. For all x ∈ X ,
define px : X ∗ → [0,∞) by

px(f) = |f(x)|

for all f ∈ X ∗. Clearly {px | x ∈ X } is a family of seminorms on X ∗.

Although all of these collections of seminorms are nice, in order to
generate a topological vector space using seminorms, we will require the
family of seminorm to have an additional property in order to ensure the
topologies are Hausdorff.

Definition 3.2.9. A family F of seminorms on a vector space V is said to
be separating if for all v⃗ ∈ V \ {⃗0} there exists a p ∈ F such that p(v⃗) ̸= 0.

Before demonstrating which of the above families of seminorms are
separating, we demonstrate why separating families of seminorms yield
normed linear space.

Theorem 3.2.10. Let V be a vector space and let F be a separating family
of seminorms on V. For each x ∈ V, ϵ > 0, and F ⊆ F finite, let

N(x, F, ϵ) = {y ∈ V | p(y − x) < ϵ for all p ∈ F}.

(When F = {p} for some p ∈ F , we will use N(x, p, ϵ) in place of N(x, {p}, ϵ)).
Let

B = {N(x, F, ϵ) | x ∈ V, ϵ > 0, F ⊆ F finite}.

Then B is a basis for a topology T on V such that (V, T ) is a topological
vector space and every element of F is continuous with respect to T . We call
T the topology generated by the family of seminorms F .
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Proof. First we demonstrate that B is a basis for a topology on V . To begin,
clearly B covers V. To demonstrate the other requirement of being a basis,
let x1, x2 ∈ V, let ϵ1, ϵ2 > 0, and let F1, F2 ⊆ F be finite sets such that
N(x1, F1, ϵ1) ∩N(x2, F2, ϵ2) ̸= ∅. Fix y ∈ N(x1, F1, ϵ1) ∩N(x2, F2, ϵ2). Let
F = F1 ∪ F2 ⊆ F , which is finite, and let

ϵ = min ({ϵ1 − p(y − x1) | p ∈ F1}, {ϵ2 − p(y − x2) | p ∈ F2}) > 0.

We claim that N(y, F, ϵ) ⊆ N(x1, F1, ϵ1) ∩ N(x2, F2, ϵ2). To see this, let
z ∈ N(y, F, ϵ) be arbitrary. Hence for all p ∈ F1 we see that

p(z − x1) ≤ p(z − y) + p(y − x1) < ϵ+ p(y − x1) ≤ ϵ1

so z ∈ (x1, F1, ϵ1). Similarly, for all p ∈ F2 we see that

p(z − x2) ≤ p(z − y) + p(y − x2) < ϵ+ p(y − x2) < ϵ2

so z ∈ (x2, F2, ϵ2). Hence N(y, F, ϵ) ⊆ N(x1, F1, ϵ1) ∩ N(x2, F2, ϵ2) thereby
completing the proof that B is a basis.

To show that (V, T ) is a topological vector space, we begin by showing
that T is Hausdorff. To see this, let x, y ∈ V be such that x ̸= y. As
F is a separating family of seminorms, there exists a p ∈ F such that
ϵ = 1

2p(x− y) > 0. Let U = N(x, p, ϵ) and let V = N(y, p, ϵ). Clearly U and
V are T -neighbourhoods of x and y by construction. To see that U ∩ V = ∅,
suppose to the contrary that there exists a z ∈ U ∩ V . Hence p(z − x) < ϵ
and p(z − y) < ϵ so

p(x− y) ≤ p(x− z) + p(z − y) < ϵ+ ϵ = p(x− y),

which is clearly a contradiction. Hence T is Hausdorff.
To see that addition is continuous in (V, T ), let x0, y0 ∈ V and U ∈ T

such that x0 + y0 ∈ U be arbitrary. Since B is a basis for T , there exists
an ϵ > 0 and a F ⊆ F finite such that N(x0 + y0, F, ϵ) ⊆ U . Notice that
N(x0, F,

ϵ
2) and N(y0, F,

ϵ
2) are neighbourhoods of x0 and y0 respectively.

Moreover, notice if x ∈ N(x0, F,
ϵ
2) and y ∈ N(y0, F,

ϵ
2), then for all p ∈ F

we have that

p((x+ y) − (x0 + y0)) ≤ p(x− x0) + p(y − y0) < ϵ

2 + ϵ

2 = ϵ

so x+ y ∈ N(x0 + y0, F, ϵ). Hence

N

(
x0, F,

ϵ

2

)
+N

(
y0, F,

ϵ

2

)
⊆ N(x0 + y0, F, ϵ) ⊆ U.

Therefore, as x0, y0, and U were arbitrary, addition is continuous in (V, T ).
Finally, to see that scalar multiplication is continuous in (V, T ), let x0 ∈ V ,

α0 ∈ K, and U ∈ T such that α0x0 ∈ U be arbitrary. Since B is a basis for

©For use through and only available at pskoufra.info.yorku.ca.



62 CHAPTER 3. TOPOLOGICAL VECTOR SPACES

T , there exists an ϵ > 0 and a F ⊆ F finite such that N(α0x0, F, ϵ) ⊆ U .
Let

M = 1 + max({p(x0) | p ∈ F}).

Notice that BK
(
α0,

ϵ
2(M+1)

)
and N

(
x0, F,

ϵ
2(|α0|+1)

)
are neighbourhoods

of α0 and x0 respectively. Moreover, notice if α ∈ BK
(
α0,

ϵ
2(M+1)

)
and

x ∈ N
(
x0, F,

ϵ
2(|α0|+1)

)
, then |α− α0| < ϵ

2(M+1) so |α| ≤ |α0| + ϵ
2(M+1) and

for all p ∈ F we have that

p(αx− α0x0) = p(α(x− x0) + (α− α0)x0)
≤ |α|p(x− x0) + |α− α0|p(x0)

<

(
|α0| + ϵ

2(M + 1)

)(
ϵ

2(|α0| + 1)

)
+ ϵ

2(M + 1)M

< ϵ

so αx ∈ N(α0x0, F, ϵ) ⊆ U . Therefore, as α0, x0, and U were arbitrary, scalar
multiplication is continuous in (V, T ).

Corollary 3.2.11. Let V be a vector space and let F be a separating family
of seminorms on V. For each x ∈ V, the collection

{N(x, F, ϵ) | ϵ > 0, F ⊆ F finite}

is a neighbourhood basis of x.

Example 3.2.12. Let (X , ∥ · ∥) be a normed linear space. Then F = {∥ · ∥}
is a separating family of (semi)norms. If T is the topology generated by F ,
then as

N(x, ∥ · ∥ , ϵ) = B(x, ϵ)

for all x ∈ X and ϵ > 0, we see that T is the norm topology as expected.

Before we examine more examples, it is useful to consider how convergence
works in a topology generated by seminorms.

Proposition 3.2.13. Let (V, T ) be a topological vector space generated by a
separating family of seminorms F on V. A net (xλ)λ∈Λ converges to a point
x ∈ V if and only if limλ∈Λ p(xλ − x) = 0 for all p ∈ F .

Proof. Suppose (xλ)λ∈Λ is a net that converges to a point x in V . Let p ∈ F
and ϵ > 0 be arbitrary. Since N(x, p, ϵ) is a neighbourhood of x and (xλ)λ∈Λ
converges to x, there exists a λ0 ∈ Λ such that xλ ∈ N(x, p, ϵ) for all λ ≥ λ0.
By the definition of N(x, p, ϵ), this implies that p(xλ − x) < ϵ for all λ ≥ λ0.
Therefore, as ϵ and p were arbitrary, we obtain that limλ∈Λ p(xλ − x) = 0
for all p ∈ F .
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Conversely, suppose limλ∈Λ p(xλ − x) = 0 for all p ∈ F . To see that
(xλ)λ∈Λ converges to x, let U be a neighbourhood of x. By the definition of
T , there exists an ϵ > 0 and a finite subset F ⊆ F such that N(x, Fϵ) ⊆ U .
Since limλ∈Λ p(xλ − x) = 0 for all p ∈ F , for every p ∈ F there exists a
λp ∈ Λ such that p(xλ − x) < ϵ for all λ ≥ λp. Due to the properties of
directed sets, F being finite implies there exists a λ0 ∈ Λ such that λ0 ≥ λp

for all p ∈ F . Hence for all λ ≥ λ0 we obtain that p(xλ − x) < ϵ for all
p ∈ F and thus xλ ∈ N(x, F, ϵ) ⊆ U . Therefore, as U was arbitrary, (xλ)λ∈Λ
converges to x.

Example 3.2.14. Recall from Example 3.2.3 the family

F = {px | x ∈ X}

of seminorms on C(X) where (X, T ) is a Hausdorff topological space. Clearly
F is a separating family of seminorms on C(X) and thus generates a topology
Tp on C(X). Since Proposition 3.2.13 implies a net converges if and only if
it converges pointwise, this is called the pointwise convergence topology.

Example 3.2.15. Recall from Example 3.2.4 the family

F = {pK | K ⊆ X compact}

of seminorms on C0(X) where (X, T ) is a locally compact Hausdorff space.
Clearly F is a separating family of seminorms on C0(X) (as singletons are
compact) and thus generates a topology TK on C0(X). Since Proposition
3.2.13 implies a net converges if and only if it converges uniformly on compact
sets, this is called the uniform convergence on compact sets topology.

Example 3.2.16. With H = H = ℓ2(N), recall from Example 3.2.5 the
family F = {ph | h ∈ H} of seminorms on B(H)). Clearly F is a separating
family of seminorms on B(H) and thus generates a topology TSOT on B(H).
Note by Proposition 3.2.13 a net (Tλ)λ∈Λ converges to T ∈ B(H) if and only
if limλ∈Λ Tλ(h) = T (h) for all h ∈ H. This topology is called the Strong
Operator Topology and is abbreviated by SOT.

Example 3.2.17. With H = H = ℓ2(N) and ⟨ ·, · ⟩ : H × H → K defined by

⟨(xn)n≥1, (yn)n≥1⟩ =
∞∑

n=1
xnyn

for all (xn)n≥1, (yn)n≥1 ∈ H, recall from Example 3.2.6 the family F =
{ph,k | h, k ∈ H} of seminorms on B(H)). Clearly F is a separating family
of seminorms on B(H) (as ⟨T (h), T (h), ⟩ = ∥T (h)∥2

2 for all h ∈ H) and thus
generates a topology TWOT on B(H). Note by Proposition 3.2.13 a net
(Tλ)λ∈Λ converges to T ∈ B(H) if and only if limλ∈Λ⟨Tλ(h), k⟩ = ⟨T (h), k⟩
for all h, k ∈ H. This topology is called the Weak Operator Topology and is
abbreviated by WOT.
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Example 3.2.18. For a normed linear space (X , ∥ · ∥), recall from Example
3.2.7 the family F = {pf | f ∈ X ∗} of seminorms on X . It is not at all clear
why given an x ∈ X \ {⃗0} there exists an f ∈ X ∗ such that f(x) ̸= 0. In
fact, this is very similar to the question we encountered in Remark 1.6.6.
Luckily we are approaching an answer (i.e. see Chapter 4). Thus, for now,
we are unsure if F is a separating family of seminorms and thus generates a
topology.

Example 3.2.19. For a normed linear space (X , ∥ · ∥), recall from Example
3.2.8 the family F = {px | x ∈ X } of seminorms on X ∗. Clearly F is a
separating family of seminorms on X ∗. Note by Proposition 3.2.13 a net
(fλ)λ∈Λ converges to f ∈ X ∗ if and only if limλ∈Λ fλ(x) = f(x) for all x ∈ X .
This topology is called the weak∗ topology (weak because it is weaker than
norm convergence in a topological sense).

Of course, we could investigate all of the individual properties each
of the above distinct topologies have and their importance to functional
analysis. Some of this will be done in Chapter 5 and some will be done via
the assignments. For now, we focus on studying the properties that all of
these topologies share. In particular, all of these topologies share a common
property when it comes to the type of sets they have in their bases.

Definition 3.2.20. A subset C of a vector space V is said to be convex if
for all x, y ∈ C and t ∈ [0, 1] we have that tx+ (1 − t)y ∈ C.

Indeed convex sets are well-behaved in topological vector spaces.

Lemma 3.2.21. Let C be a convex subset of a topological vector space (V, T ).
Then the following hold:

• x+ C is convex for all x ∈ V.

• C is convex.

• For all r, s > 0 we have rC + sC = (r + s)C.

• If W is another vector space and T : V → W is a linear map, then
T (C) is convex.

Proof. To see that x + C is convex for a fixed x ∈ V, let y, z ∈ x + C and
t ∈ (0, 1) be arbitrary. Then there exist c1, c2 ∈ C such that y = x+ c1 and
z = x+ c2. Hence

ty + (1 − t)z = t(x+ c1) + (1 − t)(x+ c2) = x+ (tc1 + (1 − t)c2).

Since c1, c2 ∈ C and C is convex, tc1 + (1 − t)c2 ∈ C and thus ty+ (1 − t)z ∈
x+ C. Therefore, as y, z, and t were arbitrary, x+ C is convex.
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To see that C is convex, let x, y ∈ C. Thus there exists nets (xλ)λ∈Λ and
(yλ)λ∈Λ of elements of C that converge to x and y respectively. Notice for all
t ∈ [0, 1] that (txλ + (1 − t)yλ)λ∈Λ converges to tx+ (1 − t)y as addition and
scalar multiplication are continuous in V. Therefore, as txλ + (1 − t)yλ ∈ C
for all λ ∈ Λ, we obtain that tx+ (1 − t)y ∈ C for all t ∈ [0, 1] and x, y ∈ C.
Hence C is convex.

Next let r, s > 0. Since t = r
r+s ∈ (0, 1) and 1 − t = s

r+s , the convexity of
C implies for all x, y ∈ C that r

r+sx+ s
r+sy ∈ C. Hence rx+ sy ∈ (r + s)C

for all x, y ∈ C, so rC + sC ⊆ (r + s)C. As clearly (r + s)C ⊆ rC + sC, the
second property holds.

Finally, to see that T (C) is convex, let w1, w2 ∈ T (C) and let t ∈ [0, 1]
be arbitrary. Hence there exists x1, x2 ∈ C such that T (x1) = w1 and
T (x2) = w2. Since C is convex, we see that tx1 + (1 − t)x2 ∈ C. Notice that

tw1 + (1 − t)w2 = tT (x1) + (1 − t)T (x2) = T (tx1 + (1 − t)x2) ∈ T (C)

as T is linear. Therefore, as w1, w2, and t were arbitrary, T (C) is convex.

The commonality of all of the topologies considered in this section is the
following.

Definition 3.2.22. A topological vector space (V, T ) is said to be locally
convex if there exists a basis for T consisting of convex sets.

As Lemma 3.2.21 shows it suffices to consider neighbourhoods of 0⃗ when
showing a topological vector space is locally convex, the following suffices to
showing the topologies of this section are locally convex.

Theorem 3.2.23. Let (V, T ) be a topological vector space generated by a
separating family F of seminorms on V. For each ϵ > 0 and F ⊆ F finite,
the set N(0, F, ϵ) is balanced and convex. Hence (V, T ) is locally convex.

Proof. To see that N(0, F, ϵ) is balanced, let x ∈ N(0, F, ϵ) and α ∈ K with
|α| ≤ 1 be arbitrary. Notice for all p ∈ F that

p(αx) = |α|p(x) ≤ p(x) < ϵ

so αy ∈ N(0, F, ϵ). Therefore, since x and α were arbitrary, N(0, F, ϵ) is
balanced.

To complete the proof, by Corollary 3.2.11 it suffices to show that
N(x, F, ϵ) is convex for all x ∈ V, ϵ > 0, and F ⊆ F finite. To see this, let
x1, x2 ∈ N(x, F, ϵ) and t ∈ [0, 1] be arbitrary. Notice for all p ∈ F that

p((tx1 + (1 − t)x2) − x) = p(t(x1 − x) + (1 − t)(x2 − x))
≤ tp(x1 − x) + (1 − t)p(x2 − x)
< tϵ+ (1 − t)ϵ = ϵ

so tx1 + (1 − t)x2 ∈ N(x, F, ϵ). Therefore, since x1, x2, and t were arbitrary,
N(x, F, ϵ) is convex.
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Corollary 3.2.24. Every normed linear space is locally convex. In particular,
every open ball in a normed linear space is convex.

3.3 Constructing Topological Vector Spaces
With the above (locally convex) topological vector spaces that we have
generated via seminorms given use a plethora of examples, we can turn our
attention to constructing new topological vector spaces from old ones in
the same ways we did for normed linear spaces: subspaces, products, and
quotients.

Proposition 3.3.1. Let (V, T ) be a (locally convex) topological vector space
and let W be a vector subspace of V. Then W is a (locally convex) topological
vector space with the subspace topology. Moreover W is a vector subspace
of V and thus a (locally convex) topological vector space with the subspace
topology.

Proof. As addition and scalar multiplication are continuous on V , so too are
the continuous on W equipped with the subspace topology. Hence, as the
subspace topology of a Hausdoff topology is Hausdorff, W is a topological
vector space with the subspace topology.

To see that W is a vector subspace of V, let x, y ∈ W and α ∈ K be
arbitrary. As x, y ∈ W there exists nets (xλ)λ∈Λ and (yλ)λ∈Λ in W that
converge to x and y respectively (recall the lexicographic ordering on the
product of two directed sets yields a directed set). As addition and scalar
multiplication are continuous in V , we know that (xλ + yλ)λ∈Λ and (αxλ)λ∈Λ
are nets in W that converge to x+y and αx respectively. Hence x+y, αx ∈ W .
Therefore, as x, y, and α were arbitrary, W is a vector subspace of V.

Finally, if (V, T ) is locally convex, then so too are W and W as the
intersection of a subspace with a convex subset of V is convex.

To discuss products, we refer the reader to the product topology con-
structed in Definition A.3.12.

Proposition 3.3.2. Let I be a non-empty index set and for each i ∈ I let
(Vi, Ti) be a (locally convex) topological vector space over K. Then the product∏

i∈I Vi is a (locally convex) topological vector space over K when equipped
with the product topology.

Proof. It is elementary to verify that
∏

i∈I Vi is a vector space over K with
coordinate-wise addition and scalar multiplication. As the product of Haus-
dorff topologies is Hausdorff and as the product of continuous functions
is continuous (see Theorem A.6.7), we obtain that

∏
i∈I Vi is a topological

vector space. Finally, if each (Vi, Ti) is locally convex, then as each Vi is a
convex set and the product of convex sets is easily seen to be convex, we
obtain that

∏
i∈I Vi is locally convex.
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In order to discuss quotients of topological vector spaces, we recall the
following quotient topology, which is a simplification of Proposition A.7.8.

Definition 3.3.3. Let (V, T ) be a topological vector space, let W be a vector
subspace of V, and let q : V → V/W be the quotient map. The quotient
topology on V/W is

Tq = {A ⊆ V/W | q−1(A) ∈ T }.

It is elementary to verify that Tq is indeed a topology and is the finest
topology on V/W such that q : V → V/W is continuous; that is, if U ∈ Tq

then q−1(U) ∈ T . The following shows more is true and should be compared
with the Open Mapping Theorem (Theorem 2.4.2) of which we have seen
several uses.

Lemma 3.3.4. Let (V, T ) be a topological vector space, let W be a closed
subspace of V, and let q : V → V/W be the quotient map. If U ∈ T then
q(U) is open in the quotient topology.

Proof. Let U ∈ T be arbitrary. As

q(U) = {u⃗+ W | u⃗ ∈ U},

we know by the definition of the quotient topology that q(U) ∈ Tq if and
only if

q−1(q(U)) = {u⃗+ w⃗ | u⃗ ∈ U, w⃗ ∈ W}

is open in T . However, notice that

q−1(q(U)) =
⋃

w⃗∈W

w⃗ + U

is a union of open sets as x⃗+ U ∈ T for all x⃗ ∈ V by Remark 3.1.3. Hence
q−1(q(U)) ∈ T so q(U) is open as desired.

In topology, a function that maps open sets to open sets is called a open
map. Thus the canonical vector space quotient map is open by Lemma 3.3.4.
In fact, the quotient map is a quotient map in the sense of topology (see
Definition A.7.18); that is, a surjective continuous map with the property
that a subset of the codomain is open if and only if its inverse image is open.

Before we move on to showing the quotients of topological vector spaces
are topological vector spaces, we note there is no difference when it comes to
normed linear spaces.

Proposition 3.3.5. Let (V, ∥ · ∥) be a normed linear space and let W be a
closed subspace of V. The quotient topology on V/W is equal to the topology
induced by the quotient norm from Theorem 1.3.3.

©For use through and only available at pskoufra.info.yorku.ca.



68 CHAPTER 3. TOPOLOGICAL VECTOR SPACES

Proof. Let q : V → V/W be the quotient map viewed as a map between
normed linear spaces. To complete the proof, it suffices by Corollary A.7.21
to show that q is a quotient map in the topological sense.

To see that q is a quotient map, first we note that q is clearly surjective.
Next let U be an arbitrary open subset of V/W . To see that q−1(U) is open
in V, let v⃗ ∈ q−1(U) be arbitrary. Thus v⃗ + W ∈ U . Hence, as U is open in
V/W , there exists an ϵ > 0 so that if v⃗2 ∈ V and ∥(v⃗2 + W) − (v⃗ + W)∥ < ϵ,
then v⃗2 + W ∈ U . Therefore if v⃗2 ∈ V and ∥v⃗2 − v⃗∥ < ϵ, then

∥(v⃗2 + W) − (v⃗ + W)∥ = ∥(v⃗2 − v⃗) + W∥ ≤ ∥v⃗2 − v⃗∥ < ϵ

so v⃗2 + W ∈ U and thus v⃗2 ∈ q−1(U). Hence the ball of radius ϵ centred at
v⃗ is contained in q−1(U). Therefore, as v⃗ ∈ q−1(U) was arbitrary, q−1(U) is
open in V.

Finally, suppose U is an arbitrary subset of V/W such that q−1(U) is
open in V . To see that U is open in V/W , let u⃗+W ∈ U be arbitrary. Hence
u⃗ ∈ q−1(U). Hence, as q−1(U) is open in V there exists an ϵ > 0 so that if
v⃗ ∈ V and ∥v⃗ − u⃗∥ < ϵ then v⃗ ∈ q−1(U). We claim that the ball of radius ϵ
centred at u⃗+ W is contained in U . To see this, suppose v⃗ ∈ V is such that

∥(v⃗ − u⃗) + W∥ = ∥(v⃗ + W) − (u⃗+ W)∥ < ϵ.

Hence, by the definition of the quotient norm, there exists a w⃗ ∈ W such
that

∥(v⃗ + w⃗) − u⃗∥ = ∥(v⃗ − u⃗) + w⃗∥ < ϵ.

Hence v⃗ + w⃗ ∈ q−1(U) by the above computation so

v⃗+W = (v⃗+W)+(⃗0+W) = (v⃗+W)+(w⃗+W) = (v⃗+w⃗)+W = q(v⃗+w⃗) ∈ U

as desired. Therefore, since u⃗ + W ∈ U was arbitrary, U is open in V/W.
Hence q is a quotient map by the definition of a quotient map thereby yielding
the proof.

Proposition 3.3.6. Let (V, T ) be a topological vector space and let W be a
closed subspace of V. Then V/W is a topological vector space when equipped
with the quotient topology.

Moreover, if V is locally convex, then V/W is locally convex.

Proof. First, we claim that σ : (V/W) × (V/W) → V/W defined by

σ(x+ W, y + W) = (x+ y) + W

for all x, y ∈ V is continuous with respect to the quotient topology. To
see this, let x + W, y + W ∈ V/W be arbitrary and let U be an arbitrary
neighbourhood of (x+ y) + W in the quotient topology. By the definition of
the quotient topology, q−1(U) is a neighbourhood of x+ y in V. Therefore,
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as addition is continuous in V, there exist neighbourhoods Vx and Vy of x
and y respectively such that if x′ ∈ Vx and y′ ∈ Vy then x′ + y′ ∈ q−1(U).

Let Ux = q(Vx) and Uy = q(Vy) which are open neighbourhoods of
x+ W and y + W in the quotient topology by Lemma 3.3.4. Thus Ux × Uy

is a neighbourhood of (x + W, y + W) in the product topology. Notice
if (x′ + W, y′ + W) ∈ Ux × Uy, then there exists w1, w2 ∈ W such that
x′ + w1 ∈ Vx and y′ + w2 ∈ Vy and thus (x′ + w1) + (y′ + w2) ∈ q−1(U) so
(x′ + W) + (y′ + W) ∈ U . Therefore σ is continuous.

Next we claim that ρ : K × (V/W) → V/W defined by

ρ(α, x+ W) = αx+ W

for all x ∈ V and α ∈ K is continuous with respect to the quotient topology.
To see this, let α ∈ K and x+W ∈ V/W be arbitrary and let U be an arbitrary
neighbourhood of αx+ W in the quotient topology. By the definition of the
quotient topology, q−1(U) is a neighbourhood of α in V . Therefore, as scalar
multiplication is continuous in V, there exist neighbourhoods Vα and Vx of
α and x respectively such that if α′ ∈ Vα and x′ ∈ Vx then α′x′ ∈ q−1(U).

Let Ux = q(Vx) which is an open neighbourhood of x+ W in the quotient
topology by Lemma 3.3.4. Thus Vα ×Ux is a neighbourhood of (α, x+ W) in
the product topology. Notice if (α′, x′ + W) ∈ Vα × Ux, then there exists a
w ∈ W such that x′ +w ∈ Vx and thus α′(x′ +w) ∈ q−1(U) so α′x′ + W ∈ U .
Therefore ρ is continuous.

To complete the proof that V/W is a topological vector space, note by
Proposition 3.1.8 it suffices to show that points are closed in V/W. To see
this, let x ∈ V be arbitrary. Notice that

q−1(x+ W) = {x+ w | w ∈ W}

is the translation of the closed subspace W by x. Therefore, as translation
by x is a homeomorphism, q−1(x + W) is a closed subset of V. Hence
C = V \ q−1(x+ W) is open in V so q(C) is open in V/W by Lemma 3.3.4.
As

(V/W) \ q(C) = {x+ W},

we obtain that {x+ W} is closed in V/W as desired.
Finally, suppose that V is a locally convex topological vector space. To

see that V/W is locally convex, let x+ W ∈ V/W and U a neighbourhood
of x+ W be arbitrary. Hence q−1(U) is a neighbourhood of x in V. Since
V is locally convex, there exists a convex V ∈ T such that x ∈ V ⊆ q−1(U).
Therefore x+ W ⊆ q(V ) ⊆ U . However, since q is both a linear and open
map, q(V ) is convex and open by Lemma 3.2.21. Therefore, as x and U were
arbitrary, V/W is locally convex.
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3.4 Properties of Topological Vector Spaces

With the above constructions of topological vector spaces, our next goal is to
generalize several of the properties we know for normed linear spaces to this
setting. In particular, notions of completeness and continuous linear maps
are essential to functional analysis. We begin with the generalization of a
Cauchy sequence.

Definition 3.4.1. A net (xλ)λ∈Λ in a topological vector space (V, T ) is said
to be Cauchy if for every neighbourhood U of 0⃗ there exists a λ0 ∈ Λ such
that xλ1 − xλ2 ∈ U for all λ1, λ2 ≥ λ0.

Of course, like with normed linear spaces, the simplest example of Cauchy
nets are convergent nets.

Example 3.4.2. Let (V, T ) be a topological vector space and let (xλ)λ∈Λ
be a net that converges to x. Then (xλ)λ∈Λ is Cauchy. Indeed let U be any
neighbourhood of 0⃗. By Lemma 3.1.7 there exists a balanced neighbourhood
V of 0⃗ such that V + V ⊆ U . Since x + V is a neighbourhood of x, there
exists a λ0 ∈ Λ such that xλ ∈ x + V for all λ ≥ λ0. Therefore, for all
λ1, λ2 ≥ λ0 we obtain that

xλ1 − xλ2 ∈ (x+ V ) − (x+ V ) = V − V = V + V ⊆ U.

Therefore, as U was arbitrary, (xλ)λ∈Λ is Cauchy.

The notion of a complete topological vector space now follows easily.

Definition 3.4.3. A subset A of a topological vector space (V, T ) is said to
be complete if every Cauchy net consisting of elements from A converges in
V to an element in A.

The simplest example of complete topological vector spaces are Banach
spaces. Indeed the following result shows the two notions of completeness
for normed linear spaces coincide.

Proposition 3.4.4. Let (V, ∥ · ∥) be a normed linear space. Then V is
complete as a normed linear space if and only if V is complete as a topological
vector space.

Proof. Suppose V is complete as a topological vector space. If (xn)n≥1
is a Cauchy sequence, then clearly (xn)n≥1 is a Cauchy net as the open
balls of radius 1

N for N ∈ N form a neighbourhood basis of 0⃗. Hence
(xn)n≥1 converges being a Cauchy net in a complete topological vector space.
Therefore, as (xn)n≥1 was arbitrary, V is complete as a normed linear space.

Conversely, suppose V is complete as a normed linear space. To see
that V is complete as a topological vector space, let (xλ)λ∈Λ be an arbitrary
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Cauchy net. For each n ∈ N, let Un = BV(0, 1
n). Choose k1 ∈ Λ such that if

λ1, λ2 ≥ k1, then xλ1 − xλ2 ∈ U1. By cofinality, there exists a k2 ∈ Λ such
that k2 ≥ k1 and if λ1, λ2 ≥ k2, then xλ1 − xλ2 ∈ U2. By recursion, there
exists (kn)n≥1 ⊆ Λ such that kn ≤ kn+1 for all n ∈ N and xλ1 − xλ2 ∈ Un for
all λ1, λ2 ≥ kn. These two properties together imply (xkn)n≥1 is a Cauchy
sequence in V and thus converges to some x ∈ V as V is complete as a normed
linear space.

We claim that (xλ)λ∈Λ converges to x. To see this, let U be a neigh-
bourhood of x and choose N ∈ N such that BV(x, 1

N ) ⊆ U . By the above
construction, we know that xλ1 − xλ2 ∈ U2N for all λ1, λ2 ≥ k2N . Moreover,
as BV(x, 1

2N ) is a neighbourhood of x and (xkn)n≥1 converges to x, there
exists an N1 ∈ N such that xkn ∈ BV(x, 1

2N ) for all n ≥ N1. Choose N0 ∈ N
such that N0 = max{2N,N1}. Hence kN0 ≥ k2N and N0 ≥ N1 so we obtain
for all λ ≥ kN0 that

xλ − x = (xλ − xkN0
) + (xkN0

− x) ∈ U2N + U2N = UN .

Hence xλ ∈ x+ UN = BV(x, 1
N ) ⊆ U for all λ ≥ kN0 . Therefore, as U was

arbitrary, (xλ)λ∈Λ converges to x. Hence V is complete as a topological
vector space.

With respect to subsets, closed and completeness behave as one would
expect.

Proposition 3.4.5. Let (V, T ) be a topological vector space and let A ⊆ V.
Then the following hold:

• If V is complete and A is closed in V, then A is complete.

• If A is complete, then A is closed in V.

Proof. Suppose V is complete and A is closed in V . To see that A is complete,
let (aλ)λ∈Λ be a Cauchy net in A. Hence (aλ)λ∈Λ is a Cauchy net in V and
thus converges to some x ∈ V . However, as A is closed, we obtain that x ∈ A.
Hence (aλ)λ∈Λ converges to x ∈ A, so A is complete.

For the second part, suppose A is complete. To see that A is closed in V ,
let (aλ)λ∈Λ be a net in A that converges to some x ∈ V. By Example 3.4.2
this implies (aλ)λ∈Λ is a Cauchy net. Hence, since A is complete, (aλ)λ∈Λ
must converge to some element a ∈ V. However, as T is Hausdorff, this
implies x = a ∈ A. Hence A is closed in V.

With the above showing completeness for topological vector spaces be-
haves identically to normed linear spaces, we turn our attention to the
stronger form of continuity: uniform continuity. It is easily seen that the
following definition is a generalization of the notion of uniform continu-
ous functions between two normed linear spaces to functions between two
topological vector spaces.
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Definition 3.4.6. Let (V, TV) and (W, TW) be topological vector spaces
and let A ⊆ V. A function f : A → W is said to be uniformly continuous if
for all TW -neighbourhoods W of 0⃗ there exists a TV neighbourhood V of 0⃗
such that x, y ∈ A and x− y ∈ V implies f(x) − f(y) ∈ W .

To see this is indeed a generalization from normed linear spaces to topo-
logical vector spaces, we note the following thereby providing us immediately
with examples.

Proposition 3.4.7. Let (V, ∥ · ∥V) and (W, ∥ · ∥W) be normed linear spaces
and let f : V → W. Then f is a uniformly continuous function between
normed linear spaces if and only if f is a uniformly continuous function
between topological vector spaces.

Proof. Suppose f is uniformly continuous as a function on normed linear
spaces. To see that f is uniformly continuous as a function on topological
vector spaces, let W be an arbitrary TW neighbourhood of 0⃗. Thus there
exists an ϵ > 0 such that BW (⃗0, ϵ) ⊆ W . As f is uniformly continuous as a
function on normed linear spaces, there exists a δ > 0 such that if x, y ∈ A
and ∥x− y∥V < δ, then ∥f(x) − f(y)∥W < ϵ. Hence, with V = BV (⃗0, δ), if
x, y ∈ A and x−y ∈ V then f(x)−f(y) ∈ W . Therefore, as W was arbitrary,
f is uniformly continuous as a function on topological vector spaces.

Conversely, suppose f is uniformly continuous as a function on topological
vector spaces. To see that f is uniformly continuous as a function on normed
linear spaces, let ϵ > 0. Since W = BW (⃗0, ϵ) is a TW -neighbourhood of 0⃗
and as f is uniformly continuous as a function on topological vector spaces,
there exists a TV -neighbourhood V of 0⃗ such that if x, y ∈ A and x− y ∈ V
then f(x) − f(y) ∈ W . As V is a TV -neighbourhood of 0⃗, there exists a
δ > 0 such that BV (⃗0, δ) ⊆ V . Hence if x, y ∈ A and ∥x− y∥V < δ, then
∥f(x) − f(y)∥W < ϵ. Therefore, as ϵ > 0 was arbitrary, f is uniformly
continuous as a function on normed linear spaces.

Of course, for a function to be uniformly continuous, it must be continu-
ous.

Proposition 3.4.8. Let (V, TV) and (W, TW) be topological vector spaces
and let A ⊆ V. If f : A → W is uniformly continuous, then f is continuous.

Proof. To see that f is continuous on A, fix a ∈ A and let W be an arbitrary
TW -neighbourhood of f(a). Since (W, TW) is a topological vector space,
there exists a TW -neighbourhood W0 of 0⃗ such that W = f(a) + W0. As
f is uniformly continuous, there exists a TV -neighbourhood V0 of 0⃗ such
that if x, y ∈ A and x − y ∈ V0 then f(x) − f(y) ∈ W0. However, since
(V, TV) is a topological vector space, V = a+ V0 is a TV -neighbourhood of
a such that if x ∈ V = a + V0 then x − a ∈ V0 so f(x) − f(a) ∈ W0 and
thus f(x) ∈ f(a) + W0 = W . Therefore, as a and W were arbitrary, f is
continuous.
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Of course there are functions on normed linear spaces that are continuous
but not uniformly continuous, such as the function f : (0,∞) → (0,∞)
defined by f(x) = 1

x . However, for linear maps between topological vector
spaces, we have the following which is our best analogue of Theorem 1.4.6
for topological vector spaces.

Theorem 3.4.9. Let (V, TV) and (W, TW) be topological vector spaces and
let T : V → W be linear. The following are equivalent:

(1) T is uniformly continuous.

(2) there exists an x0 ∈ V such that T is continuous at x0.

Proof. By Proposition 3.4.8, if T is uniformly continuous, then T is continu-
ous and hence (2) holds.

Conversely, suppose that there exists an x0 ∈ V such that T is continuous
at x0. To see that T is uniformly continuous, let W0 be an arbitrary TW -
neighbourhood of 0⃗. Since (W, TW) is a topological vector space, W =
T (x0)+W0 is a TW neighbourhood of T (x0). Therefore, since f is continuous
at x0, there exists a TV -neighbourhood V of x0 such that if x ∈ V then
T (x) ∈ W . Since (V, TV) is a topological vector space, there exists a TV -
neighbourhood V0 of 0⃗ such that V = x0 + V0. However, if x, y ∈ V are such
that x− y ∈ V0, then (x− y) + x0 ∈ V so

T (x) − T (y) + T (x0) = T ((x− y) + x0) ∈ W = T (x0) +W0

so T (x) − T (y) ∈ W0. Therefore, as W0 was arbitrary, T is uniformly
continuous.

Recall from topology that continuous functions on compact sets are
automatically uniformly continuous. For linear maps, it is convexity that
replaces compactness.

Proposition 3.4.10. Let (V, TV) and (W, TW) be topological vector spaces
and let T : V → W be linear. If C ⊆ V is a balanced convex neighbourhood
of 0⃗ such that T |C is continuous at 0⃗, then T |C is uniformly continuous.

Proof. To see that T |C is uniformly continuous, let W be an arbitrary TW -
neighbourhood of 0⃗. By Lemma 3.1.7, there exists a TW -neighbourhood W0
of 0⃗ such that W0 + W0 ⊆ W . As T |C is continuous at 0⃗, there exists a
TV -neighbourhood V of 0⃗ such that if x ∈ C ∩ V then T (x) ∈ W0. Again by
Lemma 3.1.7 there exists a balanced TV -neighbourhood V0 of 0⃗ such that
V0 ⊆ V .

Suppose x, y ∈ C are such that x − y ∈ V0. As C is balanced, −y ∈ C.
Moreover, as C is convex, 1

2x+ 1
2(−y) ∈ C. However, since V0 is balanced,

1
2(x− y) ∈ V0. Therefore, as 1

2x− 1
2y ∈ C ∩ V0 ⊆ C ∩ V , we obtain that

1
2T (x) − 1

2T (y) = T

(1
2x− 1

2y
)

∈ W0.
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Hence
T (x) − T (y) ∈ W0 +W0 ⊆ W.

Therefore, as W was arbitrary, T |C is uniformly continuous.

To complete this section, by combining the notions of completeness and
uniform continuity, we may demonstrate the following.

Proposition 3.4.11. Let (V, TV) and (W, TW) be topological vector spaces,
let V0 be a vector subspace of V, and let T0 : V0 → W be a continuous linear
map. If W is complete there exists a continuous linear map T : V0 → W
such that T |V0 = T0.

Proof. Exercise.

Of course, for normed linear spaces, the operator norm is not increased.

Corollary 3.4.12. Let (V, ∥ · ∥V) and (W, ∥ · ∥W) be normed linear spaces,
let V0 be a vector subspace of V, and let T0 : V0 → W be a bounded linear
map. If W is complete there exists a bounded linear map T : V0 → W such
that T |V0 = T0 and ∥T∥ = ∥T0∥.

Proof. Exercise.

3.5 Finite Dimensional Topological Vector Spaces
Now that we understand the similar properties objects in topological vector
spaces have to normed linear spaces, we will examine two different collections
of topological vector spaces to end this chapter. For the first, we consider
the collection of finite dimensional topological vector spaces. In particular,
although one may feel these are the simplest class of topological vector spaces,
they are one of the most important due to the theoretical results of this
chapter and the fact that every topological vector space contains a plethora
of finite dimensional subspaces.

The main result of this section, Corollary 3.5.3, is that given any finite
dimensional vector space V , there is exactly one topology on V that turns V
into a topological vector space. In particular, this will imply that all norms
on V are equivalent! To prove this result, we begin with the one-dimensional
case.

Lemma 3.5.1. Let (V, T ) be a one-dimensional topological vector space and
let {e} be a basis for V. The map T : K → V defined by T (α) = αe for all
α ∈ K is a homeomorphism.

Proof. Since scalar multiplication is continuous in (V, T ), we easily see that
T is a bijective continuous linear map. Hence, to complete the proof, it
suffices to prove that T−1 : V → K defined by

T−1(αe) = α
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for all α ∈ K is continuous. As T−1 is clearly linear, it suffices to prove that
T−1 is continuous at 0⃗ (i.e. when α = 0) by Theorem 3.4.9 and Proposition
3.4.8.

Let (αλ)λ∈Λ be a net in K such that (αλe)λ∈Λ converges to 0⃗. To see that
(αλ)λ∈Λ converges to 0, let ϵ > 0 be arbitrary. Since ϵe ̸= 0⃗ and since V is
Hausdorff, there exist a neighbourhood U of 0⃗ such that ϵe /∈ U . By Lemma
3.1.7 there exists a balanced neighbourhood W of 0⃗ such that W ⊆ U and
thus ϵe /∈ W .

As (αλe)λ∈Λ converges to 0⃗, there exists a λ0 ∈ Λ such that αλe ∈ W for
all λ ≥ λ0. Notice if there exists a λ ≥ λ0 such that |αλ| ≥ ϵ, then

ϵe =
(
ϵ

αλ

)
(αλe) ∈ W

as W is balanced, which is a contradiction. Hence |αλ| < ϵ for all λ ≥ λ0.
Therefore, as ϵ > 0 was arbitrary, (αλ)λ∈Λ converges to 0.

We can upgrade Lemma 3.5.1 to all finite dimensional topological vector
spaces via induction and considering quotients.

Theorem 3.5.2. Let Kn be viewed as a topological vector space with topology
induced by the infinity norm, let (V, T ) be an n-dimensional topological vector
space, and let {e1, . . . , en} be a basis for V. The map T : Kn → V defined by

T ((z1, . . . , zn)) =
n∑

k=1
zkek

for all (z1, . . . , zn) ∈ Kn is a homeomorphism.

Proof. We will proceed by induction on n with the base case of n = 1
complete by Lemma 3.5.1. To proceed with the inductive step, suppose the
result is true for all (n − 1)-dimensional topological vector spaces and let
(V, T ) be an n-dimensional topological vector space and let {e1, . . . , en} be
a basis for V. As the map T : Kn → V defined by

T ((z1, . . . , zn)) =
n∑

k=1
zkek

for all (z1, . . . , zn) ∈ Kn is a bijective linear map that is continuous as
addition and scalar multiplication are continuous, it suffices to show that
T−1 is continuous.

Let W = span({e1, e2, . . . , en−1}). By Proposition 3.3.1 we know that W
is an (n−1)-dimensional topological vector space with the subspace topology.
Thus by the inductive hypothesis, the map T1 : W → Kn−1 defined by

T1

(
n−1∑
k=1

zkek

)
= (z1, . . . , zn−1)
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for all (z1, . . . , zn−1) ∈ Kn−1 is a homeomorphism.
By Definition 3.4.1 it is easy to see that homeomorphisms provide a

bijection between Cauchy nets and between convergence Cauchy nets. There-
fore, as Kn−1 is complete as a topological vector space by Proposition 3.4.4,
we see that W is complete as a topological vector space with the subspace
topology. This immediately implies that W is complete as a subset of V and
thus closed by Proposition 3.4.5.

Since W is closed, the quotient space V/W is a topological vector space
by Proposition 3.3.6 and the map q : V → V/W defined by q(x) = x + W
is a continuous map. As V/W is one-dimensional with basis {en + W},
the induction hypothesis implies there exists a continuous linear map T2 :
V/W → K defined by

T2(αen + W) = α

is a homeomorphism.
Consider the map S : V → Kn−1 × K = Kn defined by

S

((
n∑

k=1
zkek

))
=
(
T1

((
n−1∑
k=1

zkek

))
, (T2 ◦ q)

(
n−1∑
k=1

zkek

))

= ((z1, . . . , zn−1), zn) = T−1
((

n∑
k=1

zkek

))

for all (z1, . . . , zn) ∈ Kn. As T1 and T2 ◦ q are continuous linear maps, we
obtain that S is a continuous linear map and thus T−1 is continuous as desired.
Hence the result follows by the Principle of Mathematical Induction.

Corollary 3.5.3. Given any finite dimensional vector space V, there is
exactly one topology on V that makes V into a topological vector space.

Proof. As the composition and inverse of homeomorphisms between topo-
logical spaces are homeomorphisms, Theorem 3.5.2 implies that any two
topologies on V that make V into topological vector spaces are homeomorphic
via the identity map and thus the same topology.

This characterization of every finite dimensional topological vector space
being homeomorphic to the infinity norm on Kn yields some more results.

Corollary 3.5.4. Every finite dimensional topological vector space is com-
plete. Hence every finite dimensional normed linear spaces is a Banach
space.

Proof. The proof of this result can be found in the inductive step of the
proof of Theorem 3.5.2.

Corollary 3.5.5. Every finite dimensional subspace of a topological vector
space is closed.
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Proof. Let W be a finite dimensional subspace of a topological vector space
(V, T ). By Corollary 3.5.4 W is complete as a topological vector space with
the subspace topology. This immediately implies that W is complete as a
subset of V and thus closed by Proposition 3.4.5.

In fact, not only are finite dimensional subspaces closed, but when we
add them to closed subspaces, the result remains a closed subspace.

Corollary 3.5.6. Let (V, TV) be a topological vector space. If W and X
are closed subspaces of V such that X is finite dimensional, then W + X is
closed.

Proof. Since W is a closed subspace of V, Proposition 3.3.6 implies that
V/W is a topological vector space. Let q : V → V/W be the quotient map.
Since X is a finite dimensional subspace of V, q(X ) is a finite dimensional
subspace of V/W and thus closed by Corollary 3.5.5. By the definition of
the quotient topology, the inverse image under q of a closed subset of V/W
is closed and thus

q−1(q(X )) = X + W
is a closed subspace of V.

As linear maps are essential to functional analysis, we note the following
corollary of Theorem 3.5.2.

Corollary 3.5.7. Every linear map from a finite dimensional topological
vector space into another topological vector space is continuous.

Proof. Let (V, TV) and (W, TW) be topological spaces with V finite dimen-
sional with basis {e1, . . . , en} and let S : V → W be a linear map. If
Kn is equipped with the infinity norm, by Theorem 3.5.2 the linear map
T : Kn → X defined by

T ((z1, . . . , zn)) =
n∑

k=1
zkek

for all (z1, . . . , zn) ∈ Kn is a homeomorphism. Since

S = (S ◦ T ) ◦ T−1,

if it can be demonstrated that S ◦T−1 is continuous, then S is a composition
of continuous functions and thus will be continuous.

Let R = S ◦ T−1 : Kn → W and for each k ∈ {1, . . . , n} let yk = R(ek).
Thus for all (z1, . . . , zn) ∈ Kn

R((z1, . . . , zn)) =
n∑

k=1
zkyk.

As addition and scalar multiplication are continuous functions in W, we
obtain that R is continuous thereby completing the proof.
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In fact, finite dimensional topological spaces belong to another class of
topological vector space we have already considered.

Corollary 3.5.8. Every finite dimensional topological space is locally convex.

Proof. Every finite dimensional topological space has a topology induced by
a norm by Corollary 3.5.3 and thus is locally convex by Corollary 3.2.24.

However, there is another characterization of finite dimensional topologi-
cal spaces that is less apparent related to the following topological property.

Definition 3.5.9. A Hausdorff topology T on a set X is said to be locally
compact if one of the following two equivalent conditions hold:

• For every x ∈ X there exists a U ∈ T and a compact set K ⊆ X such
that x ∈ U ⊆ K.

• For every x ∈ X and neighbourhood U ∈ T of x, there exists a V ∈ T
such that x ∈ V ⊆ V ⊆ U and V is compact.

Remark 3.5.10. In respect to the definition of a locally compact topology,
of course it is easier to verify the first definition as the second definition is
stronger and, therefore, we will usually use the second definition when proving
results. The first definition the usual definition from topology whereas
the second is equivalent when we restrict to our attention to Hausdorff
topologies; something we almost always do in functional analysis as we want
our topologies to have unique limits. The equivalence between these two
definitions can be obtained via the one-point compactification of a locally
compact Hausdorff topology which places said topology as a topological
subspace of a compact Hausdorff topology.

The relation between finite dimensions and local compactness in the
context of topological vector spaces is quite nice.

Theorem 3.5.11. A topological vector space (V, T ) is locally compact if and
only if V is finite dimensional.

Proof. First suppose V is an n-dimensional topological vector space. Since
V is homeomorphic to (Kn, ∥ · ∥∞) by Theorem 3.5.2 and since the notions of
open and compact sets are preserved under homeomorphisms, it suffices to
prove (Kn, ∥ · ∥∞) is locally compact. If x ∈ Kn and U is a neighbourhood of
x, there exists an ϵ > 0 such that x ∈ B(x, ϵ) ⊆ U . Let V = B

(
x, ϵ

2
)
. Then

V is such that
x ∈ V ⊆ V ⊆ B(x, ϵ) ⊆ U

by basis metric space arguments. As V is a closed bounded set, V is compact
in Kn by the Heine-Borel Theorem (Theorem A.8.25). Thus, as x and U
were arbitrary, V is locally compact.
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Conversely, suppose that (V, T ) is a locally compact topological vector
space. Let U be any neighbourhood of 0⃗. Since V is locally compact, there
exists a V ∈ T such that if K = V then K is compact and 0⃗ ∈ V ⊆ K ⊆ U .
By Lemma 3.1.7, there exists a neighbourhood V0 of 0⃗ such that V0 + V0 ⊆
V ⊆ K.

Since x+ V0 is open in V for all x ∈ V , since K is compact, and since

K ⊆
⋃

x∈V
x+ V0,

there exists a finite number x1, x2, . . . , xn ∈ V such that

K ⊆
n⋃

k=1
xk + V0.

Let W = span({x1, . . . , xn}). Since W is a finite dimensional subspace of
V and thus closed by Corollary 3.5.5, the quotient space V/W is a topological
vector space by Proposition 3.3.6 and the quotient map q : V → V/W is
continuous and open. Hence

q(K) ⊆
n⋃

k=1
q(xk + V0) =

n⋃
k=1

q(V0) = q(V0) ⊆ q(K)

as q(xk) = 0 for all k ∈ {1, . . . , n}. Hence q(V0) = q(K). However, as
V0 + V0 ⊆ K, we obtain that

2q(K) ⊆ q(K) + q(K) = q(V0) + q(V0) = q(V0 + V0) ⊆ q(K).

Hence induction implies that 2mq(K) ⊆ q(K) for all m ∈ N. However,
since q(V0) is a neighbourhood of 0⃗ as q is an open map and since every
neighbourhood of 0⃗ is absorbing by Lemma 3.1.10, we obtain that

q(K) =
∞⋃

m=1
2mq(K) =

∞⋃
m=1

2mq(V0) = V/W.

Therefore, since K is compact and q is continuous, V/W is compact.
Suppose V/W is not the zero vector space. Thus there exists a vector

y ∈ V such that y + W ̸= 0⃗ + W. Therefore X = span({y + W}) is a
one-dimensional subspace of V/W. Since X is closed in V/W by Corollary
3.5.5 and V/W is compact, X is compact. However X is homeomorphic to K
by Theorem 3.5.2 thereby proving K is compact, a clear contradiction. Hence
V/W is the zero vector space implying that V = W is finite dimensional as
desired.

Corollary 3.5.12. The closed unit ball of a normed linear space (V, ∥ · ∥) is
compact if and only if V is finite dimensional.
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Proof. First suppose V is finite dimensional. Thus V is locally compact by
Theorem 3.5.11. Hence there exists a neighbourhood V of 0⃗ such that V
is compact. Since V is a neighbourhood of 0⃗, there exists an ϵ > 0 such
that the closed ball B [⃗0, ϵ] is contained in V and thus in the compact set
V . Therefore B [⃗0, ϵ] is compact. Since B [⃗0, 1] = 1

ϵB [⃗0, ϵ] and non-zero scalar
multiplication is a homeomorphism, B [⃗0, 1] is the homeomorphic image of a
compact set and thus compact.

Conversely, suppose B [⃗0, 1] is compact. As non-zero scalar multiplication
and translation are homeomorphisms in topological vector spaces and as
rB [⃗0, 1] + x = B[x, r] for all r > 0 and x ∈ V, we see that every closed ball
in V is compact.

To see that V is finite dimensional, it suffices by Theorem 3.5.11 to show
that V is locally compact. To see this, let x ∈ V and U be an arbitrary
neighbourhood of x. Thus there exists an ϵ > 0 such that B(x, ϵ) ⊆ U . Note
if V = B

(
x, ϵ

2
)
, then V ⊆ B

[
x, ϵ

2
]

and thus is compact being a closed subset
of a compact set. Moreover

x ∈ V ⊆ V ⊆ B

[
x,
ϵ

2

]
⊆ B(x, ϵ) ⊆ U.

Therefore, as x and U were arbitrary, V is locally compact.

3.6 Locally Convex Topological Vector Spaces

We turn our attention now to the other collection of topological vector spaces
we desire to study: locally convex topological vector spaces. Recall that all
topological vector spaces from Section 3.2 were locally convex by Theorem
3.2.23 and all of the constructions of topological vector spaces from Section
3.3 when applied to locally convex topological vector spaces produce locally
convex topological vector spaces. Thus we will begin this section by first
providing a topological vector space that is not locally convex. Subsequently,
our main goal of this section is to demonstrate that every locally convex
topological vector spaces arises in via Theorem 3.2.10.

Before we demonstrate a topological vector space that is not locally
convex, it is useful to examine be behaviour of convex sets in locally convex
topological vector spaces. Thus we begin with the following method for
generating convex sets.

Definition 3.6.1. The convex hull of a subset A of a vector space V , denoted
conv(A), is the set

conv(A) =
{

n∑
k=1

tkxk

∣∣∣∣∣n ∈ N, {xk}n
k=1 ⊆ A, {tk}n

k=1 ⊆ [0, 1],
n∑

k=1
tk = 1

}
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Example 3.6.2. In R2, it is not difficult to verify that if

A = {(1, 0), (0, 1), (−1, 0), (0,−1)}

then conv(A) is the closed unit ball with respect to ∥ · ∥1 and if

B = {(1, 1), (1,−1), (−1, 1), (−1,−1)}

then conv(B) is the closed unit ball with respect to ∥ · ∥∞.

Unsurprisingly, when dealing with convexity, the convex hull of a set is a
well-behaved object.

Lemma 3.6.3. Let (V, T ) be a topological vector space and let A ⊆ V. The
following are true:

1. conv(A) is a convex set.

2. If A is open, then conv(A) is open.

3. If A is open and balanced, then conv(A) is open and balanced.

Proof. The fact that the convex hull of a set is convex follows from a simple
computation using the fact that if {tk}n

k=1, {sj}m
j=1 ⊆ [0, 1] are such that∑n

k=1 tk =
∑m

j=1 sj = 1, then if
∑n

k=1
∑m

j=1 tksj = 1.
Next suppose that A is open. To see that conv(A) is open, note that

conv(A) is the union over all n ∈ N, all {tk}n−1
k=1 ⊆ [0, 1) and tn ∈ (0, 1] such

that
∑n

k=1 tk, and all x1, . . . , xn−1 ∈ A of the sets(
n−1∑
k=1

tkxk

)
+ tnA.

Since addition and scalar multiplication by non-zero numbers are homeomor-
phisms and since A is open, each of these sets is open. Hence conv(A) is a
union of open sets and thus is open.

Finally, to see that conv(A) is balanced when A is open and balanced
follows easily from the description of conv(A) and the definition of a balanced
set (i.e. for each

∑n
k=1 tkxk and α ∈ K with |α| ≤ 1, α

∑n
k=1 tkxk =∑n

k=1 tk(αxk) with αxk ∈ A for all k).

Before we get to our example of a non-locally convex topological vector
space, some corollaries are in order.

Corollary 3.6.4. Let (V, T ) be a locally convex topological vector space.
Every neighbourhood U of 0⃗ contains a balanced, convex neighbourhood V of
0⃗ such that V + V ⊆ U .
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Proof. Let U be a neighbourhood of 0⃗. By Lemma 3.1.7 there exists a
neighbourhood U0 of 0⃗ such that U0 +U0 ⊆ U . Since (V, T ) is locally convex,
there exists a convex neighbourhood W of 0⃗ such that W ⊆ U0. Lastly, again
by Lemma 3.1.7 there exists a balanced neighbourhood W0 of 0⃗ such that
W0 ⊆ W .

Let V = conv(W0). By Lemma 3.6.3 V is a balanced neighbourhood of
0⃗. Since W0 ⊆ W and W is convex, we obtain that V ⊆ W so V ⊆ U0 ⊆ U
and V + V ⊆ U0 + U0 ⊆ U thereby completing the proof.

Corollary 3.6.5. Every locally convex topological vector space admits a
neighbourhood basis of 0⃗ consisting of balanced, convex sets.

Using the notion of convex hull in topological vector spaces, we can
demonstrate the following topological vector space is not locally convex.

Example 3.6.6. Let p ∈ (0, 1) and let

ℓp(N) =
{

(zn)n≥1

∣∣∣∣∣
∞∑

n=1
|zk|p < ∞

}
.

Note ℓp(N) differs from our ℓp-normed linear spaces from previous sections
as p ∈ (0, 1).

For each a ∈ [0,∞), consider the function fa : [0,∞) → R defined by

fa(x) = xp + ap − (x+ a)p.

Since fa(0) = 0 and fa is differentiable with

f ′
a(x) = pxp−1 − p(x+ a)p−1 = p

x1−p
− p

(x+ a)1−p
> 0

as 1 − p > 0, we obtain that fa(x) > 0 for all x ∈ [0,∞). This shows that if
(zn)n≥1, (wn)n≥1 ∈ ℓp(N) then (zn +wn)n≥1 ∈ ℓp(N). Since clearly α ∈ K and
(zn)n≥1 ∈ ℓp(N) implies (αzn)n≥1 ∈ ℓp(N), we obtain that ℓp(N) is a vector
space with respect to coordinate-wise addition and scalar multiplication.

Define q : ℓp(N) → [0,∞) by

q ((zn)n≥1) =
∞∑

n=1
|zk|p

for all (zn)n≥1 ∈ ℓp(N). Notice by the above that

(1) q ((zn)n≥1) = 0 if and only if zn = 0 for all n ∈ N,

(2) q (α(zn)n≥1) = |α|pq ((zn)n≥1) for all α ∈ K and (zn)n≥1 ∈ ℓp(N), and

(3) q ((zn + wn)n≥1) ≤ q ((zn)n≥1) + q ((wn)n≥1) for all (zn)n≥1, (wn)n≥1 ∈
ℓp(N).
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Note there is no 1
p for otherwise the triangle inequality would fail! Thus q

is not a seminorm in that (2) is not quite correct. However, the proof of
Theorem 3.2.10 can easily be adapted (specifically the argument involving
the fact that scalar multiplication is continuous - just replace |α| et al. with
|α|p in the appropriate places) to obtain that if for each x⃗ ∈ ℓp(N) and ϵ > 0
we let

N(x⃗, ϵ) = {y⃗ ∈ ℓp(N) | q(y⃗ − x⃗) < ϵ}

and
B = {N(x⃗, ϵ) | x⃗ ∈ ℓp(N), ϵ > 0},

then B is a basis for a topology T on ℓp(N) such that (ℓp(N), T ) is a topological
vector space.

However, T is not a locally convex topology. To see this, suppose to that
(ℓp(N), T ) is locally convex. Since

U = {x⃗ ∈ ℓp(N) | q(x⃗) < 1}

is a neighbourhood of 0⃗, locally convexity would imply there exists a convex
neighbourhood V of 0⃗ contained in U . Furthermore, as V is a neighbourhood
of 0⃗, this implies there exists an ϵ > 0 such that

{x⃗ ∈ ℓp(N) | q(x⃗) < ϵ} ⊆ V ⊆ U.

Let δ =
(

ϵ
2
) 1

p > 0 and for all k ∈ N let x⃗k ∈ ℓp(N) be defined by

x⃗k(n) =
{
δ if k = n

0 if k ̸= n

(note clearly x⃗k ∈ ℓp(N)). As q(x⃗k) < ϵ, we obtain that

x⃗k ∈ V ⊆ U

for all k ∈ N and thus

conv({x⃗k}k∈N) ⊆ V ⊆ U

as V is convex. Therefore, for all n ∈ N we obtain that
∑n

k=1
1
n x⃗k ∈ V ⊆ U

so

1 > q

(
n∑

k=1

1
n
x⃗k

)
=

n∑
k=1

δp

np
= δpn1−p.

However, as δ > 0 and 1 − p > 0, the above inequality is impossible. Hence
we have a contradiction so (ℓp(N), τ) is not locally convex.
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Remark 3.6.7. Of course, given a measure space (X,A, µ) and p ∈ (0, 1),
one may define Lp(X,µ) to be

Lp(X,µ) =
{
f : X → K

∣∣∣∣ f measurable,
∫

X
|f |p dµ < ∞

}
and Lp(X,µ) to be Lp(X,µ) modulo the subspace of all functions equal to
0 µ-almost everywhere. By the same argument as used in Example 3.6.6,
Lp(X,µ) a vector space and can be equipped with a topological vector space
structure. Provided A contains a collection of pairwise disjoint sets with
positive µ-values, a similar argument can be used to that Lp(X,µ) will not
be locally convex.

With the above example of a topological vector space that is not locally
convex, we turn our attention to characterizing all locally convex topological
vector spaces as those constructed in Section 3.2. To do so, we need to
construct seminorms based on the given locally convex topology. As a priori
the functions constructed need not be seminorms and for uses in Chapter 4,
we introduce the following notion.

Definition 3.6.8. Let V be a vector space. A function p : V → R is said to
be a sublinear functional if

1. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ V, and

2. p(rx) = rp(x) for all x ∈ V and r > 0.

Example 3.6.9. Clearly every seminorm is an example of a sublinear
functional whereas the identity map on R is a sublinear functional that is
not a seminorm since it is not positive. Similarly, the map p : R → [0,∞)
defined by

p(x) =
{
x if x > 0
0 otherwise

is an example of a sublinear functional that is not a seminorm (as p(−1) =
p((−1)1) ̸= | − 1|p(1)).

The way locally convex topologies will give rise to sublinear functionals
and, eventually, seminorms is via the following.

Definition 3.6.10. Let (V, T ) be a topological vector space and let C be a
convex neighbourhood of 0. The function pC : V → R defined by

pC(x) = inf{r ∈ (0,∞) | x ∈ rC}

for all x ∈ V is called the Minkowski functional (also called the gauge
functional).
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Remark 3.6.11. It is useful to note that although the Minkowski functional
uses the word ‘functional’, the Minkowski functional is not a linear functional
since, in particular, it never takes negative values. Moreover, it is not
difficult to see that pC(x) < ∞ for all x ∈ V. Indeed, recall that if C is a
neighbourhood of 0⃗, then C is absorbing by Lemma 3.1.10. Hence for every
x ∈ V there exists an r ∈ (0,∞) such that x ∈ rC so pC(x) < ∞.

It is also useful to note what pC(x) tells us about the values of r ∈ (0,∞)
for which x ∈ rC. To see this, suppose s ∈ (0,∞) is such that pC(x) < s.
Thus there exists a pC(x) < t < s such that x ∈ tC. Hence there exists a
c ∈ C such that x = tc. However, since C is convex, for every r ≥ s we see
that

x = tc = t

r
(rc) +

(
1 − t

r

)
0⃗ ∈ rC

as rC is convex (which is elementary to verify), 0⃗, rc ∈ rC, and 0 ≤ t
r ≤ 1.

Thus if pC(x) < s, then x ∈ rC for all r ≥ s.

The relations between the Minkowski functional, sublinear functionals,
and seminorms is observed via the following result.

Proposition 3.6.12. Let (V, T ) be a topological vector space and let C be a
convex neighbourhood of 0. Then the Minkowski functional pC is a sublinear
functional on V such that

C = {x ∈ V | pC(x) < 1}.

Moreover pC is a seminorm whenever C is balanced.

Proof. To see that pC is sublinear, let x, y ∈ V be arbitrary. If r, s ∈ (0,∞)
are such that x ∈ rC and y ∈ sC, then

x+ y ∈ rC + sC ⊆ (r + s)C

by Lemma 3.2.21 so pC(x + y) ≤ r + s. As this holds for all r, s ∈ (0,∞)
such that x ∈ rC and y ∈ sC, we obtain that pC(x + y) ≤ pC(x) + pC(y)
thereby demonstrating the first property of being a sublinear functional.

To see the second property of being a sublinear functional, let x ∈ V and
s ∈ (0,∞) be arbitrary. For any r ∈ (0,∞) we see that sx ∈ sC if and only
if x ∈ C, we obtain that pC(sx) = spC(x) thereby completing the proof that
pC is sublinear.

To see that C = {x ∈ V | pC(x) < 1}, first suppose x ∈ V is such that
pC(x) < 1. Hence there exists an r ∈ (0, 1) such that x ∈ rC. Thus there
exists a y ∈ C such that

x = ry = ry + (1 − r)⃗0.

However, as r ∈ (0, 1), y, 0⃗ ∈ C, and C is convex, we obtain that x ∈ C.
Hence C ⊇ {x ∈ V | pC(x) < 1}.
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To see the reverse inclusion, let x ∈ C be arbitrary. Since C is open and
scalar multiplication is continuous, there exists a ϵ > 0 such that if |t− 1| < ϵ
then tx ∈ C. Thus

(
1 + ϵ

2
)
x ∈ C so x ∈ 1

1+ ϵ
2
C and hence pC(x) ≤ 1

1+ ϵ
2
< 1.

Therefore, as x was arbitrary, C = {x ∈ V | pC(x) < 1}.
To see that pC is a seminorm when C is balanced, we note pC : V → [0,∞)

and pC is sublinear so it suffices to examine how pC behaves with respect to
scalar multiplication. Thus let x ∈ V and α ∈ C be arbitrary. If α = 0, then
clearly pC(αx) = pC (⃗0) = 0 = αpC(x). Otherwise, if α ̸= 0, then

pC(αx) = inf{r ∈ (0,∞) | αx ∈ rC}

= inf
{
r ∈ (0,∞)

∣∣∣∣x ∈ r
1
α
C

}
= inf

{
r ∈ (0,∞)

∣∣∣∣x ∈ r
1

|α|
C

}
as C = α

|α|
C since C is balanced

= inf{|α|s ∈ (0,∞) | x ∈ sC}
= |α| inf{s ∈ (0,∞) | x ∈ sC}
= |α|pC(x)

as desired. Hence pC is a seminorm.

With the above construction of seminorms in locally convex topological
vector spaces complete, we need only one more ingredient in order to show
the locally convex topological is generated by seminorms: we need to know
which seminorms are continuous.

Proposition 3.6.13. Let (V, T ) be a topological vector space and let p be
a seminorm on V. Then p is continuous on V if and only if there exists a
neighbourhood U of 0⃗ such that p is bounded on U .

Proof. Suppose p is continuous on V. Therefore U = {x ∈ V | p(x) < 1} is
an open neighbourhood of 0⃗ such that p is bounded by 1 on U . Thus one
direction is complete.

For the converse, suppose there exists a neighbourhood U of 0⃗ such that
p is bounded on U by M ∈ (0,∞). To see that p is continuous, let x ∈ V and
ϵ > 0 be arbitrary. Then V = x+ ϵ

MU is a neighbourhood of x. Moreover, if
y ∈ V then y − x = ϵ

M u for some u ∈ U so

|p(y) − p(x)| ≤ p(y − x) = p

(
ϵ

M
u

)
= ϵ

M
p(u) ≤ ϵ.

Therefore, as x and ϵ > 0 were arbitrary, p is continuous.

Corollary 3.6.14. Let (V, T ) be a locally convex topological vector space
and let C be a convex balanced neighbourhood of 0⃗. Then pC is a continuous
seminorm on (V, T ).
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Proof. By Proposition 3.6.12, pC is a seminorm on V and

C = {x ∈ V | pC(x) < 1}.

As C is a neighbourhood of 0⃗, the above set equality implies that pC is
bounded by 1 on a neighbourhood of 0⃗ and thus is continuous by Proposition
3.6.13.

Theorem 3.6.15. If (V, T ) is a locally convex topological vector space, then
there exists a separating family of seminorms on V that generated T .

Proof. By Corollary 3.6.5 there exists a T -neighbourhood basis C of 0⃗ con-
sisting of convex balanced sets. Therefore

F = {pC | C ∈ C}

is a collection of seminorms on V by Proposition 3.6.12.
To see that F is separating, let x ∈ V \ {⃗0} be arbitrary. Since (V, T )

is Hausdorff, there exists a neighbourhood U of 0⃗ such that x /∈ U . By
Corollary 3.6.5 there exists a C ∈ C such that C ⊆ U so x /∈ C. Hence
pC(x) ≥ 1 by Remark 3.6.11. Therefore, as x was arbitrary, C is separating.

Let T0 be the topology on V generated by F . Thus (V, T0) is a topological
vector space by Theorem 3.2.10 and T0 is a locally convex topology by
Theorem 3.2.23. It remains only to show that T = T0.

Notice if C ∈ C, then by Proposition 3.6.12

C = {x ∈ V | pC(x) < 1} = N (⃗0, p, 1) ∈ T0

by definitions. Therefore a neighbourhood basis for 0⃗ from T is contained
in T0. Hence, since T and T0 make V into a topological vector space and
thus are completely defined by any neighbourhood basis of 0⃗, we obtain that
T ⊆ T0.

For the reverse inclusion, note by Corollary 3.6.14 that pC is continuous
on (V, T ) for all C ∈ C. Hence for every ϵ > 0, the set

N (⃗0, p, ϵ) = p−1
C ((−ϵ, ϵ)) ∈ T .

Hence, for all ϵ > 0 and F ⊆ F finite, we have that

N (⃗0, F, ϵ) =
⋂

p∈F

N (⃗0, p, ϵ) ∈ T .

Therefore a neighbourhood basis for 0⃗ from T0 is contained in T . Hence, since
T and T0 make V into a topological vector space and thus are completely
defined by any neighbourhood basis of 0⃗, we obtain that T0 ⊆ T completing
the proof.
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To conclude this section, we note that there are many collections of
seminorms that could generated the same topological vector space structure.
As all such seminorms must be continuous, the following result not only aids
in determining which seminorms must be included, but has a few corollaries
that will be of use in future chapters.

Proposition 3.6.16. Let (V, T ) be a locally convex topological vector space
and let F be a separating family of seminorms that generated T . If p is a
seminorm on V, then the following are equivalent:

• p is continuous on V.

• There exists a constant M > 0 and p1, . . . , pn ∈ F such that

p(x) ≤ M max({p1(x), . . . , pn(x)}) for all x ∈ V.

Proof. First suppose there exists a constant M > 0 and p1, . . . , pn ∈ F such
that

p(x) ≤ M max({p1(x), . . . , pn(x)}) for all x ∈ V.

Let U = N (⃗0, {p1, . . . , pn}, 1). Then U ∈ T and pk(x) ≤ 1 for all x ∈ U and
k ∈ {1, . . . , n}. Hence p(x) ≤ M for all x ∈ U so p is bounded on U and
thus continuous by Proposition 3.6.13.

Conversely, suppose p is continuous on (V, T ). Hence U = p−1((−1, 1))
is a neighbourhood of 0⃗. Since F generated T , there exists p1, . . . , pn ∈ F
and an ϵ > 0 such that

N (⃗0, {p1, . . . , pn}, ϵ) ⊆ U.

Therefore, if x ∈ V is such that pk(x) < ϵ for all k ∈ {1, . . . , n}, then
x ∈ N (⃗0, {p1, . . . , pn}, ϵ) ⊆ U so p(x) < 1.

We claim if M = max{1, 2
ϵ }, then

p(x) ≤ M max({p1(x), . . . , pn(x)})

for all x ∈ V . To see this, let x ∈ V be arbitrary. If max({p1(x), . . . , pn(x)}) =
0, then pk(x) = 0 for all k ∈ {1, . . . , n} so pk(rx) = 0 for all r > 0 thereby
implying rp(x) = p(rx) < 1 for all r > 0, which implies p(x) = 0 ≤
1 max({p1(x), . . . , pn(x)}). Otherwise, if M0 = max({p1(x), . . . , pn(x)}) > 0,
then y = ϵ

2M0
x ∈ V has the property that

pk(y) ≤ ϵ

2 < ϵ

for all k ∈ {1, . . . , n}. This implies p(y) < 1 and thus

p(x) < 2M0
ϵ

= 2
ϵ

max({p1(x), . . . , pn(x)}) ≤ M max({p1(x), . . . , pn(x)}).

Therefore, as x was arbitrary, the proof is complete.
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Corollary 3.6.17. Let (V, TV) and (W, TW) be locally convex topological
vector spaces, let FV and FW be separating family of seminorms that generated
TV and TW respectively, and let T : V → W be linear. The following are
equivalent:

• T is continuous.

• For all q ∈ FW there exists M > 0 and p1, . . . , pn ∈ FV such that

q(T (x)) ≤ M max({p1(x), . . . , pn(x)}) for all x ∈ V.

Proof. Note it is elementary to verify the composition of a seminorm with a
linear map is a seminorm.

Suppose T is continuous. Since q is a continuous seminorm on (W, TW),
q ◦ T is a continuous seminorm on (V, TV). Hence the result follows from
Proposition 3.6.16.

To prove the converse, note Proposition 3.6.16 implies that q ◦ T is a
continuous seminorm on (V, TV) for all q ∈ FW . To see that T is continuous,
let U be an arbitrary neighbourhood of 0⃗ in (W, TW). Hence there exists an
ϵ > 0 and q1, . . . , qn ∈ FW such that

N (⃗0, {q1, . . . , qn}, ϵ) ⊆ U.

Since qk ◦ T is a continuous seminorm on (V, TV) for all k ∈ {1, . . . , n},

V = N (⃗0, {q1 ◦ T, . . . , qn ◦ T}, ϵ)

is a neighbourhood of 0⃗ in (V, TV). Notice if x ∈ V then qk(T (x)) < ϵ for
all k ∈ {1, . . . , n} so T (x) ∈ N (⃗0, {q1, . . . , qn}, ϵ) ⊆ U . Therefore, as U was
arbitrary, T is continuous at 0⃗ and thus continuous by Theorem 3.4.9.

Corollary 3.6.18. Let (V, T ) be a locally convex topological vector space. A
linear map f : V → K is continuous if and only if there exists a continuous
seminorm p on V such that

|f(x)| ≤ p(x)

for all x ∈ V.

Proof. If f : V → K is a continuous linear map, then the function p : V → K
defined by

p(x) = |f(x)|

for all x ∈ V is clearly a continuous seminorm on V. Hence one direction is
complete.

Conversely, suppose there exists a continuous seminorm p on V such that

|f(x)| ≤ p(x)
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for all x ∈ V . As (V, T ) is a locally convex topological vector space, Theorem
3.6.15 implies T is generated by a separating family of seminorms F . As p
is continuous, T is also generated by F ∪ {p} and thus f is continuous by
Corollary 3.6.17.

One final corollary of Proposition 3.6.16 is the following which informs
us how a separating family of seminorms on a locally convex topological
space behaves with respect to quotients. As Proposition 3.6.16 shows that
the maximum of a finite number of seminorms from a separating family of
seminorms that generates a locally convex topology is a continuous seminorm
and thus can be added into the family without modifying the topology, the
assumption we add on the separating family in the following is moot.

Proposition 3.6.19. Let (V, T ) be a locally convex topological vector space,
let W be a closed subspace of V, and let p : V → [0,∞) be a seminorm on V.
If p̃ : V/W → [0,∞) is defined by

p̃(v + W) = inf({p(v + w) | w ∈ W})

for all v + W ∈ V, then p̃ is a seminorm on V/W. Moreover, if F is a
separating family of seminorms on V that generate T and is closed under
taking the maximum of finitely many elements, then F̃ = {p̃ | p ∈ F} is a
separating family of seminorms on V/W that generate the quotient topology.

Proof. If p is a seminorm on V, then by nearly identical arguments to those
used in Theorem 1.3.3 it follows that p̃ is a seminorm on V/W.

Let F be a separating family of seminorms on V that generate T . To see
that F̃ = {p̃ | p ∈ F} is separating on V/W, suppose to the contrary that
there exists a v0 + W ∈ V/W such that p̃(v0 + W) = 0 for all p̃ ∈ F̃ . We
claim that v0 ∈ W. To see this, let U be an arbitrary neighbourhood of v0.
Thus, as F is a separating family of seminorms, there exists an ϵ > 0 and
p1, . . . , pn ∈ F such that

N(v0, {p1, . . . , pn}, ϵ) ⊆ U.

Recall if p0 : V → [0,∞) is define by

p0(v) = max({p1(v), . . . , pn(v)})

for all v ∈ V, then p0 ∈ F by assumption and

N(v0, p0, ϵ) = N(v0, {p1, . . . , pn}, ϵ) ⊆ U.

However, as p̃0(v0 + W) = 0, there exists a w ∈ W such that p0(v0 + w) < ϵ
and thus W ∩ U ̸= ∅. Therefore, as U was arbitrary, we obtain that v0 ∈ W .
However, as W is closed, this implies v0 ∈ W so v0 + W = 0⃗ + W. Hence F̃
is separating.
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Let T̃ be the topology on V/W generated by F̃ . To show that T̃ is
the quotient topology, we will follow the same idea as Proposition 3.3.5.
Let q : V → V/W be the vector space quotient map. To complete the
proof, it suffices by Corollary A.7.21 to show that q is a quotient map in the
topological sense.

To see that q is a quotient map, first we note that q is clearly surjective.
To show that q is continuous, note for all v ∈ V, p ∈ F , and ϵ > 0 that

q−1(N(v + W, p̃, ϵ)) =
⋃

w∈W
N(v + w, p, ϵ).

Hence q−1(N(v + W, p̃, ϵ)) is open in (V, T ) being the union of open sets.
Since

{N(v + W, p̃, ϵ) | v ∈ V, p ∈ F , ϵ > 0}

form a subbasis of T̃ , it follows that q−1(U) ∈ T for all U ∈ T̃ so q is
continuous.

To see that q is open, suppose U is an arbitrary subset of V/W such
that q−1(U) is open in V . To see that U is open in V/W , let x+ W ∈ U be
arbitrary. Hence x ∈ q−1(U). Hence, as q−1(U) is open in V there exists an
ϵ > 0 and p1, . . . , pn ∈ F so that

N(x, {p1, . . . , pn}, ϵ) ⊆ q−1(U).

Again, if we let p0 = max({p1, . . . , pn}), then p0 ∈ F and

N(x, p0, ϵ) = N(x, {p1, . . . , pn}, ϵ) ⊆ q−1(U).

We claim that N(x+ W, p̃0, ϵ) ⊆ U . To see this, suppose v ∈ V is such that

p̃0((v − x) + W) = p̃0((v⃗ + W) − (u⃗+ W)) < ϵ.

Hence, by the definition of p̃0, there exists a w ∈ W such that

p0(v − x+ w) < ϵ.

Hence v + w ∈ q−1(U) by the above computation so

v + W = q(v + w) ∈ U

as desired. Therefore, since x + W ∈ U was arbitrary, U is open in V/W.
Hence q is a quotient map by the definition of a quotient map thereby yielding
the proof.
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Chapter 4

Hahn-Banach Theorems

With our introduction to topological vector spaces and, more importantly,
locally convex topological vector spaces complete, we can move on and obtain
more in-depth knowledge about these spaces and their properties. As such,
we will follow a similar pattern as we did for normed linear spaces; we will
examine the continuous linear maps between such spaces. In particular, we
will examine a specific collection of results pertaining to the continuous linear
maps on a locally convex topological vector space known as the Hahn-Banach
Theorems. These theorems are debatably the most important results in
elementary functional analysis.

The Hahn-Banach Theorems separate into two classes of theorems: ex-
tension and separation. As motivation for the Hahn-Banach Extension
Theorems, we note we still have questions relating to whether the canonical
embedding of a normed linear space X into its second dual is an isometry
(Remark 1.6.6) and whether the adjoint of a bounded linear map T between
normed linear spaces has the same norm as T (Remark 1.6.8). Both of
these questions can be answered via extending continuous linear function-
als. Indeed by Corollary 3.5.7 we know that every linear map on a finite
dimensional topological vector space is continuous so we can easily construct
continuous linear functionals on finite dimensional subspaces of locally convex
topological spaces. Being able to extend these linear functionals to the entire
space will enable us to solve these (and many other) questions.

The Hahn-Banach Separation Theorems are more geared towards the
geometric structures of locally convex topological vector spaces. Indeed the
goal of the Hahn-Banach Separation Theorems is when given two disjoint
sets to construct a continuous linear functional for which translates of the
kernel separates the two sets. As kernels of continuous linear functionals
are closed subspaces of co-dimension 1, we are effectively cutting our vector
space in half with one set on either side of our space. Such geometric results
are particularly useful for describing closed convex subsets of locally convex
topological vector spaces using linear functionals.

93



94 CHAPTER 4. HAHN-BANACH THEOREMS

We should also note that all authors use “the Hahn-Banach Theorem” to
denote one of these many theorems. We will do the same, but will always
provided a reference to the specific version of the theorem we are using.

4.1 Linear Functionals and Hyperplanes
Before we can attempt to prove our desired results in locally convex topo-
logical vector spaces, we must first retrace our steps and return to some
elementary linear algebra that is not generally done in undergraduate courses
as its uses are not seen until this point in pure mathematics. In particular,
this section will focus on (not necessarily continuous) linear functionals and
the subspaces their kernels define. We begin with the following.

Definition 4.1.1. Given a vector space V over K, a linear functional on V
is a linear map f : V → K. The set of all linear functionals on V is denoted
V♯ and is called the algebraic dual of V.

Given a topological vector space (V, T ) over K, a continuous linear
functional on V is a continuous linear map f : V → K. The set of all
continuous linear functionals on V is denoted V∗ and is called the (topological)
dual of V.

Clearly if V is a topological vector space, then V∗ ⊆ V♯. Whereas
Corollary 3.5.7 implies V∗ = V♯ if V is a finite dimensional topological vector
space, it is not surprising that V∗ ̸= V♯ is possible in the infinite dimensional
setting.

Example 4.1.2. Given an infinite dimensional normed linear space (X , ∥ · ∥),
X ∗ ̸= X ♯. To see this, fix a vector space basis {xλ}λ∈Λ. By scaling if necessary,
we may assume that ∥xλ∥ = 1 for all λ ∈ Λ. As Λ must be infinite, choose
distinct vectors {xn}n≥1 from {xλ}λ∈Λ. Define a linear map f : X → K by
defining f(xn) = n for all n ∈ N, f(x) = 0 for all x ∈ {xλ}λ∈Λ \{xn}n≥1, and
by extending the definition of f by linearity. As |f(xn)| ≥ n and ∥xn∥ = 1,
we see that f is unbounded.

Of course, any linear functional on a normed linear space that is not
bounded is not continuous and several examples of this were given in Section
1.4.

Of use in our theory will be the ability to reduce from the K = C case to
the K = R case. The first step of doing this is the following.

Definition 4.1.3. Let V be a vector space over C. Given f ∈ V♯, the real
and imaginary parts of f are the maps Re(f), Im(f) : V → R defined by

Re(f)(v⃗) = f(v⃗) + f(v⃗)
2 and Im(f)(v⃗) = f(v⃗) − f(v⃗)

2i
for all v⃗ ∈ V.
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Of course, the following is trivial to demonstrate.

Lemma 4.1.4. Let V be a vector space over C and let f ∈ V♯. Then
f = Re(f) + iIm(f) and Re(f), Im(f) : V → R are R-linear.

However, what we are after is the following way to take R-linear function-
als and produce C-linear functionals. In particular (3) deals with continuity
in the normed linear space setting whereas (2) deals with the continuity in
the locally convex topological vector space setting via Corollary 3.6.18 and
knowledge of seminorms.

Lemma 4.1.5. Let V be a vector space over C and let f : V → R be R-linear.
Then the following hold:

(1) If fC : V → C is defined by

fC(v⃗) = f(v⃗) − if(iv⃗)

for all v⃗ ∈ V, then fC is C-linear.

(2) If p is a C-seminorm on V, then |f(v⃗)| ≤ p(v⃗) for all v⃗ ∈ V if and only
if |fC(v⃗)| ≤ p(v⃗) for all v⃗ ∈ V.

(3) If V is a normed linear space, then fC is bounded if and only if f is
bounded. Moreover, if f is bounded, then ∥fC∥ = ∥f∥.

(4) If g : V → C is C-linear and Re(g) = f , then fC = g.

Proof. For (1), we first note that fC preserves addition since f and the scalar
multiplication are additive. To see that fC preserves C-scalar multiplication,
let a, b ∈ R and v⃗ ∈ V be arbitrary. Then, since f is R-linear,

fC((a+ bi)v⃗) = f((a+ bi)v⃗) − if(i(a+ bi)v⃗)
= f(av⃗) + f(ibv⃗) − if(iav⃗) − if(−bv⃗)
= af(v⃗) + bf(iv⃗) − aif(iv⃗) + bif(v⃗)
= (a+ bi)f(v⃗) − (a+ bi)if(iv⃗) = (a+ bi)fC(v⃗).

Hence, as a, b, and v⃗ were arbitrary, fC preserves C-scalar multiplication.
Hence fC is C-linear.

To see (2), note if |fC(v⃗)| ≤ p(v⃗) for all v⃗ ∈ V, then

|f(v⃗)| ≤
√

|f(v⃗)|2 + |if(iv⃗)|2 = |f(v⃗) − if(iv⃗)| = |fC(v⃗)| ≤ p(v⃗)

for all v⃗ ∈ R as f(v⃗), f(iv⃗) ∈ R. Conversely, suppose |f(v⃗)| ≤ p(v⃗) for all
v⃗ ∈ V. To see that |fC(v⃗)| ≤ p(v⃗) for all v⃗ ∈ V, fix v⃗ ∈ V and choose z ∈ C
such that |z| = 1 and zfC(v⃗) ∈ R with zfC(v⃗) ≥ 0. Thus

|fC(v⃗)| = zfC(v⃗) = fC(zv⃗) = f(zv⃗) − if(izv⃗).
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However, as f(zv⃗), f(izv⃗) ∈ R, we obtain that f(izv⃗) = 0 and

|fC(v⃗)| = f(zv⃗) = |f(zv⃗)| ≤ p(zv⃗) = |z|p(v⃗) = p(v⃗).

Therefore, as v⃗ ∈ V was arbitrary, (2) is complete.
To see (3), note for all M > 0 that the map v⃗ 7→ M ∥v⃗∥ is a seminorm

on V. Therefore, by (2) we see that |f(v⃗)| ≤ M ∥v⃗∥ for all v⃗ ∈ V if and only
if |fC(v⃗)| ≤ M ∥v⃗∥ for all v⃗ ∈ V. Hence (3) follows.

Finally, to see (4), note that Re(g) = f implies that

f(iv⃗) = Re(g)(iv⃗) = g(iv⃗) + g(iv⃗)
2

= ig(v⃗) + ig(v⃗)
2

= ig(v⃗) − ig(v⃗)
2

= −g(v⃗) − g(v⃗)
2i = −Im(g)(v⃗)

for all v⃗ ∈ V. Hence

fC(v⃗) = f(v⃗) − if(iv⃗) = Re(g)(v⃗) + iIm(g)(v⃗) = g

as desired.

The next ingredient we require pertaining to linear functionals are their
connections with the following objects.

Definition 4.1.6. Given a vector space V over K, a hyperplane in V is a
vector subspace W of V such that dim(V/W) = 1.

Remark 4.1.7. Clearly if f ∈ V♯ is non-zero, then ker(f) is a hyperplane
since if v⃗0 ∈ V and f(v⃗0) ̸= 0, then V/ ker(f) is spanned by v⃗0 +ker(f) which
is non-zero. Conversely, if W is a hyperplane in V, then the quotient map
q : V → V/W ∼= K is a linear functional with kernel equal to W.

In fact, given multiple linear functionals, much is known about the
intersection of their kernels.

Lemma 4.1.8. Let V be a vector space over K and let f1, . . . , fn ∈ V♯. If
W = ∩n

k=1 ker(fk), then dim(V/W) ≤ n.

Proof. We will proceed by induction on n. If n = 1, then W = ker(f1). If
f1 = 0 then W = V so V/W is the zero vector space and thus 0-dimensional.
Otherwise, choose any vector v⃗1 ∈ V such that f1(v⃗1) ̸= 0. It is elementary
to see that V = Kv⃗1 +W and hence V/W = span({v⃗1 +W}) is 1-dimensional.
Hence the base case has been demonstrated.
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To proceed by induction, suppose the result has been demonstrated
for n linear functionals and let f1, . . . , fn, fn+1 ∈ V♯ be arbitrary. Let
W = ∩n+1

k=1 ker(fk) and let W0 = ∩n
k=1 ker(fk). By the induction hypothesis,

dim(V/W0) ≤ n. Hence there exists v⃗1, . . . , v⃗n ∈ V such that

V/W0 = span({v⃗1 + W0, . . . , v⃗n + W0})

and hence
V = W0 + span({v⃗1, . . . , v⃗n}).

Let g = fn+1|W0 . Clearly g is linear and thus by the base case W0/ ker(g)
is at most one-dimensional. Thus there exists a v⃗n+1 ∈ W0 (possibly the
zero vector) such that W0/ ker(g) = span({v⃗n+1 + W0}). Hence W0 =
Kv⃗n+1 + ker(g) so

V = ker(g) + span({v⃗1, . . . , v⃗n, v⃗n+1}).

However, since
ker(g) = ker(fn+1) ∩ W0 = W

we obtain that
V = W + span({v⃗1, . . . , v⃗n, v⃗n+1}).

Thus {v⃗1 + W, . . . , v⃗n + W, v⃗n+1 + W} spans V/W and hence dim(V/W) ≤
n+ 1 thereby completing the inductive step.

Using Lemma 4.1.8 we can examine exactly when one linear functional is
in the span of other linear functionals based on the kernels.

Lemma 4.1.9. Let V be a vector space over K and let f, f1, f2, . . . , fn ∈ V♯.
Then

⋂n
k=1 ker(fk) ⊆ ker(f) if and only if f ∈ span({f1, . . . , fn}).

Proof. If f ∈ span({f1, . . . , fn}) then it is trivial to verify using definitions
that

⋂n
k=1 ker(fk) ⊆ ker(f).

To prove the converse, first note by the previous direction we may assume
without loss of generality that {f1, . . . , fn} are linearly independent (for
otherwise one is a linear combination of the others and can be removed
without modifying the intersection of the kernels). Let W = ∩n

k=1 ker(fk),
which is a vector subspace of V. For all k ∈ {1, . . . , n}, define f̃k ∈ (V/W)♯

by
f̃k(v⃗ + W) = fk(v⃗)

for all v⃗ ∈ V. It is necessary to note that f̃k is well-defined as if v⃗1 + W =
v⃗2 + W, then v⃗1 − v⃗2 ∈ W ⊆ ker(fk) so fk(v⃗1) = fk(v⃗2). Moreover, note
if q : V → V/W is the canonical quotient map, then fk = f̃k ◦ q for all
k ∈ {1, . . . , n}. Similarly, if f̃ ∈ (V/W)♯ is defined by

f̃(v⃗ + W) = f(v⃗)
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for all v⃗ ∈ V, then f̃ is well-defined since W ⊆ ker(f), and f = f̃ ◦ q.
Recall from Lemma 4.1.8 that dim(V/W) ≤ n. Hence dim((V/W)♯) ≤ n.

We claim that {f̃1, . . . , f̃n} is linearly independent and thus a basis for
(V/W)♯. To see this, suppose z1, . . . , zn ∈ K are such that

z1f̃1 + · · · + znf̃n = 0.

Hence, the definitions of f̃k implies that

z1f1(v⃗) + · · · + znfn(v⃗) = 0

for all v⃗ ∈ V. Therefore, since {f1, . . . , fn} are linearly independent, we
obtain that z1 = · · · = zn = 0. Hence {f̃1, . . . , f̃n} is linearly independent
and thus a basis for (V/W)♯.

Since f̃ ∈ (V/W)♯, there exists z1, . . . , zn ∈ K such that

f̃ = z1f̃1 + · · · + znf̃n.

By the definitions of f̃ and f̃k, this implies

f = z1f1 + · · · + znfn

so f ∈ span({f1, . . . , fn}) as desired.

The last ingredients we need pertaining to linear functionals are various
methods to know when they are continuous. In particular, the following is
the simplest method to verify a linear functional is continuous.

Proposition 4.1.10. Let (V, T ) be a topological vector space. If f ∈ V♯,
then f ∈ V∗ if and only if ker(f) is closed.

Proof. If f ∈ V∗, then ker(f) = f−1({0}) is closed as f is continuous and
{0} is a closed set.

Conversely, suppose f ∈ V♯ and W = ker(f) is closed. If f = 0, then
clearly f is continuous. If f ̸= 0, then note by Proposition 3.3.6 that V/W is
a topological vector space and the canonical quotient map q : V → V/W is
continuous. Moreover, since f ∈ V♯, we know that V/W is one-dimensional.

Recall if f̃ ∈ (V/W)♯ is defined by

f̃(v⃗ + W) = f(v⃗)

for all v⃗ ∈ V , then f̃ is well-defined and f = f̃ ◦q. Since q is continuous and f̃
is continuous by Corollary 3.5.7 as V/W is one-dimensional, f is continuous
being the composition of continuous functions.

Combining the following result, which is proved using elementary ideas,
with Proposition 4.1.10 tells us the behaviour of kernels of discontinuous
linear functionals.
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Proposition 4.1.11. If (V, T ) is a topological vector space and M ⊆ V is a
hyperplane, then either M is closed in V or M is dense in V.

Proof. If M is a hyperplane, then we know that M is a subspace of V such
that M ⊆ M ⊆ V. As dim(V/M) = 1, this implies either M = M (so M
is closed), or M = V (so M is dense in V).

Finally, we arrive at an analogue of ‘bounded linear functionals are
continuous’ for topological vector spaces.

Proposition 4.1.12. Let (V, T ) be a topological vector space and let f ∈ V♯.
If there exists a neighbourhood U of 0⃗ and a constant M such that Re(f(x)) ≤
M for all x ∈ U , then f is uniformly continuous.

Proof. By Lemma 3.1.7 there exists a balanced neighbourhood U0 of 0⃗
contained in U . Notice for any x ∈ U0 there exists an zx ∈ K with |zx| = 1
such that

|f(x)| = zxf(x) = f(zxx) = Re(f(zxx)).

However, since U0 is balanced, zxx ∈ U0 so this implies that |f(x)| ≤ M for
all x ∈ U0.

Define p : V → [0,∞) by

p(x) = |f(x)|

for all x ∈ V. Clearly p is a seminorm as f ∈ V♯. Hence, as p is bounded
on U0, Proposition 3.6.13 implies that p is uniformly continuous on V and
thus continuous by Proposition 3.4.8. As f (⃗0) = 0 = p(⃗0), this implies that
f is continuous at 0⃗ and thus Theorem 3.4.9 implies that f is uniformly
continuous.

4.2 Hahn-Banach Extension Theorems
With the preliminaries out of the way, we can proceed to show on locally
convex topological vector spaces that continuous linear functional on sub-
spaces can be extended to continuous linear functionals. This is accomplished
via Proposition 3.6.16 by showing linear functionals bounded by seminorms
extend to linear functionals bounded by seminorms. This is accomplished
by showing linear functionals bounded by sublinear functionals extend to
linear functionals bounded by sublinear functionals. This is simplified by
first looking at hyperplanes in the following result, which is purely algebraic
in nature.

Proposition 4.2.1. Let V be a vector space over R and let p : V → R be a
sublinear functional. Suppose W is a hyperplane of V and f : W → R is a
linear functional such that f(w⃗) ≤ p(w⃗) for all w⃗ ∈ W. Then there exists a
linear functional g : V → R such that g|W = f and g(v⃗) ≤ p(v⃗) for all v⃗ ∈ V.
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Proof. Fix v⃗0 ∈ V \ W . Since W is a hyperplane of V , we know for all v⃗ ∈ V
there exists a unique x ∈ R and a w⃗ ∈ W such that v⃗ = xv⃗0 + w⃗. Thus, by
linearity, it suffices to extend f to have a value on v⃗0.

To proceed, let us consider the collection of all elements h of V♯ such
that h|W = f . Indeed, by the above decomposition of elements of V, such h
are uniquely determined by their values on v⃗0. In particular, for each r ∈ R
there exists a unique hr ∈ V♯ such that hr(v⃗0) = r and hr|W = f ; that is,
hr : V → R defined by

hr(xv⃗0 + w⃗) = xr + f(w⃗)

for all x ∈ R and w⃗ ∈ W is a well-defined element of V♯. The question is, “is
there an element of {hr}r∈R that satisfy the conclusions of the proposition?”

To proceed, let us consider what is required of an hr to satisfy the con-
clusions of proposition. Indeed hr satisfies the conclusions of the proposition
if and only if for all x ∈ R and w⃗ ∈ W we have that

rx+ f(w⃗) ≤ p(xv⃗0 + w⃗).

Clearly this holds when x = 0 by the assumptions of the proposition. For
x ̸= 0, we obtain two equivalent inequalities based on the sign on x:

• if x > 0 then by using xw⃗ in place of w⃗, the above inequality is
equivalent to

r ≤ 1
x
p (xv⃗0 + xw⃗) − 1

x
f(xw⃗) = p(v⃗0 + w⃗) − f(w⃗)

for all w⃗ ∈ W.

• if x > 0 then by using −xw⃗ in place of w⃗, the above inequality is
equivalent to

r ≥ 1
x
p (xv⃗0 − xw⃗) − 1

x
f(−xw⃗) = f(w⃗) − p(−v⃗0 + w⃗)

for all w⃗ ∈ W (as p is sublinear so we can pull out −x).

Therefore, hr satisfies the conclusions of the proposition if and only if

f(w⃗1) − p(−v⃗0 + w⃗1) ≤ r ≤ p(v⃗0 + w⃗2) − f(w⃗2)

for all w⃗1, w⃗2 ∈ W. In particular, the above show that there exists an hr

that satisfies the conclusions of the proposition if and only if

sup({f(w⃗1) − p(−v⃗0 + w⃗1) | w⃗1 ∈ W})
≤ inf({p(v⃗0 + w⃗2) − f(w⃗2) | w⃗2 ∈ W})
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(in which case we can take r to be either the supremum, the infimum, or any
real number in-between).

To see that such an r exists, notice for all w⃗1, w⃗2 ∈ W that

f(w⃗1) + f(w⃗2) = f(w⃗1 + w⃗2) ≤ p(w⃗1 + w⃗2)
= p((−v⃗0 + w⃗1) + (v⃗0 + w⃗2))
≤ p(−v⃗0 + w⃗1) + p(v⃗0 + w⃗2)

which implies that

f(w⃗1) − p(−v⃗0 + w⃗1) ≤ p(v⃗0 + w⃗2) − f(w⃗2).

Hence the result follows.

Upgrading from hyperplanes to arbitrary subspaces is easily accomplished
with a maximality argument via Zorn’s Lemma.

Theorem 4.2.2 (Hahn-Banach Extension Theorem - Real Vector
Spaces). Let V be a vector space over R and let p : V → R be a sublinear
functional. Suppose W is a vector subspace of V and f : W → R is a linear
functional such that f(w⃗) ≤ p(w⃗) for all w⃗ ∈ W. Then there exists a linear
functional g : V → R such that g|W = f and g(v⃗) ≤ p(v⃗) for all v⃗ ∈ V.

Proof. Let

F =
{

(Y, h)
∣∣∣ Y is a vector subspace of V containing W,

h ∈ Y♯, h|W = f , and h(y⃗) ≤ p(y⃗) for all y⃗ ∈ Y

}
.

Note that (W, f) ∈ F so F ̸= ∅.
Define a relation ⪯ on F by setting (Y1, h1) ⪯ (Y2, h2) if and only if

Y1 ⊆ Y2 and h2|Y1 = h1. It is not difficult to see that ⪯ is a partial ordering
on F .

Let C = {(Yi, hi) | i ∈ I} for some ordered set I be a chain in F . It
is not difficult to verify that Y =

⋃
i∈I Yi is a subspace of V containing W

and if we define h ∈ Y♯ by h(y⃗) = hi(y⃗i) for all y⃗ ∈ Yi and i ∈ I, then h
is well-defined, (Y, h) ∈ F , and (Yi, hi) ⪯ (Y, h) for all i ∈ I. Hence every
chain in F has an upper bound.

By Zorn’s Lemma there exists a maximal element (W0, h0) of F . If
W0 ̸= V, fix v⃗0 ∈ V \ W0 and let V0 = Rv⃗0 + W0. As W0 is a hyperplane
in V0 by construction and p|V0 is a sublinear functional such that that
h0(w⃗) ≤ p|V0(w⃗) for all w⃗ ∈ W0, Proposition 4.2.1 implies there exists an
h ∈ V♯

0 such that (V0, h) ∈ F , (W0, h0) ̸= (V0, h), and (W0, h0) ⪯ (V0, h)
thereby contradicting the maximality of (W0, h0). Hence W0 = V and the
proof is complete.

To upgrade from sublinear functionals to seminorms is accomplished via
linearity in the K = R case and using the linear functionals from Lemma
4.1.5 in the K = C case.
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Theorem 4.2.3 (Hahn-Banach Extension Theorem - Seminorm).
Let V be a vector space over K and let p : V → R be a seminorm. Suppose
W is a vector subspace of V and f : W → K is a linear functional such
that |f(w⃗)| ≤ p(w⃗) for all w⃗ ∈ W. Then there exists a linear functional
g : V → K such that g|W = f and |g(v⃗)| ≤ p(v⃗) for all v⃗ ∈ V.

Proof. In the case that K = R, recall that every seminorm is a sublinear
functional. Therefore, as

f(w⃗) ≤ |f(w⃗)| ≤ p(w⃗)

for all w⃗ ∈ W , we obtain by Theorem 4.2.2 that there exists a linear functional
g : V → R such that g|W = f and g(v⃗) ≤ p(v⃗) for all v⃗ ∈ V. Since

−g(v⃗) = g(−v⃗) ≤ p(−v⃗) = p(v⃗)

as p is a seminorm, we obtain that |g(v⃗)| ≤ p(v⃗) for all v⃗ ∈ V as desired.
In the case that K = C, let f1 = Re(f). By Lemma 4.1.5 (using (2) and

(4)), this implies that f1 is a R-linear functional on W and f1(w⃗) ≤ p(w⃗) for
all w⃗ ∈ W. As every vector space over C is a vector space over R and the
restriction of a seminorm on a vector space over C to a vector space over R
remains a seminorm, we obtain by the K = R case that that there exists a
R-linear functional g0 : V → R such that g0|W = f1 and |g0(v⃗)| ≤ p(v⃗) for
all v⃗ ∈ V. Luckily, if g = (g0)C as in Lemma 4.1.5, then the same lemma
implies g is C-linear, that g|W = f , and that |g(v⃗)| ≤ p(v⃗) for all v⃗ ∈ V.

Upgrading to continuous linear functionals on locally convex topological
vector spaces is easily obtained via the connection between continuous linear
functionals and continuous seminorms from Proposition 3.6.16.

Theorem 4.2.4 (Hahn-Banach Extension Theorem - Continuous
Linear Functionals). Let (V, T ) be a locally convex topological vector space
and let W be a vector subspace of V. If f ∈ W∗, then there exists a g ∈ V∗

such that g|W = f .

Proof. Since (V, T ) is a locally convex topological vector space, there exists
a separating family of seminorms F on V that generate T by Theorem 3.6.15.
As W is equipped with the subspace topology from V , it is elementary based
on the definition from Theorem 3.2.10 to see that

FW = {p|W | p ∈ F}

is a separating family of seminorms on W that generate the subspace topology.
Since w⃗ 7→ |f(w⃗)| is a continuous seminorm on W as f ∈ W∗ and since

FW generates the topology on W, Proposition 3.6.16 implies there exists a
constant M and p1, . . . , pn ∈ F such that

|f(x)| ≤ M max({p1(x), . . . , pn(x)})
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for all x ∈ W. Since

x 7→ M max({p1(x), . . . , pn(x)})

is a seminorm on V, Theorem 4.2.3 implies that there exists a g ∈ V♯ such
that g|W = f and

|g(x)| ≤ M max({p1(x), . . . , pn(x)})

for all x ∈ V. As another application of Proposition 3.6.16 implies |g| is a
continuous seminorm on V and thus g ∈ V∗ by Corollary 3.6.18, the proof is
complete.

Finally, we return to the case of normed linear spaces with the additional
question on norm bounds present.

Theorem 4.2.5 (Hahn-Banach Extension Theorem - Bounded Linear
Functionals). Let (X , ∥ · ∥X ) be a normed linear space and let W be a closed
vector subspace of V. If f ∈ W∗, then there exists a g ∈ V∗ such that g|W = f
and ∥g∥ = ∥f∥.

Proof. Consider the map p : X → [0,∞) defined by

p(x) = ∥f∥ ∥x∥X

for x ∈ X . Clearly p is a seminorm on X such that |f(x)| ≤ p(x) for all
x ∈ W . Hence Theorem 4.2.3 implies there exists a g ∈ V♯ such that g|W = f
and |g(x)| ≤ p(x) = ∥f∥ ∥x∥X . This later inequality implies ∥g∥ ≤ ∥f∥
whereas g|M = f implies ∥g∥ ≥ ∥f∥ thereby completing the proof.

4.3 Corollaries of the Extension Theorems
There are many immediate corollaries of the Hahn-Banach Extension The-
orems from Section 4.2, which are also often called “the Hahn-Banach
Theorem”. As such, we will examine such corollaries in this section. We
begin with the implications for normed linear spaces by finally answering
the question posed in Remark 1.6.6.

Corollary 4.3.1. Let (X , ∥ · ∥) be a normed linear space and let x ∈ X .
Then

∥x∥ = max{|f(x)| | f ∈ X ∗, ∥f∥ = 1}.

Proof. Fix x ∈ X . Clearly the result holds when x = 0⃗ so suppose x ≠ 0⃗.
Since

|f(x)| ≤ ∥f∥ ∥x∥

for all f ∈ X ∗, we easily obtain that

∥x∥ ≤ sup{|f(x)| | f ∈ X ∗, ∥f∥ = 1}.
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Thus, to complete the proof, it suffices to show there exists an f ∈ X ∗ such
that ∥f∥ ≤ 1 and |f(x)| = ∥x∥.

Consider M = span({x}) which is a one-dimensional subspace of V.
Define f0 : M → K by

f0(αx) = α ∥x∥

for all α ∈ K. Clear f0 is linear and note for all α ∈ K that

|f0(αx)| = |α ∥x∥ | = |α| ∥x∥ = ∥αx∥

so f0 ∈ M∗ with ∥f0∥ = 1. Thus, by the Hahn-Banach Extension Theorem
(Theorem 4.2.5) implies there exists an f ∈ X ∗ such that f(x) = f0(x) = ∥x∥
and ∥f∥ = ∥f0∥ = 1, thereby completing the proof.

Corollary 4.3.2. Let (X , ∥ · ∥) be a normed linear space. The canonical
embedding J : X → X ∗∗ from Theorem 1.6.3 is isometric.

Proof. This immediately follows from Theorem 1.6.3, Remark 1.6.6, and
Corollary 4.3.1.

Along similar lines, we have our answer to the question posed in Remark
1.6.8.

Corollary 4.3.3. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces
and let T ∈ B(X ,Y). If T ∗ is the adjoint of T from Theorem 1.6.7, then
∥T ∗∥ = ∥T∥.

Proof. This immediately follows from Theorem 1.6.7, Remark 1.6.8, and
Corollary 4.3.1.

The above combined with the Uniform Boundedness Principle (Theorem
2.5.3) gives us another way to demonstrate if a subset of a Banach spaces is
bounded in a similar manner to Corollary 2.5.4.

Corollary 4.3.4. Let (X , ∥ · ∥) be a normed linear space and let A ⊆ X be
non-empty. Then A is bounded if and only if

sup({|f(a)| | a ∈ A}) < ∞

for all f ∈ X ∗.

Proof. First suppose that A is bounded. Thus there exists an M ∈ R such
that ∥a∥ ≤ M for all a ∈ A. Hence for all f ∈ X ∗

|f(a)| ≤ ∥f∥ ∥a∥ ≤ M ∥f∥

so
sup({|f(a)| | a ∈ A}) ≤ M ∥f∥ < ∞.
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Conversely, suppose that

sup({|f(a)| | a ∈ A}) < ∞

for all f ∈ X ∗. Recall for all a ∈ A the map â : X ∗ → K defined by

â(f) = f(a)

for all f ∈ X ∗ is a bounded linear map with ∥â∥ = ∥a∥ by Corollary 4.3.2.
Since the assumption of this direction of the proof implies that

sup({|â(f)| | a ∈ A}) < ∞

for all f ∈ X ∗, and since X ∗ is a Banach space, the Uniform Boundedness
Principle (Theorem 2.5.3) implies there exists an M ∈ R such that ∥â∥ ≤ M
for all a ∈ A. Hence∥a∥ ≤ M for all a ∈ A, so A is bounded.

Returning to the generality of locally convex topological vector spaces,
we can construct continuous linear functionals mapping any finite number of
vectors to any preselected scalars we choose. The reason we cannot do so
with a countable number of vectors and remain continuous is contained in
Example 4.1.2.

Corollary 4.3.5. Let (V, T ) be a locally convex topological vector space.
Given a finite linearly independent set {xk}n

k=1 and constants {αk}n
k=1 ⊆ K,

there exists a f ∈ V∗ such that f(xk) = αk for all k ∈ {1, . . . , n}.

Proof. Let W = span({x1, . . . , xn}) which is a finite dimensional vector
subspace of V. Since {xk}n

k=1 is linearly independent, elementary linear
algebra implies there exists an h ∈ W♯ such that h(xk) = αk for all k ∈
{1, . . . , n}. Since W is finite dimensional Corollary 3.5.7 implies that h ∈ W∗.
Hence the Hahn-Banach Theorem (Theorem 4.2.4) implies there exists an
f ∈ V∗ such that f |W = h and thus f(xk) = αk for all k ∈ {1, . . . , n} as
desired.

One use of Corollary 4.3.5 is to show that certain subspaces of locally
convex topological vector spaces behave in a similar way to subspaces in
finite dimensional inner product spaces as follows.

Definition 4.3.6. A closed subspace W of a topological vector space (V, T )
is said to be topologically complemented if there exists a closed subspace Y
of V such that V = W ⊕ Y; that is, W ∩ Y = {⃗0} and for all v⃗ ∈ V there
exists (unique) w⃗ ∈ W and y⃗ ∈ Y such that v⃗ = w⃗ + y⃗.

Of course, a Zorn’s Lemma maximality argument shows that if W is
a closed subspace of a topological vector space (V, T ), then there exists a
vector subspace Y of V such that V = W ⊕ Y. Of course, the ‘topological’
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portion of ‘topologically complemented’ is that Y is closed. It turns out
that not every closed subspace of a locally convex topological vector space
is topologically complemented. Indeed c0 as a subspace of ℓ∞(N) is one
such example, although the proof is difficult. However, having topologically
complemented subspaces is useful for a wide variety of applications. For
example, one can construct linear ‘projections’ onto each of the subspaces
via the quotient maps. Consequently, the following is perhaps not surprising.

Corollary 4.3.7. Every finite dimensional subspace of a locally convex
topological vector space is topologically complemented.

Proof. Let (V, T ) be a locally convex topological vector space and let W be
a finite dimensional subspace of V. Let {xk}n

k=1 be a vector space basis for
W . Thus Corollary 4.3.5 implies for all j ∈ {1, . . . , n} there exist an fj ∈ V∗

such that fj(xk) = δk,j where δk,j is the Kronecker delta; that is

δk,j =
{

1 if j = k

0 otherwise
.

Let Y =
⋂n

j=1 ker(fj), which is a closed subspace of V as fj ∈ V∗ for
all j ∈ {1, . . . , n}. Thus, to complete the proof, it suffices to show that
V = W ⊕ Y.

To see that W ∩ Y = {⃗0}, let x ∈ W ∩ Y be arbitrary. As x ∈ W, there
exists α1, . . . , αn ∈ K such that

x =
n∑

k=1
αkxk.

However, since x ∈ Y, we obtain that fj(x) = 0 so

0 = fj(x) = fj

(
n∑

k=1
αkxk

)
=

n∑
k=1

αkδk,j = αj

for all j ∈ {1, . . . , n}. Hence x = 0⃗ as desired.
To see that V = W+Y , let x ∈ V be arbitrary. For each j ∈ {1, . . . , n}, let

αj = fk(x). Clearly w =
∑n

k=1 αkxk ∈ W. Moreover, for all j ∈ {1, . . . , n}
we see that

fj(x− w) = fj(x) − fj(w) = αj −
n∑

k=1
αkδk,j = 0

and thus x − w ∈ Y. Hence there exists a y ∈ Y such that x − w = y so
x = w + y ∈ W + Y. Therefore, as x was arbitrary, V = W + Y thereby
completing the proof.
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Returning to examples of constructing specific continuous linear func-
tionals, we can further construct linear functionals that vanish on certain
subspaces and take a non-zero value on a vector outside of the subspace.

Corollary 4.3.8. Let (V, T ) be a locally convex topological vector space and
let W be a closed subspace of V. If x ∈ V \ W, then there exists a f ∈ V∗

such that f |W = 0 and f(x) ̸= 0.

Proof. Consider V/W, which is a locally convex topological vector space
by Proposition 3.3.6. Since x ∈ V \ W, x + W ̸= 0⃗ + W in V/W. Hence
Corollary 4.3.5 implies there exists a g ∈ (V/W)∗ such that g(x+ W) ̸= 0.

If q : V → V/W is the canonical quotient map, let f : V → K be defined
by f = g ◦ q. Clearly f ∈ V∗ be the composition of continuous linear maps.
Since f |W = 0 and f(x) = g(x + W) ̸= 0 by construction, the result is
complete.

Note one can improve Corollary 4.3.8 to multiple linearly independent
vectors outside in V/W via Corollary 4.3.5 provided the span of these vectors
has trivial intersection with W.

Corollary 4.3.8 allows us to revisit a family of seminorms from Chapter 3
we could not show were separating.

Example 4.3.9. Recall from Example 3.2.18 that given a normed linear
space (X , ∥ · ∥) we have a family F = {pf | f ∈ X ∗} of seminorms on X
where

pf (x) = |f(x)|

for all x ∈ X and f ∈ X ∗. By Corollary 4.3.8 F is a separating family of
seminorms on X . Note by Proposition 3.2.13 a net (xλ)λ∈Λ converges to
x ∈ X if and only if limλ∈Λ f(xλ) = f(x) for all f ∈ X ∗. This topology is
called the weak topology (weak because it is weaker than norm convergence).

Of course Example 4.3.9 can be extended to any locally convex topological
space, which will be the topic of the next chapter. For now, in the case of a
normed linear space, we also have control over the norms in Corollary 4.3.8.

Corollary 4.3.10. Let (X , ∥ · ∥) be a normed linear space, let Y be a closed
subspace of X , and let x ∈ X \ Y. If

d = dist(x,Y) = ∥x+ Y∥ ,

then there exists an f ∈ X ∗ such that ∥f∥ = 1, f |Y = 0, and f(x) = d.

Proof. Consider X/Y , which is a normed linear space by Theorem 1.3.3. By
Corollary 4.3.1 there exists a g ∈ (X/Y)∗ such that ∥g∥ = 1 and g(x+Y) = d.

If q : X → X/Y is the canonical quotient map, let f : X → K be defined
by f = g ◦ q. Clearly g ∈ X ∗ be the composition of continuous linear maps.
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Moreover f |Y = 0 and f(x) = g(x+ Y) = d by construction. As ∥q∥ ≤ 1, we
see that ∥f∥ ≤ ∥g∥ ∥q∥ ≤ 1. Thus, to complete the proof, it suffice to show
that ∥f∥ ≥ 1.

Since ∥g∥ = 1, there exists a sequence of vectors (xn)n≥1 in X such that
limn→∞ |g(xn + W)| = 1 and ∥xn + W∥ < 1 (note we can get strictly less
than one by scaling each vector by 1 − 1

n if necessary). By Theorem 1.3.3
there exists (wn)n≥1 in Q such that ∥xn + wn∥ < 1. Therefore, as

lim
n→∞

|f(xn + wn)| = lim
n→∞

|g(xn + W)| = 1

we obtain that ∥f∥ ≥ 1 thereby completing the proof.

Finally, we conclude with a description of every closed subspace of a
locally convex topological vector space via the kernels of continuous linear
maps.

Theorem 4.3.11. If (V, T ) is a locally convex topological vector space and
W is a vector subspace of V, then

W =
⋂

f∈V∗ and
W⊆ker(f)

ker(f).

Proof. First, suppose that f ∈ V∗ and W ⊆ ker(f). As ker(f) is closed, this
implies that W ⊆ ker(f). Hence

W ⊆
⋂

f∈V∗ and
W⊆ker(f)

ker(f).

For the reverse inclusion, let x ∈ V \ W be arbitrary. By Corollary 4.3.8
there exists an f ∈ V∗ such that f |W = 0 and f(x) ̸= 0. Hence W ⊆ ker(f)
but x /∈ ker(f). Therefore, as x was arbitrary, the proof is complete.

4.4 Hahn-Banach Separation Theorems
Theorem 4.3.11 demonstrates a connection between continuous linear func-
tionals and the geometry of locally convex topological vector spaces. Thus
the goal of this section is to demonstrate a different class of the Hahn-
Banach theorems that emphasize this connection further. This is done via
the following types of sets.

Definition 4.4.1. Let (V, T ) be a topological vector space over K. A open
half-space is any subset S of V of the form

S = {x ∈ V | Re(f(x)) > κ}

where f ∈ V∗ and κ ∈ R.
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Similarly, a closed half-space is any subset S of V of the form

S = {x ∈ V | Re(f(x)) ≥ κ}

where f ∈ V∗ and κ ∈ R.

Remark 4.4.2. It is not difficult to verify one can replace > with < and ≥
with ≤ in the definitions of open and closed half-spaces respectively since
f ∈ V∗ if and only if −f ∈ V∗. Moreover, as taking the real part of an open
(respectively closed) subset of K produces an open (respectively closed) subset
of R, we see that open (respectively closed) half-spaces are open (respectively
closed). Finally as if a, b ∈ R are such that a, b > κ (respectively ≥ κ)
then ta+ (1 − t)b > κ (respectively ≥ κ) for all t ∈ [0, 1], we see that open
(respectively closed) half-spaces are convex subsets.

Of course, the terminology is motivated by the following examples.

Example 4.4.3. For all a, b ∈ R, consider the R-linear map f : R2 → R
defined by

f((x, y)) = ax+ by

for all (x, y) ∈ R. Thus for all κ ∈ R, the set {(x, y) | f((x, y)) = κ} is a
line so

S = {(x, y) ∈ R2 | f((x, y)) > κ}

is the (half-)space on one side of the line.

Example 4.4.4. For all w ∈ C, consider the C-linear map f : C → C defined
by

f(z) = zw

for all z ∈ C. If w = a+ bi and z = x+ iy, then

Re(f(z)) = ax− by.

Thus, viewing C as R2, we see the set

S = {z ∈ C | Re(f(z)) > κ}

is the (half-)space on one side of a line.

As half-spaces are analogues of dividing a topological vector space in half,
we make the following definitions.

Definition 4.4.5. Let (V, T ) be a topological vector space. A subset A ⊆ V
is said to be an affine hyperplane (respectively affine vector subspace, affine
closed subspace) if A is a translate of a hyperplane (respectively vector
subspace, closed subspace); that is, there exists an x ∈ A such that A − x is
a hyperplane(respectively vector subspace, closed subspace).
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Definition 4.4.6. Let (V, T ) be a topological vector space over R. Two
subsets A,B ⊆ V are said to be separated if there exists closed half-planes
SA and SB of V such that A ⊆ SA, B ⊆ SB, and SA ∩ SB is a closed affine
hyperplane.

Similarly, two subsets A,B ⊆ V are said to be strictly separated if there
exists disjoint open half-planes SA and SB of V such that A ⊆ SA and
B ⊆ SB.

Remark 4.4.7. Clearly if two subsets A and B are separated by the closed
half-planes SA and SB, then there must exist an f ∈ V∗ and a κ ∈ R such
that

SA = {x ∈ V | Re(f(x)) ≥ κ} and SB = {x ∈ V | Re(f(x)) ≤ κ}.

Similarly, if two subsets A and B are strictly separated by the closed half-
planes SA and SB, then there must exist an f ∈ V∗ and a κ ∈ R such
that

SA = {x ∈ V | Re(f(x)) > κ}

and then SB can be replaced with {x ∈ V | Re(f(x)) < κ}.

Example 4.4.8. In R2, consider the sets

A =
{

(x, y)
∣∣∣∣x > 0, y ≥ 1

x

}
,

B =
{

(x, y)
∣∣∣∣x > 0, y ≤ − 1

x

}
,

C = {(x, 0) | x > 0}.

If
S1 = {(x, y) | y > 0} and S2 = {(x, y) | y < 0},

then A and B are strictly separated by S1 and S2 whereas A and C are
separated by S1 and S2. It can be verify that A and C cannot be strictly
separated.

Notice the sets described above are convex sets. Our first step to separate
such sets in any locally convex topological vector space is the following.

Proposition 4.4.9. Let (V, T ) be a locally convex topological vector space.
If U is a non-empty, open, convex subset of V that does not contain 0⃗, then
there exists a closed hyperplane W such that U ∩ W = ∅.

Proof. To proceed in the case that K = R, fix x0 ∈ U . Then C = x0 − U is
an open convex set containing 0⃗ such that x0 /∈ C (since 0⃗ /∈ G).

Consider the Minkowski functional pC , which is a sublinear functional by
Proposition 3.6.12. Since x0 /∈ C, we obtain that pC(x0) ≥ 1.
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Let M = span({x0}) and define f : M → R by f(αx0) = α for all α ∈ R.
Clearly f is linear. We claim that f(x) ≤ pC(x) for all x ∈ M. Indeed if
f(0) = 0 ≤ pC(x), if α > 0 then

f(αx0) = α ≤ αpC(x0) = pC(αx0),

and if α < 0 then
f(αx0) = α < 0 ≤ pC(αx0)

as desired. By the Hahn-Banach Extension Theorem (Theorem 4.2.2), there
exists a linear functional g : V → R such that g|M = f and g(x) ≤ pC(x) for
all x ∈ V.

Notice for all x ∈ C that

Re(g)(x) = g(x) ≤ pC(x) ≤ 1.

Hence Proposition 4.1.12 implies that g is uniformly continuous. Therefore
W = ker(g) is a hyperplane in V.

To complete the case K = R, suppose y ∈ U ∩ W . As y ∈ U , x0 − y ∈ C
so pC(x0 − y) < 1 and thus

g(x0) − g(y) = g(x0 − y) ≤ pC(x0 − y) < 1

Moreover, g(y) = 0 as y ∈ W so the above implies 1 = f(x0) = g(x0) < 1,
which is a clear contradiction. Hence U ∩ W = ∅ as desired.

In the case that K = C, recall that V is also a locally convex topolog-
ical vector space over R and thus the previous case implies there exists a
continuous non-zero R-linear functional g : V → R such that ker(g) ∩ U = ∅.

Let gC : V → C be as defined in Lemma 4.1.5; that is, gC(x) = g(x)−ig(ix)
for all x ∈ V. Then gC is C-linear so W = ker(gC) is a hyperplane in V. As
x ∈ ker(gC) if and only if x, ix ∈ ker(g), we see that

W = (ker(g)) ∩ (−i ker(g))

is the intersection of two closed subsets (as g is continuous) and thus W is a
closed hyperplane in V. Since

W ∩ U ⊆ ker(g) ∩ U = ∅,

the proof is complete.

Using this, we arrive at our first version of a Hahn-Banach Separation
Theorem. Note Example 4.4.8 shows why ‘open’ cannot be removed from
either set, and some basic thought about R2-geometry shows why ‘convex’
cannot be removed.
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Theorem 4.4.10 (Hahn-Banach Separation Theorem - Open in Real
Vector Spaces). Let (V, T ) be a locally convex topological vector space over
R. If A and B are non-empty, disjoint, open, convex subsets of V, then there
exists an f ∈ V∗ and a κ ∈ R such that

f(a) > κ > f(b)

for all a ∈ A and b ∈ B. In particular, A and B are strictly separated.

Proof. Let
C = A−B = {a− b | a ∈ A, b ∈ B}.

Clearly C ̸= ∅ as A and B are non-empty. Moreover, as A ∩B = ∅, we see
that 0⃗ /∈ C. Since C =

⋃
b∈B(−b) +A is a union of open sets since A is open,

we obtain that C is open. Finally, we claim that C is convex. To see this,
suppose t ∈ [0, 1] and c1, c2 ∈ C. Hence there exist a1, a2 ∈ A and b1, b2 ∈ B
such that c1 = a1 − b1 and c2 = a2 − b2. Since A and B are convex, we know
that ta1 + (1 − t)a2 ∈ A and tb1 + (1 − t)b2 ∈ B so

tc1 + (1 − t)c2 = (ta1 + (1 − t)a2) − (tb1 + (1 − t)b2) ∈ A−B.

Therefore, as c1, c2, and t were arbitrary, C is a non-empty, open, convex
subset of V that does not contain 0⃗.

By Proposition 4.4.9 there exists a closed hyperplane W in (V, T ) such
that C∩W = ∅. By Remark 4.1.7 there exists an f ∈ V♯ such that W = ker(f)
and thus f ∈ V∗ by Proposition 4.1.10.

Since f ∈ V∗ and C is convex, f(C) is a convex subset of R by Lemma
3.2.21. Moreover, since C ∩ W = C ∩ ker(f) = ∅, 0 /∈ f(C). Hence either
f(C) ⊆ (0,∞) or f(C) ⊆ (−∞, 0). By replacing f with −f if necessary, we
may assume that f(C) ⊆ (0,∞).

By the definition of C = A−B, we obtain that f(a) − f(b) > 0 for all
a ∈ A and b ∈ B. Hence there exists an κ ∈ R such that

sup({f(b) | b ∈ B}) ≤ κ ≤ inf({f(a) | a ∈ A}).

It remains only to show that f(b) < κ < f(a) for all b ∈ B and a ∈ A.
Recall V/W is a locally convex topological space by Proposition 3.3.6.

Moreover, since W = ker(f) is a hyperplane, V/W is one-dimensional. Let
x0 ∈ V be any vector such that f(x0) = 1. Hence x0 /∈ W so {x0 + W} is a
basis for V/W and the map T : V/W → R defined by

T (αx0 + W) = α

for all α ∈ R is a homeomorphism by Lemma 3.5.1.
Let q : V → V/W be the canonical quotient map. Notice for all x ∈ V

there exists a unique αx ∈ R such that q(x) = αxx0 + W and thus

f(x) = f(αxx0) = αx = T (q(x)).

©For use through and only available at pskoufra.info.yorku.ca.



4.4. HAHN-BANACH SEPARATION THEOREMS 113

Since q is an open map by Lemma 3.3.4, q(A) and q(B) are open subsets of
V/ ker(f). Therefore, since T is a homeomorphism, we obtain that f(A) =
T (q(A)) and f(B) = T (q(B)) are open subsets of R. Hence f(b) < κ < f(a)
for all b ∈ B and a ∈ A so if

SA = {x ∈ V | f(x) > κ} and SB = {x ∈ V | f(x) < κ},

then SA and SB are disjoint open half-spaces containing A and B respectively.
Hence A and B are strictly separated.

To deal with the complex case, we simply invoke our connection between
real and complex linear functionals.

Theorem 4.4.11 (Hahn-Banach Separation Theorem - Open in
Complex Vector Spaces). Let (V, T ) be a locally convex topological vector
space over C. If A and B are non-empty, disjoint, open, convex subsets of
V, then there exists an f ∈ V∗ and a κ ∈ R such that

Re(f(a)) > κ > Re(f(b))

for all a ∈ A and b ∈ B. In particular, A and B are strictly separated.

Proof. Recall (V, T ) can also be viewed as a locally convex topological vector
space over R. Hence by Theorem 4.4.10 there exists a continuous R-linear
functional g : V → R and a κ ∈ R such that

B ⊆ {x ∈ V | g(x) < κ} and A ⊆ {x ∈ V | g(x) > κ}.

By Lemma 4.1.5 and together with Corollary 3.6.18 implies there exists an
f ∈ V∗ such that Re(f) = g. Hence the result follows.

Of course, if we want to reduce the ‘strictly separated’ conclusion to just
‘separated’, we can prove the following.

Corollary 4.4.12. Let (V, T ) be a locally convex topological vector space. If
A and B are non-empty, disjoint, convex subsets of V such that A is open,
then there exists f ∈ V∗ and a κ ∈ R such that

A ⊆ {x ∈ V | Re(f(x)) > κ} and B ⊆ {x ∈ V | Re(f(x)) ≤ κ}.

Proof. As the only part where we required B to be open in the proof of
Theorem 4.4.10 was to deduce f(B) was open in order to obtain strict
separation, the result follows.

It turns out we can prove something stronger. Indeed, being able to
separate closed subsets of locally convex topological vector space will be
to functional analysis as being able to separate closed sets is to topology
(the topological concept known as a normal topology, which is vital in many
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essential results such as Urysohn’s Lemma). However, by Example 4.4.8 we
know it might be impossible to strictly separate closed sets. Luckily if at
least one set is compact, we do not have an issue. Again, considering R2, it
is not difficult to find examples where convexity is required.

Theorem 4.4.13 (Hahn-Banach Separation Theorem - Closed). Let
(V, T ) be a locally convex topological vector space. If A and B are non-empty,
disjoint, closed, convex subsets of V such that B is compact, then there exists
an f ∈ V∗ and α, β ∈ R such that

Re(f(a)) ≥ α > β ≥ Re(f(b))

for all a ∈ A and b ∈ B. In particular, A and B are strictly separated.

Proof. Our goal is to invoke the previous versions of the Hahn-Banach
Separation Theorem by constructing disjoint open convex sets containing A
and B. This will be accomplished using local convexity and the compactness
for B. In particular, it is not difficult to construct an open set containing B
that is disjoint from A. By ‘scaling back by a third’, we can construct the
open set around A.

Since V \A is an open set containing B, we have by Corollary 3.6.4 that
for each b ∈ B there exists a balanced, convex neighbourhood Ub of 0⃗ such
that b+ Ub ⊆ V \A. Since {

b+ 1
3Ub

∣∣∣∣ b ∈ B

}
is an open cover of B and since B is compact, there exists an n ∈ N and
b1, . . . , bn ∈ B such that

B ⊆
n⋃

k=1
bk + 1

3Ubk
.

Let U =
⋂n

k=1
1
3Ubk

, which is an intersection of balanced, convex neigh-
bourhoods of 0⃗ and thus a balanced, convex neighbourhood of 0⃗. Furthermore,
let

A0 = A+ U = {a+ u | a ∈ A, u ∈ U}
B0 = B + U = {b+ u | b ∈ A, u ∈ U}.

Clearly A ⊆ A0 and B ⊆ B0 since 0⃗ ∈ U . Thus A0 and B0 are non-empty
since A and B are non-empty. Moreover, since

A0 =
⋃

a∈A

a+ U and B0 =
⋃

b∈B

b+ U,

we have A0 and B0 are unions of open sets and thus open. Finally, we claim
that A0 and B0 are convex. To see this, let x1, x2 ∈ A0 and t ∈ [0, 1] be
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arbitrary. Hence there exists a1, a2 ∈ A and u1, u2 ∈ U such that x1 = a1 +u1
and x2 = a2 +u2. Therefore, since ta1 +(1− t)a2 ∈ A and tu1 +(1− t)u2 ∈ U
as A and U are convex, we obtain that

tx1 + (1 − t)x2 = (ta1 + (1 − t)a2) + (tu1 + (1 − t)u2) ∈ A+ U = A0.

Therefore, since x1, x2, and t were arbitrary, we obtain that A0 is convex. A
nearly identical argument shows that B0 is convex.

Finally, we claim that A0 and B0 are disjoint. To see this, suppose to the
contrary that A0 ∩B0 ≠ ∅. Hence, there exists a ∈ A, b ∈ B and u1, u2 ∈ U
such that a + u1 = b + u2. Since b ∈ B, the above construction yields a
k ∈ {1, . . . , n} such that b ∈ bk + 1

3Ubk
. Therefore,

a = b+ (u1 − u2) ∈
(
bk + 1

3Ubk

)
+
(1

3Ubk
− 1

3Ubk

)
since U ⊆ 1

3Ubk

= bk + 1
3Ubk

+ 1
3Ubk

+ 1
3Ubk

since Ubk
is balanced

= bk + Ubk
by Lemma 3.2.21 since Ubk

is convex.

However, this contradicts the fact that bk + Ubk
⊆ V \A. Hence A0 and B0

are disjoint.
Consequently, Theorem 4.4.10 when K = R and Theorem 4.4.11 when

K = C implies there exists an f ∈ V∗ and a α ∈ R such that

Re(f(a)) > α > Re(f(b))

for all a ∈ A0 and b ∈ B0. In particular, as A ⊆ A0 and B ⊆ B0, we obtain
that

Re(f(a)) > α > Re(f(b))

for all a ∈ A and b ∈ B. However, as B is compact, f(B) is a compact subset
of K so Re(f(B)) is a compact subset of R so if

β = sup({Re(f(b)) | b ∈ B}) ∈ R,

then
Re(f(a)) ≥ α > β ≥ Re(f(b))

for all a ∈ A and b ∈ B as desired.

To conclude this section, we will use Theorem 4.4.13 to describe all closed
convex subsets of a locally convex topological vector space via continuous
linear functionals as a generalization on how Theorem 4.3.11 described closed
subspaces via continuous linear functionals. This is done via the following
useful concept in functional analysis.

Definition 4.4.14. Let (V, T ) be a topological vector space and let A ⊆ V.
The closed convex hull of A, denoted conv(A), is the closure of the convex
hull of A.
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Corollary 4.4.15. Let (V, T ) be a locally convex topological vector space. If
A ⊆ V is non-empty, then conv(A) is the intersection of all closed half-spaces
that contain A.

Proof. Let

I = {S ⊆ V | A ⊆ S, S a closed half-space in V}.

As every S ∈ I is convex by Remark 4.4.2 and contains A, we easily obtain
that

conv(A) ⊆
⋂

S∈I
S

as the intersection of convex sets is convex and thus

conv(A) ⊆
⋂

S∈I
S

as the intersection of closed sets is closed.
To demonstrate the reverse inclusion, let x ∈ V \ conv(A) be arbitrary.

Since {x} and conv(A) are non-empty, disjoint, closed, convex subsets of
B such that {x} is compact, Theorem 4.4.13 implies there exists a closed
half-space S0 such that A ⊆ conv(A) ⊆ S0 and x /∈ S0. Hence S0 ∈ I so
x /∈

⋂
S∈I S. Therefore, as x was arbitrary, the proof is complete.

Corollary 4.4.16. Let V be a vector space and let T1 and T2 be topologies on
V such that (V, T1) and (V, T2) are locally convex topological vector spaces. If
(V, T1) and (V, T2) have the same continuous linear functionals, then (V, T1)
and (V, T2) have the same closed convex sets. Moreover, if A ⊆ V, then
conv(A)T1 = conv(A)T2.

Proof. This follows immediately from Corollary 4.4.15 do to the correspon-
dence between closed half-spaces and linear functionals.
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Chapter 5

Dual Space Topologies

As seen in the previous chapter, the Hahn-Banach Theorems have the
powerful ability to extend continuous linear functionals thereby answering
some of our earlier questions and can be used to separate specific subsets
via affine hyperplanes. Thus we desire to delve deeper into the functional
analytical aspects dual spaces produce.

First, we recall by Chapter 3 that any separating family of seminorms on
a vector space produces a locally convex topological vector space structure
and Example 3.2.18 combined with the Hahn-Banach Theorem (Corollary
4.3.5) produces a nice separating family of seminorms based on the dual space.
Thus our first goal of this chapter is to analyze such topologies induced by
and on dual spaces. In particular, we will be able to complete determine the
continuous linear functionals on such spaces.

Subsequently we will transition to proving three of the most fundamental
results in elementary functional analysis. First we will examine the Banach
Alaoglu Theorem(Theorem 5.3.4) which determines the closed unit ball is
actually compact with respect to a certain dual topology. This is quite
striking as Theorem 3.5.11 shows the only locally compact topological vector
spaces are finite dimensional (for which our result does not contradict as the
closed balls do not form a neighbourhood bases in this topology). This shows
such topologies are easier to handle and should have many commonalities
with finite dimensional spaces.

Subsequently, we will examine Goldstine’s Theorem (Theorem 5.4.1)
which shows the image of the canonical embedding is dense in a certain
topology we can place on the double dual. Finally, we end with the Krein-
Milman Theorem (Theorem 5.5.12) for which we can describe any non-empty
compact convex set via the points “on the boundary”.
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5.1 Weak and Weak∗ Topologies

To begin, we shall reintroduce the weak and weak∗ topologies in a more
general context. Basically, any separating family of linear functionals on a
space can be taken and a topology can be produced. Thus we introduce such
pairings as follows.

Definition 5.1.1. A dual pair consists of pair (V,L) where V is a vector
space over K and L ⊆ V♯ is a vector subspace that separates points.

Of course, if L ⊆ V♯ is just a set of linear functionals that separates
points, one can always take span(L) to construct a dual pair.

Remark 5.1.2. Notice if (V,L) is a dual pair, then for each f ∈ L we can
define a seminorm pf : V → [0,∞) by

pf (x) = |f(x)|

for all x ∈ V. The family F = {pf | f ∈ L} is a separating family
of seminorms on V and thus defines a topology T on V such that (V, T )
is a locally convex topological vector space by Theorem 3.2.10. Recall a
topological base for T is

B = {N(x, F, ϵ) | x ∈ V, ϵ > 0, F ⊆ F finite}

where
N(x, F, ϵ) = {y ∈ V | |f(y) − f(x)| < ϵ for all f ∈ F},

and, by Proposition 3.2.13, a net (xλ)λ∈Λ converges to x with respect to T
if and only if limn→∞ f(xλ) = f(x) for all f ∈ L.

Definition 5.1.3. Given a dual pair (V,L), the topology T on V from
Remark 5.1.2 is called the weak topology generated by L and is denoted by
σ(V,L).

The reason this topology is called “the weak topology” is that it is the
weakest topology on V for which the elements of L are continuous as the
following result demonstrates.

Theorem 5.1.4. If (V,L) is a dual pair, then

L = (V, σ(V,L))∗.

That is, L is exactly the collection of continuous linear functionals on V with
respect to the weak topology generated by L.
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Proof. As shown above, by Proposition 3.2.13 if a net (xλ)λ∈Λ converges to
x with respect to T then limn→∞ f(xλ) = f(x) for all f ∈ L. Thus every
element of L is a continuous linear functional so L ⊆ (V, σ(V,L))∗.

Conversely, suppose f ∈ (V, σ(V,L))∗. Hence x 7→ |f(x)| is a continuous
seminorm on (V, σ(V,L)). As the absolute values of elements of L is a family
of seminorms on V that generated σ(V,L), Proposition 3.6.16 implies there
exists an M > 0 and f1, . . . , fn ∈ L such that

|f(x)| ≤ M max({|f1(x)|, . . . , |fn(x)|})

for all x ∈ V. Thus
⋂n

k=1 ker(fk) ⊆ ker(f) so Lemma 4.1.9 implies that

f ∈ span({f1, . . . , fn}) ⊆ L.

Hence L = (V, σ(V,L))∗.

Of course, we can use the above to extend our notion of the weak topology
on a normed linear space to any locally convex topological vector space.

Example 5.1.5. Let (V, T ) be a locally convex topological vector space
and let L = V∗. Then (V,V∗) is a dual pair by Corollary 4.3.8 and thus
(V, σ(V,V∗)) is a locally convex topological vector space by Remark 5.1.2. As
this is the most common and important weak topology for a locally convex
topological vector space, opposed to calling σ(V,V∗) “the weak topology
generated by V∗” we refer to it as the weak topology on V.

Moreover, to simplify terminology, we say that a net (xλ)λ∈Λ weakly
converges to an x ∈ V if (xλ)λ∈Λ converges to x with respect to σ(V,V∗);
that is,

lim
λ∈Λ

f(xλ) = f(x)

for all f ∈ V∗. Notice if (xλ)λ∈Λ converges to x in (V, T ), then, by continuity,
for all f ∈ V∗ we have that

lim
λ∈Λ

f(xλ) = f(x)

and thus (xλ)λ∈Λ weakly converges to x. Thus the weak topology is indeed
weaker than the initial topology.

Finally, we note by Theorem 5.1.4 that the weakly continuous linear
functionals on V (that is, the elements of V♯ that are continuous with respect
to this topology) are exactly V∗.

To give some examples of how the weak topology behaves, we consider
the following.

Example 5.1.6. Given any finite dimensional vector space V and any sub-
space L ⊆ V♯ that separates points, we have that (V, σ(V,L)) is automatically
a locally convex topological vector space and thus must be (Kn, ∥ · ∥∞) in
disguise (where n = dim(V). That is, the weak and norm topologies coincide
on any finite dimensional normed linear space.
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Example 5.1.7. Consider p ∈ (1,∞). We claim that the weak topology
on ℓp(N) does not agree with the norm topology. To see this, consider the
sequence (en)n≥1 where en ∈ ℓp(N) is the sequence with a 1 in the nth

position and zeros everywhere else. Clearly en ∈ ℓp(N).
We claim that (en)n≥1 converges weakly to 0⃗. To see this, recall by

Theorem 1.5.4 that ℓp(N)∗ = ℓq(N) where q ∈ (1,∞) is such that 1
p + 1

q = 1
via the map Φ : ℓq(N) → ℓp(N)∗ where for all y⃗ = (yn)n≥1 ∈ ℓq(N) and
x⃗ = (xn)n≥1 ∈ ℓp(N) we have that

Φ(y⃗)(x⃗)) =
∞∑

n=1
xnyn.

Thus, for all y⃗ = (yn)n≥1 ∈ ℓq(N) and q ̸= ∞ we see that

Φ(y⃗)(en) = yn.

Hence, as y⃗ ∈ ℓq(N), we obtain that

lim
n→∞

Φ(y⃗)(en) = 0 = Φ(y⃗)(⃗0).

Thus (en)n≥1 converges weakly to 0⃗
As clearly (en)n≥1 does not converge to 0⃗ in norm as ∥en∥ = 1 for all

n ∈ N, we see that the weak and norm topologies on ℓp(N) disagree as they
have different convergent sequences.

Example 5.1.7 raises the question, “What about the weak topology ℓ1(N)?”
The following sequence of results will show that the norm topology is strictly
finer (meaning contains more open sets) than the weak topology, yet the
norm and weak topology have the same convergent sequences! This is one
of the most fundamental examples of why examining nets is required in
topology.

Proposition 5.1.8. The norm topology on ℓ1(N) is finer than the weak
topology on ℓ1(N).

Proof. To show that the norm topology is finer than the weak topology, it
suffices to show for any x⃗ ∈ ℓ1(N) and any weak neighbourhood V of x⃗ there
exists a norm neighbourhood U of x⃗ such that U ⊆ V . By Theorem 1.5.4
we know that ℓ1(N)∗ = ℓ∞(N) and by Theorem 3.2.10 it suffices to consider
the neighbourhoods

N(x⃗, {z⃗k}m
k=1, ϵ)

=
{

(yn)n≥1 ∈ ℓ1(N)
∣∣∣∣∣
∣∣∣∣∣

∞∑
n=1

(xn − yn)zk,n

∣∣∣∣∣ < ϵ for all k ∈ {1, . . . ,m}
}

of x⃗ where ϵ > 0 and z⃗k = (zk,n)n≥1 ∈ ℓ∞(R) for k ∈ {1, . . . ,m}.
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For ϵ and {z⃗k}m
k=1 as above, let

M = max{∥z⃗k∥∞ | k ∈ {1, . . . ,m}} > 0.

We claim that
B

(
x⃗,

ϵ

M + 1

)
⊆ N(x⃗, {z⃗k}m

k=1, ϵ).

Indeed if y = (yn)n≥1 ∈ B
(
x⃗, ϵ

M+1

)
, then

∞∑
n=1

|xn − yn| < ϵ

M + 1 .

Hence for all k ∈ {1, . . . ,m} we see that∣∣∣∣∣
∞∑

n=1
(xn − yn)zk,n

∣∣∣∣∣ ≤
∞∑

n=1
|xn − yn||zk,n| ≤

∞∑
n=1

|xn − yn|M <
ϵ

M + 1M < ϵ

so y⃗ ∈ N(x⃗, {z⃗k}m
k=1, ϵ). Thus the claim is complete so the norm topology is

finer than the weak topology.

Although we could use Theorem 5.4.6 together with the facts that
ℓ1(N)∗ = ℓ∞(N) and ℓ∞(N) is not separable to show that the weak topology
on ℓ1(N) is indeed not induced by a norm, there is a simpler proof of this
fact.

Proposition 5.1.9. The weak topology on ℓ1(N) is not a topology induced
by a norm. Hence the weak and norm topologies on ℓ1(N) differ.

Proof. Suppose the weak topology is induced by a norm ∥ · ∥w and let U
be the ∥ · ∥w-ball of radius 1 centred at the zero vector 0⃗. By the defi-
nition of the weak topology and by Theorem 1.5.4 there must exist an
m ∈ N, z⃗k = (zk,n)n≥1 ∈ ℓ∞(N) for k ∈ {1, . . . ,m}, and an ϵ > 0 such that
N (⃗0, {z⃗k}m

k=1, ϵ) ⊆ U .
For each k ∈ {1, . . . ,m} let

v⃗k = (zk,1, zk,2, . . . , zk,m+1) ∈ Km+1.

Then the set {v⃗k | k ∈ {1, . . . ,m}} is a set with m vectors in Km+1. Hence
there exists a non-zero vector v⃗ = (z1, z2, . . . , zm+1) ∈ Km+1 such that

0 = v⃗k · v⃗ =
m+1∑
j=1

zjzk,j

for all k ∈ {1, . . . ,m}.
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Since v⃗ ∈ Km+1 is non-zero, if we define xj = 0 if j > m + 1, then the
sequence x⃗ = (xn)n≥1 is a non-zero element of ℓ∞(N) such that for all t ∈ R

∞∑
n=1

txnzk,n = 0

for all k ∈ {1, . . . ,m}. Hence

tx⃗ ∈ N (⃗0, {z⃗k}m
k=1, ϵ) ⊆ U.

However, since U is the ∥ · ∥w-ball of radius 1 centred at the zero vector 0⃗,
tx⃗ ∈ U for all t ∈ R implies that |t| ∥x⃗∥ = ∥tx⃗∥ < 1 for all t ∈ R. However,
this is impossible as x⃗ ̸= 0⃗ so ∥x⃗∥ > 0. Thus we have a contradiction so Tw

cannot be induced by a norm.

Now onto the main result that the norm and weak topologies on ℓ1(N)
have the same convergent sequences.

Theorem 5.1.10. In ℓ1(N), a sequence (x⃗n)n≥1 converges to a point x⃗ in
the norm topology if and only if it converges in the weak topology.

Proof. Let (x⃗k)k≥1 be a sequence in ℓ1(N). By Proposition 5.1.8, we know
that if (x⃗n)n≥1 converges to a point x⃗ in the norm topology, then it converges
to the same point in the weak topology.

To see the converse, notice that (x⃗k)k≥1 converges to a vector x⃗ ∈ ℓ1(N)
in the norm topology if and only if limk→∞ ∥x⃗k − x⃗∥1 = 0 if and only if
the sequence (x⃗k − x⃗)k≥1 converges to 0⃗ in the norm topology. Similarly
(x⃗k)k≥1 converges to a vector x⃗ ∈ ℓ1(R) in the weak topology if and only if
the sequence (x⃗k − x⃗)k≥1 converges to 0⃗ in the weak topology. Thus we need
only consider sequences that converge to zero in the weak topology.

Let (x⃗k)k≥1 be a sequence of elements in ℓ1(N) that converges to 0⃗ in
the weak topology. To see that (x⃗k)k≥1 converges to 0⃗ in the norm topology,
suppose to the contrary that (x⃗k)k≥1 does not converge to 0⃗ in the norm
topology. Thus there exists an ϵ > 0 and a subsequence (x⃗kj

)j≥1 such that∥∥∥x⃗kj

∥∥∥
1

≥ ϵ for all j ∈ N. By replacing (x⃗k)k≥1 with (x⃗kj
)j≥1 if necessary, we

may assume that (x⃗k)k≥1 converges to 0⃗ in the weak topology and that there
exists an δ > 0 such that ∥x⃗k∥ ≥ δ for all k ∈ N.

Write x⃗k = (xk,n)n≥1 for all k ∈ N. We claim for each m ∈ N that
limk→∞ xk,m = 0. Indeed fix m ∈ N and let e⃗m = (em,n)n≥1 ∈ ℓ∞(N) where

em,n =
{

1 if n = m

0 otherwise
.

If Φ : ℓ∞(N) → ℓ1(N)∗ is the isomorphism from Theorem 1.5.4, then we know
that

0 = lim
k→∞

Φ(e⃗m)(x⃗k) = lim
k→∞

xk,m
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as desired.
Using the facts that ∥x⃗k∥ ≥ δ for all k ∈ N and that limk→∞ xk,m = 0 for

all m ∈ N, we will obtain a contradiction to the fact that (x⃗k)k≥1 converges
weakly to 0⃗ by constructing a subsequence that does not converge weakly
to 0⃗. Let k1 = 1 and let n1 ∈ N be such that

∑∞
j=n1+1 |xk1,j | < δ

6 , which is
possible since x⃗k1 ∈ ℓ1(N). As limk→∞ xk,m = 0 for all m ∈ N, there exists
a k2 > k1 such that

∑n1
j=1 |xk,j | < δ

6 for all k ≥ k2. Thus, as x⃗k2 ∈ ℓ1(R),
there exists an n2 > n1 such that

∑∞
j=n2+1 |xk2,j | < δ

6 . By repeating the
above construction inductively, we obtain increasing sequences (km)m≥1 and
(nm)m≥1 such that

∑nm−1
j=1 |xk,j | < δ

6 for all k ≥ km and
∑∞

j=nm+1 |xkm,j | < δ
6 .

Consider the subsequence (x⃗km)m≥1. As (x⃗k)k≥1 converges weakly to 0⃗,
(x⃗km)m≥1 converges weakly to 0⃗. Consider y⃗ = (yn)n≥1 ∈ ℓ∞(N) defined by

yn =
{

sgn(x1,n) if n ≤ n1

sgn(xkm,n) whenever nm−1 + 1 ≤ n ≤ nm

where

sgn(x) =

1 if x = 0
x

|x| if x ̸= 0
.

We claim that
x⃗km /∈ N

(
0⃗, y⃗, δ3

)
for all m ∈ N thereby contradicting the fact that (x⃗km)m≥1 converges weakly
to 0⃗. Indeed notice by construction that

δ ≤ ∥x⃗km∥1 =
nm−1∑
j=1

|xkm,j | +
nm∑

j=nm−1+1
|xkm,j | +

∞∑
j=nm+1

|xkm,j |

≤ δ

6 +
nm∑

j=nm−1+1
|xkm,j | + δ

6

so
nm∑

j=nm−1+1
|xkm,j | ≥ 2δ

3 .

However, notice that∣∣∣∣∣∣
∞∑

j=1
xkm,jyj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
nm−1∑
j=1

xkm,jyj +
nm∑

j=nm−1+1
|xkm,j | +

∞∑
j=nm+1

xkm,jyj

∣∣∣∣∣∣
≥

nm∑
j=nm−1+1

|xkm,j | −
nm−1∑
j=1

|xkm,j | −
∞∑

j=nm+1
|xkm,j |

≥ 2δ
3 − δ

6 − δ

6 = δ

3 .
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Hence x⃗km /∈ N
(
0⃗, y⃗, δ

3

)
for all m ∈ N thereby yielding a contradiction and

the proof.

As an immediate corollary, we have the following.

Corollary 5.1.11. The weak topology on ℓ1(N) is not metrizable.

Proof. As convergent sequences completely determine a metric topology, if
the weak topology on ℓ1(N) was metrizable, then Theorem 5.1.10 would imply
that the weak and norm topologies coincide, which contradicts Proposition
5.1.9.

To examine other examples of convergent sequences in weak topologies,
we note the following result which puts restrictions on the limits of a weakly
convergent sequence.

Proposition 5.1.12. Let (X , ∥ · ∥) be a normed linear space. If (xn)n≥1 is
a sequence in X that converges weakly to x ∈ X , then

• supn∈N ∥xn∥ < ∞, and

• ∥x∥ ≤ lim infn→∞ ∥xn∥.

Proof. Let (xn)n≥1 be a sequence in X that converges weakly to x ∈ X .
Hence f(x) = limn→∞ f(xn) for all f ∈ X ∗.

Consider the canonical embedding J : X → X ∗∗ defined by J (x) = x̂ as
defined in Theorem 1.6.3, which is an isometry by the Hahn-Banach Theorem
(Corollary 4.3.2). Since (xn)n≥1 converges weakly to x,

x̂(f) = f(x) = lim
n→∞

f(xn) = lim
n→∞

x̂n(f)

for all f ∈ X ∗. Thus the Uniform Boundedness Principle (Theorem 2.5.3)
applied to the Banach space X ∗∗ implies that (x̂n)n≥1 is a bounded sequence
so (xn)n≥1 is bounded. Moreover, since

|x̂(f)| = lim
n→∞

|x̂n(f)| ≤ lim inf
n→∞

∥x̂n∥ ∥f∥ = lim inf
n→∞

∥xn∥ ∥f∥

for all f ∈ X ∗, we easily obtain that

∥x∥ = ∥x̂∥ ≤ lim inf
n→∞

∥xn∥ .

The following useful example in functional analysis does require some
measure theory.

Corollary 5.1.13. Let X be a compact Hausdorff space. Then a sequence
(fn)n≥1 in C(X,K) converges weakly to f ∈ C(X,K) if and only if (fn)n≥1
is ∥ · ∥∞-bounded and converges to f pointwise.
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Proof. To begin, suppose (fn)n≥1 is a sequence in C(X,K) that converges
to f ∈ C(X,K) weakly. By Proposition 5.1.12 we obtain that (fn)n≥1 is
∥ · ∥∞-bounded. To see that (fn)n≥1 converges to f pointwise, notice for all
x ∈ X that the map δx : C(X,K) → K defined by

δx(g) = g(x)

for all g ∈ C(X,K) is a continuous linear functional. Therefore, since (fn)n≥1
converges to f weakly, we must have that

f(x) = δx(f) = lim
n→∞

δx(fn) = lim
n→∞

fn(x)

for all x ∈ X as desired.
Conversely, suppose (fn)n≥1 is ∥ · ∥∞-bounded and converges to f point-

wise. To see that (fn)n≥1 converges to f weakly, let T ∈ C(X,K)∗ be
arbitrary. By the Riesz-Markov Theorem (Theorem D.4.9) there exists a
K-valued, finite, regular, Borel measure µ on X such that

T (g) =
∫

X
g dµ

for all g ∈ C(X,K). Since µ is finite, since (fn)n≥1 is ∥ · ∥∞-bounded, and
since (fn)n≥1 converges to f pointwise, the Dominated Convergence Theorem
implies that

T (f) =
∫

X
f dµ = lim

n→∞

∫
X
fn dµ = lim

n→∞
T (fn).

Hence, as T ∈ C(X,K)∗ was arbitrary, (fn)n≥1 converges to f weakly.

With the above examples complete, it is useful to examine some properties
of the weak topology. To begin, we note that not only are the continuous
linear functionals weakly continuous, but all linear maps.

Lemma 5.1.14. Let (V, TV) and (W, TW) be locally convex topological vector
spaces. If T : V → W be a continuous linear map, then T is also continuous
when V and W are equipped with their weak topologies.

Proof. Let T : V → W be a continuous linear map. To see that T is
continuous when V and W are equipped with their weak topologies, let
(vλ)λ∈Λ be an arbitrary net in V that converges weakly to v ∈ V. To see
that (T (vλ))λ∈Λ converges weakly to T (v) thereby completing the proof,
let f ∈ W∗ be arbitrary. Since T is continuous, f ◦ T ∈ V∗. Since (vλ)λ∈Λ
converges weakly to v, f ◦T ∈ V∗ implies (f(T (vλ)))λ∈Λ converges to f(T (v)).
Therefore, as f ∈ W∗ was arbitrary, (T (vλ))λ∈Λ converges weakly to T (v).
Therefore, as (vλ)λ∈Λ was arbitrary, T is continuous when V and W are
equipped with their weak topologies.
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Perhaps what is particularly interesting about the weak topology is that
it has the same closed convex sets as the initial topology.

Theorem 5.1.15. Let (V, T ) be a locally convex topological vector space and
let C ⊆ V be convex. Then the closures of C in (V, T ) and in (V, σ(V,V∗))
coincide.

Proof. Recall that the closure of a set A is the smallest closed set containing
A. As C is convex, the closure of C in any topological vector space structure
is also convex by Lemma 3.2.21 and thus the smallest closed convex set
containing C. As (V, σ(V,V∗))∗ = V∗ by Theorem 5.1.4, we have that
(V, T ) and (V, σ(V,V∗)) are locally convex topological spaces with the same
continuous linear functionals. Hence Corollary 4.4.16 implies that (V, T ) and
(V, σ(V,V∗)) have the same closed convex sets and thus the closures of C
must coincide.

Corollary 5.1.16. Let (X , ∥ · ∥) be a normed linear space. If (xn)n≥1 is a
sequence in X that converges weakly to x ∈ X , then

x ∈ conv∥ · ∥({xn | n ∈ N}).

Proof. If (xn)n≥1 is a sequence in X that converges weakly to x ∈ X , then
clearly

x ∈ convweak({xn | n ∈ N}).

Hence x ∈ conv∥ · ∥({xn | n ∈ N}) by Theorem 5.1.15.

Of course, given a topological vector space (V, T ), we know that V∗ is
also a vector space that can be given the weak topology induced by V∗∗ as
the generalization of canonical embedding will separate points. However, we
can construct a (potentially) different and generally more useful topology to
turn V∗ into a locally convex topological vector space.

Example 5.1.17. Let (V, T ) be a topological vector space. Recall V∗ is a
vector space. For each x ∈ V, define x̂ : V∗ → K by

x̂(f) = f(x)

for all f ∈ V∗. Let V̂ = {x̂ | x ∈ V}, which clearly is a vector subspace of
(V∗)♯. Notice V̂ separates points since if f ∈ V∗ is such that x̂(f) = 0 for all
x ∈ V, then f = 0. Hence (V∗, V̂) is a dual pair and thus (V∗, σ(V∗, V̂)) is a
locally convex topological vector space by Remark 5.1.2. As this is the most
common and important weak topology on the dual of a topological vector
space, opposed to calling σ(V∗, V̂) “the weak topology generated by V̂” we
refer to it as the weak∗ topology on V∗ generated by V. In addition, as V̂ is
really V in disguise, by convention σ(V∗, V̂) is usually denoted σ(V∗,V).
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To further simplify terminology, we say that a net (fλ)λ∈Λ is weak∗

convergent to an f ∈ V∗ if (fλ)λ∈Λ converges to f with respect to σ(V∗,V);
that is,

lim
λ∈Λ

fλ(x) = f(x)

for all x ∈ V.
Finally, we note by Theorem 5.1.4 that the weak∗ continuous linear

functionals on V∗ (that is, the elements of V♯ that are continuous with
respect to this topology) are exactly V̂ = V.

It is useful to compare the examples of the weak topology given above
with the following examples of the weak∗ topology.

Example 5.1.18. Let V be a finite dimensional vector space. It is elementary
to verify that V♯ has the same dimension as V and thus is isomorphic to V.
Using this, the weak∗ topology turns V♯ into a locally convex topological
vector space, which then must be isomorphic to (Kn, ∥ · ∥∞) where n = dim(V)
by Theorem 3.5.2.

Example 5.1.19. Let p ∈ (1,∞) and consider ℓp(N). As ℓp(N) = ℓq(N)∗ by
Theorem 1.5.4 where q ∈ (1,∞) is such that 1

p + 1
q = 1, we see that there is

a weak∗ topology on ℓp(N) induced by ℓq(N). However, again by Theorem
1.5.4, we know that ℓp(N)∗ = ℓq(N). Therefore, as Remark 1.6.4 shows that
ℓq(N) is reflexive in that the canonical embedding J : ℓq(N) → ℓq(N)∗∗ is the
identity map, we see that the weak and weak∗ topologies on ℓp(N) coincide.

Example 5.1.20. Consider ℓ1(N). Recall from Theorem 1.5.7 that c∗
0 =

ℓ1(N). However, recall from Theorem 1.5.8 that c∗ = ℓ1(N). Thus there are
two potentially different weak∗ topologies that can be placed on ℓ1(N) as a
priori c0 and c are not isomorphic.

We claim that these two weak∗ topologies differ. To see this, for each
n ∈ N let e⃗n be the sequence with a 1 in the nth entry and zeros everywhere
else. Clearly e⃗n ∈ ℓ1(N) for all n ∈ N. We claim that (e⃗n)n≥1 converges
weak∗ to 0⃗ with respect to c0. Indeed, if Φ : c0 → ℓ1(N)∗ is as defined in
Theorem 1.5.7, then for all z⃗ = (zn)n≥1 ∈ c0 we see that

lim
n→∞

Φ(z⃗)(e⃗n) = lim
n→∞

zn = 0 = Φ(z⃗)(⃗0)

so (e⃗n)n≥1 converges weak∗ to 0⃗ with respect to c0. However, (e⃗n)n≥1 does
not converges weak∗ to 0⃗ with respect to c. Indeed if Φ : c → ℓ1(N)∗ is as
defined in Theorem 1.5.8, then z⃗ = (1)n≥1 ∈ c we see that

lim
n→∞

Φ(z⃗)(e⃗n) = lim
n→∞

1 = 1 ̸= 0 = Φ(z⃗)(⃗0).

Note this does not prove c and c0 are not isometrically isomorphic. Indeed
it is elementary to show that if c and c0 are isomorphic then c∗ and c∗

0 are also
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isomorphic. However, the composition of the isomorphisms from Theorem
1.5.7 and Theorem 1.5.8 may not yield the identity map on ℓ1(N) and thus
the above many not yield a contradiction. We note it is true that c and c0
are isomorphic but not isometrically isomorphic, but wait until Corollary
5.5.14.

Example 5.1.20 is why we do not refer to “the weak∗ topology” on a
dual space; that is, to be precise, we always need to refer to the space we
are taking the dual of and not just the dual space. To be formal, if a dual
space has many of the following objects, then there are many possible weak∗

topologies.

Definition 5.1.21. Let V be a vector space. A (continuous) predual of V is
any topological vector space (W, T ) such that W∗ = V as vector spaces.

Example 5.1.22. Let (X, T ) be a compact Hausdorff topological space and
let V denote the vector space of all K-valued, finite, regular, Borel measures
on X. By the Riesz-Markov Theorem (Theorem D.4.9), we obtain that
C(X,K)∗ = V. Thus if V is equipped with the weak∗ topology with respect
to this vector space isomorphism, we see that a net (µλ)λ∈Λ in V converges
weak∗ to µ ∈ V if and only if

lim
λ∈Λ

∫
X
f dµλ =

∫
X
f dµ

for all f ∈ C(X,K).

As with the weak topology, weak∗ convergent sequences have some nice
properties.

Lemma 5.1.23. Let (X , ∥ · ∥) be a normed linear space. If (fn)n≥1 is a
sequence in X ∗ that is weak∗ convergent to f ∈ X ∗, then

• supn∈N ∥fn∥ < ∞, and

• ∥f∥ ≤ lim infn→∞ ∥fn∥.

Proof. Suppose (fn)n≥1 is a sequence in X ∗ that weak∗ converges to f ∈ X ∗.
Hence

f(x) = lim
n→∞

fn(x)

for all x ∈ X . Thus supn∈N ∥fn∥ < ∞ by the Uniform Boundedness Principle
(Theorem 2.5.3). Moreover, since

|f(x)| = lim
n→∞

|fn(x)| ≤ lim inf
n→∞

∥fn∥ ∥x∥

for all x ∈ X , it follows that ∥f∥ ≤ lim infn→∞ ∥fn∥.
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5.2 Quotients and Dual Spaces
With the above constructed topologies, we can now answer a fundamental
question: What do the dual space of a quotient of topological vector spaces
and the quotient of a dual space of a topological vector space look like? The
answer to both of these is apparent when the weak∗-topology is used and
are based around the following object.

Definition 5.2.1. Let (V, T ) be a topological vector space. The annihilator
of a subset A of V is the set

A⊥ = {f ∈ V∗ | f(a) = 0 for all a ∈ A}.

It is elementary to see that the annihilator of a subset of a topological
vector space is automatically a weak∗-closed subspace of the dual space.
Using annihilators, we can describe the dual of a quotient space.

Theorem 5.2.2. Let (V, T ) be a locally convex topological vector space, let
W be a closed subspace of V, and let q : V → V/W be the canonical quotient
map. Define Θ : (V/W)∗ → W⊥ by

Θ(f) = f ◦ q

for all f ∈ (V/W)∗. Then Θ is a well-defined bijective linear map. Further-
more, if (V/W)∗ is equipped with the weak∗-topology induced by V/W and
W⊥ is equipped with the subspace weak∗-topology induced by V, then Θ is a
homeomorphism. Finally in the case that V is a normed linear space, Θ is
an isometry.

Proof. Clearly if f ∈ (V/W)∗, then (f ◦ q)(w) = 0 for all w ∈ W and
f ◦ q ∈ V∗ as the composition of continuous linear maps is continuous. Thus
Θ(f) ∈ W⊥ for all f ∈ (V/W)∗ so Θ is well-defined. It is elementary to
verify that Θ is linear.

To see that Θ is injective, suppose f1, f2 ∈ (V/W)∗ are such that Θ(f1) =
Θ(f2). Hence f1 ◦ q = f2 ◦ q so

f1(v + W) = f1(q(v)) = f2(q(v)) = f2(v + W)

for all v ∈ V so f1 = f2. Hence Θ is injective.
To see that Θ is surjective, let g ∈ W⊥ be arbitrary. Define g̃ : V/W → K

by
g̃(v + W) = g(v)

for all v ∈ V. Since g ∈ W⊥ so g(w) = 0 for all w ∈ W, we see that g̃ is
well-defined. Furthermore, clearly g̃ is linear since g is linear and g = g̃ ◦ q.
To see that g̃ ∈ (V/W)∗ and thus Θ(g̃) = g, notice that

q−1({v + W | |g̃(v +W )| < 1}) = {x ∈ V | |g(x)| < 1}
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since W ⊆ ker(g). Since {x ∈ V | |g(x)| < 1} is open as g ∈ V∗ and since q
is an open mapping by Lemma 3.3.4, we obtain that

{v + W | |g̃(v +W )| < 1}

is open in V/W. Hence Proposition 4.1.12 implies that g̃ ∈ (V/W)∗. Thus
Θ is surjective and thus bijective.

To see that Θ is a homeomorphism with respect to the designated topolo-
gies, let (fλ)λ∈Λ be a net in (V/W)∗ and let f ∈ (V/W)∗. Then (fλ)λ∈Λ
weak∗ converges to f if and only if (fλ(v+ W))λ∈Λ converges to f(v+ W) for
all v ∈ V if and only if (Θ(fλ)(v))λ∈Λ converges to Θ(f)(v) for all v ∈ V if and
only if (Θ(fλ))λ∈Λ weak∗ converges to Θ(f). Hence Θ is a homeomorphism.

Finally, suppose V is a normed linear space and let f ∈ (V/W)∗ be
arbitrary. Notice that

∥Θ(f)∥ = ∥f ◦ q∥ ≤ ∥f∥ ∥q∥ = ∥f∥ .

For the reverse inequality, let ϵ > 0 be arbitrary. By the definition of the
operator norm, there exists a v + W ∈ V/W such that ∥v + W∥ < 1 and
|f(v + W)| > ∥f∥ − ϵ. By the definition of the quotient norm there exists a
w ∈ W such that ∥v + w∥ < 1 and thus

|Θ(f)(v + w)| = |f(v + W)| > ∥f∥ − ϵ.

Since ∥v + w∥ < 1, this implies ∥Θ(f)∥ > ∥f∥ − ϵ. Therefore, as ϵ > 0 was
arbitrary, ∥Θ(f)∥ = ∥f∥. Hence, as f ∈ (V/W)∗ was arbitrary, Θ is an
isometry.

In a similar vein, we have the following.

Theorem 5.2.3. Let (V, T ) be a locally convex topological vector space and
let W be a closed subspace of V. Define Θ : V∗/W⊥ → W∗ by

Θ(f + W⊥) = f |W

for all f ∈ V∗. Then Θ is a well-defined bijective linear map. Furthermore,
if V∗/W⊥ is equipped with the quotient topology when V∗ is equipped the
weak∗-topology induced by V and W∗ is equipped with the weak∗-topology
induced by W, then Θ is a homeomorphism. Finally in the case that V is a
normed linear space, Θ is an isometry.

Proof. Clearly if f ∈ V∗, then f |W is a continuous linear functional on W.
To see that Θ is well-defined, suppose f1 + W⊥, f2 + W⊥ ∈ V∗/W⊥ are such
that f1 + W⊥ = f2 + W⊥. Hence f1 − f2 ∈ W⊥ so (f1 − f2)(w) = 0 for all
w ∈ W and thus f1|W = f2|W . Thus Θ is well-defined. It is elementary to
verify that Θ is linear.
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To see that Θ is injective, suppose f1 + W⊥, f2 + W⊥ ∈ V∗/W⊥ are
such that Θ(f1) = Θ(f2). Hence f1(w) = f2(w) for all w ∈ W. Thus
(f1 − f2)(w) = 0 for all w ∈ W so f1 − f2 ∈ W⊥. Hence f1 + W⊥ = f2 + W⊥

so Θ is injective.
To see that Θ is surjective, let g ∈ W∗ be arbitrary. By the Hahn-Banach

Theorem (Theorem 4.2.4) there exists an f ∈ V∗ such that f |W = g. Hence
Θ(f + W⊥) = g. Therefore, since g was arbitrary, Θ is surjective and thus
bijective.

To see that Θ is a homeomorphism with respect to the designated topolo-
gies, let q : V∗ → V∗/W⊥ denote the canonical quotient map and let
r : V∗ → W∗ denote the restriction map. Thus r = Θ ◦ q. Note r is
weak∗-weak∗ continuous, and q is weak∗-quotient continuous by construction.

To see that the above implies Θ is continuous, we repeat the proof of
Theorem A.7.20 for convenience. Let U ⊆ W∗ be open in the weak∗ topology.
Hence

r−1(U) = q−1(Θ−1(U))

is open. However, since q is an open map by the definition of the quotient
topology, we obtain that Θ−1(U) is open. Therefore, as U was arbitrary, Θ
is continuous.

To see that Θ−1 is continuous, recall by the definition of the weak∗

topology and the characterization of the seminorms on a quotient of a locally
convex topological vector space from Proposition 3.6.19 that if for all x ∈ V
we define p̃x : V∗/W⊥ → [0,∞) by

p̃x(f + W⊥) = inf({|(f + g)(x)| | g ∈ W⊥})

for all f ∈ V∗, then the topology on V∗/W⊥ is generated by {p̃x | x ∈ V}.
We claim that if x /∈ W, then p̃x = 0. To see this, suppose x /∈ W and

let f ∈ V∗ be arbitrary. Let L = span({x}). Thus L ∩ W = ∅. As L is finite
dimensional and W is closed, L + W is a closed subspace of V by Corollary
3.5.6 and L and W are topological complements of each other in L + W.
Thus, if we define g : L + W → K by

g(αx+ w) = f(w)

for all α ∈ K and w ∈ W, then g is a well-defined linear map. Moreover,
since

ker(g) = L + (ker(f) ∩ W),

we obtain that ker(g) is closed by Corollary 3.5.6. Therefore g ∈ (L + W)∗.
Hence the Hahn-Banach Theorem (Theorem 4.2.4) implies there exists an
h ∈ V∗ such that h|L+W = g. Since h|W = g|W = f , we have that f−h ∈ W⊥

so
0 ≤ p̃x(f + W⊥) = p̃x(h+ W⊥) ≤ |h(x)| = 0.

Therefore, as f was arbitrary, p̃x = 0.
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Returning to showing Θ−1 is continuous, suppose (fλ + W⊥)λ∈Λ is a net
in V∗/W⊥ such that (Θ(fλ + W⊥))λ∈Λ converges weak∗ to Θ(f + W⊥) for
some f ∈ V∗. To see that (fλ + W⊥)λ∈Λ converges weak∗ to f + W⊥, let
x ∈ V be arbitrary. If x /∈ W, then

p̃x(fλ + W⊥) = 0 = p̃x(f + W⊥)

for all λ ∈ Λ. However, if x ∈ W, then the fact that (Θ(fλ + W⊥))λ∈Λ
converges weak∗ to Θ(f + W⊥) implies that

lim
λ∈Λ

p̃x(fλ + W⊥) = lim
λ∈Λ

fλ(x) = f(x) = p̃x(f + W⊥).

Therefore, since {p̃x | x ∈ V} is a separating family of seminorms that
generate the weak∗ topology on V/W⊥, Proposition 3.2.13 implies that (fλ +
W⊥)λ∈Λ converges weak∗ to f+W⊥ as desired. Hence Θ is a homeomorphism.

Finally, suppose V is a normed linear space and let f + W⊥ ∈ V∗/W⊥

be arbitrary. If
∥∥∥f + W⊥

∥∥∥ < 1, then there exists a g ∈ W⊥ such that
∥f + g∥ < 1. Thus∥∥∥Θ(f + W⊥)

∥∥∥ = ∥f |W∥ = ∥(f + g)|W∥ ≤ ∥f + g∥ < 1.

Therefore, since f + W⊥ was arbitrary, ∥Θ∥ ≤ 1. Hence
∥∥∥Θ(f + W⊥)

∥∥∥ ≤∥∥∥f + W⊥
∥∥∥ for all f + W⊥ ∈ V∗/W⊥.

For the other inclusion, notice let f ∈ W⊥ be arbitrary. By the Hahn-
Banach Theorem (Theorem 4.2.5), there exists a g ∈ V∗ such that ∥g∥ = ∥f∥
and g|W = f . As this later condition implies that g − f ∈ W⊥, we obtain
that ∥∥∥Θ−1(f)

∥∥∥ =
∥∥∥f + W⊥

∥∥∥ =
∥∥∥g + W⊥

∥∥∥ ≤ ∥g∥ = ∥f∥ .

Hence, as f ∈ W⊥ was arbitrary and Θ was a bijection, Θ is an isometry.

5.3 The Banach-Alaoglu Theorem
One nice property of any weak∗ topology is that it is characterized by
convergence of functions at points. As this is very similar to the convergence
in the product topology, Tychonoff’s Theorem (Theorem 5.3.2) enables us to
prove the Banach-Alaoglu (Theorem 5.3.4) which shows that the norm closed
unit ball of any normed linear space is weak∗-compact. This is quite useful
in that any net in the closed unit ball has a weak∗ly convergent subnet.

In order to prove the Banach-Alaoglu (Theorem 5.3.4), we recall the
proof of Tychonoff’s Theorem (Theorem 5.3.2) via the following lemma.

Lemma 5.3.1. Let (X, T ) be a topological space and let F ⊆ P(X) be a
non-empty collection of sets with the finite intersection property. Then there
exists an M ⊆ P(X) such that
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(1) F ⊆ M,

(2) M has the finite intersection property,

(3) if F ∈ P(X) \ M, then M ∪ {F} does not have the finite intersection
property,

(4) if {Fk}n
k=1 ⊆ M for some n ∈ N, then

⋂n
k=1 Fk ∈ M, and

(5) if Y ⊆ X and Y ∩M ̸= ∅ for all M ∈ M, then Y ∈ M.

Proof. Let

C = {S ⊆ P(X) | F ⊆ S and S has the finite intersection property}.

Clearly C ≠ ∅ since F ⊆ C. For S1,S2 ∈ C, define S1 ⪯ S2 if and only if
S1 ⊆ S2. Clearly (C,⪯) is a partially ordered set.

We claim that every chain in (C,⪯) has an upper bound. To see this,
suppose that {Sα}α∈I is a chain in (C,⪯). Let

S =
⋃
α∈I

Sα.

We claim that S ∈ C from which it trivially follows that S is an upper bound
for {Sα}α∈I . To see that S ∈ C, first notice since F ⊆ Sα for all α ∈ I that
F ⊆ S by construction. To see that S has the finite intersection property,
suppose that n ∈ N and S1, S2, . . . , Sn ∈ S. By the properties of a chain,
there exists an α0 ∈ I such that Sk ∈ Sα0 for all k ∈ {1, . . . , n}. Therefore,
since Sα0 has the finite intersection property as Sα0 ∈ C, we obtain that⋂n

k=1 Sk ̸= ∅. Therefore, as n ∈ N and S1, . . . , Sn ∈ S were arbitrary, S has
the finite intersection property and thus S ∈ C.

Since (C,⪯) is a non-empty partially ordered set such that every chain
has an upper bound, Zorn’s Lemma implies that there exists an M ∈ C such
that if S ∈ C and M ⪯ S, then S = M (i.e. M is maximal in (C,⪯)). We
claim that M has the desired properties. Indeed F ⊆ M and M has the
finite intersection property since M ∈ C. Thus (1) and (2) hold.

To see that (3) holds, let F ∈ P(X) \ M be arbitrary. If M0 = M ∪ {F}
had the finite intersection property, then since F ⊆ M ⊆ M0 we would
have that M0 ∈ C, M0 ̸= M as F ∈ M0 \ M, and M ⪯ M0 thereby
contradicting the maximality of M. Therefore (3) holds.

To see that (4) holds, let n ∈ N and {Fk}n
k=1 ⊆ M be arbitrary. If

F =
⋂n

k=1 Fk, then clearly M ∪ {F} has the finite intersection property
since M has the finite intersection property. Thus (3) implies that F ∈ M.
Therefore, as n ∈ N and {Fk}n

k=1 ⊆ M were arbitrary, (4) follows.
Finally, to see that (5) holds, suppose Y ⊆ X is such that Y ∩M ≠ ∅ for

all M ∈ M. Therefore (4) implies that for all n ∈ N and {Fk}n
k=1 ⊆ M that

Y ∩ (
⋂n

k=1 Fk) ̸= ∅. Thus M ∪ {Y } has the finite intersection property so
(3) implies that Y ∈ M as desired.
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Theorem 5.3.2 (Tychonoff’s Theorem). Let {(Xα, Tα)}α∈I be com-
pact topological spaces. Then

∏
α∈I Xα is a compact topological space when

equipped with the product topology.

Proof. Let X =
∏

α∈I Xα and let T denote the product topology on X. To
see that (X, T ) is compact, we will apply Theorem A.9.2 and verify that any
set of closed subsets of (X, T ) with finite intersection property has non-empty
intersection.

Let F be an arbitrary set of closed subsets of (X, T ) with the finite
intersection property. Let M be a set with the finite intersection property
containing F as created via Lemma 5.3.1. Since⋂

F ∈F
F ⊇

⋂
A∈M

A,

it suffices to show that
⋂

A∈MA ̸= ∅.
For each α ∈ I, let πα : X → Xα be the projection map from X to Xα

from Example A.6.5. Since M has the finite intersection property, it is clear
that

{πα(A) | A ∈ M}
has the finite intersection property in (Xα, Tα) so{

πα(A) | A ∈ M
}

is a collection of closed sets in (Xα, Tα) with the finite intersection property.
Therefore, since (Xα, Tα) is compact, Theorem A.9.2 implies for all α ∈ I
there exists an xα ∈ Xα such that

xα ∈
⋂

A∈M
πα(A).

Let x = (xα)α∈I ∈ X. We claim that x ∈
⋂

A∈MA thereby completing
the proof that

⋂
A∈MA ̸= ∅.

To begin, let α0 ∈ I and U ∈ Tα0 be such that xα0 ∈ U . Since xα0 ∈
πα0(A) for all A ∈ M, Theorem A.5.21 implies that πα0(A) ∩ U ̸= ∅ for all
A ∈ M. Hence A ∩ π−1

α0 (U) ̸= ∅ for all A ∈ M. Therefore, the properties of
M from Lemma 5.3.1 imply that π−1

α0 (U) ∈ M for all α0 ∈ I and U ∈ Tα0

such that xα0 ∈ U .
Since M is closed under finite intersections from Lemma 5.3.1,{ ⋂

α∈J

π−1
α (Uα)

∣∣∣∣∣ J⊆I finite and
Uα a Tα-neighbourhood of xα for all α∈J

}

is both contained in M and is a neighbourhood basis of x in (X, T ). Therefore,
as M has the finite intersection property, every element of M has non-empty
intersection with each element of a neighbourhood basis of x. Hence Theorem
A.5.21 implies that x ∈ A for all A ∈ M. Thus x ∈

⋂
A∈MA thereby

completing the proof.
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Of course, the proof of Tychonoff’s Theorem (Theorem 5.3.2) relies on
Zorn’s Lemma and it is well-known that Zorn’s Lemma is equivalent to the
Axiom of Choice). It is perhaps surprising that Tychonoff’s Theorem is
equivalent to the Axiom of Choice. The proof that Tychonoff’s Theorem
implies the Axiom of Choice is as follows.

Theorem 5.3.3. Suppose that Tychonoff’s Theorem holds; that is, the
product of compact topological spaces is compact when equipped with the
product topology. Then for any non-empty set I and any set {Xα}α∈I of
non-empty sets, the product

∏
α∈I Xα is non-empty.

Proof. Let I be an non-empty set and let {Xα}α∈I be a set of non-empty
sets. For each α ∈ I, let Yα = Xα ∪ {∞α} for some symbol ∞α and let
Y =

∏
α∈I Yα. We note that Y is automatically non-empty without the use

of the Axiom of Choice. Indeed we already know for all α ∈ I that ∞α ∈ Yα;
that is, we do not need to choose an element of Yα for each α ∈ I as we
already know (i.e. have assigned) an element of Yα for each α ∈ I. Hence
the element ∞ = (∞α)α∈I is an element of Y without the use of the Axiom
of Choice.

For each α ∈ I, let Tα = {∅, Yα, Xα, {∞α}}. Clearly Tα is a topology
on Yα. Furthermore, since Tα only has a finite number of sets, every Tα-
open cover of Yα has a finite subcover (namely the original open cover) so
(Yα, Tα) is compact. Hence Tychonoff’s Theorem implies that Y =

∏
α∈I Yα

is compact when equipped with the product topology.
For each α0 ∈ I, let

Uα0 =
∏
α∈I

Uα0,α

where

Uα0,α =
{
Yα if α ̸= α0

{∞α} if α = α0
.

Again, the construction of Uα0 does not require the Axiom of Choice since
we do not need to choose an element of Tα for each α ∈ I as we already
know an element of Tα for each α ∈ I. Clearly Uα0 is open in the product
topology on Y by definition.

We claim that U = {Uα}α∈I cannot cover Y . To see this, suppose to the
contrary that U is an open cover of Y . Since Y is compact, there exists a
finite subset J ⊆ I such that Y =

⋃
α∈J Uα. For each α ∈ J , choose xα ∈ Xα.

Note this does not require the Axiom of Choice since J is finite. For each
α ∈ I \ J , let xα = ∞α. Again, this does not require the Axiom of Choice.
Thus x = (xα)α∈I ∈ Y by definition. However x /∈

⋃
α∈J Uα by construction

since xα /∈ {∞α} for all α ∈ J . Hence we have a contradiction so U is not a
cover of Y .

Since U is not a cover of Y , there must exist an element y = (yα)α∈I ∈ Y
such that y /∈ Uα for all α ∈ I. Then, by the definition of Uα, we see that
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yα /∈ {∞α} for all α ∈ I. Hence yα ∈ Xα for all α ∈ I so that y ∈
∏

α∈I Xα.
Hence Tychonoff’s Theorem implies the Axiom of Choice.

Theorem 5.3.4 (The Banach-Alaoglu Theorem). Let (V, T ) be a topo-
logical vector space and let U ∈ T be a neighbourhood of 0⃗. Then the set

U◦ =
{
f ∈ V∗

∣∣∣∣∣ sup
x∈U

|f(x)| ≤ 1
}

(which is often called the polar of U) is compact with respect to the weak∗

topology σ(V∗,V).
Consequently, for any normed linear space (X , ∥ · ∥), the closed unit ball

of X ∗ is weak∗-compact.

Proof. Clearly if U is the closed unit ball in a normed linear space (X , ∥ · ∥),
then U◦ is the closed unit ball of X ∗ by definition. Thus it suffices to prove
the first statement.

For each x ∈ V we note since U is a neighbourhood of 0⃗ and thus absorbing
by Lemma 3.1.10 that there exists an rx ∈ (0,∞) such that x ∈ rxU . For
each x ∈ V, let

Kx = {z ∈ K | |z| ≤ rx}.

Clearly each Kx is a compact subset of K being closed and bounded and thus
K =

∏
x∈V Kx equipped with the product topology is compact by Tychnoff’s

Theorem.
For each f ∈ U◦ and x ∈ V, we know that there exists a ux ∈ U such

that x = rxux and thus

|f(x)| = |rxf(ux)| = rx|f(ux)| ≤ rx

so f(x) ∈ Kx. Therefore, the map Φ : U◦ → K defined by

Φ(f) = (f(x))x∈V

for all f ∈ U◦ is a well-defined map.
We claim that Φ is a weak∗-homeomorphism onto Φ(U◦). To see this, we

first note that Φ is clearly injective. Next let (fλ)λ∈Λ be an arbitrary net in
U◦ and let f ∈ U◦. Then (fλ)λ∈Λ converges to f weak∗ if and only if

lim
λ∈Λ

Φ(fλ)(x) = lim
λ∈Λ

fλ(x) = f(x) = Φ(f)(x)

for all x ∈ V, if and only if (Φ(fλ))λ∈Λ converges entrywise to Φ(f) if and
only if (Φ(fλ))λ∈Λ converges to Φ(f) in K (see Theorem A.4.22). Hence
Φ is a weak∗-homeomorphism onto Φ(U◦). Therefore, to show that U◦ is
weak∗-compact, it suffices to show that Φ(U◦) is a closed subset of K (as
closed subsets of compact spaces are compact).
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To see that Φ(U◦) is closed, let (fλ)λ∈Λ be an arbitrary net in U◦ such
that (Φ(fλ))λ∈Λ converges to f ∈ K. Hence f : V → K. To see that f ∈ V♯,
let x1, x2 ∈ V and α ∈ K be arbitrary. Since (Φ(fλ))λ∈Λ converges to f in
K, we know that (fλ)λ∈Λ converges to f pointwise so

f(αx1 + x2) = lim
λ∈Λ

fλ(αx1 + x2)

= lim
λ∈Λ

αfλ(x1) + fλ(x2)

= αf(x1) + f(x2).

Therefore, as v⃗1, v⃗2 ∈ V and α ∈ K were arbitrary, f ∈ V♯.
Since f(x) ∈ Kx for all x ∈ V, we know that |f(x)| ≤ 1 for all x ∈ U

and thus we will have f ∈ U◦ provided f ∈ V∗. However since the seminorm
x 7→ |f(x)| is bounded on U and thus continuous by Proposition 3.6.13 we
obtain that f ∈ V∗ so f ∈ U◦. Therefore, since (fλ)λ∈Λ was arbitrary Φ(U◦)
is a closed subset of K thereby completing the proof.

Of course, there are some clear corollaries of the Banach-Alaoglu Theorem
(Theorem 5.3.4).

Corollary 5.3.5. Let (X , ∥ · ∥) be a normed linear space and let A ⊆ X ∗. If
A is bounded and weak∗-closed, then A is weak∗-compact.

Proof. By the Banach-Alaoglu Theorem (Theorem 5.3.4), the unit ball of X ∗

is weak∗-compact. Hence, since X ∗ is a (locally convex) topological vector
space so scalar multiplication and translation are homeomorphisms, every
closed ball is weak∗-compact. Since every bounded subset of X ∗ is contained
in a closed ball of X ∗ and since every weak∗-closed subset of a weak∗-compact
set is weak∗-compact, the result follows.

Corollary 5.3.6. Every normed space (X , ∥ · ∥) is isometrically isomorphic
to a vector subspace of (C(X,K), ∥ · ∥∞) for some compact Hausdorff space
X. Moreover, if (X , ∥ · ∥) then the corresponding vector space is closed.

Proof. Let (X , ∥ · ∥) be a normed linear space and let X = X ∗
1 equipped with

the weak∗ topology. By the Banach-Alaoglu Theorem (Theorem 5.3.4), X is
a compact Hausdorff space.

Recall that the canonical embedding J : X → X ∗∗ defined by J (x) = x̂
for all x ∈ X where

x̂(f) = f(x)

for all f ∈ X ∗ is an isometric isomorphism. Hence Φ : X → C(X,K) defined
by

Φ(x) = x̂|X

for all x ∈ X is a well-defined contractive linear map.
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To see that Φ is isometric, let x ∈ X be arbitrary. By the Hahn-Banach
Theorem (Corollary 4.3.1) there exists an f ∈ X ∗

1 such that |f(x)| = ∥x∥.
Hence |Φ(x)(f)| = ∥x∥ so ∥Φ(f)∥∞ ≥ ∥x∥. Therefore, as x was arbitrary
and Φ was contractive, Φ is isometric.

Finally, if (X , ∥ · ∥) is a Banach space, then X is complete so Φ(X ) is also
complete and thus closed in C(X,K).

5.4 Goldstine’s Theorem
As the Banach-Alaoglu demonstrates the closed unit ball of the dual of any
normed linear space is weak∗-compact, a further examination of such closed
unit balls in the weak∗ topology is meritted. In particular, we will prove the
following theorem related to the weak∗ topology on the double dual induced
by the dual. In that which follows, given a normed linear space (X , ∥ · ∥) we
will use X1 to denote the closed unit all of X for convenience.

Theorem 5.4.1 (Goldstine’s Theorem). Let (X , ∥ · ∥) be a normed linear
space. If X ∗∗ is equipped with the weak∗-topology induced by X ∗ and J :
X → X ∗∗ is the canonical embedding, then J (X1) is weak∗-dense in X ∗∗

1 .
Hence J (X ) is weak∗-dense in X ∗∗.

Proof. Clearly the fact that J (X ) is weak∗-dense in X ∗∗ will follow from the
fact that J (X1) is weak∗-dense in X ∗∗

1 . To see that J (X1) is weak∗-dense in
X ∗∗

1 , note since J is a isometric linear map that J (X1) is a balanced convex
subset of X ∗∗

1 . Hence J (X1)w∗
is a weak∗-closed, balanced, convex subset of

X ∗∗.
Suppose there exists an f0 ∈ X ∗∗

1 \ J (X1)w∗
. As {f0} is weak∗-compact,

the Hahn-Banach Theorem (Theorem 4.4.13) implies there exists a weak∗-
continuous linear functional g : X ∗∗ → K and a, b ∈ R such that

Re(g(f0)) ≥ a > b ≥ sup
({

Re(g(f)) | f ∈ J (X1)w∗})
.

Note since J (X1)w∗
is balanced that

sup
({

Re(g(f)) | f ∈ J (X1)w∗})
= sup

({
|g(f)| | f ∈ J (X1)w∗})

.

Moreover, since g ∈ (X ∗∗, σ(X ∗∗,X ∗))∗ = X ∗ (by Theorem 5.1.4), there
exists a g0 ∈ X ∗ such that g = ĝ0. Hence we obtain that

Re(f0(g0)) ≥ a > b ≥ sup
({

|f(g0)| | f ∈ J (X1)w∗})
.

However, notice that

sup
({

|f(g0)| | f ∈ J (X1)w∗})
≥ sup ({|x̂(g0)| | x ∈ X1})

= sup ({|g0(x))| | x ∈ X1})
= ∥g0∥
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whereas
Re(f0(g0)) ≤ |f0(g0)| ≤ ∥f0∥ ∥g0∥ ≤ ∥g0∥

so that
∥g0∥ ≥ a > b ≥ ∥g0∥ ,

which is a clear contradiction. Hence X ∗∗
1 \ J (X1)w∗

must be empty so the
result follows.

Goldstine’s Theorem (Theorem 5.4.1) has several theoretical applications
that relate properties of a space and properties induced by a dual topology.

Proposition 5.4.2. Let (X , ∥ · ∥) be a normed linear space. Then X is
reflective if and only if X1 is weakly compact.

Proof. Suppose X is reflective. Hence the canonical embedding J : X → X ∗∗

is an isometric isomorphism. Since the weak topology on X1 is equal to
the weak∗-topology on J (X1) = X ∗∗

1 , and since X ∗∗
1 is weak∗-compact by

the Banach-Alaoglu Theorem (Theorem 5.3.4), it follows that X1 is weakly
compact.

Conversely, suppose X1 is weakly compact. To see that X is reflexive,
consider the canonical embedding J : X → X ∗∗. Since the weak topology on
X1 is equal to the weak∗-topology on J (X1), it follows that J is a weak-weak∗

homeomorphism onto is range so J (X1) is weak∗-compact. Thus, as the
weak∗-topology on X ∗∗ is Hausdorff, J (X1) is weak∗-closed. However, since
J is contractive and since J (X1) is dense in X∗∗

1 by Goldstine’s Theorem
(Theorem 5.4.1), it follows that J (X1) = X ∗∗

1 . Hence J (X ) = X ∗∗ so X is
reflexive.

Theorem 5.4.3. If (X , ∥ · ∥) is a normed linear space, then X ∗
1 is weak∗-

metrizable if and only if X is separable.

Proof. Suppose that X is separable. Hence there exists a set {xn}∞
n=1 ⊆ X

that is dense in X . Define d : X ∗
1 × X ∗

1 → [0,∞) by

d(f, g) =
∞∑

n=1

|f(xn) − g(xn)|
2n+1(∥xn∥ + 1)

for all f, g ∈ X ∗
1 . Clearly d(f, g) ≥ 0 for all f, g ∈ X ∗

1 and since

|f(xn) − g(xn)| ≤ ∥f − g∥ ∥xn∥ ≤ ∥xn∥ ,

it follows that d(f, g) ≤ 1.
We claim that d is a metric on X ∗

1 the induces the weak∗-topology. To see
that d is a metric, clearly d(f, f) = 0 for all f ∈ X ∗

1 . Next, suppose f, g ∈ X ∗
1

are such that d(f, g) = 0. Hence f(xn) = g(xn) for all n ∈ N. Therefore,
since f and g are continuous and {xn}∞

n=1 is dense in X , it follows that
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f(x) = g(x) for all x ∈ X . Hence f = g. As it is clear that d(f, g) = d(g, f)
for all f, g ∈ X ∗

1 and the triangle inequality holds, d is a metric on X ∗
1 .

To see that the metric topology on X ∗
1 induced by d agrees with the

weak∗-topology, suppose that (fλ)λ∈Λ is a net in X ∗
1 that weak∗-converges

to f ∈ X ∗
1 . To see that (fλ)λ∈Λ converges to f with respect to d, let ϵ > 0.

Choose N ∈ N such that
∞∑

n=N+1

1
2n

<
ϵ

2

and note for all λ ∈ Λ that
∞∑

n=N+1

|fλ(xn) − f(xn)|
2n+1(∥xn∥ + 1) ≤

∞∑
n=N+1

2 ∥xn∥
2n+1(∥xn∥ + 1) <

ϵ

2

by the above computations. Next, note for each n ∈ {1, . . . , N} that since
(fλ(xn))λ∈Λ converges to f(xn) there exists an λn ∈ Λ such that

|fλ(xn) − f(xn)|
2n+1(∥xn∥ + 1) <

ϵ

2N

for all λ ≥ λn. Let λ0 = max({λ1, . . . , λn}). Thus for all λ ≥ λ0 we have
that

d(fλ, f) =
∞∑

n=1

|fλ(xn) − f(xn)|
2n+1(∥xn∥ + 1)

≤ ϵ

2 +
N∑

n=1

|fλ(xn) − f(xn)|
2n+1(∥xn∥ + 1)

<
ϵ

2 +N
ϵ

2N = ϵ.

Therefore, as ϵ > 0 was arbitrary, we obtain that (fλ)λ∈Λ converges to f
with respect to d.

Conversely, suppose (fλ)λ∈Λ is a net in X ∗
1 that converges to f with

respect to d. To see that (fλ)λ∈Λ weak∗-converges to f , let x ∈ X and ϵ > 0
be arbitrary. Since {xn}∞

n=1 is dense in X , there exists an n ∈ N such that
∥x− xn∥ < ϵ

3 . Moreover, since

|fλ(xn) − f(xn)| ≤ 2n+1(∥xn∥ + 1)d(fλ, f)

so limλ∈Λ fλ(xn) = f(xn), it follows that there exists an λ0 ∈ Λ such that
|fλ(xn) − f(xn)| < ϵ

3 for all λ ≥ λ0. Hence for all λ ≥ λ0

|fλ(x) − f(x)| ≤ |fλ(x) − fλ(xn)| + |fλ(xn) − f(xn)| + |f(xn) − f(x)|

≤ ∥fλ∥ ∥x− xn∥ + ϵ

3 + ∥f∥ ∥xn − x∥

≤ ϵ

3 + ϵ

3 + ϵ

3 = ϵ.

©For use through and only available at pskoufra.info.yorku.ca.



5.4. GOLDSTINE’S THEOREM 141

Therefore, as x and ϵ were arbitrary, (fλ)λ∈Λ weak∗-converges to f . Hence
the weak∗-topology on X ∗

1 is metrizable.
Conversely, suppose the weak∗-topology on X ∗

1 is metrizable. Thus, as
the open balls of radius 1

n centred at 0⃗ have intersection {⃗0}, there is a
sequence (Un)n≥1 of weak∗-open sets in X ∗

1 such that
⋂∞

n=1 Un = {⃗0}. Recall
for each Un there exists an ϵn > 0 and a finite subset Fn ⊆ X such that

{f ∈ X ∗
1 | |f(x)| < ϵn for all x ∈ Fn} = N (⃗0, Fn, ϵn) ⊆ Un.

Hence
⋂∞

n=1N (⃗0, Fn, ϵn) = {⃗0}.
Let A =

⋃∞
n=1 Fn. By the above, if f ∈ X ∗

1 and f(x) = 0 for all x ∈ A,
then f ∈ N (⃗0, Fn, ϵn) for all n ∈ N so f = 0.

Let W = span(A), which is a separable subspace of X (i.e. K is separable
and A is countable so there is a countable dense subset of span(A)). Thus,
if W = X , the proof is complete.

Suppose to the contrary that there exists an x ∈ X \ W. By the Hahn-
Banach Theorem (Corollary 4.3.10) there exists an f ∈ X ∗

1 such that ∥f∥ = 1,
|f(x)| = ∥x∥, and f |W = 0. However, the above shows f |W = 0 implies
f = 0, which contradicts the fact that ∥f∥ = 1. Thus W = X completing
the proof.

Corollary 5.4.4. If (X , ∥ · ∥) is a separable normed linear space, then X ∗
1 is

separable in the weak∗-topology.

Proof. By Theorem 5.4.3, the weak∗-topology on X ∗
1 is metrizable. Since

X ∗
1 is weak∗-compact by the Banach-Alaoglu Theorem (Theorem 5.3.4), X ∗

1
must be totally bounded and therefore separable.

Remark 5.4.5. Note Corollary 5.4.4 is the best that one can hope for in
that there exists separable normed linear spaces (X , ∥ · ∥) such that X ∗

1 is
not separable in the norm topology. Indeed ℓ1(N) is readily verified to be
separable whereas Theorem 1.5.4 implies that ℓ1(N)∗ = ℓ∞(N) for which the
closed unit ball is not separable (all the sequences of 0s and 1s cannot be
finitely covered by open balls of radius 1

2).

Of course, we can reverse the roles of the initial space and its dual space.

Theorem 5.4.6. If (X , ∥ · ∥) is a normed linear space, then X1 is weakly
metrizable if and only if X ∗ is separable.

Proof. Suppose X ∗ is separable. Thus Theorem 5.4.3 implies that X ∗∗
1 is

weak∗-metrizable. This implies if J : X → X ∗∗ is the canonical embedding
then J (X1) is weak∗-metrizable and thus X1 is weakly metrizable as J is a
weak-weak∗ homeomorphism of X1 onto J (X1).

©For use through and only available at pskoufra.info.yorku.ca.



142 CHAPTER 5. DUAL SPACE TOPOLOGIES

Conversely, suppose X1 is weakly metrizable. Let Un denote the weakly
open ball of radius 1

n centred as 0⃗ and recall for each Un there exists an
ϵn > 0 and a finite subset Fn ⊆ X ∗ such that

{x ∈ X1 | |f(x)| < ϵn for all f ∈ Fn} = N (⃗0, Fn, ϵn) ⊆ Un.

Let F =
⋃∞

n=1 Fn and let W = span(F ), which is a separable subspace
of X ∗ (i.e. K is separable and A is countable so there is a countable dense
subset of span(A)). Thus, if W = X ∗, the proof is complete.

Suppose to the contrary that there exists an f0 ∈ X ∗ \ W. Let d =
dist(f0,W). By the Hahn-Banach Theorem (Corollary 4.3.10) there exists
an g ∈ X ∗∗

1 such that ∥g∥ = 1, g(f0) = d, and g|W = 0.
Let

V0 =
{
x ∈ X1

∣∣∣∣ |f0(x)| < d

2

}
.

As V0 is a weakly open neighbourhood of 0⃗, there exists an N ∈ N such that
UN ⊆ V0. Let

V =
{
h ∈ X ∗∗

∣∣∣ |h(f)−g(f)|<ϵN for all f∈FN

and |h(f0)−g(f0)|< d
2

}
which is clearly a weak∗-neighbourhood of g. Since Goldstine’s Theorem
(Theorem 5.4.1) implies there exists an x0 ∈ X1 such that x̂0 ∈ V . Since
FN ⊆ W and g|W = 0, this implies that

|f(x0)| = |x̂0(f) − g(f)| < ϵN

for all f ∈ FN and thus x0 ∈ UN ⊆ V0. Hence |f0(x0)| < d
2 . However, this

implies that
|g(f0) − x̂0(f0)| = d− x̂0(f0) > d

2 .

which contradicts the fact that x̂0 ∈ V . Therefore, as we have obtained a
contradiction, X ∗ = W as desired.

Remark 5.4.7. Theorem 5.4.6 can also be used to show that the weak
topology on ℓ1(N) is not metrizable. Indeed as ℓ1(N)∗ = ℓ∞(N) by Theorem
1.5.4 and ℓ∞(N) is not separable, Theorem 5.4.6 implies that the weak
topology on the unit ball of ℓ1(N) is not metrizable and thus the weak
topology on ℓ1(N) cannot be metrizable.

5.5 The Krein-Milman Theorem
To conclude this chapter, we will look at one of the fundamental results in
elementary functional analysis that characterizes any non-empty, compact,
convex set via a simpler collection of points. As the closed unit ball of
a normed linear space is weak∗-compact by the Banach-Alaoglu Theorem
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(Theorem 5.3.4), this is particularly useful for simplifying the study of dual
spaces. We begin with the definition of the points we are interested in using
to describe such sets and examples of how these points arise in geometry.

Definition 5.5.1. Let V be a vector space and let C ⊆ V be a non-empty
convex set. A point e ∈ C is said to be an extreme point of C if whenever
x, y ∈ C and t ∈ (0, 1) are such that

e = tx+ (1 − t)y,

then x = y = e. The set of all extreme points of C is denoted Ext(C).

For some examples, we note the following where we have left the proofs
to the reader as they can be easily seen via basic Euclidean geometry.

Example 5.5.2. In R2, consider the unit square

C = {(x, y) ∈ R2 | x, y ∈ [−1, 1]}.

It is elementary to see that

Ext(C) = {(1, 1), (1,−1), (−1, 1), (−1,−1)}.

Example 5.5.3. In R2, consider the closed disk

D = {(x, y) ∈ R2 | x2 + y2 ≤ 1}.

It is elementary to see that

Ext(D) = {(x, y) ∈ R2 | x2 + y2 = 1}.

Example 5.5.4. In R2, consider the open disk

D = {(x, y) ∈ R2 | x2 + y2 < 1}.

It is elementary to see that Ext(D) = ∅.

Of course, there is a generalization of the notion of an extreme point that
allows for more flexibility.

Definition 5.5.5. Let V be a vector space and let C ⊆ V be a non-empty
convex set. A non-empty convex subset F ⊆ C is said to be an face of C if
whenever x, y ∈ C and t ∈ (0, 1) are such that

tx+ (1 − t)y ∈ F

then x, y ∈ F .

Clearly any non-empty convex set is a face of itself and a singleton {e} is
a face if and only if e is an extreme point. The reason for the name ‘face’ is
the following example.
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Example 5.5.6. In R3, consider the unit cube

C = {(x, y, z) ∈ R3 | x, y, z ∈ [−1, 1]}.

Clearly
Ext(C) = {(x, y, z) | x, y, z ∈ {±1}}

and each of these singleton points is a face. Furthermore, it elementary to
verify that each edge of the cube is a face, and each face (from geometry) of
the cube is a face (in this course). Finally, it is possible to verify that these
are the only proper subsets that are faces of C.

Of course, the structure of faces of a cube satisfy the following result.

Lemma 5.5.7. Let V be a vector space and let C be a non-empty convex
subset of V. If F is a face of C and let A is a face of F , then A is a face of
C.

Proof. To see that A is a face of C, let x, y ∈ C and t ∈ (0, 1) be such that

tx+ (1 − t)y ∈ A.

Since A is a face of F , A ⊆ F so tx+ (1 − t)y ∈ F . Therefore, since F is a
face of C, we obtain that x, y ∈ F . Finally, since x, y ∈ F , tx+ (1 − t)y ∈ A,
and A is a face of F , we obtain that x, y ∈ A. Hence A is a face of C (in
your face!).

Corollary 5.5.8. Any extreme point of any face of a non-empty convex set
C is an extreme point of C.

Unsurprisingly, we can extend the definition of a face to include more
than just convex combinations of two points.

Lemma 5.5.9. Let V be a vector space, let C be a non-empty convex subset
of V, and let F be a face of C. If {xk}n

k=1 ⊆ C and {tk}n
k=1 ⊆ (0, 1) are such

that
∑n

k=1 tk = 1 and
n∑

k=1
tkxk ∈ F,

then xk ∈ F for all k ∈ {1, . . . , n}.

Proof. We proceed by induction with the case n = 2 being trivial. Suppose
the result holds for some n ∈ N with n ≥ 2 and let {xk}n+1

k=1 ⊆ C and
{tk}n+1

k=1 ⊆ (0, 1) be such that
∑n+1

k=1 tk = 1 and

n+1∑
k=1

tkxk ∈ F.
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Let t = tn+1 so that t ∈ (0, 1) and 1 − t =
∑n

k=1 tk, and let

y =
n∑

k=1

tk
1 − t

xk.

Since tk
1−t ∈ (0, 1) for all k ∈ {1, . . . , n} and since

∑n
k=1

tk
1−t = 1, we obtain

that y ∈ C as C is convex. By construction

txn+1 + (1 − t)y =
n+1∑
k=1

tkxk ∈ F.

Therefore, since F is a face of C, we obtain that xn+1, y ∈ F . As y ∈ F ,
tk

1−t ∈ (0, 1) for all k ∈ {1, . . . , n}, and since
∑n

k=1
tk

1−t = 1, the induction
hypothesis implies that xk ∈ F for all k ∈ {1, . . . , n} thereby completing the
inductive step and the proof.

With the preliminaries on faces and extreme points out of the way, we can
proceed to begin our examination of extreme points of non-empty, compact,
convex sets in locally convex topological vector spaces. We begin with the
following method of constructing faces.

Lemma 5.5.10. Let (V, T ) be a locally convex topological vector space and
let K be a non-empty, convex, compact subset of V. If f ∈ V∗ and

r = sup({Re(f(x)) | x ∈ K}),

then
F = {x ∈ K | Re(f(x)) = r}

is a compact face of K.

Proof. To begin, we note since K is compact that the Extreme Value Theorem
implies that F is non-empty. Moreover, as F is clearly a closed subset of K,
F is compact.

To see that F is convex, let x, y ∈ F and t ∈ [0, 1] be arbitrary. Then
Re(f(x)) = r and Re(f(y)) = r so

Re(f(tx+ (1 − t)y)) = tRe(f(x)) + (1 − t)Re(f(y)) = tr + (1 − t)r = r

and thus tx+ (1 − t)y ∈ F . Hence F is convex.
To see that F is a face of K, let x, y ∈ K and t ∈ (0, 1) be such that

tx+ (1 − t)y ∈ F . Therefore, since Re(f(x)) ≤ r and Re(f(y)) ≤ r,

r = Re(f(tx+ (1 − t)y)) = tRe(f(x)) + (1 − t)Re(f(y)) ≤ tr + (1 − t)r = r.

Hence equality must occur in Re(f(x)) ≤ r and Re(f(y)) ≤ r so x, y ∈ F as
desired.
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With Lemma 5.5.10 giving us a method of constructing faces using
linear functionals, we can use a maximality argument together with the
Hahn-Banach Theorem to obtain extreme points.

Lemma 5.5.11. If (V, T ) is a locally convex topological vector space and K
is a non-empty, convex, compact subset of V, then Ext(K) ̸= ∅.

Proof. Let
F = {F ⊆ K | F is a closed face of K}.

Clearly F is non-empty since K ∈ F . Define a partial ordering ⪯ on F by
reverse inclusion; that is F1 ⪯ F2 if and only if F1 ⊇ F2.

Let C be a chain in F and let F0 =
⋂

F ∈C F . We claim that F0 ∈ C
and thus F0 is an upper bound for C. Since C is a chain, C has the finite
intersection property. Therefore as any collection of closed sets with the
finite intersection property in a compact Hausdorff space has non-empty
intersection, we obtain that F0 ≠ ∅. Clearly F0 is closed and convex being
the intersection of closed convex sets. Finally, to see that F0 is a face of
K, suppose x, y ∈ K and t ∈ (0, 1) are such that tx+ (1 − t)y ∈ F0. Thus
tx + (1 − t)y ∈ F for all F ∈ C so x, y ∈ F as F is a face of K. Hence
x, y ∈ F0 so F0 is a face of K.

By Zorn’s Lemma there exists a maximal closed face Fm ofK. If Fm = {e}
for some e ∈ K, then e is an extreme point of K. Suppose otherwise that
there exists x, y ∈ Fm such that x ̸= y. As {x} and {y} are non-empty,
disjoint, compact, convex sets of V, the Hahn-Banach Theorem (Theorem
4.4.13) implies there exists an f ∈ V∗ and a, b ∈ R such that

Re(f(x)) ≥ a > b ≥ Re(f(y)).

Let
r = sup({Re(f(z)) | z ∈ Fm}) ≥ a.

As Fm is a closed face of K, Fm is a non-empty, convex, compact subset of
V. Therefore Lemma 5.5.10 implies that

F̃m = {z ∈ Fm | Re(f(z)) = r}

is a compact face of Fm. Since (V, T ) is Hausdorff, F̃m is a closed subset of
(V, T ). Moreover, since F̃m is a face of Fm and since Fm is a face of K, F̃m

is a face of K by Lemma 5.5.7. However, since

Re(f(y)) ≤ b < a ≤ r,

we see that y /∈ F̃m so F̃m is a strict subset of Fm. As this contradicts
the maximality of Fm, we have our contradiction. Hence Fm is a singleton
thereby yielding an extreme point of K.
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With Lemma 5.5.11 we can now prove the main result of this section.
Note as the proof of Lemma 5.5.11 is the vast majority of the work, Lemma
5.5.11 is often considered as part of this theorem.

Theorem 5.5.12 (The Krein-Milman Theorem). If (V, T ) is a locally
convex topological vector space and K is a non-empty, convex, compact subset
of V, then

K = conv(Ext(K)).

Proof. By Theorem 5.5.11 we know that Ext(K) ̸= ∅. Let C = conv(Ext(K))
which is a non-empty, closed, convex subset of K.

Suppose there exists an x ∈ K \C. As {x} and C are non-empty, disjoint,
closed, convex subsets of V such that {x} is compact, the Hahn-Banach
Theorem (Theorem 4.4.13) implies there exists an f ∈ V∗ and a, b ∈ R such
that

Re(f(x)) ≥ a > b ≥ Re(f(c))

for all c ∈ C.
Let

r = sup({Re(f(y)) | y ∈ K}) ≥ a.

Thus Lemma 5.5.10 implies that

F = {y ∈ K | Re(f(y)) = r}

is a compact face of K. Hence Lemma 5.5.11 implies that there exists a
extreme point e of F . Therefore, since F is a face of K, e is an extreme
point of K by Corollary 5.5.8 and thus e ∈ C. Since e ∈ F , we know that
Re(f(e)) = r. However, since e ∈ C, we know that

Re(f(e)) ≤ b < a ≤ r = Re(f(e))

which is a clear contradiction. Hence K = C as desired.

One immediate application of the Krein-Milman Theorem (Theorem
5.5.12) is an extension of one of our previous results.

Corollary 5.5.13. Let (X , ∥ · ∥) be a Banach space and let A ⊆ X ∗. If A
is bounded, convex, and weak∗-closed, then A is weak∗-compact and A =
convw∗(Ext(A)).

Proof. By Corollary 5.3.5 we know that A is weak∗-compact. Hence the Krein-
Milman Theorem (Theorem 5.5.12) implies that A = convw∗(Ext(A)).

Of course, the Krein-Milman Theorem has other applications.

Corollary 5.5.14. The spaces c and c0 are isomorphic but not isometrically
isomorphic as normed linear spaces.
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Proof. Exercise.

Corollary 5.5.15. The space of real-valued continuous functions C[0, 1] is
not the continuous dual space of a normed linear space.

Proof. Exercise.
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Chapter 6

Operator Theory

Now that we have dealt with some of the most general objects in functional
analysis, we proceed in the opposite manner. In particular, instead of gener-
alizing normed linear spaces to topological vector spaces we will become more
specific and study complete normed linear spaces with norms coming from
an inner product structure, which are called Hilbert spaces. By restricting
our study to bounded linear operators on Hilbert spaces, we can develop a
deep theory of operators.

To begin, we will study a nice collection of bounded linear operators
between Banach spaces that play an introductory role in operator theory.
Subsequently, we will develop the theory of Hilbert spaces. It will be shown
that Hilbert spaces have orthonormal bases (i.e. maximal orthonormal sets,
not orthonormal sets that are vector space bases) and Hilbert spaces can be
characterized by the cardinality of their orthonormal bases. We will then
begin an introduction to the theory of operators on Hilbert space culminating
in a generalization of the spectral theorem for normal matrices. In particular,
this entire chapter can be viewed as generalizing the results from finite
dimensional inner product spaces to the infinite dimensional setting.

6.1 Compact Operators on Banach Spaces
To begin our study of operator theory, we will examine the following collection
of operators, which will end up being one of the nicest ideals of the bounded
linear operators on a Banach space.

Definition 6.1.1. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be Banach spaces. An
element T ∈ B(X ,Y) is said to be compact if T (X1) is compact in Y . The set
of all compact operators from X to Y is denoted by K(X ,Y) and by K(X )
in the case that Y = X .

In order to construct examples of compact operators, we note the following
class of operators which will easily seen to be compact.

149
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Definition 6.1.2. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be Banach spaces. An
element T ∈ B(X ,Y) is said to be of finite rank if dim(T (X )) is finite. The
set of all finite rank operators from X to Y is denoted by F(X ,Y) and by
F(X ) in the case that Y = X .

Proposition 6.1.3. If (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) are Banach spaces, then
F(X ,Y) ⊆ K(X ,Y).

Proof. Let T ∈ F(X ,Y). Thus W = T (X ) is a finite dimensional subspace
of Y . As T (X1) is a bounded subset of W as T is bounded, T (X1) is a closed
bounded subset of a finite dimensional normed linear space and thus compact
by Theorem 3.5.2. Hence T ∈ K(X ,Y) as desired.

As the following shows, except in the finite dimensional setting, there
will always be operators that are not compact.

Proposition 6.1.4. Let (X , ∥ · ∥) be a Banach space. Then K(X ) = B(X )
if and only if X is finite dimensional.

Proof. If X is finite dimensional, then B(X ) = F(X ) ⊆ K(X ) ⊆ B(X ) by
Proposition 6.1.3 and thus K(X ) = B(X ).

Conversely, suppose K(X ) = B(X ). Thus the identity map IX : X → X
is a compact operator so IX (X1) = X1 = X1 is a compact subset of X . As
this implies (X , ∥ · ∥) is locally compact, X is finite dimensional by Corollary
3.5.12.

For an example of a compact operator that is not finite dimensional, we
turn to the following use of some results from compact metric space theory.

Example 6.1.5. Fix g ∈ C[0, 1] and define Tg : C[0, 1] → C[0, 1] by

Tg(f)(x) =
∫ x

0
f(t)g(t) dt

for all f ∈ C[0, 1]. It is elementary to verify that Tg is a well-defined linear
operator. Furthermore, since

|Tg(f)(x)| ≤
∫ x

0
|f(t)||g(t)| dt ≤

∫ x

0
∥f∥∞ ∥g∥∞ dt ≤ ∥f∥∞ ∥g∥∞

for all x ∈ [0, 1], we see that Tg is bounded with ∥Tg∥ ≤ ∥g∥∞.
We claim that Tg is a compact operator. To see this, it suffices to show

that

F =
{
h ∈ C[0, 1]

∣∣∣∣h(x) =
∫ x

0
f(t)g(t) dt for some f ∈ C[0, 1] with ∥f∥∞ ≤ 1

}
has compact closure. Thus, by the Arzel‘a-Ascoli Theorem, it suffices to
prove that F is equicontinuous and pointwise bounded.
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Clearly the elements of F are pointwise bounded by ∥g∥∞ by the above
computation. To see that the elements of F are equicontinuous, let ϵ > 0
and x ∈ [0, 1] be arbitrary. Let δ = ϵ

∥g∥∞+1 . Thus for all f ∈ C[0, 1] with
∥f∥∞ ≤ 1 and for all y ∈ [0, 1] with |x− y| < δ, we see that∣∣∣∣∫ y

0
f(t)g(t) dt−

∫ x

0
f(t)g(t) dt

∣∣∣∣ =
∣∣∣∣∫ x

y
f(t)g(t) dt

∣∣∣∣
≤ |x− y| ∥f∥∞ ∥g∥∞

<
ϵ

∥g∥∞ + 1(1) ∥g∥∞ < ϵ.

Hence F is equicontinuous as desired. Thus Tg is a compact operator.

In order to construct additional examples of compact operators, it is
useful to develop all equivalent characterizations of compact operators via
the different methods of verifying a subset of a metric space is compact.

Proposition 6.1.6. Given Banach spaces (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) and a
T ∈ B(X ,Y), the following are equivalent:

(1) T is compact.

(2) T (F ) is compact in Y for all bounded subsets F of X .

(3) If (xn)n≥1 is a bounded sequence in X , then (T (xn))n≥1 has a convergent
subsequence in Y.

(4) T (X1) is totally bounded.

Proof. Note that T is compact if and only if T (X1) is compact if and only
if T (X1) is totally bounded. Hence (1) and (4) are equivalent. Moreover,
since the notions of compactness and sequential compactness are equivalent
in metric spaces, (2) and (3) are equivalent.

Clearly (2) implies (1). Conversely, if T (X1) is compact, we obtain that
T (Xr) is compact for any r > 0. As a closed subset of a compact subset is
compact in normed linear spaces, we obtain that (1) implies (2).

With Proposition 6.1.6 complete, we can produce some nice non-trivial
examples of compact operators.

Example 6.1.7. Fix p ∈ [1,∞] and d⃗ = (dn)n≥1 ∈ ℓ∞(N). Define D :
ℓp(N) → ℓp(N) by

D((xn)n≥1) = (dnxn)n≥1

for all (xn)n≥1 ∈ ℓp(N). Note D is a well-defined bounded linear operator
since

∥(dnxn)n≥1∥p ≤
∥∥∥d⃗∥∥∥

∞
∥(xn)n≥1∥p
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for all (xn)n≥1 ∈ ℓp(N) by a simple computation.

We claim that D is compact if and only if d⃗ ∈ c0. To see this, note if d⃗ /∈ c0
then there exists an ϵ > 0 and an infinite increasing sequence (nk)k≥1 of
natural numbers such that |dnk

| ≥ ϵ for all k ∈ N. Thus, if e⃗nk
is the element

of ℓp(N) with a 1 in the nth
k entry and zeros everywhere else, we see that

(e⃗nk
)k≥1 is a bounded sequence in ℓp(N) such that (D(e⃗nk

))k≥1 = (dnk
e⃗nk

)k≥1
has no convergent subsequences (i.e. the only possible limit point is 0⃗ and
|dnk

| ≥ ϵ for all k ∈ N). Hence if d⃗ /∈ c0, then D is not compact by Proposition
6.1.6.

Conversely, suppose that d⃗ ∈ c0. To see that D is compact, we will use
Proposition 6.1.6 and show that A = D((ℓp(N))1) is totally bounded. Thus
let ϵ > 0 be arbitrary. Since d⃗ ∈ c0 there exists an N ∈ N such that |dn| < ϵ

2
for all n ∈ N.

As (KN , ∥ · ∥p) is finite dimensional, any closed bounded set is compact
and thus any bounded set is totally bounded. Since

A0 =
{

(d1x1, . . . , dNxN ) | (x1, . . . , xn) ∈ B∥ · ∥p
[⃗0, 1]

}

is a bounded subset, we obtain that A0 is totally bounded. Hence there
exists a finite set {x⃗k}m

k=1 of B∥ · ∥p
[⃗0, 1] such that if x⃗k = (xk,1, . . . , xk,N ) for

all k ∈ {1, . . . ,m}, then

E0 = {(d1xk,1, . . . , dNxk,N )}m
k=1

is an ϵ
2 -net for A0.

For each k ∈ {1, . . . ,m}, let

z⃗k = (xk,1, . . . , xk,N , 0, 0, 0, . . .).

Clearly z⃗k ∈ c00 ∈ ℓp(N) and ∥z⃗k∥p = ∥x⃗k∥p ≤ 1 for all k ∈ {1, . . . ,m}. We
claim that {D(z⃗k)}m

k=1 is an ϵ-net for A. To see this, let a⃗ ∈ A be arbitrary.
Hence there exists a y⃗ = (yn)n≥1 ∈ ℓp(N) such that ∥y⃗∥p ≤ 1 and D(y⃗) = a⃗.
As (y1, . . . , yN ) ∈ B∥ · ∥p

[⃗0, 1], the fact that D0 is an ϵ
2 -net for A0 implies

there exists a k ∈ {1, . . . ,m} such that

∥(d1y1, . . . , dNyN ) − (d1xk,1, . . . , dNxk,N )∥p <
ϵ

2 .
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Hence, when p ̸= ∞,

∥a⃗−D(z⃗k)∥p

= ∥(dnyn)n≥1 − (d1xk,1, . . . , dNxk,N , 0, 0, 0, . . .)∥p

≤ ∥(d1y1, . . . , dNyN ) − (d1xk,1, . . . , dNxk,N )∥p +

 ∞∑
j=N

|djyj |p
 1

p

<
ϵ

2 +

 ∞∑
j=N

(
ϵ

2

)p

|yj |p
 1

p

= ϵ

2 + ϵ

2

 ∞∑
j=N

|yj |p
 1

p

≤ ϵ

2 + ϵ

2 ∥y⃗∥p ≤ ϵ

(where the triangle inequality was used to obtain the first inequality). As
a similar computation holds when p = ∞, we obtain that {D(z⃗k)}m

k=1 is an
ϵ-net for A. Therefore, as ϵ > 0 was arbitrary, A is totally bounded so D is
a compact operator.

One nice corollary of Proposition 6.1.6 is the following.

Corollary 6.1.8. If (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) are Banach spaces, then
K(X ,Y) is a closed subspace of B(X ,Y).

Proof. First, to see that K(X ,Y) is a vector subspace of B(X ,Y), let
T, S ∈ K(X,Y) and α ∈ K be arbitrary. To see that αT + S is compact,
let (xn)n≥1 be an arbitrary bounded sequence in X . Since T is compact,
Proposition 6.1.6 implies there exists a subsequence (xnk

)k≥1 of (xn)n≥1 such
that (T (xnk

))k≥1 converges. Since S is compact, Proposition 6.1.6 implies
there exists a subsequence (xnkm

)m≥1 of (xnk
)k≥1 such that (S(xnkm

))m≥1
converges. Hence (T (xnkm

))m≥1 also converges so ((αT + S)(xnkm
))m≥1

converges. Hence, as (xn)n≥1 was arbitrary, Proposition 6.1.6 implies that
αT + S is compact. Thus K(X ,Y) is a vector subspace of B(X ,Y).

To see that K(X ,Y) is closed, suppose (Tn)n≥1 is a sequence in K(X ,Y)
that converges to some T ∈ B(X ,Y). To show that T is compact, it suffices
by Proposition 6.1.6 to show that T (X1) is totally bounded. Thus let ϵ > 0
be arbitrary. Since (Tn)n≥1 converges to T , there exists an N ∈ N such that
∥T − TN ∥ < ϵ

3 . Moreover, since TN (X1) is totally bounded by Proposition
6.1.6, there exists a finite subset {xk}m

k=1 ⊆ X1 such that {TN (xk)}m
k=1 is an

ϵ
3 -net for TN (X1).

We claim that {T (xk)}m
k=1 is an ϵ-net for T (X1). To see this, let y0 ∈

T (X1) be arbitrary. Hence there exists an x0 ∈ X1 such that y0 = T (x0).

©For use through and only available at pskoufra.info.yorku.ca.



154 CHAPTER 6. OPERATOR THEORY

Since {TN (xk)}m
k=1 is an ϵ

3 -net for TN (X1), there exists an j ∈ {1, . . . ,m}
such that ∥TN (x0) − TN (xj)∥ < ϵ

3 . Hence

∥y0 − T (xj)∥ ≤ ∥T (x0) − TN (x0)∥ + ∥TN (x0) − TN (xj)∥ + ∥TN (xj) − T (xj)∥

≤ ∥T − TN ∥ ∥x0∥ + ϵ

3 + ∥TN − T∥ ∥xj∥

<
ϵ

3 + ϵ

3 + ϵ

3 = ϵ.

Hence {T (xk)}m
k=1 is an ϵ-net for T (X1). Therefore, as ϵ was arbitrary, T (X1)

is totally bounded and thus T is compact. Hence K(X ,Y) is closed.

More importantly, when combined with Corollary 6.1.8, the following
shows that the compact operators are an ideal in B(X ) for any Banach space
X .

Corollary 6.1.9. Let (X , ∥ · ∥X ), (Y, ∥ · ∥Y), and (Z, ∥ · ∥Z) be Banach spaces.
If T ∈ K(X ,Y), R ∈ B(Y,Z), and S ∈ B(Z,X ), then RT ∈ K(X ,Z) and
TS ∈ K(Z,Y).

Proof. To see that RT is compact, let (xn)n≥1 be an arbitrary bounded
sequence in X . Since T is compact, Proposition 6.1.6 there exists a subse-
quence (xnk

)k≥1 such that (T (xnk
))k≥1 converges in Y . Therefore, since R is

continuous, (RT (xnk
))k≥1 converges. Therefore, since (xn)n≥1 was arbitrary,

Proposition 6.1.6 implies that RT is compact.
To see that TS is compact, note as S is bounded that S(X1) is a bounded

subset of X . Hence Proposition 6.1.6 implies that T (S(X1) = TS(X1) is a
compact subset of Y. Hence TS is compact.

Finally, compact operators behave well with respect to adjoints.

Theorem 6.1.10. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be Banach spaces. If T ∈
K(X ,Y), then T ∗ ∈ K(Y∗,X ∗).

Proof. Let T ∈ K(X ,Y). To show that T ∗ ∈ K(Y∗,X ∗), it suffices by
Proposition 6.1.6 to show that T ∗(Y∗

1 ) is totally bounded. Thus let ϵ > 0
be arbitrary. Since T is compact, T (X1) is totally bounded and thus there
exists {xk}n

k=1 ⊆ X1 such that {T (xk)}n
k=1 is an ϵ

3 -net for T (X1).
Define R : Y∗ → Kn by

R(f) = (f(T (x1)), . . . , f(T (xn)))

for all f ∈ Y∗. Clearly R is a well-defined linear operator. Moreover, since
Kn is finite dimensional, R is a finite dimensional operator and thus compact.
Hence there exists {fj}m

j=1 ⊆ Y∗
1 such that {R(fj)}m

j=1 is an ϵ
3 -net for R(Y∗

1 ).
We claim that {T ∗(fj)}m

j=1 is an ϵ-net for T ∗(Y∗
1 ). To see this, let

g ∈ Y∗
1 be arbitrary. Since{R(fj)}m

j=1 is an ϵ
3 -net for R(Y∗

1 ), there exists a
j0 ∈ {1, . . . ,m} such that ∥R(g) −R(fj0)∥ < ϵ

3 .

©For use through and only available at pskoufra.info.yorku.ca.



6.2. HILBERT SPACES 155

We claim that ∥T ∗(g) − T ∗(fj0)∥ < ϵ. To see this, let x ∈ X1 be arbitrary.
Since {T (xk)}n

k=1 is an ϵ
3 -net for T (X1), there exists a k0 ∈ {1, . . . , n} such

that ∥T (x) − T (xk0)∥ < ϵ
3 . Therefore

|T ∗(g)(x) − T ∗(fj0)(x)|
= |g(T (x)) − fj0(T (x))|
≤ |g(T (x)) − g(T (xk0))| + |g(T (xk0)) − fj0(T (xk0))| + |fj0(T (xk0)) − fj0(T (x))|
≤ ∥g∥ ∥T (x) − T (xk0)∥ + ∥R(g) −R(fj0)∥ + ∥fj0∥ ∥T (xk0) − T (x)∥

≤ ϵ

3 + ϵ

3 + ϵ

3 = ϵ.

Therefore, as x was arbitrary, we obtain that ∥T ∗(g) − T ∗(fj0)∥ ≤ ϵ. Hence,
as g was arbitrary, {T ∗(fj)}m

j=1 is an ϵ-net for T ∗(Y∗
1 ) thereby completing

the proof.

6.2 Hilbert Spaces
We now turn to the nicest example of Banach spaces. As a Banach space
is a complete normed linear space, and an inner product space is a normed
linear space with a norm induced by an inner product, by combining these
two notions we get the following. We refer a reader unfamiliar with inner
product spaces to Chapter B.

Definition 6.2.1. A Hilbert space is a complete inner product space.

A few of the spaces we have already seen are actually Hilbert spaces.

Example 6.2.2. The space ℓ2(N) is a Hilbert space. Indeed if we define
⟨ ·, · ⟩ : ℓ2(N) × ℓ2(N) → K by

⟨(xn)n≥1, (yn)n≥1⟩ =
∞∑

n=1
xnyn

for all (xn)n≥1, (yn)n≥1 ∈ ℓ2(N), then ⟨ ·, · ⟩ is well-defined inner product on
ℓ2(N) (see Example B.1.10) that induces ∥ · ∥2. As ℓ2(N) is complete with
respect to ∥ · ∥2, ℓ2(N) is a Hilbert space.

Example 6.2.3. For any measure space (X,A, µ), the space L2(X,µ) is a
Hilbert space (and when X = N and µ is the counting measure, we obtain
ℓ2(N)). Indeed if we define ⟨ ·, · ⟩ : L2(X,µ) × L2(X,µ) → K by

⟨f, g⟩ =
∫

X
fg dµ

for all f, g ∈ L2(X,µ), then ⟨ ·, · ⟩ is well-defined inner product on L2(X,µ)
by Hölder’s inequality (Theorem D.1.7) and the fact that integration against
µ doesn’t distinguish between functions that are equal µ-almost everywhere.
Since ⟨ ·, · ⟩ induces ∥ · ∥2 and since L2(X,µ) is complete by the Riesz-Fisher
Theorem (Theorem D.2.1), we obtain that L2(X,µ) is a Hilbert space.
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In fact, we will show shortly that the above examples are really the only
examples of Hilbert spaces in existence. Before we get to that, we need to
analyze why Hilbert spaces are particularly nice. As inner products give
length and angles to vector spaces, it is unsurprising that Hilbert spaces have
a ‘nicer geometry’ than Banach spaces. In particular, we have the following
which will be of use in developing the notions of orthogonality in infinite
dimensions.
Theorem 6.2.4. Let H be a Hilbert space and let C ⊆ H be a non-empty,
closed, convex subset of H. For each x ∈ H there exists a unique point y ∈ C
that is closest to x; that is

∥x− z∥ = dist(x,C)

if and only if z = y.
Proof. To begin, let d = dist(x,C). We will first demonstrate there exists a
point y ∈ C such that ∥x− y∥ = d. By definition of the distance, for each
n ∈ N there exists yn ∈ C such that

∥x− yn∥2 < d2 + 1
n
.

We claim that (yn)n≥1 is Cauchy in H. To see this, notice by the Parallelo-
gram Law (Theorem B.1.18) we have for all n,m ∈ N that

∥yn − ym∥2 = ∥(x− ym) − (x− yn)∥2

= 2 ∥x− ym∥2 + 2 ∥x− yn∥2 − ∥(x− ym) + (x− yn)∥2

= 2 ∥x− ym∥2 + 2 ∥x− yn∥2 − 4
∥∥∥∥x− ym + yn

2

∥∥∥∥2

≤ 2
(
d2 + 1

n

)
+ 2

(
d2 + 1

m

)
− 4d2

= 2
n

+ 2
m

(where the third to fourth line follows as ym+yn

2 ∈ C since C was convex).
Hence we obtain that (yn)n≥1 is Cauchy in H. Therefore y = limn→∞ yn

exists as H is complete. Since C was closed in H, we obtain that y ∈ C.
Furthermore, as

∥x− y∥ = lim
n→∞

∥x− yn∥ ≤ d,

we obtain that ∥x− y∥ = d.
To see that y is the unique vector with this property, suppose z ∈ C is

such that ∥x− z∥ = d. A similar computation to the one above show that

∥y − z∥2 = 2 ∥x− y∥2 + 2 ∥x− z∥2 − 4
∥∥∥∥x− y + z

2

∥∥∥∥2

≤ 2d2 + 2d2 − 4d2 = 0.

Hence y = z as desired.
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Of course it would be nice to be able to determine the vector y in Theorem
6.2.4. In general this is a difficult task for arbitrary closed convex subsets of
Hilbert spaces. However, closed vector subspaces of a Hilbert space are an
abundant collection of examples of closed convex sets for which we can solve
this problem!

To begin, we must use the geometry of Hilbert spaces and the following.
Definition 6.2.5. Let (V, ⟨ ·, · ⟩) be an inner product space and let S ⊆ V .
The orthogonal complement of S in V is the set

S⊥ = {x ∈ V | ⟨x, z⟩ = 0 for all z ∈ S}.

Example 6.2.6. The orthogonal complement of the x-axis in R2 with
respect to the standard inner product is the y-axis. Similarly, the orthogonal
complement of the y-axis in R3 with respect to the standard inner product
is the yz-plane.
Remark 6.2.7. Clearly if S ⊆ V , then S⊥ is a closed vector subspace of
V . Furthermore S⊥ = (span(S))⊥ and S⊥ = (S)⊥. Thus the notion of the
orthogonal complement is really a notion for closed vector subspaces of inner
product spaces.

Returning to Theorem 6.2.4, we can obtain a description of the closed
vector using orthogonal complements.
Theorem 6.2.8. Let H be a Hilbert space and let K be a closed subspace of H.
Given x ∈ H and y ∈ K, ∥x− y∥ = dist(x,K) and and only if x− y ∈ K⊥.
Proof. First suppose y ∈ K is such that ∥x− y∥ = dist(x,K). To see that
x − y ∈ K⊥, suppose to the contrary that there exists a z ∈ K such that
α = ⟨x − y, z⟩ ̸= 0. Note this implies z ̸= 0⃗. By scaling z if necessary
(changing the value of α), we may assume that ∥z∥ = 1.

Consider the vector v = y + αz which is an element of K as K is a vector
subspace. Then

∥x− v∥2 = ⟨x− y − αz, x− y − αz⟩
= ∥x− y∥2 − α⟨z, x− y⟩ − α⟨x− y, z⟩ + |α|2 ∥z∥2

= ∥x− y∥2 − |α|2

< dist(x,K)2,

which is a contradiction as v ∈ K. Hence it must be the case that x−y ∈ K⊥.
Conversely, suppose x− y ∈ K⊥. Clearly ∥x− y∥ ≥ dist(x,K) whereas

for all z ∈ K,

∥x− z∥2 = ∥(x− y) − (z − y)∥2

= ∥x− y∥2 + ∥z − y∥2 ≥ ∥x− y∥2

by the Pythagorean Theorem since z − y ∈ K (as K is a vector subspace)
and x− y ∈ K⊥. Hence ∥x− y∥ = dist(x,K).
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Using the above, given a Hilbert space H and a closed subspace K, we
can decompose H nicely.

Theorem 6.2.9. Let H be a Hilbert space and let K be a closed subspace of
H. Then H = K ⊕ K⊥; that is, every element x ∈ H can be written uniquely
as a sum of elements from K and K⊥. Moreover, for all y ∈ K and z ∈ K⊥,
∥y + z∥ ≤

√
∥y∥2 + ∥z∥2.

Proof. Let x ∈ H. By Theorems 6.2.4 and 6.2.8, there exists a unique vector
y ∈ K such that z = x − y ∈ K⊥. Hence as x = y + z, we obtain that
H = K + K⊥. Furthermore, the uniqueness follows from the uniqueness of y.
The norm inequality then follows from the Pythagorean Theorem.

In particular, as the orthogonal complement of any set is a closed subspace
of a Hilbert space, we see that any closed subspace of a Hilbert space is
topologically complemented in an orthogonal way. Using the following theory
of topological complements, we obtain a nice bounded idempotent linear
map related to this decomposition.

Proposition 6.2.10. Let (X , ∥ · ∥) be a Banach space and let Y and Z be
closed subspace of X . Then Y and Z are topological complements if and
only if there exists a bounded linear map E : X → X such that E2 = E,
Im(E) = Y, and ker(E) = Z.

Proof. Suppose Y and Z are topological complements. Thus for each x ∈ X
there exist unique y ∈ Y and z ∈ Z such that x = y + z. Consider the map
Θ : Y ⊕1 Z → X defined by

Θ((y, z)) = y + z

for all y ∈ Y and z ∈ Z. Clearly Θ is a well-defined bijective linear map.
Moreover, since

∥Θ((y, z))∥X = ∥y + z∥X ≤ ∥y∥X + ∥z∥X = ∥(y, z)∥1 ,

we see that Θ is bounded. Hence the Inverse Mapping Theorem (Theorem
2.4.3) implies that Θ is an isomorphism.

Define π : Y ⊕1 Z → Y by π((y, z)) = y for all y ∈ Y and z ∈ Z. Clearly
π is a well-defined bounded linear map due to the norm structure on Y ⊕1 Z.
Thus if we define E : X → Y ⊆ X by E = π ◦ Θ−1, then E is a well-defined
bounded linear map. Moreover, notice by construction that for each x ∈ X if
y ∈ Y and z ∈ Z are the unique elements such that x = y+ z then E(x) = y.
Thus it readily follows that E2 = E, Im(E) = Y, and ker(E) = Z.

Conversely, suppose E : X → X is a bounded linear map such that
E2 = E, Im(E) = Y, and ker(E) = Z. Notice if y ∈ Im(E), then y = E(x)
for some x ∈ X and thus

E(y) = E2(x) = E(x) = y.
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Thus, as Z = ker(E), we easily see that Y ∩ Z = ∅. To see that X = Y + Z,
let x ∈ X be arbitrary. If y = E(x) and z = x−E(x), then y ∈ Im(E) = Y,
x = y + z ad

E(z) = E(x) − E(E(x)) = E(x) − E(x) = 0

so z ∈ ker(E) = Z. Hence Y and Z are topologically complemented in X .

Corollary 6.2.11. Let H be a Hilbert space and let K be a closed vector
subspace of H. There is a unique linear map P : H → K ⊆ H such that
P (x) = x for all x ∈ K and P (y) = 0⃗ for all y ∈ K⊥. The linear map
P is called the orthogonal projection of H onto K. Furthermore, P is
bounded with ∥P∥ ≤ 1 (with equality whenever K ≠ {⃗0}), P 2 = P , and
∥x− P (x)∥ = dist(x,K) for all x ∈ H.

Proof. By Theorem 6.2.9 and Proposition 6.2.10 there exists a bounded
linear map P : H → H such that P 2 = P , Im(P ) = K, and ker(P ) =
K⊥. Since for each x ∈ H we may write x = y + z with y ∈ K (such
that ∥x− y∥ = dist(x,K)) and z ∈ K⊥, and since P (x) = y, we see that
∥x− P (x)∥ = dist(x,K) and

∥P (x)∥2 = ∥y∥2 ≤ ∥y∥2 + ∥z∥2 = ∥x∥2

for all x ∈ H so ∥P∥ ≤ 1.

It is elementary to verify that if P is the orthogonal projection onto
a subspace K and IH : H → H is the identity map, then IH − P is the
orthogonal projection on K⊥.

We will see how useful orthogonal projections are in the following section.
For now, we can use the concept of a direct sum in Hilbert spaces to prove
the following.

Corollary 6.2.12. Let H be a Hilbert space and let S ⊆ H be non-empty.
Then (S⊥)⊥ = span(S).

Proof. To begin, let x ∈ span(S) be arbitrary. Thus there exists a sequence
(xn)n≥1 of elements of span(S) such that x = limn→∞ xn. Let y ∈ S⊥ be
arbitrary. Then

⟨x, y⟩ = lim
n→∞

⟨xn, y⟩ = 0

as y ∈ S⊥ and xn ∈ span(S) for all n. Therefore, as y ∈ S⊥ was arbitrary,
x ∈ (S⊥)⊥. Thus, as x ∈ span(S) was arbitrary, span(S) ⊆ (S⊥)⊥.

For the other inclusion, let x ∈ (S⊥)⊥ be arbitrary. Since span(S)
is a closed vector subspace, Theorem 6.2.8 implies there exists a vector
y ∈ span(S) such that x− y ∈ span(S)⊥. Notice for all z ∈ span(S) that

⟨x− y, z⟩ = 0
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as x− y ∈ span(S)⊥. Similarly, if z ∈ span(S)⊥ then z ∈ S⊥ so

⟨x− y, z⟩ = ⟨x, z⟩ − ⟨y, z⟩ = 0 − 0 = 0.

Therefore, as every vector in H can be written as the sum of elements from
span(S) and span(S)⊥, we obtain that ⟨x− y, z⟩ = 0 for all z ∈ H. Hence
by choosing z = x − y, we obtain that x = y ∈ span(S). Therefore, as
x ∈ (S⊥)⊥ was arbitrary, we obtain that (S⊥)⊥ ⊆ span(S) as desired.

6.3 Isomorphisms of Hilbert Spaces
Using the theory of orthogonal projections, we can develop a notion of bases
for Hilbert spaces that is far superior to taking a vector space basis. In
particular, recall from Theorem 2.3.14 that any vector space basis for an
infinite dimensional Banach space must be uncountable. Thus we desire ‘nice’
bases for Hilbert spaces that to avoid this problem and use the geometry of
Hilbert spaces. These nice bases will also produce a way for us to identify
all of the possible Hilbert spaces! Thus we begin with the following.

Definition 6.3.1. Let (X , ∥ · ∥) be a normed linear space. An element x ∈ X
is said to be a unit vector if ∥x∥ = 1.

Definition 6.3.2. Let H be a Hilbert space. A subset {eα}α∈Λ is said to be
an orthonormal set if each eα is a unit vector and ⟨eα, eβ⟩ = 0 α, β ∈ Λ with
α ̸= β (i.e. an orthogonal set of unit vectors).

Remark 6.3.3. It is not difficult to see that every orthonormal set of
vectors is automatically linearly independent. Indeed suppose {eα}α∈Λ is
orthonormal and there exists α1, . . . , αn ∈ Λ and a1, . . . , an ∈ K are such
that

n∑
k=1

akeαk
= 0⃗.

For each j ∈ {1, . . . , n}, taking the inner product with eαj produces

0 = ⟨⃗0, eαj ⟩ =
n∑

k=1
ak⟨eαk

, eαj ⟩ = aj .

Hence aj = 0 for all j ∈ {1, . . . , n} so {eα}α∈Λ is linearly independent.

We desire to construct special orthonormal sets. Unfortunately, unlike
with finite dimensional theory that students may have seen previously, the
notion of spanning orthonormal sets is not the correct notion for infinite
dimensional Hilbert spaces.

For the correct notion, given a Hilbert space H let EH denote the set of
all orthonormal subsets of H. Notice we may place a partial ordering on EH
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via inclusion. Since the union of any chain of orthonormal sets under this
ordering is an upper bound for the chain (and as EH ̸= ∅), Zorn’s Lemma
implies there is a maximal element of EH under inclusion. These are the
objects we are after.

Definition 6.3.4. Let H be a Hilbert space. An orthonormal basis of H is
a maximal orthonormal set.

Example 6.3.5. For n ∈ N consider the vectors e⃗1, . . . , e⃗n ∈ Kn where for
each j ∈ {1, . . . , n}

e⃗j = (0, 0, . . . , 0, 1, 0, . . . , 0)

where the unique 1 occurs in the jth spot. Clearly E = {e⃗1, . . . , e⃗n} is
orthonormal with respect to the standard inner product. Suppose that
E were not a maximal orthonormal set. Then there would exist a vector
x = (x1, . . . , xn) ∈ E⊥ with ∥x∥ = 1. The fact that x ∈ E⊥ implies

0 = ⟨x, e⃗j⟩ = xj

for all j ∈ {1, . . . , n}. Thus x = 0⃗, an obvious contradiction. Hence E is an
orthonormal basis for Kn.

Example 6.3.6. For each n ∈ N let e⃗n ∈ ℓ2(N) be the sequence with a
1 in the nth entries and 0s everywhere else. By the same arguments as
Example 6.3.5, E = {e⃗n}∞

n=1 is an orthonormal basis for ℓ2(N). However,
it is elementary to see that E does not span ℓ2(N) (indeed the sequence
( 1

n)n≥1 ∈ ℓ2(N) is not a finite linear combination of elements of E).

Remark 6.3.7. Using the argument preceding Definition 6.3.4, it is easy
to see if F is an orthonormal subset of a Hilbert space H then there exists
an orthonormal basis E for H containing F (i.e. restrict the Zorn’s Lemma
argument to orthonormal sets containing F).

In the finite dimensional world, we recall we even have an algorithm for
constructing orthonormal bases.

Theorem 6.3.8 (Gram-Schmidt Orthogonalization Process). Let V
be an inner product space and let L = {v⃗1, . . . , v⃗n} be a linearly independent
subset of V . Then there exists an orthonormal set O = {e⃗1, . . . , e⃗n} such
that span(L) = span(O).

Proof. As v⃗1 ̸= 0⃗ as L is linearly independent, let e⃗1 = 1
∥v1∥v1. Then

∥e⃗1∥ =
∥∥∥∥ 1

∥v⃗1∥
v⃗1

∥∥∥∥ = 1
∥v⃗1∥

∥v⃗1∥ = 1.
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Suppose for some k ∈ {1, . . . , n− 1} we have constructed e⃗1, . . . , e⃗k such
that {e⃗1, . . . , e⃗k} is orthonormal and {e⃗1, . . . , e⃗k, v⃗k+1, . . . , v⃗n} is linearly
independent with the same span as L. Let

x⃗k+1 = v⃗k+1 −
k∑

j=1
⟨v⃗k+1, e⃗j⟩e⃗j .

Since {e⃗1, . . . , e⃗k} is orthonormal, it is easy to see that x⃗k+1 is orthogonal to
{e⃗1, . . . , e⃗k}. Furthermore, as {e⃗1, . . . , e⃗k, v⃗k+1} is linearly independent, we
see that x⃗k is non-zero and {e⃗1, . . . , e⃗k, x⃗k+1, v⃗k+2, . . . , v⃗n} is linearly inde-
pendent. If we define e⃗k+1 = 1

∥x⃗k+1∥ x⃗k+1, we easily obtain that {e⃗1, . . . , e⃗k+1}
is orthonormal and {e⃗1, . . . , e⃗k+1, v⃗k+2, . . . , v⃗n} is linearly independent with
the same span as L. The proof is then complete by recursion.

Remark 6.3.9. The proof of the Gram-Schmidt Orthogonalization Process
actually makes use of a formula for the orthogonal projection onto a finite
subspace. Notice that if K is a finite dimensional vector subspace of a
Hilbert space H, K is closed by Corollary 3.5.5 and the Gram-Schmidt
Orthogonalization Process implies K has a orthonormal basis which is a
vector space basis, say {e⃗1, . . . , e⃗n}. If P is the orthogonal projection onto
K, we claim that

P (x) =
n∑

k=1
⟨x, e⃗k⟩e⃗k

for all x ∈ H. Indeed if y denotes the right-hand side of the above expression,
clearly x− y is orthogonal to each e⃗k and thus x− y ∈ K⊥. As P (x) is the
unique vector such that x− P (x) ∈ K⊥ by Theorems 6.2.4 and 6.2.8, and by
Corollary 6.2.11, we obtain that y = P (x).

Although orthonormal bases for finite dimensional vector subspaces are
useful for the above projection formula, as orthonormal bases need not be
vector space bases in infinite dimensional Hilbert spaces, we must ask, “How
close are orthonormal bases to actual vector spaces bases?” We will see that
orthonormal bases are ‘bases with respect to analytic conditions’. To begin,
we first note the following result for countable orthonormal bases.

Theorem 6.3.10 (Bessel’s Inequality, Countable). Let H be a Hilbert
space and let {eα}α∈Λ be an orthonormal set with Λ countable. For each
x ∈ H ∑

α∈Λ
|⟨x, eα⟩|2 ≤ ∥x∥2 .

Proof. Without loss of generality Λ = N (the proof of the result for finite Λ
is contained within). For each n ∈ N, let Kn = span({e1, . . . , en}). Then, if
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Pn is the orthogonal projection onto Kn, we obtain for all x ∈ H that

∥x∥2 ≥ ∥P (x)∥2

=
∥∥∥∥∥

n∑
k=1

⟨x, ek⟩ek

∥∥∥∥∥
2

=
n∑

k=1
|⟨x, eα⟩|2

by the Pythagorean Theorem (Theorem B.1.17), Corollary 6.2.11 and Remark
6.3.9. Hence the result follows by taking the limit as n tends to infinity.

Using Bessel’s Inequality for countable orthonormal sets, we obtain the
following important result in the case of uncountable orthonormal bases.

Lemma 6.3.11. Let H be a Hilbert space and let {eα}α∈Λ be an orthonormal
set. For each x ∈ H the set {α ∈ Λ | ⟨x, eα⟩ ≠ 0} is countable.

Proof. For each n ∈ N let

En =
{
α ∈ Λ

∣∣∣∣ |⟨x, eα⟩| > 1
n

}
.

We claim that each En is finite. Indeed suppose to the contrary that En is
infinite. Hence there exists a collection {αm}m∈N ⊆ En such that αm ̸= αk

whenever k ̸= m. Therefore we obtain by Theorem 6.3.10 that

∥x∥2 ≥
∑

m∈N
|⟨x, eαm⟩|2 ≥

∑
m∈N

1
n2 ,

which is impossible. Hence each En must be finite.
Since

{α ∈ Λ | ⟨x, eα⟩ ≠ 0} =
⋃

n∈N
En,

the set under consideration is a countable union of countable sets and thus
is countable.

Using the above, we immediately obtain a version of Bessel’s Inequality
for uncountable sets. In that which follows, we will be summing non-negative
real numbers over an uncountable set via nets. However, as only countable
many terms in the sum are non-zero, this sum can be thought of as a
countable sum of positive real numbers.

Theorem 6.3.12 (Bessel’s Inequality). Let H be a Hilbert space and let
{eα}α∈Λ be an orthonormal set. For each x ∈ H∑

α∈Λ
|⟨x, eα⟩|2 ≤ ∥x∥2 .
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Corollary 6.3.13. Let H be a Hilbert space and let {eα}α∈Λ be an orthonor-
mal set. For each x ∈ H the sum∑

α∈Λ
⟨x, eα⟩eα

converges.

Proof. By Lemma 6.3.11, only a countable number of coefficients are non-
zero. By Theorem 6.3.12, the sum above (by which we mean sum the
countable number of terms with non-zero coefficients), we obtain that the
sum is absolutely summable. Hence the sum converges by Theorem 2.2.2 as
H is complete.

Finally, we obtain the characterization of an orthonormal basis that shows
orthonormal bases are good analytical bases for Hilbert spaces.

Theorem 6.3.14. Let {eα}α∈Λ be an orthonormal set in a Hilbert space H.
The following are equivalent:

(1) {eα}α∈Λ is an orthonormal basis for H.

(2) span({eα}α∈Λ) is dense in H.

(3) For all x ∈ H, x =
∑

α∈Λ⟨x, eα⟩eα.

(4) For all x ∈ H, ∥x∥2 =
∑

α∈Λ |⟨x, eα⟩|2.

Proof. To see that (1) implies (2), suppose {eα}α∈Λ is an orthonormal basis
for H. If span({eα}α∈Λ) is not dense in H, then K = span({eα}α∈Λ) is a
closed vector subspace of H that is not equal to H. Hence K⊥ ̸= ∅ by Theorem
6.2.9 so K⊥ must contain a vector x of length 1. Since x is orthogonal to
each element of K and thus each eα, we obtain that {x} ∪ {eα}α∈Λ is an
orthonormal set which is larger than {eα}α∈Λ. As this contradicts the fact
that {eα}α∈Λ is a maximal orthonormal set, we have obtained a contradiction.
Hence (1) implies (2).

To see that (2) implies (3), let x ∈ H be arbitrary. By Corollary 6.3.13
the vector y =

∑
α∈Λ⟨x, eα⟩eα is an element of H. Hence there exists an

increasing sequence of finite subsets Λn of Λ such that

y = lim
n→∞

∑
α∈Λn

⟨x, eα⟩eα.

Therefore, by the continuity of the inner product, we obtain that

⟨x− y, eα⟩ = lim
n→∞

〈
x−

∑
α∈Λn

⟨x, eα⟩eα, eβ

〉

= lim
n→∞

⟨x, eβ⟩ −
∑

α∈Λn

⟨x, eα⟩⟨eα, eβ⟩

= 0
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for all β ∈ Λ. Hence x− y ∈ (span({eα}α∈Λ))⊥ = H⊥ = {⃗0}. Thus x = y as
desired. Therefore, as x ∈ H was arbitrary, (2) implies (3).

To see that (3) implies (4), let x ∈ H be arbitrary. Notice there exists an
increasing sequence of finite subsets Λn of Λ such that

x = lim
n→∞

∑
α∈Λn

⟨x, eα⟩eα and
∑
α∈Λ

|⟨x, eα⟩|2.

Thus, by the continuity of the inner product

∥x∥2 = lim
n→∞

〈 ∑
α∈Λn

⟨x, eα⟩eα,
∑

α∈Λn

⟨x, eα⟩eα

〉

= lim
n→∞

∑
α∈Λn

|⟨x, eα⟩|2

=
∑
α∈Λ

|⟨x, eα⟩|2.

Hence (3) implies (4).
Finally, to see that (4) implies (1), suppose to the contrary that {eα}α∈Λ

was not an orthonormal basis. Thus there exists a vector x ∈ H such that
∥x∥2 = 1 yet x is orthogonal to each eα. However, the formula in (4) then
implies 1 = 0 which is impossible. Hence {eα}α∈Λ is an orthonormal basis.

Using the same arguments as in Remark 6.3.9, we obtain a version of the
orthogonal projection formula for infinite dimensional subspaces.

Corollary 6.3.15. Let K be a closed vector subspace of a Hilbert space H.
If {eα}α∈Λ is an orthonormal basis for K and P is the orthogonal projection
of H onto K, then for all x ∈ H

P (x) =
∑
α∈Λ

⟨x, eα⟩eα.

Using orthonormal bases, we can completely characterize all Hilbert
spaces in existence. The following is our first step.

Proposition 6.3.16. If H is a Hilbert space then any two orthonormal basis
for H have the same cardinality.

Proof. If H has a finite orthonormal basis, then H is finite dimensional. Since
each orthonormal basis for a finite dimensional Hilbert space is a vector space
basis, the result trivial follows. Hence we will assume H has only infinite
dimensional orthonormal bases.

Let {eα}α∈E and {fβ}β∈F be orthonormal bases for H. Recall for each
α ∈ E the set

Fα = {β ∈ F | ⟨eα, fβ⟩ ≠ 0}
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is countable by Lemma 6.3.11. Furthermore, by Theorem 6.3.14 applied to
{eα}α∈E , for each β ∈ F there exists an α ∈ E such that β ∈ Fα. Therefore
F =

⋃
α∈E Fα so, as |Fα| ≤ |N|,

|F| ≤ |N||E| = |E|

by cardinality theory. By replacing the roles of F and E , we obtain that
|E| ≤ |F| so |E| = |F| as desired.

Because of Proposition 6.3.16, we can now make the following definition.

Definition 6.3.17. The dimension of a Hilbert space H, denoted dim(H),
is the cardinality of an orthonormal basis for H.

Unsurprisingly, two Hilbert spaces will be “the same” if they have the
same dimension. To formalize this, we must discuss the appropriate notion
of isomorphism for Hilbert spaces.

Definition 6.3.18. Let H1 and H2 be Hilbert spaces. A unitary operator
from H1 to H2 is a surjective linear map U : H1 → H2 such that

⟨U(x), U(y)⟩H2 = ⟨x, y⟩H1

for all x, y ∈ H1.

Note as ∥U(x)∥H2
= ∥x∥H1

for all x ∈ H1, unitary operators are injective
(and thus bijective). As clearly U−1 will also be a unitary operator, the
following defines an equivalence relation on the class of all Hilbert spaces.

Definition 6.3.19. Two Hilbert spaces H1 and H2 are said to be isomorphic
if there exists a unitary operator from H1 to H2.

Finally we can now characterize Hilbert spaces via their dimensions.

Theorem 6.3.20. Let H1 and H2 be Hilbert spaces. Then H1 and H2 are
isomorphic if and only if dim(H1) = dim(H2).

Proof. First suppose H1 and H2 are isomorphic. Therefore there exists a
unitary operator U : H1 → H2. Let {eα}α∈Λ be an orthonormal basis for H1.
By the definition of a unitary, we see that {U(eα)}α∈Λ is an orthonormal
set. Furthermore, Theorem 6.3.14 implies that span({eα}α∈Λ) is dense in H1
so, since U is a linear map and a homeomorphism, span({U(eα)}α∈Λ) must
also be dense in H2. Hence {U(eα)}α∈Λ is an orthonormal basis of H2 by
Theorem 6.3.14. Hence dim(H1) = |Λ| = dim(H2) as desired.

For the converse direction, we note that since isomorphism of Hilbert
spaces is an equivalence relation that it suffices to prove the following.
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Corollary 6.3.21. Let H be a Hilbert space and let Λ be a set such that
|Λ| = dim(H). Then H is isomorphic to the Hilbert space

ℓ2(Λ,K) =
{
f : Λ → K

∣∣∣∣ {α∈Λ | f(α)̸=0} is countable
and

∑
α∈Λ |f(α)|2<∞

}
equipped with the inner product

⟨f, g⟩ℓ2(Λ,K) =
∑
α∈Λ

f(α)g(α).

Proof. First we must proof that ℓ2(Λ,K) together with the inner product
described is indeed a Hilbert space. The proof that ⟨f, g⟩ℓ2(Λ,K) is a well-
defined inner product is as in Example B.1.10. The proof that ℓ2(Λ,K) is a
Banach space follows from the Riesz-Fisher Theorem (Theorem D.2.1) by
taking the counting measure µ on Λ and equating L2(Λ, µ) with ℓ2(Λ,K).
Hence ℓ2(Λ,K) is a Hilbert space.

To complete the proof, let {eα}α∈Λ be an orthonormal basis of H. Define
U : H → ℓ2(Λ,K) by

U(h)(α) = ⟨h, eα⟩H

for all α ∈ Λ and h ∈ H. Note if h ∈ H then U(h) is indeed an element of
ℓ2(Λ,K) by Bessel’s inequality (Theorem 6.3.12). Hence U is a well-defined
linear map that maps the orthonormal basis {eα}α∈Λ to the orthonormal
basis {fα}α∈Λ where

fα(β) =
{

1 β = α

0 β ̸= α
.

Hence Theorem 6.3.14 implies that U is surjective. To see that U is a unitary
(and thus injective), notice for all x, y ∈ H that by Theorem 6.3.14 and the
fact that the inner product is continuous in each entry, we have

⟨U(x), U(y)⟩ℓ2(Λ,K) =
∑
α∈Λ

⟨x, eα⟩H⟨eα, y⟩H

=
∑
α∈Λ

⟨⟨x, eα⟩Heα, ⟨eα, y⟩Heα⟩H

=
∑

α,β∈Λ
⟨⟨x, eα⟩Heα, ⟨eβ, y⟩Heβ⟩H

=
〈∑

α∈Λ
⟨x, eα⟩Heα,

∑
β∈Λ

⟨eβ, y⟩Heβ

〉
H

= ⟨x, y⟩H

Hence U is a unitary so H is isomorphic to ℓ2(Λ,K).

This completes the proof of Theorem 6.3.20.

©For use through and only available at pskoufra.info.yorku.ca.



168 CHAPTER 6. OPERATOR THEORY

6.4 Bounded Linear Operators on Hilbert Spaces
With the above theory of Hilbert spaces complete, we turn our attention to
bounded linear functions on Hilbert spaces. In particular, we will be able to
quickly characterize the dual space of any Hilbert space. This leads us to
a particular behaviour of the adjoints and a theory of the bounded linear
operators on a Hilbert space. We begin with the following.

Theorem 6.4.1 (Riesz Representation Theorem). Let H be a Hilbert
space. For each y ∈ H define φy : H → K by

φy(x) = ⟨x, y⟩

for all x ∈ H. Then φy ∈ H∗ for all y ∈ H.
Moreover, if we define Φ : H → H∗ by

Φ(y) = φy

for all y ∈ H, then Φ is a conjugate linear, isometric, and bijective.

Proof. To begin, it is elementary to see that φy is a linear map for all y ∈ H.
To see that φ is continuous, note by the Cauchy-Schwarz inequality that

|φy(x)| ≤ ∥x∥ ∥y∥

for all x ∈ H. Hence φ is continuous and ∥φ∥ ≤ ∥y∥.
To see that ∥φy∥ = ∥y∥ thereby showing Φ is isometric, notice said

equality is trivial if y = 0⃗. Otherwise let z = 1
∥y∥y so that z is a unit vector.

Since
φy(z) =

〈 1
∥y∥

y, y

〉
= ∥y∥ ,

the other equality follows.
It is elementary to verify that Φ is conjugate linear. Moreover, as Φ is

isometric, Φ is injective. To see that Φ is surjective, let φ ∈ H∗ be arbitrary.
If φ(x) = 0 for all x ∈ H, then clearly φ = φ0⃗. Otherwise, suppose φ is not
the zero linear functional. Hence ker(φ) is a closed vector subspace of H
that does not equal H. Thus there exists a vector z ∈ ker(φ)⊥ \ {⃗0}. As
φ(z) ̸= 0, by scaling z if necessary, we may assume that φ(z) = 1.

We claim that span({z}) = ker(φ)⊥. To see this, it suffices to show that
if z1 ∈ ker(φ)⊥ \ {⃗0} and φ(z1) = 1, then z = z1. Indeed if z1 has the desired
properties, then z − z1 ∈ ker(φ)⊥ and

φ(z − z1) = 1 − 1 = 0

so z − z1 ∈ ker(φ). Hence z − z1 ∈ ker(φ) ∩ ker(φ)⊥ = {⃗0} so z = z1 as
desired. Hence span({z}) = ker(φ)⊥ and thus {z}⊥ = ker(φ) by Corollary
6.2.12.
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As z ̸= 0⃗, let y = 1
∥z∥2 z. Therefore {y}⊥ = {z}⊥ = ker(φ). We claim

that φ = φy. To see this, we notice for all x ∈ ker(φ) that x ∈ {y}⊥ so

⟨x, y⟩ = 0 = φ(x).

Otherwise, if x = βy for some β ∈ K, we see that

φ(x) = βφ(y)

= β
1

∥z∥2φ(z)

= β

∥z∥2

= β

∥z∥4 ⟨z, z⟩

= β⟨y, y⟩
= ⟨x, y⟩.

Therefore, as H = ker(φ) ⊕ ker(φ)⊥ = ker(φ) ⊕ span({y}) by Theorem 6.2.9,
it follows that φ = φy as desired.

Clearly the Riesz Representation Theorem (Theorem 6.4.1) shows that
Hilbert spaces are reflexive and thus the weak and weak∗-topologies on a
Hilbert space are the same. In fact, the whole point of examining reflexive
Banach spaces is that they behave more similarly to Hilbert space than other
Banach spaces.

Of course, a characterization of the dual space immediately gives us some
results based on our knowledge of linear functionals

Corollary 6.4.2. Let H be a Hilbert space. If x ∈ H then

∥x∥ = sup{|⟨x, y⟩| | y ∈ H, ∥y∥ ≤ 1}.

Proof. This follows immediately from Corollary 4.3.1.

Corollary 6.4.3. Let H and K be Hilbert spaces and let T : H → K be
linear. Then

∥T∥ = sup{|⟨T (x), y⟩K| | x ∈ H, y ∈ K, ∥x∥H , ∥y∥K ≤ 1}

(with both sides being infinity if T is not bounded).

Moreover, if H and K are Hilbert space and T ∈ B(H,K), we know the
Banach space adjoint T ∗ of T is an element of B(K∗,H∗), which can be
identified as an element of B(K,H) via the Riesz Representation Theorem
(Theorem 6.4.1). Due to the identification of dual spaces, the Banach space
adjoint of an operator between two Hilbert spaces can be alternatively defined
as follows and is known as (Hilbert space) adjoint of T . We include the
following construction as an alternative method.
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Theorem 6.4.4. Let H and K be Hilbert spaces and let T ∈ B(H,K). Then
there exists a unique linear map T ∗ ∈ B(K,H) such that

⟨T ∗(y), x⟩H = ⟨y, T (x)⟩K

for all x ∈ H and y ∈ K. Furthermore ∥T ∗∥ = ∥T∥.

Proof. Fix T ∈ B(H,K). For each y ∈ K, consider the linear map fy : H → C
defined by

fy(x) = ⟨T (x), y⟩K

for all x ∈ H. Since

|fy(x)| = |⟨T (x), y⟩K| ≤ ∥T (x)∥K ∥y∥K ≤ ∥T∥ ∥x∥H ∥y∥K

via the Cauchy-Schwarz inequality, we see that fy is a bounded linear map.
Therefore, by the Riesz Representation Theorem (Theorem 6.4.1) there exists
a unique vector, denoted T ∗

y ∈ H such that

⟨T (x), y⟩K = fy(x) = ⟨x, T ∗
y ⟩H

for all x ∈ H.
We claim that the map T ∗ : K → H defined by T ∗(y) = T ∗

y is a bounded
linear map. To see linearity, notice for all x ∈ H, y1, y2 ∈ K, and α ∈ K that

⟨x, T ∗
y1+αy2⟩H = ⟨T (x), y1 + αy2⟩K

= ⟨T (x), y1⟩K + α⟨T (x), y2⟩K

= ⟨x, T ∗
y1⟩H + α⟨x, T ∗

y2⟩H

= ⟨x, T ∗
y1 + αT ∗

y2⟩H.

Therefore, as the above holds for all x ∈ H, we see (for example, by the
uniqueness part of the Riesz Representation Theorem (Theorem 6.4.1)) that

T ∗
y1+αy2 = T ∗

y1 + αT ∗
y2 .

Therefore, as y1, y2 ∈ K and α ∈ K were arbitrary, T ∗ is linear.
To see that T ∗ is bounded, we notice that

sup{|⟨T ∗(y), x⟩H| | x ∈ H, y ∈ K, ∥x∥H , ∥y∥K ≤ 1}
= sup{|⟨y, T (x)⟩K| | x ∈ H, y ∈ K, ∥x∥H , ∥y∥K ≤ 1}
= sup{|⟨T (x), y⟩K| | x ∈ H, y ∈ K, ∥x∥H , ∥y∥K ≤ 1}
= ∥T∥ .

Thus it follows from Corollary 6.4.3 that T ∗ is bounded with ∥T ∗∥ = ∥T∥.
Finally, uniqueness of T ∗ comes from construction and the uniqueness in the
Riesz Representation Theorem.
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Remark 6.4.5. Note if H and K are Hilbert spaces and T ∈ B(H,K), then

⟨x, T ∗(y)⟩H = ⟨T ∗(y), x⟩H = ⟨y, T (x)⟩K = ⟨T (x), y⟩K

for all y ∈ K and x ∈ H.

Of course, the Hilbert space adjoint has the same properties as the Banach
space adjoint from Proposition 1.6.9. Note due to the conjugate linearity
in the isomorphism between H and H∗ that the Hilbert space adjoint is
conjugate linear. Moreover, as H∗∗ = H, the Hilbert space adjoint has square
equal to the identity. We note the following are trivial to prove based on the
above definition.

Lemma 6.4.6. Let H, K, and L be Hilbert spaces. Then

(1) (T + S)∗ = T ∗ + S∗ for all T, S ∈ B(H,K),

(2) (αT )∗ = αT ∗ for all T ∈ B(H,K) and α ∈ K,

(3) (T ∗)∗ = T for all T ∈ B(H,K), and

(4) (ST )∗ = T ∗S∗ for all T ∈ B(H,K) and S ∈ B(K,L).

At this point we can finally explain why the notation we are using for the
adjoint is the same as the notation used in linear algebra for the conjugate
transpose.

Proposition 6.4.7. Let H be a complex separable Hilbert space and let
E = {en}n∈I be an orthonormal basis for H (so either I is finite or countable).
If T ∈ B(H), then the matrix of T ∗ with respect to E is the conjugate transpose
of the matrix of T with respect to E.

Proof. Recall the (n,m)-entry of the matrix of T is ⟨T (em), en⟩ whereas the
(m,n)-entry of the matrix of T ∗ is

⟨T ∗(en), em⟩ = ⟨en, T (em)⟩ = ⟨T (em), en⟩

as desired.

Example 6.4.8. Let A ∈ Mn(K) and define LA : Kn → Kn by LA(x) =
Ax for all x ∈ Kn (where we write x as a column vector and use matrix
multiplication). Then (LA)∗ = LA∗ by Proposition 6.4.7.

One surprising useful result related to the norm of an adjoint is the
following.

Theorem 6.4.9. Let H be a Hilbert space and let T ∈ B(H). Then ∥T∥2 =
∥T ∗T∥.
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Proof. First, we note for all x ∈ H that

∥T ∗(T (x))∥ ≤ ∥T ∗∥ ∥T (x)∥ ≤ ∥T ∗∥ ∥T∥ ∥x∥ .

Hence ∥T ∗T∥ ≤ ∥T ∗∥ ∥T∥ = ∥T∥2 as ∥T ∗∥ = ∥T∥ by Theorem 6.4.4.
To see the other inequality, notice that

∥T∥2 = sup{∥T (x)∥2 | x ∈ H, ∥x∥H ≤ 1}
= sup{⟨T (x), T (x)⟩ | x ∈ H, ∥x∥H ≤ 1}
= sup{⟨T ∗T (x), x⟩ | x ∈ H, ∥x∥H ≤ 1}
≤ sup{⟨T ∗T (x), y⟩ | x, y ∈ H, ∥x∥H , ∥y∥H ≤ 1}
= ∥T ∗T∥

by Corollary 6.4.3.

To further our study of bounded linear operators on Hilbert spaces, we
desire a deeper analysis of the orthogonal projections. To begin, we prove
the following which further relates an operator and its adjoint.

Lemma 6.4.10. Let H and K be Hilbert spaces and let T ∈ B(H,K). Then
(T ∗)∗ = T and

(Im(T ))⊥ = ker(T ∗).

Hence Im(T ) = ker(T ∗)⊥.

Proof. As (T ∗)∗ = T by Lemma 6.4.6, clearly Im(T ) = ker(T ∗)⊥ will follow
from (Im(T ))⊥ = ker(T ∗) using Corollary 6.2.12.

To prove that (Im(T ))⊥ = ker(T ∗), let x ∈ ker(T ∗) be arbitrary. If
y ∈ Im(T ) is arbitrary, then there exists a vector z ∈ H such that y = T (z).
Hence

⟨y, x⟩K = ⟨T (z), x⟩K = ⟨z, T ∗(x)⟩H = ⟨z, 0⃗⟩H = 0.

Therefore, as y ∈ Im(T ) was arbitrary, it follows that x ∈ (Im(T ))⊥. Hence,
as x ∈ ker(T ∗) was arbitrary, ker(T ∗) ⊆ (Im(T ))⊥.

For the other direction, let x ∈ (Im(T ))⊥ be arbitrary. Then for all y ∈ H
we see that

⟨T ∗(x), y⟩H = ⟨x, T (y)⟩K = 0

as T (y) ∈ Im(T ) and x ∈ (Im(T ))⊥. Therefore, as y ∈ H was arbitrary,
we see (for example, by the uniqueness part of the Riesz Representation
Theorem (Theorem 6.4.1)) that x ∈ ker(T ∗). Hence, as x ∈ (Im(T ))⊥ was
arbitrary, ker(T ∗) = (Im(T ))⊥ as desired.

Thus we arrive at an alternative characterization of the orthogonal
projections.
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Proposition 6.4.11. Let H be a Hilbert space. An element P ∈ B(H) is
an orthogonal projection onto a closed vector subspace of H if and only if
P 2 = P and P ∗ = P .

Proof. Suppose P is the orthogonal projection onto a closed vector subspace
K of H. As we have previously seen that P 2 = P , it suffices to show that
P ∗ = P . To see this, let x, y ∈ H be arbitrary. By Theorem 6.2.9 we can
write x = xP + x0 and y = yP + y0 where xP , yP ∈ K and x0, y0 ∈ K⊥.
Therefore we have that

P (xP ) = xP , P (yP ) = yP , Px0 = 0⃗, and Py0 = 0⃗.

Hence

⟨P ∗(x), y⟩ = ⟨x, P (y)⟩
= ⟨xP + x0, P (yP + y0)⟩
= ⟨xP + x0, yP ⟩
= ⟨xP , yP ⟩ + ⟨x0, yP ⟩
= ⟨xP , yP ⟩
= ⟨xP , yP ⟩ + ⟨xP , y0⟩
= ⟨xP , yP ⟩ + y0⟩
= ⟨P (xP + x0), yP ⟩ + y0⟩
= ⟨P (x), y⟩.

Therefore, as the above holds for all y ∈ H, we see that P ∗(x) = P (x) for all
x ∈ H. Hence P ∗ = P as claimed.

For the other direction, let P ∈ B(H,H) be such that P 2 = P = P ∗.
Thus K = ker(P ) is a closed vector subspace. Notice by Lemma 6.4.10 that

K⊥ = ker(P )⊥ = Im(P ∗) = Im(P ).

We claim that P is the orthogonal projection onto Im(P ). To see this, first
we notice that

Im(P )⊥ = (K⊥)⊥ = K

by Corollary 6.2.12. Therefore, as P (x) = 0⃗ for all x ∈ K, it suffices to show
that P is the identity on Im(P ). If x ∈ Im(P ), then x = P (y) for some
y ∈ H and thus

P (x) = P 2(y) = P (y) = x.

Therefore, P is the identity on Im(P ). Hence P is the identity on Im(P ) by
continuity. Thus the result follows.

Orthogonal projections are examples of the following useful class of
operators, which are a generalization of those studied in linear algebra.
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Definition 6.4.12. Let H be a Hilbert space. An element T ∈ B(H) is said
to be self-adjoint(or Hermitian) if T ∗ = T .

An alternative characterization of self-adjoint operators is as follows.

Proposition 6.4.13. Let H be a Hilbert space over C. Then T ∈ B(H) is
self-adjoint if and only if ⟨T (h), h⟩ ∈ R for all h ∈ H.

Proof. Clearly if T is self-adjoint, then T ∗ = T so

⟨T (h), h⟩ = ⟨h, T (h)⟩ = ⟨T ∗(h), h⟩ = ⟨T (h), h⟩

for all h ∈ H. Thus ⟨T (h), h⟩ ∈ R for all h ∈ H.
Conversely, suppose ⟨T (h), h⟩ ∈ R for all h ∈ H. Hence

⟨T ∗(h), h⟩ = ⟨h, T (h)⟩ = ⟨T (h), h⟩

for all h ∈ H. Thus the Polarization Identities (Theorem B.1.20) imply that

⟨T ∗(h), k⟩ = ⟨T (h), k⟩

for all h, k ∈ H and thus T ∗ = T .

In fact, we can examine isometries and thus unitaries using adjoints as
follows.

Proposition 6.4.14. Let H and K be Hilbert spaces and let V ∈ B(H,K).
The following are equivalent:

1. V ∗V = IH.

2. ∥V (x)∥K = ∥x∥H for all x ∈ H (that is, V is an isometry).

3. ⟨V (x), V (y)⟩K = ⟨x, y⟩H for all x, y ∈ H.

Proof. First, to see that (1) implies (2), suppose (1) holds. Then for all
x ∈ H

∥V (x)∥2
K = ⟨V (x), V (x)⟩K = ⟨V ∗V (x), x⟩H = ⟨x, x⟩H = ∥x∥2

H .

Hence (2) holds so (1) implies (2)
Next, to see that (2) implies (3), suppose that (2) holds. By the same

proof of the Polarization Identity (Theorem B.1.20), we see that

⟨V (x), V (y)⟩K = 1
4 ∥V (x) + V (y)∥2 − 1

4 ∥V (x) − V (y)∥2

= 1
4 ∥V (x+ y)∥2 − 1

4 ∥V (x− y)∥2

= 1
4 ∥x+ y∥2 − 1

4 ∥x− y∥2

= ⟨x, y⟩H
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if K = R and

⟨V (x), V (y)⟩K = 1
4

4∑
k=1

∥∥∥V (x) + ikV (y)
∥∥∥2

= 1
4

4∑
k=1

∥∥∥V (x+ iky)
∥∥∥2

= 1
4

4∑
k=1

∥∥∥x+ iky
∥∥∥2

= ⟨x, y⟩H

if K = C. Hence (3) follows so (2) implies (3)
Finally, to see that (3) implies (1), suppose (3) holds. Then for all

x, y ∈ H

⟨IH(x), y⟩H = ⟨x, y⟩H = ⟨V (x), V (y)⟩K = ⟨V ∗V (x), y⟩H.

Hence it follows that V ∗V = I as desired.

Corollary 6.4.15. Let H and K be Hilbert spaces and let U ∈ B(H,K). The
following are equivalent:

1. U∗U = IH and UU∗ = IK.

2. ∥U(x)∥K = ∥x∥H for all x ∈ H and U is surjective.

3. ⟨U(x), U(y)⟩K = ⟨x, y⟩H for all x, yy ∈ H and U is surjective (i.e. U
is a unitary).

Hence, if U ∈ B(H,K) is a unitary, then ∥U∥ = 1.

Proof. Clearly (1) implies (2) and (2) implies (3) by Proposition 6.4.14.
Suppose (3) holds. Then U∗U = IH by Proposition 6.4.14. Since (3) holds,
we obtain U is an isometry by Proposition 6.4.14. Hence U is injective and
thus invertible as a linear map between vector spaces. Therefore, due to the
uniqueness of the inverses, we obtain that UU∗ = IK.

Using all of the above (in fact, using substantially less technology), we
can prove the following.

Theorem 6.4.16. Let A ∈ Mn(K) and define LA : Kn → Kn by LA(x) =
Ax for all x ∈ Kn (where we write x as a column vector and use matrix
multiplication). Then

∥LA∥ = max
{√

λ | λ an eigenvalue for A∗A
}
.
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Proof. First, consider the case A = diag(d1, d2, . . . , dn) and let

M = max{|d1|, |d2|, . . . , |dn|}.

To see that ∥LA∥ = M , first notice for all k ∈ {1, . . . , n} that if e⃗k is the
vector in Cn with a 1 in the kth entry and 0s elsewhere, then ∥e⃗k∥2 = 1 and

∥LA(e⃗k)∥2 = ∥dke⃗k∥2 = |dk|.

Hence ∥LA∥ ≥ M .
To see the reverse inequality, notice for all x = (x1, x2, . . . , xn) ∈ Cn such

that ∥x∥2 =
√∑n

k=1 |xk|2 ≤ 1 that

∥LA(x)∥2 = ∥(d1x1, d2x2, . . . , dnxn)∥2

=

√√√√ n∑
k=1

|dkxk|2

=

√√√√ n∑
k=1

|dk|2|xk|2

≤

√√√√ n∑
k=1

M2|xk|2

= M

√√√√ n∑
k=1

|xk|2 = M.

Hence ∥LA∥ ≤ M so ∥LA∥ = M as desired.
Next,l et A ∈ Mn(C) be arbitrary and let U ∈ Mn(C) be an arbitrary

unitary matrix. Then LU∗AU = LU∗LALU = L∗
ULALU and LU is a unitary

operator. Hence

∥LU∗AU ∥ = ∥L∗
ULALU ∥ ≤ ∥L∗

U ∥ ∥LA∥ ∥LU ∥ = ∥LA∥

as unitary operators have norm 1. Moreover, since LU∗AU = L∗
ULALU implies

LA = LULU∗AULU∗

as (L∗
U )−1 = LU and (LU )−1 = LU∗ , we also have that

∥LA∥ = ∥LULU∗AUL
∗
U ∥ ≤ ∥LU ∥ ∥LU∗AU ∥ ∥L∗

U ∥ = ∥LA∥

Hence ∥LU∗AU ∥ = ∥LA∥ as desired.
Since A∗A is a self-adjoint matrix and positive semi-definite, the Spectral

Theorem for Self-Adjoint Matrices implies there exists a unitary matrix
U ∈ Mn(C) and a diagonal matrix D = diag(d1, d2, . . . , dn) such that
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A∗A = U∗DU and λ1, . . . , λn ∈ [0,∞) are the eigenvalues of A∗A. Hence we
have that

∥LA∥ = ∥L∗
ALA∥

1
2

= ∥LA∗A∥
1
2

= ∥LU∗DU ∥
1
2

= ∥LD∥
1
2

= max{|λ1|, |λ2|, . . . , |λn|}
1
2

= max
{√

λ | λ an eigenvalue for A∗A
}

as desired.

Finally, returning to compact operators, we have the following nice
characterization.

Theorem 6.4.17. Let H be a Hilbert space and let T ∈ B(H). The following
are equivalent:

(1) T is compact.

(2) T ∗ is compact.

(3) There exists a sequence (Fn)n≥1 ∈ F(H) such that T = limn→∞ Fn.

Proof. To see that (1) implies (3), let T be a compact operator. Thus
T (H1) is a totally bounded subset of H and thus separable. Therefore
K = span(T (H1)) is a closed separable subspace of H and thus a separable
Hilbert space. Hence there exists a countable orthonormal basis {en}∞

n=1 of
K.

For each n ∈ N, let Pn be the orthogonal projection onto span({e1, . . . , en})
and let Fn = PnT . Since Pn has finite dimensional range, Fn ∈ F(H) for all
n ∈ N. To complete the proof, it suffices to show that T = limn→∞ Fn.

Let ϵ > 0 be arbitrary. Since T is compact, T (H1) is totally bounded so
there exist a finite set {xj}m

j=1 ⊆ H1 such that {T (xj)}m
j=1 is an ϵ

3 -net for
T (H1). Moreover, since limn→∞ Pn(T (xj)) = T (xj) for all j ∈ {1, . . . ,m}
by Theorem 6.3.14, there exists an N ∈ N such that

∥Fn(xj) − T (xj)∥ = ∥Pn(T (xj)) − T (xj)∥ < ϵ

3

for all n ≥ N .
Let x ∈ H1 be arbitrary. Since {T (xj)}m

j=1 is an ϵ
3 -net for T (H1) there

exists a j0 ∈ {1, . . . ,m} such that ∥T (x) − T (xj0)∥ < ϵ
3 . Therefore, for all
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n ≥ N ,

∥T (x) − Fn(x)∥ ≤ ∥T (x)T (xj0)∥ + ∥T (xj0) − Fn(xj0)∥ + ∥Fn(xj0) − Fn(x)∥

<
ϵ

3 + ϵ

3 + ∥Pn(T (xj0) − T (x))∥

≤ ϵ

3 + ϵ

3 + ∥Pn∥ ∥T (xj0) − T (x)∥

<
ϵ

3 + ϵ

3 + ϵ

3 = ϵ.

Therefore, as x ∈ H1 was arbitrary, ∥T − Fn∥ < ϵ for all n ≥ N . Hence
T = limn→∞ Fn.

To see that (3) implies (2), let (Fn)n≥1 ∈ F(H) such that T = limn→∞ Fn.
Hence T ∗ = limn→∞ F ∗

n by Theorem 6.4.4.
We claim that F ∗

n is finite rank for all n ∈ N. Indeed as Fn is finite rank,
Yn = Im(Fn) is a finite dimensional subspace of H. Notice if x ∈ Im(Fn)⊥,
then for all h ∈ H we have that

⟨F ∗
n(x), y⟩ = ⟨x, Fn(y)⟩ = 0

so that F ∗
n(x) = 0 for all x ∈ Im(Fn)⊥. Hence F ∗(H) = F∗(Im(Fn)), which

must be finite dimensional since Im(Fn) is finite dimensional. Hence F ∗
n is

finite rank for all n ∈ N so T ∗ is a limit of finite rank operators and thus
compact by Proposition 6.1.3 and Corollary 6.1.8.

Finally, to see that (2) implies (1), suppose T ∗ is compact. Hence, by
(1) implies (3) implies (2), we obtain that (T ∗)∗ = T is compact thereby
completing the proof.

Remark 6.4.18. For a compact operator T , note in the proof of Theorem
6.4.17 that if we replace Pn with any sequence of projections that converge
to the identity in the Strong Operator Topology, then PnT converges in
norm to T . Thus, by repeating the same argument with T ∗ in place of T , we
obtain as each orthogonal projection is self-adjoint that TPn also converges
in norm to T . Therefore, as

∥PnTPn − T∥ ≤ ∥PnTPn − TPn∥ + ∥TPn − T∥
≤ ∥PnT − T∥ ∥Pn∥ + ∥TPn − T∥
≤ ∥PnT − T∥ + ∥TPn − T∥ ,

we obtain that PnTPn converges to T in norm. This is quite useful in that
which follows.

Thus we can produce another interesting example of a compact operator.
Example 6.4.19. Let H = L2([0, 1], λ) where λ is the Lebesgue measure
and let K ∈ L2([0, 1]2, λ × λ). The Volterra operator with kernel K is the
map V : H → H by

(V f)(x) =
∫ 1

0
f(y)K(x, y) dy
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for all x ∈ [0, 1] and f ∈ H. Note as (x, y) 7→ f(y)K(x, y) is an element of
L1([0, 1]2, λ× λ) by Hölder’s inequality (Theorem D.1.7) that V f is indeed
a measurable function by Fubini’s Theorem. Moreover, since

∥V (f)∥2
2 =

∫ 1

0
|(V (f))(x)|2 dx

=
∫ 1

0

∣∣∣∣∫ 1

0
f(y)K(x, y) dy

∣∣∣∣2 dx
≤
∫ 1

0

(∫ 1

0
|f(y)K(x, y)| dy

)2
dx

≤
∫ 1

0
∥f∥2

2

∫ 1

0
|K(x, y)|2 dy dx by Cauchy-Schwarz

= ∥f∥2
2 ∥K∥2

2 .

Hence V does indeed map H into H. As V is clearly linear, the above shows
that V is bounded with ∥V ∥ ≤ 1.

We claim that V is compact. To see this, we claim that V is a limit of
finite rank operators. To see this, let ϵ > 0 be arbitrary and let

A =
{

n∑
k=1

fk(x)gk(y)
∣∣∣∣∣ n ∈ N, {fk, gk}n

k=1 ∈ C[0, 1]
}
.

By the Stone-Weirstrass Theorem, A is dense in C([0, 1]2) with respect to
the infinite norm. Therefore, as C([0, 1]2) is dense in L2([0, 1]2, λ × λ) by
Lusin’s Theorem. Hence there exists a K0 ∈ A such that ∥K −K0∥2 < ϵ.
Hence if we define V0 to be the Volterra operator with kernel K0, then V −V0
is the Volterra operator with kernel K −K0 so

∥V − V0∥ ≤ ∥K −K0∥2 < ϵ.

We claim that V0 is finite rank. Indeed, as K0 ∈ A, we can write

K0 =
n∑

k=1
fk(x)gk(y)

for some n ∈ N and {fk, gk}n
k=1 ∈ C[0, 1]. Thus for all f ∈ H

(V0f)(x) =
∫ 1

0
f(y)K0(x, y) dy =

n∑
k=1

akfk(x)

for some {ak}n
k=1 ∈ K for all x ∈ [0, 1]. Hence V0 is finite rank. Therefore,

as ϵ > 0 was arbitrary, V is a compact operator.
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6.5 Spectral Theorem for Compact Operators
“Thank you Mario! But our Princess is in another castle.”

To be precise, the proof of the Spectral Theorem for Compact Operators
is absent from these notes as the proof will be presented to start Functional
Analysis II.
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Appendix A

Topological Spaces

In this section, we will briefly review the basics of topological spaces to the
extent that is required for functional analysis. More advanced requirements
from topology will be produced as needed throughout these notes.

A.1 Topologies
Topology, from the Greek τóπoσ meaning place and λóγoσ meaning study,
is the study of properties of spaces and their deformations. Such a study
is performed by looking at subsets that cover the entire space with certain
properties.

Definition A.1.1. Let X be a set. A set T ⊆ P(X) is said to be a topology
on X if

(1) ∅, X ∈ T ,

(2) (closed under unions) if {Uα}α∈I ⊆ T , then
⋃

α∈I Uα ∈ T , and

(3) (closed under finite intersections) if {Uα}α∈I ⊆ T and I is finite, then⋂
α∈I Uα ∈ T .

The pair (X, T ) is called a topological space and elements of T are called the
open sets of (X, T ).

There are many topologies we can place on a given set X so by saying
that (X, T ) is a topological space means we have fixed T to be the topology
on X. Once a topology is fixed on a set, one can think of the open sets as
the sets that describe how points are related to one another. In particular,
open sets provide some notion of whether two points are ‘close’ together;
that is, given two points x, y ∈ X and a U ∈ T such that x ∈ U , then y
is close to x with respect to U only if y ∈ U . Thus we can see the above
definition and thoughts are motivated by undergraduate real analysis where
the ‘open sets’ on R were the sets that were unions of open intervals and
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that two points were ‘close’ only if there was a ‘small’ open interval around
open point which contained the other.

As we desire to study topological spaces, it is useful to have some examples
to keep in mind. Of course the examples presented in this section are not all
the examples in existence and we will continually encounter new topologies
through the course.

Example A.1.2. Let X be a set. Then T = {∅, X} is a topology on X
known as the trivial topology. This name derives from the fact that the open
sets do not distinguish any two elements of X and most topological results
become trivial if we consider this topology. We remark that it is trivial to
verify the trivial topology is a topology.

Example A.1.3. Let X be a set. Then T = P(X) is a topology on X
known as the discrete topology. This name derives from the fact that every
set is open so singleton sets are open and thus every point is separated from
the others. We remark that it is trivial to verify the discrete topology is a
topology.

Example A.1.4. Let X be any set and let

T = {∅} ∪ {A ⊆ X | X \A is finite}.

Then T is a topology on X. To see this, we note that clearly ∅ ∈ T and
that X ∈ T as X \X = ∅. Next, to see that T is closed under unions, let
{Aα}α∈I ⊆ T be arbitrary. Thus X \Aα is finite for all α ∈ I. Since

X \
(⋃

α∈I

Aα

)
=
⋂
α∈I

(X \Aα) ,

we see that X \ (
⋃

α∈I Aα) is a subset of a finite set and thus finite. Hence⋃
α∈I Aα ∈ T by definition. Finally, to see that T is closed under finite

intersections, let {Aα}α∈I ⊆ T with I finite be arbitrary. Thus X \ Aα is
finite for all α ∈ I. Since

X \
(⋂

α∈I

Aα

)
=
⋃
α∈I

(X \Aα) ,

we see that X \ (
⋂

α∈I Aα) a finite union of finite sets and thus finite. Hence⋂
α∈I Aα ∈ T by definition.

The topology T on X is called the cofinite topology on X.

Example A.1.5. Let X be any set and let

T = {∅} ∪ {A ⊆ X | X \A is countable}.

Then T is a topology on X. To see this, one need to simply repeat the proof
of Example A.1.4 with ‘finite’ replaced with ‘countable’ in the appropriate
places.

The topology T on X is called the cocountable topology on X.
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Example A.1.6. Let X be any set and let

T = {A ⊆ X | A is finite}.

Notice if X is finite then T = P(X) so that T is the discrete topology on X.
However, if X is infinite then T is not a topology on X as T is not closed
under unions (i.e. a countable union of finite sets is not finite).

Since we have seen that there are many possible topologies on a given set,
it is useful to be able to compare the size of these topologies. The simplest
way to compare topologies is based on inclusion.

Definition A.1.7. Let T and T ′ be two topologies on a set X. It is said
that T is finer that T ′ or, equivalently, that T ′ is coarser than T if T ′ ⊆ T .
In the case the inclusion is strict (i.e. T ′ ⊊ T ), it is said that T is strictly
finer that T ′ or, equivalently, that T ′ is coarser strictly than T . Finally, it
is said that T and T ′ are comparable if T ⊆ T ′ or T ′ ⊆ T .

The above terminology is derived from the fact that “if you have more
sets in your topology, you can ‘divide up your space’ more finely”. That is,
the more pixels per square inch, the finer the image.

Example A.1.8. The discrete topology on a set is always finer than any
other topology on the set and the trivial topology is always coarser than any
other topology on the set. Provided the set is non-empty and not a singleton,
the discrete topology is strictly finer than the trivial topology.

Example A.1.9. The cofinite topology is coarser than the cocountable
topology and will be strictly coarser provided the set is infinite.

Example A.1.10. Consider the set X consisting of three distinct points
{a, b, c} and the following topologies on X:

T1 = {∅, {b}, {c}, {b, c}, X}
T2 = {∅, {b}, {a, b}, {b, c}, X}.

As T1 ⊈ T2 and T2 ⊈ T1, T1 and T2 are not comparable topologies on X.
Hence it is possible to have topologies that are not comparable.

A.2 Bases
In order to have a better understanding and control over topologies, we
desire to describe smaller collections of open sets that determine the entire
topology. For example, the metric topologies it is know that all open sets
are unions of open balls, so provided we can understand the open balls we
should be able to understand the entire topology. In particular, if we have
the following sets whose properties are in analogy with the open balls in a
metric space, we can form topologies with specific properties.
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Theorem A.2.1. Let X be a non-empty set and let B ⊆ P(X) be such that

(1) if x ∈ X then there exists a B ∈ B such that x ∈ B, and

(2) if x ∈ X and B1, B2 ∈ B are such that x ∈ B1 ∩B2, then there exists a
B3 ∈ B such that x ∈ B3, B3 ⊆ B1, and B3 ⊆ B2.

Let TB be the set of all subsets U of X such that for all x ∈ U there exists a
B ∈ B such that x ∈ B and B ⊆ U . Then TB is a topology on X such that
B ⊆ T .

Proof. To see that TB is a topology, we must verify the three properties in
Definition A.1.1. It is clear by definition of TB that ∅ ∈ TB.

To see that X ∈ TB recall by property (1) that for each x ∈ X there
exists an Bx ∈ B such that x ∈ Bx. As Bx ⊆ X by definition, we obtain that
X ∈ TB by the definition of TB.

Next suppose {Uα}α∈I is a set of elements of TB. To see that
⋃

α∈I Uα ∈
TB, let x ∈

⋃
α∈I Uα be arbitrary. Then there must be an α0 ∈ I such that

x ∈ Uα0 . Since Uα0 ∈ TB, there exists a B ∈ B such that x ∈ B and B ⊆ Uα0 .
Hence B ⊆ Uα0 ⊆

⋃
α∈I Uα. As x ∈

⋃
α∈I Uα was arbitrary, we obtain that⋃

α∈I Uα ∈ TB by definition.
To complete the proof that TB is topology, suppose U1, . . . , Un ∈ TB. To

see that
⋂n

k=1 Uk ∈ TB, let x ∈
⋂n

k=1 Uk be arbitrary. Hence x ∈ Uk for all k
so, as each Uk ∈ TB, there exists a Bk ∈ B such that x ∈ Bk and Bk ⊆ Uk.
By applying property (2) recursively n− 1 times, there exists a B ∈ B such
that x ∈ B and B ⊆ Bk for all k. Hence B ∈ B, x ∈ B, and B ⊆ Bk ⊆ Uk for
all k so that B ⊆

⋂n
k=1 Uk. Therefore, as x ∈ X was arbitrary,

⋂n
k=1 Uk ∈ TB

as desired.
Finally, the fact that B ⊆ TB follows from the definition of TB.

As subsets of the power set of a given set as described in Theorem A.2.1
are useful in constructing topologies, we define the following.

Definition A.2.2. Let X be a non-empty set. A basis for a topology on X
is a collection of subsets B ⊆ P(X) such that

(1) if x ∈ X then there exists a B ∈ B such that x ∈ B, and

(2) if x ∈ X and B1, B2 ∈ B are such that x ∈ B1 ∩B2, then there exists a
B3 ∈ B such that B3 ⊆ B1 and B3 ⊆ B2.

The topology TB on X from Theorem A.2.1 is called the topology generated
by the basis B. Note that a set U ⊆ X is open with respect to TB if and
only if for every x ∈ U there exists a B ∈ B such that x ∈ B and B ⊆ U .
Consequently B ⊆ TB.

Here is one example of how we can construct topologies via bases that
turns out not to be a topology we have previously seen.
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Example A.2.3. Let

B = {[a, b) | a, b ∈ R, a < b}.

We claim that B is a basis for a topology on R. To see this, it suffices to
verify the two defining properties of being a basis from Definition A.2.2. To
being, notice if x ∈ R then x ∈ [x, x + 1) ∈ B. Hence the first property is
satisfied. To see the second property, let [a1, b1), [a2, b2) ∈ B and x ∈ R such
that x ∈ [a1, b1) ∩ [a2, b2) be arbitrary. Let

a = max({a1, a2}) and b = min({b1, b2})

and let B = [a, b). Since x ∈ [a1, b1) ∩ [a2, b2), we see that a ≤ x < b so
B ∈ B and x ∈ B. Furthermore, by construction, B ⊆ [a1, b1) ∩ [a2, b2).
Hence, since [a1, b1), [a2, b2) ∈ B and x ∈ R were arbitrary, B is a basis for a
topology on R.

The topology TL on R generated by the basis B is called the lower limit
topology on R.

The fact that TL is not the same as the canonical topology on R will come
from material in Section A.4 where we show that ‘limits’ behave different
in these topologies. In particular, we will see why we call TL the lower
limit topology. Alternatively, we know that [a, b) is open in the lower limit
topology, but is not open in the canonical topology.

Topologies generated by a basis are particularly nice since it is very simple
to completely understand the entire topology via the basis elements based
on the above and below descriptions of open sets.

Theorem A.2.4. Let X be a non-empty set and let B be a basis for a
topology on X. Then

TB =

 ⋃
B∈B0

B

∣∣∣∣∣∣ B0 ⊆ B

 .
Proof. Notice, since TB is a topology and since B ⊆ TB, we know that for all
B0 ⊆ B that ⋃

B∈B0

B

is a union of elements of TB and thus in TB. Hence

TB ⊇

 ⋃
B∈B0

B

∣∣∣∣∣∣ B0 ⊆ B

 .
To see the other inclusion, let U ∈ TB be arbitrary. By the definition

of TB, for each x ∈ U there exists a Bx ∈ B such that x ∈ Bx and Bx ⊆ U .
Hence we see that

U =
⋃

x∈U

Bx.
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Therefore, as U ∈ TB was arbitrary, we obtain that

TB =

 ⋃
B∈B0

B

∣∣∣∣∣∣ B0 ⊆ B


as claimed.

As bases for a topology give us multiple nice descriptions of the open
sets for that topology, it is useful when given a topology to have a basis that
generates the given topology. Thus to simplify this terminology, we define
the following.

Definition A.2.5. Let (X, T ) be a topological space. A set B ⊆ P(X) is
said to be a basis for (X, T ) if B is a basis for a topology on X and TB = T .

Remark A.2.6. Of course, as B ⊆ TB for any basis of a topology B, for a
set B ⊆ P(X) to be a basis for a topology T , it must be the case that B ⊆ T .
Furthermore, by Theorem A.2.1 and Theorem A.2.4, we see that if B is a
basis for (X, T ) then

(1) a set U ⊆ X is open if and only if for every x ∈ U there exists a B ∈ B
such that x ∈ B and B ⊆ U , and

(2) the open sets in (X, T ) are exactly the union of elements of B.

Furthermore, it is not difficult to see that every topology is generated by
a basis as the following example shows.

Example A.2.7. Let (X, T ) be a topological space. Then T is a basis for
(X, T ). Of course this is not the most useful basis as our goal is to better
understand T by using a basis with as few elements as possible.

Of course, many of our previously discussed topologies have far nicer
bases.

Example A.2.8. Let X be a non-empty set and let T be the discrete
topology on X. Then

B = {{x} | x ∈ X}

is a basis for (X, T ). Indeed clearly B ⊆ T as T is the discrete topology. Next
clearly the first property of Definition A.2.2 holds and the second property
also clearly holds since the only way x ∈ X and B1, B2 ∈ B are such that
x ∈ B1 ∩B2 is if B1 = B2 = {x} ∈ B. Hence B is a basis for (X, T ).

Of course, we have our motivating example.
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Example A.2.9. Let (X, d) be a metric space. Then the set B of all open
balls forms a basis for (X, Td). Indeed clearly B ⊆ T and if x ∈ X then
Bd(x, 1) ∈ Td so the first property of Definition A.2.2 is satisfied. To see the
second property of Definition A.2.2 is satisfied, let x ∈ X and B1, B2 ∈ B
be arbitrary such that x ∈ B1 ∩ B2. Then there exists points x1, x2 ∈ X
and r1, r2 > 0 such that B1 = Bd(x1, r1) and B2 = Bd(x2, r2). Thus, as
x ∈ B1 ∩B2, we see that

d(x, x1) < r1 and d(x, x2) < r2.

Let
r = min{r1 − d(x, x1), r2 − d(x, x2)}.

Then r > 0. It is elementary to verify that Bd(x, r) ⊆ Bd(x1, r1) and
Bd(x, r) ⊆ Bd(x2, r2). Hence, as x ∈ X and B1, B2 ∈ B were arbitrary, the
second property of Definition A.2.2 is satisfied so that B is a basis for (X, Td).

Example A.2.10. Let (X, d) be a metric space and let ϵ > 0. The set B
of all open balls with radius at most ϵ forms a basis for (X, Td). Indeed the
proof is identical to that of Example A.2.9 with the additional restraint that
all radii involved are at most ϵ.

Example A.2.11. Let (X, d) be a metric space. The set B of all open balls
with radius positive rational radii forms a basis for (X, Td). Indeed the proof
is identical to that of Example A.2.9 with the additional restraint that all
radii involved are rational. This is advantageous over Examples A.2.9 and
A.2.10 as this basis only has a countable number of elements centred at each
point.

There are alternate characterization for a basis for a topological space.
In particular, the following is superior to Definition A.2.2 in checking that a
collection of sets is a basis for a specific topology and is the converse to fact
(1) in Remark A.2.6.

Proposition A.2.12. Let (X, T ) be a topological space. Suppose B ⊆ T has
the property that for all U ∈ T and for all x ∈ U there exists a B ∈ B such
that x ∈ B and B ⊆ U . Then B is a basis for (X, T ).

Proof. To see that B is a basis for a topology on X, we will simply verify
the two properties in Definition A.2.2. To begin, let x ∈ X be arbitrary.
Then, as X ∈ T , the assumptions of the proposition imply there exists a
B ∈ B such that x ∈ B and B ⊆ X. Hence, as x ∈ X was arbitrary, the first
assumption of Definition A.2.2 has been verified.

To see the second property of Definition A.2.2 holds, let x ∈ X and
B1, B2 ∈ B such that x ∈ B1 ∩ B2 be arbitrary. As B ⊆ T , we see that
B1, B2 ∈ T and thus B1 ∩ B2 ∈ T . Therefore, by the assumptions of the
proposition there exists a B3 ∈ B such that x ∈ B3 and B3 ⊆ B1 ∩B2. Hence,
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as x ∈ X and B1, B2 ∈ B were arbitrary, the second property of Definition
A.2.2 has been verified. Thus B is a basis for a topology on X.

To see that T = TB, we first note that as B ⊆ T and as T is closed under
unions, Theorem A.2.4 implies that

TB =

 ⋃
B∈B0

B

∣∣∣∣∣∣ B0 ⊆ B

 ⊆ T .

Conversely, if U ∈ T then the assumptions of the proposition imply that
U ∈ TB by Definition A.2.2. Hence T = TB as desired.

Using the above, we obtain our final characterization of a basis for a
topological space which acts as a converse to Theorem A.2.4.

Corollary A.2.13. Let (X, T ) be a topological space. Suppose B ⊆ T has
the property that for every U ∈ T there exists a subset B0 ⊆ B such that
U =

⋃
B∈B0 B. Then B is a basis for (X, T ).

Proof. To prove this result, we will verify that the assumption of Proposition
A.2.12 holds. To see this, let U ∈ T and x ∈ U be arbitrary. Then, by
the assumptions of this corollary, there exists a subset B0 ⊆ B such that
U =

⋃
B∈B0 B. Hence, as x ∈ U , there exists a Bx ∈ B0 such that x ∈ Bx

and Bx ⊆
⋃

B∈B0 B = U . Therefore, as U ∈ T and x ∈ U were arbitrary, the
assumption of Proposition A.2.12 holds. Hence the result follows.

It is often more useful and convenient to work with a basis for a topological
space than the topology itself. For example, the following demonstrates how
to use bases to determine when one topology is finer or coarser than another.
In particular, we will often use the case that one of the bases for one of the
topologies is the topology itself, which is valid by Example A.2.7.

Theorem A.2.14. Let T and T ′ be topologies on a set X and let B and B′

be bases for T and T ′ respectively. Then the following are equivalent:

(i) T ′ is finer than T .

(ii) For every x ∈ X and B ∈ B such that x ∈ B there exists a B′ ∈ B′

such that x ∈ B′ and B′ ⊆ B.

Proof. First suppose that T ′ is finer that T . Thus T ⊆ T ′. To see that (ii)
holds, let x ∈ X and B ∈ B such that x ∈ B be arbitrary. Since B is a basis
for T , B ⊆ T ⊆ T ′. Thus B ∈ T ′. Therefore, as x ∈ B, as B ∈ T ′, and as
B′ is a basis for T ′, we obtain that there exists a B′ ∈ B′ such that x ∈ B′

and B′ ⊆ B. Therefore as x ∈ X and B ∈ B were arbitrary, (ii) follows.
Conversely, suppose that (ii) holds. To see that T ′ is finer than T , let

U ∈ T be arbitrary. To see that U ∈ T ′, let x ∈ U be arbitrary. As U ∈ T ,
there exists a B ∈ B such that x ∈ B and B ⊆ U . Then, by assumption (ii),
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there exist a B′ ∈ B′ such that x ∈ B′ and B′ ⊆ B ⊆ U . Therefore U ∈ T ′

as B′ is a basis for T ′. Hence, as U ∈ T was arbitrary, T ⊆ T ′ so T ′ is finer
than T .

Of course, to generate a topology from a basis, we need a basis. This
leads to the question about how can we construct collections of sets that
satisfy the assumptions of Definition A.2.2. As the second property required
in Definition A.2.2 relates to the intersection of basis elements containing
basis elements, one way to avoid this problem is by taking all intersections of
the sets we want to use to form a basis. Thus we define the following object.

Definition A.2.15. Let (X, T ) be a topological space. A subbasis for (X, T )
is a collection of subsets S ⊆ T such that the set of all finite intersections of
elements of S is a basis for (X, T ).

Of course, for a set S to be a subbasis of some topology T on X, it is
necessary that

X =
⋃

S∈S
S.

as for each x ∈ X there must be a basis element containing X. In fact, this is
the only restriction for a collection of sets to be a subbasis for some topology
on X.

Theorem A.2.16. Let X be a non-empty set and let S ⊆ P(X) be such that

X =
⋃

S∈S
S.

Let B ⊆ P(X) be the set of all finite intersections of elements of S. Then B
is a basis for a topology on X for which S is a subbasis.

Proof. To see that B is a basis for a topology on X, we need only check the
two conditions on a basis from Definition A.2.2. For the first, let x ∈ X be
arbitrary. Since X =

⋃
S∈S S there exists an Sx ∈ S such that x ∈ Sx. As

S ⊆ B, the first property of being a basis holds for B.
For the second property, let x ∈ X and let B1, B2 ∈ B such that x ∈

B1 ∩B2 be arbitrary. Since B1, B2 ∈ B, B1 and B2 are finite intersections of
elements of S. Hence B1 ∩B2 is a finite intersection of elements of S so that
B1 ∩B2 ∈ B. Therefore, as x ∈ X and let B1, B2 ∈ B were arbitrary, the first
property of being a basis holds for B. Hence B is a basis for a topology on
X. The fact that that S is a subbasis is a subbasis for TB is then trivial.

Subbases are not as desirable as bases as the description of the entire
topology is far more difficult using subbases than bases and thus make
subbases far more difficult to use thereby limiting their applications. However,
subbases are excellent for constructing topologies as the conditions that are
required are far simpler.
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A.3 Constructing Topologies

Since bases and subbases are so great for constructing topologies, let us
examine how we can construct new topologies from old topologies. The first
such example of this comes from restricting a topology on a set to a subset
of the set.

Lemma A.3.1. Let (X, T ) be a topological space and let Y ⊆ X be non-
empty. The set

TY = {Y ∩ U | U ∈ T }

is a topology on Y .

Proof. To verify that TY is a topology on Y , we verify Definition A.1.1. First
clearly TY ⊆ P(Y ) by construction. Next, as ∅, X ∈ T , we obtain that
∅ = Y ∩ ∅ ∈ TY and Y = Y ∩ X ∈ TY . The fact that TY is closed under
unions and finite intersections then follows from the facts that

⋃
α∈I

(Y ∩ Uα) = Y ∩
(⋃

α∈I

Uα

)
and

⋂
α∈I

(Y ∩ Uα) = Y ∩
(⋂

α∈I

Uα

)

for all {Uα}α∈I ⊆ T .

Definition A.3.2. Let (X, T ) be a topological space and let Y ⊆ X be
non-empty. The subspace topology on Y is the topology

TY = {A ∩ U | U ∈ T }.

In addition, the pair (Y, TY ) is called a subspace of (X, T ).

Remark A.3.3. The subspace topology is very useful when one only wants
to consider a portion of a topological space. For example, we often want to
consider subspaces of R such as Y = [0, 1] for analytical reasons. However,
one should be careful as open subsets of Y need not be open subset of R.
Indeed since [0, 1) = [0, 1] ∩ (−1, 1) we see that [0, 1) is an open subset of Y
in the subspace topology but is not an open subset of R as 0 ∈ [0, 1) yet no
open interval centred at 0 is contained in [0, 1). Thus we really do need to
specify the topology and space we are looking at when talking about open
sets!

Of course, it is not surprising that a basis for a topological space yields a
basis for any subspace.
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Proposition A.3.4. Let (X, T ) be a topological space, let B be a basis for
(X, T ), and let Y ⊆ X be non-empty. Then

BY = {Y ∩B | B ∈ B}

is a basis for (Y, TY ).

Proof. To prove this result, we will verify Proposition A.2.12. As such, first
notice that BY ⊆ TY by the definition of the subspace topology. Next, let
U ∈ TY and x ∈ U be arbitrary. Thus x ∈ Y and, by the definition of the
subspace topology, there exists a V ∈ T such that U = Y ∩ V . Since x ∈ U
we see that x ∈ V . Therefore, as B is a basis for (X, T ), Remark A.2.6
implies that there exists a B ∈ B such that x ∈ B and B ⊆ V . Therefore
Y ∩ B ∈ BY , x ∈ Y ∩ B, and Y ∩ B ⊆ Y ∩ V = U . Thus, as U ∈ TY and
x ∈ U were arbitrary, BY is a basis for (T, TY ) by Proposition A.2.12.

Unsurprisingly, we can use Proposition A.3.4 along with our knowledge
of open balls in metric spaces to understand subspaces of metric spaces.

Proposition A.3.5. Let (X, d) be a metric space and let Y ⊆ X be non-
empty. Then the subspace topology on Y is induced by the metric dY :
Y × Y → [0,∞) defined by

dY (y1, y2) = d(y1, y2)

for all y1, y2 ∈ Y .

Proof. Since d is a metric and restricting the domain of d will yield a metric,
dY is a metric. Notice for all y ∈ Y and r > 0 that

BdY
(y, r) = Y ∩Bd(y, r).

Therefore, since {Y ∩ Bd(y, r) | y ∈ Y, r > 0} is a basis for the subspace
topology on Y induced by (X, d) by Proposition A.3.4, since {BdY

(y, r) | y ∈
Y, r > 0} is a basis for (Y, dY ) by definition, and since each basis completely
determines the topology by Remark A.2.6, the result follows.

Furthermore, a subspace of a subspace is a subspace. More accurately
put, we have the following.

Proposition A.3.6. Let (X, T ) be a topological space and let A ⊆ B ⊆ X
be arbitrary non-empty sets. Let TB be the subspace topology on B inherited
from (X, T ), let TA be the subspace topology on A inherited from (X, TX),
and let TA,B be the subspace topology on A inherited from (B, TB). Then
TA,B = TA.
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Proof. By definitions and since B ∩A = A, we have that

TA,B = {A ∩ U | U ∈ TB}
= {A ∩ (B ∩ V ) | V ∈ TX}
= {A ∩ V | V ∈ TX} = TA

as desired.

Since subspaces create a topology on a smaller set from a topology on
a larger set, it is useful to think of the opposite; that is, can we construct
topologies on larger sets from topologies on smaller sets? The simplest way to
construct a larger set from two sets is to take their product. Unsurprisingly
perhaps, taking the product of the topologies then yields a (basis for a)
topology.

Proposition A.3.7. Let (X, T ) and (Y, T ′) be topological spaces. Then

B× = {U × V | U ∈ T , V ∈ T ′} ⊆ P(X × Y )

is a basis for a topology on X × Y .

Proof. To see that B× is a basis for a topology on X × Y , we simply verify
Definition A.2.2. Indeed clearly B× ⊆ P(X × Y ). Moreover, notice for all
x ∈ X and y ∈ Y that x × y ∈ X × Y and X × Y ∈ B×. Hence the first
condition of Definition A.2.2 holds.

To see the second condition, let x × y ∈ X × Y and B1, B2 ∈ B× such
that x × y ∈ B1 ∩ B2 be arbitrary. By the definition of B× there exists
U1, U2 ∈ T and V1, V2 ∈ T ′ such that B1 = U1 × V1 and B2 = U2 × V2.
Since U1 ∩ U2 ∈ T and V1 ∩ V2 ∈ T ′ as T and T ′ are topologies, and since
B1 ∩ B2 = (U1 ∩ U2) × (V1 ∩ V2), we see that B1 ∩ B2 ∈ B× so we may
take B3 = B1 ∩ B2 in Definition A.2.2. Therefore, as x × y ∈ X × Y and
B1, B2 ∈ B× were arbitrary, B× is a basis for a topology on X × Y .

Since we are taking the set of Cartesian products of the two topologies
to form a topology on the product, this topology has an unsurprising name.

Definition A.3.8. Let (X, T ) and (Y, T ′) be topological spaces. The product
topology is the topology generated by the basis

{U × V | U ∈ T , V ∈ T ′} ⊆ P(X × Y ).

Of course, the product of R with itself yields a topology on R2 that we
have seen before.

Example A.3.9. As K2 = K × K, we can consider the product topology on
K2 where each copy of K is equipped with the canonical topology. In this
case, we know a basis of K × K consists of open sets of the form

U1 × U2
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where U1 and U2 are open subset of K with respect to the canonical topology.
As each point in each such product contains a ∥ · ∥∞-ball in the product,
and as each ∥ · ∥∞-ball is such a product, we easily obtain that the product
topology on Kn is the same as the metric topologies by Theorem A.2.14.

Perhaps unsurprisingly, we can repeat the proof of Proposition A.3.7 to
simplify the basis for the product topology.

Proposition A.3.10. Let (X, T ) and (Y, T ′) be topological spaces with bases
B and B′ respectively. Then the set

B× = {B ×B′ | B ∈ B, B′ ∈ B′}

is a basis for the product topology on X × Y .

Proof. To see that B× is a basis for a topology on X × Y , we will apply
Proposition A.2.12. To see this, let U be an arbitrary open subset of X × Y
with respect to the product topology and let x× y ∈ U be arbitrary. By the
definition of the product topology (Definition A.3.8) there exists sets UX ∈ T
and UY ∈ T ′ such that x× y ∈ UX × UY and UX × UY ⊆ U . Thus x ∈ UX

and y ∈ UY . Since B and B′ are bases for (X, T ) and (Y, T ′) respectively,
there exists B ∈ B and B′ ∈ B′ such that x ∈ B, y ∈ B′, B ⊆ UX and
B′ ⊆ UY . Hence x× y ∈ B ×B′ and B ×B′ ⊆ UX ×UY ⊆ Y . Therefore, as
U and x× y were arbitrary, B× is a basis for the product topology on X ×Y
by Proposition A.2.12.

Alternatively, we can consider the product topology via a subbasis.

Proposition A.3.11. Let (X, T ) and (Y, T ′) be topological spaces. Then

S = {U × Y | U ∈ T } ∪ {X × V | V ∈ T ′}

is a subbasis for the product topology on X × Y .

Proof. Since finite intersections of elements of S yields the set

B× = {U × V | U ∈ T , V ∈ T ′}

as T and T ′ are topologies and thus closed under finite intersections, and
since B× is a basis for the product topology on X × Y by Definition A.3.8,
the result follows.

It turns out that the subbasis approach to the above product topologies
is far superior in functional analysis (and topology) when generalized to
infinite products.
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Definition A.3.12. Let I be a non-empty set and let {(Xα, Tα)}α∈I be a
non-empty indexed family of topological spaces. The product topology on∏

α∈I Xα is the topology generated by the subbasis

S = {Sβ | β ∈ I}

where
Sβ =

{∏
α∈I

Yα

∣∣∣∣∣ Yα = Xα if α ̸= β, Yβ ∈ Tβ

}
.

Of course, we should note that the set S described in Definition A.3.12
is actually a subbasis for some topology on

∏
α∈I Xα, but this simply follows

from Theorem A.2.16. Furthermore, defining the subbasis immediately tells
us a basis for the product topology.

Corollary A.3.13. Let I be a non-empty set and let {(Xα, Tα)}α∈I be a non-
empty indexed family of topological spaces. The product topology on

∏
α∈I Xα

has as a basis the set of all sets of the form
∏

α∈I Uα where Uα ∈ Tα and
Uα = Xα for all but a finite number of α ∈ I.

Proof. As the set of all finite intersections of the subbasis for the product
topology described in Definition A.3.12 is exactly the sets described here as
Tα is closed under finite intersections for all α ∈ I, the result follows by the
definition of a subbasis (Definition A.2.15).

Corollary A.3.14. Let I be a non-empty set, let {(Xα, Tα)}α∈I be a non-
empty indexed family of topological spaces, and for each α ∈ I let Bα be
a basis for (Xα, Tα). Then the set of all sets of the form

∏
α∈I Bα where

Bα = Xα for all but a finite number of α ∈ I and Bα ∈ Bα for all remaining
indices is a basis for the product topology on

∏
α∈I Xα.

Proof. Let B be the set described in the statement. To see that B is a
basis for the product topology on

∏
α∈I Xα, we simply verify Definition A.2.2.

Indeed clearly B ⊆ P(
∏

α∈I Xα). Moreover, notice for all (xα)α∈I ∈
∏

α∈I Xα

that (xα)α∈I ∈
∏

α∈I Xα ∈ B. Hence the first condition of Definition A.2.2
holds.

To see the second condition, let (xα)α∈I ∈
∏

α∈I Xα and B1, B2 ∈ B such
that (xα)α∈I ∈ B1 ∩ B2 be arbitrary. By the definition of B there exists
B1,α, B2,α ∈ Bα for all α ∈ I such that B1 =

∏
α∈I B1,α, B2 =

∏
α∈I B2,α,

and only a finite number of B1,α and B2,α are not equal to Xα over all α ∈ I.
Thus, as (xα)α∈I ∈ B1 ∩ B2, we see that xα ∈ B1,α ∩ B2,α for all α ∈ I. If
B1,α = Xα or B2,α = Xα, let B3,α = B1,α ∩ B2,α so that either B3,α = Xα

or B3,α ∈ Bα. Otherwise B1,α, B2,α ∈ Bα so, since Bα is a basis for (Xα, Tα),
there exists a B3,α ∈ Bα such that xα ∈ B3,α and B3,α ⊆ B1,α ∩ B2,α for
all α ∈ I. Hence B3 =

∏
α∈I B3,α ∈ B as Bα ∈ Bα for all but a finite

number of α ∈ I and Bα = Xα for all remaining indices, (xα)α∈I ∈ B3,
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and B3 ⊆ B1 ∩B2. Therefore, as (xα)α∈I ∈
∏

α∈I Xα and B1, B2 ∈ B were
arbitrary, B is a basis for the product topology on

∏
α∈I Xα.

Example A.3.15. Let n ∈ N be arbitrary. Then Kn =
∏

k∈{1,...,n} K so
we can consider the product topology on Kn. In this case, we know from
Corollary A.3.14 that a basis for the product topology on Kn is

I1 × I2 × · · · × In

where each Ik is an open ball in K with respect to the absolute value. As
each point in each such product is contained in a ∥ · ∥∞-ball that is contained
in the product, and as each ∥ · ∥∞-ball is such a product, we easily obtain
that the product topology on Kn is the same as the metric topologies by
Theorem A.2.14.

A.4 Nets and Limits
Now that we have seen several topologies and how to study them, we return
to the notion that the open sets should yield some information about how
close points are in topological space. In particular, we can ask what it means
for a collection of points to get ‘closer and closer’ to a given point in a
topological space.

In metric spaces, the answer is the well-known concept of convergent
sequences. In particular, the ϵ-N notion of a limit of a sequence of real
numbers easily generalizes to metric spaces. However, such considerations
are insufficient for topologies due to the absent of a total ordering on a basis
of open sets centred at each point.

Thus, in order to have a similar notion of convergence in an arbitrary
topological space that is sufficient to deduce properties of the space, we need
to generalize the notion of a sequence. To do this, we first need to generalize
the structure and ordering on the natural numbers.

Definition A.4.1. A directed set is a pair (Λ,≤) where Λ is a non-empty
set and ≤ is a relation on Λ such that

(1) (reflexivity) λ ≤ λ for all λ ∈ Λ,

(2) (transitivity) if λ1, λ2, λ3 ∈ Λ are such that λ1 ≤ λ2 and λ2 ≤ λ3, then
λ1 ≤ λ3, and

(3) (existence of upper bounds) if λ1, λ2 ∈ Λ, then there exists a λ3 ∈ Λ such
that λ1 ≤ λ3 and λ2 ≤ λ3.

The relation ≤ is sometimes called the direction of Λ.

As we are generalizing the order structure of the natural numbers, our
first example is no surprise.
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Example A.4.2. The pair (N,≤) where ≤ is the natural ordering on the
natural numbers is easily seen to be a directed set.

Example A.4.3. The pair (R,≤) where ≤ is the natural ordering on the
real numbers is easily seen to be a directed set.

Example A.4.4. Let X be any non-empty set and let F ⊆ P(X) be non-
empty and closed under finite unions. For two sets A,B ∈ F , we define
A ≤ B if and only if A ⊆ B. Then (F ,≤) is a directed set. Indeed it is clear
that ≤ is reflexive and transitive. Furthermore, if A,B ∈ F , then A∪B ∈ F
has the property that A ⊆ A∪B so A ≤ A∪B, and B ⊆ A∪B so B ≤ A∪B.
Hence (F ,≤) is a directed set by Definition A.4.1.

Example A.4.5. Let X be any non-empty set and let F ⊆ P(X) be non-
empty and closed under finite intersections. For two sets A,B ∈ F , we define
A ≤ B if and only if B ⊆ A. Then (F ,≤) is a directed set. Indeed it is clear
that ≤ is reflexive and transitive. Furthermore, if A,B ∈ F , then A∩B ∈ F
has the property that A∩B ⊆ A so A ≤ A∩B, and A∩B ⊆ B so B ≤ A∩B.
Hence (F ,≤) is a directed set by Definition A.4.1.

Of course, there are many more directed sets. For notational convenience,
instead of writing (Λ,≤) for a direct set, we will often just say that Λ is a
directed set provided there is no ambiguity for the direction relation which
will then be denoted by ≤.

With the generalization of the ordering on N, we can describe a general-
ization of the notion of a sequence.

Definition A.4.6. A net is a function F : Λ → X where Λ is a direct set
and X is a non-empty set. For notational convenience, we will use (xλ)λ∈Λ
to denote the net F : Λ → X where F (λ) = xλ.

There are many examples of nets, some of which we are quite familiar
with.

Example A.4.7. Every sequence is a net. Indeed a sequence (xn)n≥1 can
be realized as a net by taking the directed set (N,≤) (where ≤ is the usual
ordering of the natural numbers) and defining F on N by F (n) = xn.

Example A.4.8. Consider a closed interval [a, b] and the collection P of all
finite partitions of [a, b]; that is, all finite subsets P = {tk}n

k=0 ⊆ [a, b] such
that

a = t0 < t1 < · · · < tn = b.

For two sets P1, P2 ∈ P, if we define P1 ≤ P2 if and only if P1 ⊆ P2,
then (P,≤) is a directed set by Example A.4.4 as the collection of all finite
partitions is closed under finite unions.
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Let f : [a, b] → R be a function. For each partition P = {tk}n
k=0 ∈ P and

each 1 ≤ k ≤ n, choose ck ∈ [tk−1, tk] and define

SP =
n∑

k=1
f(ck)(tk − tk−1).

Then (SP )P ∈P is a net of Riemann sums.

The next example is motivated by trying to take sums over uncountable
sets.

Example A.4.9. Let I be any infinite (and not necessarily countable)
set. Let F be the set of all finite (non-empty) subsets of I. For two sets
F1, F2 ∈ F , if we define F1 ≤ F2 if and only if F1 ⊆ F2, then (F ,≤) is a
directed set by Example A.4.4 as finite unions of finite sets are finite.

For each α ∈ I, let xα ∈ R be non-negative. For each F ∈ F , define

SF =
∑
α∈F

xα,

which is well-defined as F is finite. Then (SF )F ∈F is a net of all finite sums
of {xα | α ∈ I}.

Of course, our interest does not stem from the existence of nets as
generalizations of sequences, but the properties and results that the notion
of the convergence of a net will yield. Thus, building on the idea of using
open sets to describe convergence in metric spaces, we generalize the notion
of a convergent sequence for nets in arbitrary topological spaces.

Definition A.4.10. Let (X, T ) be a topological space. A net (xλ)λ∈Λ in
X is said to converge to a point x0 ∈ X (or equivalently, x0 is a limit of
(xλ)λ∈Λ) if for every U ∈ T such that x0 ∈ U there exists a λ0 ∈ Λ such that
xλ ∈ U for all λ ≥ λ0.

Before we get to examples, the notion of taking a set from the topology
containing a specified point is occurring in greater and greater frequency.
Thus, at this point, it is about time we gave it a name.

Definition A.4.11. Let (X, T ) be a topological space. A subset U ⊆ X is
said to be a neighbourhood of a point x ∈ X if x ∈ U and U ∈ T .

Remark A.4.12. The term ‘neighbourhood’ comes from the notion that
an open set containing a point x contains all points that are ‘geographically’
close to x. However, one must be careful with the term ‘neighbourhood’ in
topology as many authors do not require a neighbourhood of a point to be
open; they just require that a neighbourhood contains an open set containing
the specified point. As we will want to be working with mainly open sets in
this course, our definition is preferable.
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Now onto examples. Of course, this is nowhere near an exhaustive list.

Example A.4.13. It is clear that a sequence in a metric space converges to
a point as a net if and only if it converges as a sequence to the same point.

Example A.4.14. Consider the net (SP )P ∈P from Example A.4.8. If f is
Riemann integrable, then (SP )P ∈P converges and converges to

∫ b
a f(x) dx.

Indeed suppose f is integrable and let U neighbourhood of
∫ b

a f(x) dx. Hence
there exists an ϵ > 0 such that(∫ b

a
f(x) dx− ϵ,

∫ b

a
f(x) dx+ ϵ

)
⊆ U.

By the definition of the Riemann integral, there exists a partition P0 ∈ P
such that if U(f, P0) is the upper Riemann sum of f corresponding to P0
and L(f, P0) is the lower Riemann sum of f corresponding to P0, then

L(f, P0) ≤
∫ b

a
f(x) dx ≤ U(f, P0) < L(f, P0) + ϵ.

If P ∈ P and P ≥ P0, then P is a refinement of P0 so

L(f, P0) ≤ L(f, P ) ≤ SP ≤ U(f, P ) ≤ U(f, P0).

Hence
SP ∈

(∫ b

a
f(x) dx− ϵ,

∫ b

a
f(x) dx+ ϵ

)
⊆ U.

Therefore, as U was arbitrary, (SP )P ∈P converges to
∫ b

a f(x) dx.
Somewhat conversely, if every net from Example A.4.8 converges and

converges to the same number, then f is Riemann integrable. In fact, it
is only required that the net of upper Riemann sum (UP )P ∈P and the net
of lower Riemann sums (LP )P ∈P converge to the same number I. To see
this, suppose (UP )P ∈P and (LP )P ∈P both converge to I and let ϵ > 0 be
arbitrary. Since (UP )P ∈P converges to I, there exists a P1 ∈ P such that

UP ∈
(
I − ϵ

2 , I + ϵ

2

)
for all P ≥ P1. Similarly, since (LP )P ∈P converges to I, there exists a P2 ∈ P
such that

LP ∈
(
I − ϵ

2 , I + ϵ

2

)
for all P ≥ P2. Thus, if P0 = P1 ∪ P2, then P0 ∈ P , P0 ≥ P1 and P0 ≥ P2 so

UP0 , LP0 ∈
(
I − ϵ

2 , I + ϵ

2

)
.

Hence, as LP0 ≤ UP0 , we obtain that UP0 −LP0 < ϵ. Therefore, as ϵ > 0 was
arbitrary, f is Riemann integrable.
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Example A.4.15. Consider the net (SF )F ∈F from Example A.4.9. Then
(SF )F ∈F converges if and only if

L = sup{SF | F ∈ F}

is finite, in which case (SF )F ∈F converges to L. Indeed suppose L is finite
and let U be a neighbourhood of L. Then there exists an ϵ > 0 such that

(L− ϵ, L+ ϵ) ⊆ U.

By the definition of the supremum, there exists an F0 ∈ F such that

L− ϵ < SF0 ≤ L.

Hence, as xα ≥ 0 for all α ∈ I, we see that for all F ∈ F with F ≥ F0 that

L− ϵ < SF0 ≤ SF ≤ L.

Hence SF ∈ U for all F ≥ F0. Therefore, as U was arbitrary, (SF )F ∈F
converges to L.

Conversely suppose that L = ∞. Hence for any M ∈ R there exists
an FM ∈ F such that SFM

≥ M . To proceed by contradiction, suppose
(SF )F ∈F converges to some point K ∈ R. Then there exists an F0 ∈ F such
that SF ∈ (K − 1,K + 1) for all F ≥ F0. Hence, as F0 ∪ FK+1 ∈ F and
F0 ∪ FK+1 ≥ F0, we must have that

SF0∪FK+1 ∈ (K − 1,K + 1).

However
SF0∪FK+1 ≥ SFK+1 ≥ K + 1

as xα ≥ 0 for all α ∈ I so SF0∪FK+1 /∈ (K − 1,K + 1). Hence we have a
contradiction as desired.

The above is quite useful in summing over uncountable sets. In particular,
we define the sum of {xα | α ∈ I}, denoted

∑
α∈I xα, to be∑

α∈I

xα = sup{SF | F ∈ F} ∈ [0,∞].

Furthermore, if
∑

α∈I xα < ∞ then for all n ∈ N we must have that Fn ={
α ∈ I | xα ≥ 1

n

}
is finite for otherwise for each m ∈ N we can find a finite

subset Fn,m ⊆ Fn with m elements so that SFn,m ≥ m
n thereby yielding∑

α∈I xα = ∞. Therefore if
∑

α∈I xα < ∞ then, each Fn is a finite set so⋃
n≥1

Fn = {α ∈ I | xα > 0} ,

is countable. Thus, after removing all xα that take the value 0, we can
simply add a countable sum of non-negative numbers to determine the value
of
∑

α∈I xα.
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Of course, as bases determine a topology, we need only check neighbour-
hoods of a point that come from a basis.

Lemma A.4.16. Let (X, T ) be a topological space and let B be a basis for
(X, T ). A net (xλ)λ∈Λ in X converges to x0 ∈ X if and only if for every
B ∈ B such that x0 ∈ B there exists a λ0 ∈ Λ such that xλ ∈ B for all
λ ≥ λ0.

Proof. If (xλ)λ∈Λ converges to x0, then Definition A.4.10 implies that for
every B ∈ B such that x0 ∈ B there exists a λ0 ∈ Λ such that xλ ∈ B for all
λ ≥ λ0 since B ⊆ T .

Conversely, suppose for every B ∈ B such that x0 ∈ B there exists a
λ0 ∈ Λ such that xλ ∈ B for all λ ≥ λ0. To see that (xλ)λ∈Λ converges to x0,
let U be an arbitrary neighbourhood of x0. Then, as B is a basis for (X, T ),
there exists a B ∈ B such that x ∈ B ⊆ U . Thus, by assumption, a λ0 ∈ Λ
such that xλ ∈ B ⊆ for all λ ≥ λ0. Therefore, as U was arbitrary, the proof
is complete.

Of course, in Lemma A.4.16, we need only information about the neigh-
bourhoods of x0. Consequently, we do not need to consider a basis for the
entire space. In particular, we need only consider the following.

Definition A.4.17. Let (X, T ) be a topological space and let x ∈ X. A set
B ⊆ T is said to be a neighbourhood basis of x if x ∈ B for all B ∈ B and for
all neighbourhoods U of x there exists a B ∈ B such that x ∈ B ⊆ U .

Theorem A.4.18. Let (X, T ) be a topological space, let x0 ∈ X, and let B
be a neighbourhood basis for x0. A net (xλ)λ∈Λ in X converges to x0 if and
only if for every B ∈ B such that x0 ∈ B there exists a λ0 ∈ Λ such that
xλ ∈ B for all λ ≥ λ0.

Proof. The proof of this result is identical to the proof of Lemma A.4.16.

Unsurprisingly, we can construct a basis from neighbourhood bases.

Proposition A.4.19. Let (X, T ) be a topological space and for each x ∈ X
let Bx be a neighbourhood basis for x. Then

⋃
x∈X Bx is a basis for (X, T ).

Proof. This follows immediately from the definition of a neighbourhood basis
and Proposition A.2.12.

Returning to the notion of convergent nets, we can easily use bases to
describe convergence in the lower limit, subspace, and product topologies. In
particular, the following is the reason the lower limit topology has its name.

Proposition A.4.20. Let TL be the lower limit topology on R. A net (xλ)λ∈Λ
in R converges to a point x in (R, TL) if and only if for every ϵ > 0 there
exists an λ0 ∈ Λ such that x ≤ xλ < x+ ϵ for all λ ≥ λ0.
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Proof. To begin, suppose a net (xλ)λ∈Λ in R converges to a point x in (R, TL).
To see the result, let ϵ > 0 be arbitrary. Since [x, x+ ϵ) is a neighbourhood
of x, the definition of a convergent net implies there exists an λ0 ∈ Λ such
that xλ ∈ [x, x + ϵ) (that is, x ≤ xλ < x + ϵ) for all λ ≥ λ0. Therefore, as
ϵ > 0 was arbitrary, the result holds.

Conversely, suppose (xλ)λ∈Λ is an net in R and x ∈ R are such that for
every ϵ > 0 there exists an λ0 ∈ Λ such that x ≤ xλ < x+ϵ for all λ ≥ λ0. To
see that (xλ)λ∈Λ converges to x in (R, TL), let B = [a, b) ∈ B be an arbitrary
element such that x ∈ B. Hence a ≤ x and x < b so there exists an ϵ > 0
such that x < x+ ϵ < b. Therefore, by the assumptions on (xλ)λ∈Λ, there
exists a λ0 ∈ Λ such that x ≤ xλ < x+ ϵ for all λ ≥ λ0. Hence

xλ ∈ [x, x+ ϵ) ⊆ [a, b) = B ∈ B.

Therefore, as B ∈ B was arbitrary, (xλ)λ∈Λ converges to x in (R, TL) as
desired.

Proposition A.4.21. Let (X, T ) be a topological space, let A ⊆ X be non-
empty, let TA be the subspace topology on A, let (aλ)λ∈Λ be a net in A, and
let a ∈ A. Then (aλ)λ∈Λ converges to a in (A, TA) if and only if (aλ)λ∈Λ
converges to a in (X, T )

Proof. Since aλ ∈ A for all λ ∈ A, the result follows immediately by Definition
A.4.10 as the neighbourhoods of a in (A, TA) are precisely the neighbourhoods
of a in (X, T ) intersected with A.

Theorem A.4.22. Let I be a non-empty set, let {(Xα, Tα)}α∈I be a non-
empty indexed family of topological spaces, let (fλ)λ∈Λ be a net in

∏
α∈I Xα,

and let (xα)α∈I ∈
∏

α∈I Xα. Then (fλ)λ∈Λ converges to (xα)α∈I when∏
α∈I Xα is equipped with the product topology if and only if (fλ(α))λ∈Λ

converges to xα in (Xα, Tα) for all α ∈ I.

Proof. Suppose that (fλ)λ∈Λ converges to (xα)α∈I when
∏

α∈I Xα is equipped
with the product topology. To see that (fλ(α))λ∈Λ converges to xα in (Xα, Tα)
for all α ∈ I, fix α0 ∈ I and let Uα0 be an arbitrary neighbourhood of xα0 in
(Xα0 , Tα0). For each α ∈ I \ {α0}, let Uα = Xα. As

∏
α∈I Uα is an element

of the subbasis for the product topology on
∏

α∈I Xα by Definition A.3.12
and thus open, we easily see that

∏
α∈I Uα is a neighbourhood of (xα)α∈I .

Therefore, as (fλ)λ∈Λ converges to (xα)α∈I when
∏

α∈I Xα is equipped with
the product topology, there exists a λ0 ∈ Λ such that fλ ∈

∏
α∈I Uα for all

λ ≥ λ0. Hence fλ(α0) ∈ Uα0 for all λ ≥ λ0. Therefore, as α0 ∈ I and Uα0

where arbitrary, (fλ(α))λ∈Λ converges to xα in (Xα, Tα) for all α ∈ I.
Conversely, suppose (fλ(α))λ∈Λ converges to xα in (Xα, Tα) for all α ∈ I.

Recall from Corollary A.3.13 that the product topology on
∏

α∈I Xα has
as a basis B consisting of all sets of the form

∏
α∈I Uα where Uα ∈ Tα and

Uα = Xα for all but a finite number of α ∈ I. To see that (fλ)λ∈Λ converges

©For use through and only available at pskoufra.info.yorku.ca.



202 APPENDIX A. TOPOLOGICAL SPACES

to (xα)α∈I , let
∏

α∈I Uα be an arbitrary element of B that is a neighbourhood
of (xα)α∈I . Hence Uα is a neighbourhood of xα for all α ∈ I and

{α ∈ I | Uα ̸= Xα} = {α1, α2, . . . , αn}

for some n ∈ N. Since for each k ∈ {1, . . . , n} we know that (fλ(αk))λ∈Λ
converges to xαk

in (Xαk
, Tαk

), there exists a λk ∈ Λ such that fλ(αk) ∈ Uαk

for all λ ≥ λk. Luckily, by the properties of a direct set, there exists a
λ′ ∈ λ such that λ′ ≥ λk for all k ∈ {1, . . . , n}. Hence fλ(αk) ∈ Uαk

for
all λ ≥ λ′ and for all k ∈ {1, . . . , n}. Since fλ(α) ∈ Xα = Uα for all
α ∈ I \ {α1, α2, . . . , αn}, we obtain that (fλ)λ∈Λ ∈

∏
α∈I Uα for all λ ≥ λ′.

Therefore, as
∏

α∈I Uα was arbitrary, Lemma A.4.16 implies the result.

Convergent nets are enough to completely determine topologies.

Theorem A.4.23. Let X be a non-empty set and let T and T ′ be two
topologies on X. Then T is finer than T ′ if and only if whenever (xλ)λ∈Λ is
a net that converges to x in (X, T ), then (xλ)λ∈Λ converges to x in (X, T ′).

Consequently, if (X, T ) and (X, T ′) have exactly the same nets converging
to the same points, then T = T ′.

Proof. If T is finer than T ′, then T ′ ⊆ T . It is then clear that if (xλ)λ∈Λ is
a net that converges to x in (X, T ), then (xλ)λ∈Λ converges to x in (X, T ′)
by the definition of a convergent net.

Conversely, suppose whenever (xλ)λ∈Λ is a net that converges to x in
(X, T ), then (xλ)λ∈Λ converges to x in (X, T ′). To proceed by contradiction,
suppose there exists a set U ∈ T ′ such that U /∈ T . By Theorem A.2.14
there exists an x0 ∈ U such that for each T -neighbourhood V of x0, V \ U
is non-empty.

Let
Λ = {V ⊆ X | V is a T -neighourhood of x0}.

As Λ is closed under finite intersections, if for V1, V2 ∈ Λ we define V1 ≤ V2
if V2 ⊆ V1, then (Λ,≤) is a direct set by Example A.4.5.

For each V ∈ Λ, let xV ∈ V \ U (note we are using the Axiom of Choice
here). We claim that (xV )V ∈Λ is a net that converges to x0 in (X, T ) but
does not converge to x0 in (X, T ′) thereby yielding a contradiction. To see
that (xV )V ∈Λ is a net that converges to x0 in (X, T ), let V0 be an arbitrary
T -neighbourhood x0. Then for all V ≥ V0 we have that xV ∈ V ⊆ V0. Hence
(xV )V ∈Λ is a net that converges to x0 in (X, T ) by Definition A.4.10. To see
that (xV )V ∈Λ does not converge to x0 in (X, T ′), we simply note that U is a
T ′-neighbourhood of x0 but xV /∈ U for all V ∈ Λ. Hence we have obtained
a contradiction thereby finishing the proof.

A clever observer at this point would have likely noticed that we have
only defined ‘a limit and not ‘the limit’ of a net when we defined when a net
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converges to a point. This is because, in a general topological space, a net
can converge to multiple points so the ‘the’ in ‘the limit’ no longer make
sense. This is even true if we consider sequences in general topological spaces
as the following example demonstrates.

Example A.4.24. Consider the set X = {a, b, c} and the topology

T = {∅, {a}, {b, c}, X}.

It is not difficult to see that a sequence (xn)n≥1 in X converges to a if and
only if there exists an N ∈ N such that xn = a for all n ≥ N as {a} is a
neighbourhood of a. However, (xn)n≥1 in X converges to b if and only if
there exists an N ∈ N such that xn ∈ {b, c} for all n ≥ N as the only open
sets containing b are X and {b, c}. Similarly (xn)n≥1 in X converges to c if
and only if there exists an N ∈ N such that xn ∈ {b, c} for all n ≥ N . Thus
there are several sequences in X that converge to both b and c.

The reason the above example does not yields unique limits is that there
are not enough open sets to distinguish the points. The correct notion in
order for there to be unique limits is the following.

Definition A.4.25. A topological space (X, T ) is said to be Hausdorff
(equivalently (X, T ) is a Hausdorff space) if for all x, y ∈ X where x ̸= y
there exists sets U, V ∈ T such that x ∈ U , y ∈ V , and U ∩ V = ∅.

Example A.4.26. The trivial topology on a set with at least two points is
not Hausdorff as the only open sets are the empty set and the entire set.

Example A.4.27. The discrete topology on any set is Hausdorff as every
singleton is an open set.

Example A.4.28. Let X be finite. The only topology on X that is Hausdorff
is the discrete topology. Indeed suppose T is a Hausdorff topology on X
and fix a point x ∈ X. For each point y ∈ X \ {y} there exists an open set
Uy ∈ T such that x ∈ Uy but y /∈ Uy. Then, as X \ {x} is finite, we see that

{x} =
⋂

y∈X\{x}
Uy ∈ T .

Therefore, as x ∈ X was arbitrary, every singleton from X is in T . Therefore,
as X is finite, T must be the discrete topology.

Example A.4.29. The cofinite topology on an infinite set is not Hausdorff
as the intersection of any two non-empty open sets in the cofinite topology
on an infinite set must contain an infinite number of points. Similarly
the cocountable topology on an uncountable set is not Hausdorff as the
intersection of any two non-empty open sets in the cocountable topology on
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an uncountable set must contain an uncountable number of points. However,
the cofinite topology on a finite set and the cocountable topology on a
countable set are Hausdorff as every singleton is open (and thus the topologies
are discrete in this case).

Example A.4.30. The metric topology on a metric space (X, d) is Hausdorff.
Indeed given two points x, y ∈ X with x ̸= y, let δ = 1

2d(x, y). Then
Bd(x, δ) and Bd(y, δ) are disjoint open sets one of which contains x and the
other of which contains y. Hence the topology is Hausdorff by definition.
Consequently, any non-Hausdorff topology is not induced by a metric.

Example A.4.31. The lower limit topology on R is Hausdorff. To see this,
let a, b ∈ R be such that a < b. Then U = [a, b) and V = [b,∞) are open
sets in the lower limit topology such that a ∈ U , b ∈ V , and U ∩ V = ∅.
Thus, as a, b ∈ R were arbitrary, the lower limit topology is Hausdorff.

Example A.4.32. A subspace of any Hausdorff space is Hausdorff. This
follows directly from the definition of a Hausdorff space and the description
of the open subsets in the subspace topology (i.e. the open sets are simple
the intersection of open sets with the subspace).

Example A.4.33. The product topologies of Hausdorff spaces are Hausdorff.
This follows directly from the description of the open sets in these topologies.
To be specific, given two elements of the product

∏
α∈I Xα of Hausdorff

spaces, they differ at one value of α, say α0 ∈ I. Thus we can find disjoint
open sets in (Xα0 , Tα0) that separate these two values and by taking the
product of these open sets with Xα for all α ̸= α0, the desired open sets
separating the two elements of the product have been found.

As advertised, Hausdorff spaces have unique limits.

Theorem A.4.34. Let (X, T ) be a Hausdorff space. If a net (xλ)λ∈Λ
converges to two points x1, x2 ∈ X, then x1 = x2.

Proof. Suppose to the contrary that there exists a net (xλ)λ∈Λ that converges
to two points x1, x2 ∈ X where x1 ̸= x2. As (X, T ) is Hausdorff, there exist
U, V ∈ T such that x1 ∈ U , x2 ∈ V , and U ∩ V = ∅. As (xλ)λ∈Λ converges
to x1, there exists a λ1 ∈ Λ such that xλ ∈ U for all λ ≥ λ1. Similarly
as (xλ)λ∈Λ converges to x2, there exists a λ2 ∈ Λ such that xλ ∈ V for all
λ ≥ λ2. However, by the properties of directed sets, there exists a λ3 ∈ Λ
such that λ1 ≤ λ3 and λ2 ≤ λ3. Hence the above yields xλ3 ∈ U ∩ V which
contradicts the fact that U ∩ V = ∅. Hence the result follows.

In particular, for Hausdorff spaces, we can define limits.

Definition A.4.35. Let (X, T ) be a Hausdorff space and let (xλ)λ∈Λ be a
net in X that converges in X. The unique point that (xλ)λ∈Λ converges to
in X is called the limit of (xλ)λ∈Λ and is denoted limλ∈Λ xλ.
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In fact, the only topological spaces that have unique limits for every
converging net are Hausdorff spaces.

Theorem A.4.36. Let (X, T ) be a topological space such that every conver-
gent net in (X, T ) converges to exactly one point. Then (X, T ) is Hausdorff.

Proof. Let (X, T ) be a topological space such that every convergent net in
(X, T ) converges to exactly one point. Suppose to the contrary that that
(X, T ) is not Hausdorff. Then there exist points x, y ∈ X such that for every
neighbourhood U of x and neighbourhood V of y, U ∩ V ̸= ∅.

Consider the set

Λ = {(U, V ) | U, V ∈ T are such that x ∈ U and y ∈ V }.

For (U1, V1), (U2, V2) ∈ V , we define (U1, V1) ≤ (U2, V2) if and only if U2 ⊆ U1
and V2 ⊆ V1. We claim that (Λ,≤) is a directed set. Indeed, clearly ≤ is
reflexive and transitive. Furthermore, if (U1, V1), (U2, V2) ∈ V , then by
taking U3 = U1 ∩ U2 and V3 = V1 ∩ V2, we easily see that (U3, V3) ∈ Λ),
(U1, V1) ≤ (U3, V3), and (U2, V2) ≤ (U3, V3). Hence (Λ,≤) is a directed set.

For each (U, V ) ∈ Λ, choose a z(U,V ) ∈ U ∩V , which exists by assumption
(note we are using the Axiom of Choice here). Hence (z(U,V ))(U,V )∈Λ is a net.
We claim that (z(U,V ))(U,V )∈Λ converges to both x and y. Indeed if U is an
arbitrary neighbourhood of x, then for all (U ′, V ′) ≥ (U,X) we see that

z(U ′,V ′) ∈ U ′ ∩ V ′ ⊆ U ∩X = U.

Hence (z(U,V ))(U,V )∈Λ converges to x. Similarly, if V is an arbitrary neigh-
bourhood of x, then for all (U ′, V ′) ≥ (X,V ) we see that

z(U ′,V ′) ∈ U ′ ∩ V ′ ⊆ X ∩ V = V.

Hence (z(U,V ))(U,V )∈Λ converges to y. As this contradicts the fact that
every convergent net in (X, T ) converges to exactly one point, the proof is
complete.

In general, asking that a space is Hausdorff is a very mild condition in
that it is simply asking that we can separate any two distinct points with
open sets. However, the fact that nets in Hausdorff spaces have unique
limits is very useful for the study of spaces that are Hausdorff. In particular,
trying to prove results for arbitrary topological spaces can often be difficult
or impossible as they need not have enough structure. Thus, we will often
impose conditions like being Hausdorff on certain topological spaces in order
to be able to prove certain results, which will then only apply to certain
collections of topological spaces.

To finish off this section, we recall one useful tool in undergraduate
analysis is the ability to take subsequences. For nets, things are a little more
delicate, but will be equally useful.
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Definition A.4.37. Let X be a non-empty set, let (Λ,≤) and (M,≤0) be
two directed sets, and let F : Λ → X be a net. A subnet of F directed by
(M,≤0) is the composition F ◦ φ : M → X where φ : M → Λ is such that

(1) (increasing) if µ1, µ2 ∈ M are such that µ1 ≤0 µ2, then φ(µ1) ≤ φ(µ2),
and

(2) (cofinal) for each λ ∈ Λ there exists a µ ∈ M such that λ ≤ φ(µ).

Remark A.4.38. Note it is elementary to see that a subnet of a net is a net.
In particular, if the net F is denoted by (xλ)λ∈Λ, we will often use (xλµ)µ∈M

to denote a subnet where φ(µ) = λµ.

Subnets can be a little tricky.

Example A.4.39. A subnet of a sequence need not be a subsequence. Indeed
consider the sequence (xn)n≥1 and consider the directed set (R,≤). Then if
we define φ : R → N by

φ(x) =
{

1 if x < 1
n if x ∈ (n− 1, n]

,

then φ is increasing and cofinal. However, clearly (xnµ)µ∈R is not a subse-
quence of (xn)n≥1.

Example A.4.40. Let (xλ)λ∈Λ be a net in a topological space. Choose
λ1 ∈ Λ. Then there exists a λ2 ∈ Λ such that λ2 ≥ λ1. By repetition, we
can obtain a sequence (λn)n≥1 of elements of Λ that are increasing. However
(xλn)n≥1 need not be a subnet of (xλ)λ∈Λ as it need not be cofinal (even if
λk ̸= λk+1). Note this is quite different than the situation with sequences.

However, as with sequences, subnets of convergent nets still converge.

Proposition A.4.41. Let (X, T ) be a topological space, let (xλ)λ∈Λ be a
net in X, and let (xλµ)µ∈M be a subnet of (xλ)λ∈Λ. If (xλ)λ∈Λ converges to
some point x ∈ (X, T ), then (xλµ)µ∈M converges to x in (X, T ).

Proof. Suppose (xλ)λ∈Λ converges to some point x ∈ (X, T ). To see that
(xλµ)µ∈M converges to x in (X, T ), let U be an arbitrary neighbourhood of
x. As (xλ)λ∈Λ converges to x, there exists an λ0 ∈ Λ such that xλ ∈ U for
all λ ≥ λ0. Due to the properties of subnets, there exists a µ0 ∈ M such that
λµ0 ≥ λ0. Hence, by the properties of subnets, if µ ≥ µ0 then λµ ≥ λµ0 ≥ λ0
and thus xλµ ∈ U . Therefore, as U was arbitrary, (xλµ)µ∈M converges to x
in (X, T ).
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A.5 Sets and Points
With the completion of our basic understanding of nets, we can now turn out
attention to types of points and sets inside topological spaces. These various
types of points and sets occur regularly throughout topology and will be of
incredible use in this course. Most of these notions are generalizations of
known types of sets and points in metric spaces. In particular, the following
type of sets are well known.

Definition A.5.1. Let (X, T ) be a topological space. A set F ⊆ X is said
to be closed if X \ F ∈ T .

Example A.5.2. Every closed interval [a, b] is a closed subset of R with its
canonical topology as R \ [a, b] = (−∞, a) ∪ (b,∞) is the union of two open
sets and thus is open.

Example A.5.3. The set [0, 1) is neither open nor closed when R is equipped
with its canonical topology. Indeed [0, 1) is not open as there is no neigh-
bourhood of 0 that is contained in [0, 1). Similarly [0, 1) is not closed as
R \ [0, 1) = (−∞, 0) ∪ [1,∞) is not open as there is no neighbourhood of 1
that is contained in R \ [0, 1). Thus it is possible that sets are neither open
nor closed.

Example A.5.4. Given a topological space (X, T ), the sets ∅ and X are
always closed as X \ ∅ = X and X \X = ∅ are open.

Example A.5.5. In the discrete topology, every set is closed as every set is
open so the complement of every set is open.

Example A.5.6. In the cofinite topology, the closed sets are exactly the
entire space and the set of finite subsets. Similarly, in the cocountable
topology, the closed sets are exactly the entire space and the set of countable
subsets.

Example A.5.7. Let (X, d) be a metric space. Given an x ∈ X and an
r > 0, the closed d-ball of radius r centred at x, denoted Bd[x, r], is the set

Bd[x, r] = {y ∈ X | d(x, y) ≤ r}.

Any closed ball in any metric space is closed. Indeed to see that Bd[x, r]
is closed, let y ∈ X \ Bd[x, r] be arbitrary. Then d(x, y) > r. Thus
Bd(y, d(x, y) − r) is an open set in (X, d). Furthermore, notice if z ∈
Bd(y, d(x, y) − r) then d(z, y) < d(x, y) − r so

d(x, z) ≥ d(x, y) − d(y, z) > d(x, y) − (d(x, y) − r) = r

and thus z /∈ Bd[x, r]. Hence Bd(y, d(x, y) − r) is an open set containing y
that is contained in X \Bd[x, r]. Therefore, as y ∈ X \Bd[x, r] was arbitrary,
X \Bd[x, r] is open and thus Bd[x, r] is closed.
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Example A.5.8. If (X, T ) is a Hausdorff space, then every singleton is
closed. Indeed let x ∈ X be arbitrary. As (X, T ) is Hausdorff, for each y ∈ Y
there exists a Uy ∈ T such that y ∈ Uy but x /∈ Uy. Thus

X \ {x} =
⋃

y∈X\{x}
Uy ∈ T .

Hence {x} is closed.

As the notion of a topological space immediately invokes properties on
open sets, we immediately have the following properties of closed sets by
taking complements and using De Morgan’s Laws.

Proposition A.5.9. Let (X, T ) be a topological space. Then:

(1) ∅ and X are closed sets.

(2) If {Fα}α∈I are closed sets in (X, T ), then
⋂

α∈I Fα is closed in (X, T ).

(3) If {Fα}α∈I are closed sets in (X, T ) and I is finite, then
⋃

α∈I Fα is
closed in (X, T ).

Proof. Simply apply Definition A.1.1 and De Morgan’s Laws.

Example A.5.10. In any Hausdorff space, any finite union of points is
closed as Example A.5.8 shows singleton points are closed and Proposition
A.5.9 concludes finite unions of closed sets are closed.

Example A.5.11. Let P0 = [0, 1]. Construct P1 from P0 by removing the
open interval of length 1

3 from the middle of P0 (i.e. P1 = [0, 1
3 ] ∪ [2

3 , 1]).
Then construct P2 from P1 by removing the open intervals of length 1

32 from
the middle of each closed subinterval of P1. Subsequently, having constructed
Pn, construct Pn+1 by removing the open intervals of length 1

3n+1 from the
middle of each of the 2n closed subintervals of Pn. Specifically, Pn is the
union of the 2n closed intervals of the form[

n∑
k=1

ak

3k
,

1
3n

+
n∑

k=1

ak

3k

]

where a1, . . . , an ∈ {0, 2}.
The set

C =
⋂

n≥1
Pn

is known as the Cantor set. The Cantor set is closed by Proposition A.5.9
being the intersection of finite unions of closed sets. In fact, it can be shown
that C is uncountable.

When we restrict to subspaces of topological spaces, the closed subsets
are easy to understand.
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Lemma A.5.12. Let (Y, TY ) be a subspace of a topological space (X, T ). A
subset A ⊆ Y is closed in (Y, TY ) if and only if A = Y ∩ F where F is a
closed set in (X, T ).

Proof. First suppose A = Y ∩ F where F is a closed set in (X, T ). As F is
closed in (X, T ), V = X \ F ∈ T . Hence U = Y ∩ V is open in (Y, TY ) so

Y \ U = {y ∈ Y | y /∈ U} = {y ∈ Y | y /∈ V } = A

is closed.
Conversely, suppose A ⊆ Y is closed in (Y, TY ). Then U = Y \A is open

in (Y, TY ). By the definition of the open subsets of a subspace, there exists
a V ∈ T such that U = Y ∩ V . Hence F = X \ V is closed in (X, T ) and

Y ∩ F = {y ∈ Y | y /∈ V } = {y ∈ Y | y /∈ U} = A.

Hence the result is complete.

Example A.5.13. Consider Y = (0, 2) with the subspace topology inherited
from the canonical topology on R. Then

(0, 1] = Y ∩ [−1, 1]

is closed in the subspace topology even though (0, 1] is not closed in R.

The reason closed sets are awesome is due to their relations with limits
of nets.

Theorem A.5.14. Let (X, T ) be a topological space and let F ⊆ X. Then
the following are equivalent:

(i) F is a closed set in (X, T ).

(ii) Whenever (xλ)λ∈Λ is a net such that xλ ∈ F for all λ ∈ Λ that converges
to a point x0 ∈ X, then x0 ∈ F .

Proof. To begin, suppose F is a closed set in (X, T ) and that (xλ)λ∈Λ is a net
such that xλ ∈ F for all λ ∈ Λ that converges to a point x0 ∈ X. Suppose to
the contrary that x0 /∈ F . Then x0 ∈ X \ F . As F is closed, X \ F is open
so x0 ∈ X \ F and the definition of a convergent net implies there exists a
λ0 ∈ Λ such that xλ ∈ X \F for all λ ≥ λ0. As this contradicts the fact that
xλ ∈ F for all λ ∈ Λ, we have a contradiction. Hence x0 ∈ F as desired.

Conversely, suppose that whenever (xλ)λ∈Λ is a net such that xλ ∈ F
for all λ ∈ Λ that converges to a point x0 ∈ X, then x0 ∈ F . To see that F
must be closed, suppose to the contrary that F is not closed. Then X \ F
is not open. Hence there exists a point x0 ∈ X \ F such that for every
neighbourhood U of x0, U ∩ F ̸= ∅.
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Let
Λ = {U ⊆ X | U is a neighourhood of x0}.

As Λ is closed under finite intersections, if for U1, U2 ∈ Λ we define U1 ≤ U2
if U2 ⊆ U1, then (Λ,≤) is a direct set by Example A.4.5.

For each U ∈ Λ, let xU ∈ F ∩ U (note we are using the Axiom of Choice
here). We claim that (xU )U∈Λ is a net that converges to x0. This then leads
to a contradiction as xU ∈ F for all U ∈ Λ but x0 /∈ F thereby completing
the proof. To see that (xU )U∈Λ is a net that converges to x0 in (X, T ), let
U0 be an arbitrary neighbourhood x. Then for all U ≥ U0 we have that
xU ∈ U ⊆ U0. Hence (xU )U∈Λ is a net that converges to x0 in (X, T ) as
claimed.

Example A.5.15. Let I be a non-empty set, let {(Xα, Tα)}α∈I be a non-
empty indexed family of topological spaces, and let Fα be a closed subset of
(Xα, Tα) for all α ∈ I. We claim that

∏
α∈I Fα is closed in

∏
α∈I Xα when

equipped with the product topology. Indeed let (fλ)λ∈Λ be an arbitrary net in∏
α∈I Fα that converges to some element f ∈

∏
α∈I Xα. By the ‘if’-direction

of Theorem A.4.22, for each α ∈ I the net (fλ(α))λ∈Λ converges to f(α) in
(Xα, Tα). Therefore, as fλ(α) ∈ Fα for all λ ∈ Λ and Fα is closed in (Xα, Tα),
Theorem A.5.14 implies f(α) ∈ Fα for all α. Hence f ∈

∏
α∈I Fα. Therefore,

as (fλ)λ∈Λ was arbitrary, Theorem A.5.14 implies
∏

α∈I Fα is closed.

Given a subset of a topological space, there will be potentially lots of
convergent nets contained in a given subset. It would be nice to find a closed
set that contains all the possible points of convergence. In particular, it
would be nice to find the smallest possible set with this property.

Construction A.5.16. Let (X, T ) be a topological space and let A ⊆ X.
Note the set

F = {F ⊆ X | A ⊆ F and F is a closed set in (X, T )}

is non-empty as X ∈ F . Consequently, Proposition A.5.9 implies the set

A =
⋂

F ∈F
F

is a closed set in (X, T ) that contains A. As clearly A ⊆ A, we obtain that
A ∈ F and thus A is the smallest closed set in (X, T ) that contains A. This
causes us to define the following.

Definition A.5.17. The closure of a set A in a topological space (X, T ) is
the set A obtained by taking the intersection of all closed subsets of (X, T )
that contain A.
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Example A.5.18. Given R with its canonical topology and a, b ∈ R with
a < b, the closure of each of (a, b), [a, b], (a, b], and [a, b) is [a, b]. Indeed [a, b]
is a closed set containing each of these sets. Furthermore, as every other
close subset of R containing one of these sets must also contain a and b by
Theorem A.5.14, [a, b] is the smallest closed subset of R containing each of
these sets and thus must be the closure of each of these sets.

Example A.5.19. Let (X, d) be a metric space with at least two points, let
x ∈ X, and let r > 0. It is possible that Bd(x, r) ≠ Bd[x, r]. Indeed let d be
the discrete metric on X. Then {x} = Bd(x, 1) is closed and thus equal to
its own closure. However Bd[x, 1] = X which does not equal Bd(x, 1).

Of course, closures of sets behave well with respect to subspaces and
products.

Lemma A.5.20. Let (Y, TY ) be a subspace of a topological space (X, T )
and let A ⊆ Y . The closure of A in (Y, TY ) is the intersection of Y and the
closure of A in (X, T ).

Proof. Let B denote the closure of A in (Y, TY ) and let C denote the closure
of A in (X, T ). As C is closed in (X, T ), Y ∩C is closed in (Y, TY ) by Lemma
A.5.12. Therefore B ⊆ Y ∩ C by definition.

To see the other inequality, recall since B is a closed set in (Y, TY )
that Lemma A.5.12 implies there exists a closed set F in (X, T ) such that
B = Y ∩ F . However as A ⊆ B = Y ∩ F ⊆ F , and as F is a closed subset in
(X, T ), the definition of the closure of a set implies C ⊆ F . Hence

Y ∩ C ⊆ Y ∩ F = B

as desired.

Before we show how closures work for the product and box topologies,
we demonstrate the following useful tool.

Theorem A.5.21. Let (X, T ) be a topological space, let A ⊆ X, and let
x ∈ X. The following are equivalent:

(i) x ∈ A.

(ii) There exists a net (xλ)λ∈Λ of points in A that converges to x.

(iii) For every neighbourhood U ∈ T of x, U ∩A ̸= ∅.

Furthermore, if B is a basis for (X, T ) or a neighbourhood basis for x, then
the above are equivalent to

(iv) For every neighbourhood U ∈ B of x, U ∩A ̸= ∅.

©For use through and only available at pskoufra.info.yorku.ca.



212 APPENDIX A. TOPOLOGICAL SPACES

Proof. First suppose x ∈ A. To see that (iii) holds, suppose to the contrary
that there exists a neighbourhood U ∈ T of x such that U ∩ A = ∅. Then
X \U is a closed set containing A so A ⊆ X \U . However x ∈ U and x ∈ A
contradict the fact that A ⊆ X \ U . Hence (i) implies (iii).

Next, suppose (iii) holds. To see that (ii) holds, let

Λ = {U ⊆ X | U is a neighourhood of x}.

As Λ is closed under finite intersections, if for U1, U2 ∈ Λ we define U1 ≤ U2
if U2 ⊆ U1, then (Λ,≤) is a direct set by Example A.4.5.

For each U ∈ Λ, let xU ∈ A ∩ U (note we are using the Axiom of Choice
here). We claim that (xU )U∈Λ is a net that converges to x. To see this, let
U0 be an arbitrary neighbourhood x. Then for all U ≥ U0 we have that
xU ∈ U ⊆ U0. Hence (xU )U∈Λ is a net that converges to x in (X, T ) and, as
xU ∈ A for all U ∈ Λ, we have constructed an acceptable net. Hence (iii)
implies (ii).

To see that (ii) implies (i), we note that if exists a net (xλ)λ∈Λ of points in
A that converges to x, then x must be in every closed subset of X containing
A by Theorem A.5.14. Thus x ∈ A by the definition of the closure of a set.
Hence (ii) implies (i).

Finally, in the case B is a basis for (X, T ) or a neighbourhood basis for
x, i) implies iv) by identical arguments. Furthermore to see that (iv) implies
(ii), consider

Λ = {U ∈ B | U is a neighourhood of x}.

Then Λ is a net with the same ordering as above by the properties of bases
and neighbourhood bases. A net (xU )U∈Λ is constructed as above and still
converges to x by the properties of bases and neighbourhood bases.

Using Theorem A.5.21, we can describe closure in the box and product
topologies.

Proposition A.5.22. Let I be a non-empty set, let {(Xα, Tα)}α∈I be a
non-empty indexed family of topological spaces, and let Aα ⊆ Xα for all
α ∈ I. Then, when

∏
α∈I Xα is equipped with the product topology,

∏
α∈I

Aα =
∏
α∈I

Aα.

Proof. By Example A.5.15 we see that
∏

α∈I Aα is a closed set containing∏
α∈I Aα. Hence ∏

α∈I

Aα ⊆
∏
α∈I

Aα

by definition.

©For use through and only available at pskoufra.info.yorku.ca.



A.5. SETS AND POINTS 213

To see the other inequality we will use Theorem A.5.21. Let x ∈
∏

α∈I Aα

be arbitrary and write x = (xα)α∈I . To see that x ∈
∏

α∈I Aα, let V be a
neighbourhood of x. Thus, by our knowledge of bases, we can find a set
U =

∏
α∈I Uα where Uα ∈ Tα (with Uα = Xα for all but finitely many α ∈ I

in the case we are using the product topology) such that x ∈ U ⊆ V . Since
x ∈ U we have that xα ∈ Uα for all α ∈ I. Moreover, since x ∈

∏
α∈I Aα

we know that xα ∈ Aα for all α ∈ I by Theorem A.5.21. Therefore, since
xα ∈ Uα and since xα ∈ Aα there exists an aα ∈ Aα ∩ Uα for all α ∈ I by a
property of the closure. Thus

(aα)α∈I ∈ U ∩
(∏

α∈I

Aα

)
⊆ V ∩

(∏
α∈I

Aα

)
.

Therefore, as V was an arbitrary neighbourhood of x, we obtain that x ∈∏
α∈I Aα by Theorem A.5.21 as desired.

Of course, when studying closures and closed sets via limits, for each
element x in a set A there is clearly a net with elements from A that converges
to x; namely a constant net where every value is x. Thus when taking a
closure or asking whether a set is closed, we are more interested in nets that
do not take the value of a specific point in a set. In particular, analysing the
proof of Theorem A.5.21, we easily see the following.

Corollary A.5.23. Let (X, T ) be a topological space, let A ⊆ X, and let
x ∈ X. The following are equivalent:

(i) There exists a net (xλ)λ∈Λ of points in A \ {x} that converges to x.

(ii) For every neighbourhood U of x, U ∩ (A \ {x}) ̸= ∅.

Proof. The proof that (ii) implies (i) is identical to the proof that (iii) implies
(ii) in Theorem A.5.21. Conversely, the proof that (i) implies (ii) follows
directly from the definition of a convergent net.

As being able to determining points of convergence from non-constant
nets is useful in many scenarios, we give said object a name.

Definition A.5.24. Let (X, T ) be a topological space and let A ⊆ X. A
point x ∈ X is said to be a cluster point of A if one of the two equivalent
conditions from Corollary A.5.23 hold for x, A, and (X, T ).

The set of cluster points of A is denoted cluster(A).

Remark A.5.25. Note some authors use the term ‘limit points’ instead of
cluster points. However a disjoint set of authors use the term ‘limits points’
to mean the set of all points of convergence. Thus we endeavour to ignore
this ambiguity.
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Example A.5.26. Given R equipped with its canonical topology and a, b ∈ R
with a < b, it is not difficult to see that the set of cluster points for [a, b], (a, b),
[a, b), and (a, b] are all [a, b] as every point in [a, b] is a point of convergence
for some non-constant net from (a, b).

Example A.5.27. Let A =
{

1
n | n ∈ N

}
viewed as a subset of R with its

canonical topology. Then the only cluster point of A is 0. Indeed clearly the
sequence

(
1
n

)
n≥1

converges to but never equals 0 and thus 0 is a cluster point.
To see that 0 is the only cluster point of A, we first claim that A = A ∪ {0}.
To see this, we note that A ∪ {0} is closed as its complement is a countable
union of open intervals and thus is open. However A is not closed by Theorem
A.5.14 as

(
1
n

)
n≥1

is a sequence from A that converges to 0, which is not in
A. Hence A = A ∪ {0}. Therefore, by Theorem A.5.14, the set of possible
cluster points must be contained in A ∪ {0}. However, it is clear that no
point in A can be a cluster point of A since the distance between 1

n and any
other point in A is at least 1

n − 1
n−1 so it is impossible for a net from A \

{
1
n

}
to converge to 1

n . Hence the only cluster point of A is 0.

Example A.5.28. Let C be the Cantor set from Example A.5.11. Then the
set of cluster points of C is precisely C. To see this, note as C is closed that
the cluster points of C are contained in C. To see that every point in C is a
cluster point of C, let x ∈ C be arbitrary. Thus, by the definition of C, for
each n ∈ N there exists a unique closed interval In of the form

[
2kn
3n ,

2kn+1
3n

]
where kn ∈ {0, 1, . . . , 1

2(3n − 1)}. Choose xn to be one of the endpoints of
In that is not equal to x (as there are two distinct endpoints, such a point
exists). As it is elementary to verify that the endpoints of In are elements
of C, we see that xn ∈ C and |x− xn| < 1

3n . Hence (xn)n≥1 is a sequence in
C \ {x} that converges to x. Hence C is equal to its cluster points.

Example A.5.29. Let A be a non-empty subset of a topological space
(X, T ). Then the closure of A in the subspace (A, TA) is A as A is closed in
the subspace topology.

Perhaps unsurprisingly, the only thing that prevents a set from begin
closed is it not containing its cluster points.

Theorem A.5.30. Let (X, T ) be a topological space and let A ⊆ X. Then

A = A ∪ cluster(A).

Proof. First, it is clear that A ⊆ A and that cluster(A) ⊆ A by Theorem
A.5.21 and the definition of a cluster point. Hence

A ⊇ A ∪ cluster(A).
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To see the other inequality, let x ∈ A be arbitrary. If x ∈ A then x ∈
A ∪ cluster(A) and there is nothing left to show. Thus we may suppose
that x /∈ A. Since x ∈ A, Theorem A.5.21 implies that U ∩A ̸= ∅ for every
neighbourhood U of x. As x /∈ A, U∩(A\{x}) ̸= ∅ for every neighbourhood U
of x. Hence Corollary A.5.23 implies that x ∈ cluster(A). Therefore, in either
case x ∈ A ∪ cluster(A). Hence, as x ∈ A was arbitrary, A = A ∪ cluster(A)
as desired.

Corollary A.5.31. Let (X, T ) be a topological space and let A ⊆ X. Then
A is closed if and only if cluster(A) ⊆ A.

Proof. If A is closed, then A = A = A ∪ cluster(A) by Theorem A.5.30 and
hence cluster(A) ⊆ A. Conversely, if cluster(A) ⊆ A, then Theorem A.5.30
implies that A = A ∪ cluster(A) = A. Therefore, as A is equal to its closure
and the closure of a set is a closed set, A is closed.

All of the above has been focused on closures and closed sets via describing
points of convergence for nets based on a set. However, it is often useful
to understand just the points inside a set. In particular, it is useful to
understand the set of points in a set that are ‘far away’ from the complement
of the set. These points are described based on the following, which is
constructed in a similar fashion to how we constructed the closure of a set.

Construction A.5.32. Let (X, T ) be a topological space and let A ⊆ X.
Note the set

U = {U ⊆ X | U ⊆ A and U ∈ T }
is non-empty as ∅ ∈ A. Consequently, Definition A.1.1 implies the set

int(A) =
⋃

U∈U
U

is an open set in (X, T ) that is contained A. As clearly int(A) ⊆ A, we
obtain that int(A) ∈ U and thus int(A) is the largest open set in (X, T ) that
is contained in A. This causes us to define the following.

Definition A.5.33. The interior of a set A in a topological space (X, T )
is the set int(A) obtained by taking the union of all open subsets of (X, T )
contained A.

Example A.5.34. Given R equipped with its canonical topology and a, b ∈ R
with a < b, it is not difficult to see that interior of [a, b], (a, b), [a, b), and
(a, b] is (a, b) as clearly (a, b) is open, is contained in these sets, contains all
points in these sets for except possible a and b, and as the addition of a or b
to (a, b) creates a set that is not open.

Example A.5.35. Let A =
{

1
n | n ∈ N

}
viewed as a subset of R with its

canonical topology. Then the interior of A is the empty set as no open
interval is contained in A.
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Example A.5.36. The Cantor set C, viewed as a subset of R, has no interior.
Indeed suppose to the contrary that int(C) is non-empty. Hence there exists
an open interval (a, b) ⊆ int(C) ⊆ C by the definition of the interior. By
the elementary properties of real numbers, we can choose N ∈ N such that

1
3N < b − a. This then implies that (a, b) cannot be contained in PN as
defined in Example A.5.11 as none of the separated intervals in PN have
length greater than 1

3N . Hence the Cantor set has no interior (even though
it is uncountable and every point is a cluster point).

Example A.5.37. Let A be the x-axis in R2 equipped with its topology
from the Euclidean norm. Then the interior of A is empty as A contains no
open balls from R2.

Example A.5.38. Let A be a non-empty subset of topological space (X, T ).
Then the interior of A in the subspace (A, TA) is A as A is open in the
subspace topology.

Although we do not have any theory here related to the interior like we
did with the closure results seen above, the interior will be useful later in
the course.

As we can see based on these examples, the set of interior points to a set
are those that are ‘far away’ from the complement of the set as there is an
open set containing these points that does not intersect the complement. To
formalize this, we define another type of point for a given set.

Definition A.5.39. Let (X, T ) be a topological space and let A ⊆ X.
A point x ∈ X is said to be a boundary point of A if A ∩ U ̸= ∅ and
(X \A) ∩ U ̸= ∅ for every neighbourhood U ∈ T of x.

The set of boundary points of A is denoted bdy(A).

Before we look at examples of boundary points, we first prove two results
which completely describe the set of boundary points based on objects we
have previously studied.

Corollary A.5.40. Let (X, T ) be a topological space and let A ⊆ X. Then
bdy(A) = A ∩ (X \A).

Proof. This result easily follows from Theorem A.5.21 and the definition of
a boundary point.

Theorem A.5.41. Let (X, T ) be a topological space and let A ⊆ X. Then
int(A) and bdy(A) are disjoint sets such that

A = int(A) ∪ bdy(A).

Furthermore
int(A) = A \ (X \A).
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Proof. Clearly if x ∈ int(A), then there exists an open set U containing x
(namely int(A)) such that U ∩ (X \ A) = ∅ and thus x /∈ bdy(A). Hence
int(A) and bdy(A) are disjoint sets.

To see that A ⊆ int(A) ∪ bdy(A), let x ∈ A be arbitrary. Hence Theorem
A.5.21 implies that for every neighbourhood U of x, U ∩ A ≠ ∅. If there
exists a neighbourhood U of x such that U ∩ (X \A) = ∅, then U ⊆ A and
hence x ∈ int(A). Otherwise for every neighbourhood U of x, U ∩ A ̸= ∅
and U ∩ (X \ A) ̸= ∅ so x ∈ bdy(A). Therefore, as x ∈ A was arbitrary,
A ⊆ int(A) ∪ bdy(A). For the reverse inequality, we note that bdy(A) ⊆ A
by the definition of a boundary point and Theorem A.5.21, and similarly
int(A) ⊆ A ⊆ A trivially.

Finally, to see that int(A) = A \ (X \A), note if x ∈ int(A) then there
exists a neighbourhood U of x contained in A and thus x /∈ (X \A) by
Theorem A.5.21. Furthermore, as int(A) ⊆ A by construction, int(A) ⊆
A \ (X \A). To see the reverse inequality, note as

A \ (X \A) ⊆ X \ (X \A) ⊆ X \ (X \A) = A,

and as X \ (X \A) is the complement of an closed set and thus is open,
A\(X \A) ⊆ int(A) by definition. Hence int(A) = A\(X \A) as desired.

Example A.5.42. Given R equipped with its canonical topology and a, b ∈ R
with a < b, it is not difficult to see that boundary of [a, b], (a, b), [a, b), and
(a, b] is {a, b}. Indeed as the closure of each of these sets is [a, b] by Example
A.5.18 and the interior of each of these sets is (a, b) by Example A.5.34, the
claim follows from Theorem A.5.41.

Example A.5.43. Given R equipped with its canonical topology, the bound-
ary of Q is R as every neighbourhood of some point from Q contains an
interval, which must contain a rational and irrational number.

Example A.5.44. Let (X, d) be a metric space with at least two points, let
x ∈ X, and let r > 0. It is possible that bdy(Bd(x, r)) and bdy(Bd[x, r]) are
not equal to

{y ∈ Y ∈| d(x, y) = r}.

Indeed let d be the discrete metric on X. Then Bd(x, 1) = {x} and Bd[x, 1] =
X have empty boundary sets as they are open sets and thus equal to their
own interior. However the above set is X which is not equal to ∅.

The notions of points and sets observed in this section will be seen
throughout the course (less so with the boundary points). As with under-
graduate real analysis, the notions related to closed sets and closures of
sets will be of vital importance when discussing continuous functions and
compact sets; which happen to be the next two chapters.
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A.6 Continuous Functions

Continuous functions between topological spaces are vital to this course. In
particular, we desire both an ‘open set’ characterization and a ‘convergent
net’ characterization of continuous functions.

Recall a function f : R → R is continuous if for each x0 ∈ R and each
ϵ > 0 there exists a δ > 0 such that if x ∈ R and |x − x0| < δ, then
|f(x) − f(x0)| < ϵ. Alternatively, this can be rewritten as

(x0 − δ, x0 + δ) ⊆ f−1((f(x0) − ϵ, f(x0) + ϵ)).

As open intervals form a basis for the canonical topology on R, it is elementary
to generalize the above idea of a continuous function to topological spaces.

Definition A.6.1. Let (X, TX) and (Y, TY ) be topological spaces. A function
f : X → Y is said to be continuous if f−1(U) ∈ TX for every U ∈ TY ; that
is, the inverse image of every open set (from Y ) is open (in X).

Example A.6.2. Let (X, TX) and (Y, TY ) be topological spaces and let
y0 ∈ Y . The constant function f : X → Y defined by f(x) = y0 for all x ∈ X
is a continuous function. Indeed for every open set U in Y we have that

f−1(U) =
{
X if y0 ∈ U

∅ if y0 /∈ U
.

Therefore, as ∅, X ∈ TX by the definition of a topology, f is continuous.

Example A.6.3. Let (X, TX) and (Y, TY ) be topological spaces. If TX

is the discrete topology, then every function f : X → Y is continuous as
TX = P(X) implies f−1(U) ∈ TX for every U ∈ TY .

Example A.6.4. Let (X, TX) and (Y, TY ) be topological spaces. If TY is the
trivial topology, then every function f : X → Y is continuous as f−1(Y ) = X,
f−1(∅) = ∅, and TY = {∅, Y }.

Example A.6.5. Let I be a non-empty set and let {(Xα, Tα)}α∈I be a set
of topological spaces. For a fixed α0 ∈ I, consider the map

πα0 :
∏
α∈I

Xα → Xα0

defined by
πα0((xα)α∈I) = xα0

for all (xα)α∈I ∈
∏

α∈I Xα. The map πα0 is called the projection map onto
the αth

0 coordinate.
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Every projection map is continuous when
∏

α∈I Xα is equipped with either
the product topology or the box topology. Indeed notice for all U ∈ Tα0 that

π−1
α0 (U) =

∏
α∈I

Vα

where Vα = Xα if α ̸= α0 and Vα0 = U . Thus, as
∏

α∈I Vα is open in both the
product and box topologies and as U ∈ Tα0 was arbitrary, πα0 is continuous.

In fact, as the collection {πα(Uα) | α ∈ I, Uα ∈ Tα} is a subbasis for the
product topology, the product topology is the coarsest topology for which
each projection map is continuous.

Of course, there are many ways to test whether a function on R is
continuous. In particular, one characterization of continuous functions on
R that is often used as the definition of continuity due to its viability is
the characterization that a function is continuous if and only if it maps
convergent sequences to convergent sequences. In the following result, we
extend all of these characterizations to arbitrary topological spaces.

Theorem A.6.6. Let (X, TX) and (Y, TY ) be topological spaces and let
f : X → Y . The following are equivalent:

(i) f is continuous.

(ii) For every x ∈ X and every TY -neighbourhood U of f(x) there exists a
TX-neighbourhood V of x such that V ⊆ f−1(U).

(iii) For any bases BX of (X, TX) and BY of (Y, TY ), for every x ∈ X
and every neighbourhood U ∈ BY of f(x) there exists a neighbourhood
V ∈ BX of x such that V ⊆ f−1(U).

(iv) For some bases BX of (X, TX) and BY of (Y, TY ), for every x ∈ X
and every neighbourhood U ∈ BY of f(x) there exists a neighbourhood
V ∈ BX of x such that V ⊆ f−1(U).

(v) For every net (xλ)λ∈Λ in X that converges to some x0 in (X, TX), the
net (f(xλ))λ∈Λ converges to f(x0) in (Y, TY ).

(vi) For every A ⊆ X, f
(
A
)

⊆ f(A), where the closures are taken in their
appropriate spaces.

(vii) For every closed set F in (Y, TY ), f−1(F ) is closed in (X, TX).

Proof. To see that (i) implies (ii), let f be continuous and let x ∈ X and
U a TY -neighbourhood of f(x) be arbitrary. Then, as f is continuous,
V = f−1(U) is clearly a TX -neighbourhood of x such that V ⊆ f−1(U).
Therefore, as x and U were arbitrary, (i) implies (ii).
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To see that (ii) implies (iii), let x ∈ X and U ∈ BY a TY -neighbourhood
of f(x) be arbitrary. By ii) there exists a TX -neighbourhood V0 of x such
that V0 ⊆ f−1(U). Since BX is a basis for (X, TX) there exists V ∈ BX

such that x ∈ V ⊆ V0. Hence V ∈ BX is a neighbourhood of x such that
V ⊆ V0 ⊆ f−1(U). Therefore, as x and U were arbitrary, (ii) implies (iii).

Note (iii) trivially implies (iv).
To see that (iv) implies (v), suppose BX is a basis for (X, TX) and BY is a

basis for (Y, TY ) such that for every x ∈ X and every neighbourhood U ∈ BY

of f(x) there exists a neighbourhood V ∈ BX of x such that V ⊆ f−1(U).
Let (xλ)λ∈Λ be an arbitrary net in X that converges to some x0 in (X, TX).
To see that (f(xλ))λ∈Λ converges to f(x0) in (Y, TY ), let U ∈ BY such that
f(x0) ∈ U be arbitrary. By assumption there exists a V ∈ BX such that
x0 ∈ V and V ⊆ f−1(U). Thus, as V is an open set containing x0 and as
(xλ)λ∈Λ converges to x0 in (X, TX), there exists a λ0 ∈ Λ such that xλ ∈ V
for all λ ≥ λ0. Hence f(xλ) ∈ f(V ) ⊆ U for all λ ≥ λ0. Therefore, as U
was arbitrary, (f(xλ))λ∈Λ converges to f(x0) in (Y, TY ) by Lemma A.4.16.
Hence (iv) implies (v).

To see that (v) implies (vi), fix A ⊆ X and let x0 ∈ A be arbitrary. As
x0 ∈ A there exists a net (xλ)λ∈Λ of points in A that converges to x0 by
Theorem A.5.21. Therefore, by v), (f(xλ))λ∈Λ is a net of points in f(A)
that converges to f(x0) in (Y, TY ). Hence Theorem A.5.21 f(x0) ∈ f(A).
Therefore, as x0 ∈ A was arbitrary, f

(
A
)

⊆ f(A). Hence (v) implies (vi).
To see that (vi) implies (vii), let F be an arbitrary closed subset of (Y, TY )

and let A = f−1(F ∩ f(X)). Thus F ∩ f(X) = f(A). Since A ⊆ A, (vi)
implies that

F ∩ f(X) = f(A) ⊆ f
(
A
)

⊆ f(A) = F ∩ f(X) = F ∩ f(X)

as F ∩ f(X) is closed. Hence f
(
A
)

= F ∩ f(X) so A ⊆ f−1(F ∩ f(X)) =
A ⊆ A so A = A. Thus A is closed. Therefore, as F was arbitrary, (vi)
implies (vii).

Finally, to see that (vii) implies (i), let U ∈ TY be arbitrary. Then Y \U
is closed in (Y, TY ). By assuming vii) we know that

f−1(Y \ U) = f−1(Y ) \ f−1(U) = X \ f−1(U)

is closed in (X, TX). Thus f−1(U) ∈ TX . Hence, as U ∈ TY was arbitrary, f
is continuous. Thus (vii) implies (i).

Of course, alternate characterizations of continuous functions are always
useful in proving results and obtaining examples of continuous functions.

Theorem A.6.7. Let (X, T ) be a topological space, let I be a non-empty
set, let {(Yα, Tα)}α∈I be a set of topological spaces, and, for each α ∈ I, let
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fα : X → Yα. The function f : X →
∏

α∈I Yα defined by

f(x) = (fα(x))α∈I

for all x ∈ X is continuous when Y =
∏

α∈I Yα is equipped with the product
topology if and only if fα is continuous for all α ∈ I.

Furthermore, if {(Xα, T ′
α)}α∈I is a set of topological spaces, if for each α ∈

I fα : Xα → Yα, if X =
∏

α∈I Xα is equipped with the product topology, and
if f : X → Y is defined by f((xα)α∈I) = (fα(xα))α∈I , then f is continuous
if and only if fα is continuous for all α ∈ I.

Proof. For the first part, let (xλ)λ∈Λ be an arbitrary net in X that converges
to some point x0 in (X, T ). By Theorem A.4.22, (f(xλ))λ∈Λ converges to
f(x0) when

∏
α∈I Xα is equipped with the product topology if and only if

(fα(xλ))λ∈Λ converges to fα(x0) in (Yα, Tα) for all α ∈ I. Hence the result
follows from Theorem A.6.6.

Similarly, for the second part, let (xλ)λ∈Λ be an arbitrary net in X that
converges to some point x0 in (X, T ). Hence (xλ(α))λ∈Λ converges to x0(α)
in (Xα, T ′

α) for all α ∈ I. By Theorem A.4.22, (f(xλ))λ∈Λ converges to
f(x0) when

∏
α∈I Xα is equipped with the product topology if and only if

(fα(xlambda(α)))λ∈Λ converges to fα(x0(α)) in (Xα, T ′
α) for all α ∈ I. Hence

the result follows from Theorem A.6.6.

Of course, in generality, we are interested in continuous functions as they
will behave well with respect to any topological property we are interested
in studying. On occasion, it is useful to study a more local property with
respect to continuity. In particular, analyzing the proof of Theorem A.6.6
yields the following.

Theorem A.6.8. Let (X, TX) and (Y, TY ) be topological spaces, let x0 ∈ X,
and let f : X → Y . The following are equivalent:

(i) For every TY -neighbourhood U of f(x0) there exists a TX-neighbourhood
V of x0 such that V ⊆ f−1(U).

(ii) For any bases BX of (X, TX) and BY of (Y, TY ), every neighbourhood
U ∈ BY of f(x0) there exists a neighbourhood V ∈ BX of x0 such that
V ⊆ f−1(U).

(iii) For some bases BX of (X, TX) and BY of (Y, TY ), for every neighbour-
hood U ∈ BY of f(x0) there exists a neighbourhood V ∈ BX of x0 such
that V ⊆ f−1(U).

(iv) For every net (xλ)λ∈Λ in X that converges to x0 in (X, TX), the net
(f(xλ))λ∈Λ converges to f(x0) in (Y, TY ).
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Proof. The fact that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) can be obtained by repeating
(ii) ⇒ (iii) ⇒ (iv) ⇒ (v) of Theorem A.6.6 verbatim.

To see that (iv) implies (i), assume that (iv) holds. Suppose to the
contrary that there exists a TY -neighbourhood U of f(x0) such that for
every TX -neighbourhood V of x0 that V \ f−1(U) ̸= ∅. Thus for every
TX -neighbourhood V of x0 there exists a xV ∈ V such that f(xV ) /∈ U (note
we are using the Axiom of Choice here).

Let
Λ = {V ⊆ X | V is a TX -neighourhood of x0}.

As Λ is closed under finite intersections, if for V1, V2 ∈ Λ we define V1 ≤ V2
if V2 ⊆ V1, then (Λ,≤) is a direct set by Example A.4.5.

We claim that (xV )V ∈Λ converges to x0 in (X, TX) but (f(xV ))V ∈Λ does
not converge to f(x0) in (Y, TY ). To see that (xV )V ∈Λ is a net that converges
to x0 in (X, T ), let V0 be an arbitrary T -neighbourhood x0. Then for all
V ≥ V0 we have that xV ∈ V ⊆ V0. Hence (xV )V ∈Λ is a net that converges
to x0 in (X, T ) by Definition A.4.10. Thus (f(xV ))V ∈Λ does not converge to
f(x0) in (Y, TY ), we simply note that U is a TY -neighbourhood of f(x0) but
f(xV ) /∈ U for all V ∈ Λ. Hence we have obtained a contradiction thereby
finishing the proof.

Due to the above, we define the following.

Definition A.6.9. Let (X, TX) and (Y, TY ) be topological spaces, let x0 ∈ X,
and let f : X → Y . It is said that f is continuous at x0 if one of the four
equivalent characterizations in Theorem A.6.8 hold

Of course, global continuity is exactly local continuity at each point.

Corollary A.6.10. Let (X, TX) and (Y, TY ) be topological spaces and let
f : X → Y . Then f is continuous if and only if f is continuous at each
point in X.

Proof. Combine Theorem A.6.6 and Theorem A.6.8.

As mentioned earlier, it is on occasion useful to consider this local
property of continuity due to all of the equivalent characterizations produced
in Theorem A.6.8. Another useful ability is to be able to construct continuous
functions from other continuous functions. The most well-known way to
do this is the following whose proof trivially follows from the definition of
continuity.

Theorem A.6.11. Let (X, TX), (Y, TY ), and (Z, TZ) be topological spaces.
If f : X → Y and g : Y → Z are continuous functions, then g ◦ f : X → Z
is a continuous function.
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Proof. To see that g ◦ f is a continuous function, let U ∈ TZ be arbitrary.
Then g−1(U) ∈ TY as g is continuous thus f−1(g−1(U)) ∈ TX as f is
continuous. Hence (g ◦ f)−1(U) = f−1(g−1(U)) ∈ TX . Therefore, as U ∈ TZ

was arbitrary, g ◦ f is continuous by Definition A.6.1.

One way to construct continuous function is to use inclusions and restric-
tions together with the subspace topology.

Lemma A.6.12. Let (X, TX) and (Y, TY ) be topological spaces, let A ⊆ X,
and let B ⊆ Y . The following hold:

(1) If A is equipped with the subspace topology, then the inclusion map
i : A → X defined by i(a) = a for all a ∈ A is continuous.

(2) If A is equipped with the subspace topology and f : X → Y is continuous,
then the restriction f |A : A → Y defined by f |A(a) = f(a) for all a ∈ A
is continuous.

(3) If B is equipped with the subspace topology and f : X → B is continuous,
then f : X → Y is continuous.

(4) If B is equipped with the subspace topology, f : X → Y is continuous,
and f(X) ⊆ B, then f : X → B is continuous.

Proof. To see that (1) holds, notice for all open subsets U of X that i−1(U) =
A ∩ U is open in the subspace topology on A. Hence i is continuous by
Definition A.6.1.

To see that (2) holds, notice for all open subsets U of X that f |−1
A (U) =

A ∩ f−1(U) is open in the subspace topology on A as f−1(U) is an open
subset of X since f is continuous. Hence f |A is continuous by Definition
A.6.1.

To see that (3) holds, notice for all open subset V of Y that f−1(V ) =
f−1(B ∩ V ) which must be open since f : X → B is continuous and B ∩ V
is open in the subspace topology on B by definition. Hence f : X → Y is
continuous by Definition A.6.1.

Finally, to see that (4) holds, recall that if V is an open subset of B in the
subspace topology that V = B ∩V0 for some open subset V0 in Y . Therefore,
since f(X) ⊆ B, we see that f−1(V ) = f−1(B ∩ V0) = f−1(V0) is open in
X as f : X → Y is continuous and V0 is open in Y . Hence f : X → B is
continuous by Definition A.6.1.

Instead of trying to restrict or compress a continuous function to obtain a
continuous function, we can combine continuous functions to get continuous
functions. Indeed the first of the following two results says that if we can
cover a topological space with open sets and we have a function that is
continuous on each of these open sets, then the function on the whole space
must be continuous. The second result does the same for closed sets provided
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we have a finite number of closed sets with union all of X. Both of these
results have uses in differential geometry.

Lemma A.6.13. Let (X, TX) and (Y, TY ) be topological spaces and let
f : X → Y . Suppose there exist {Uα}α∈I ⊆ T be such that X =

⋃
α∈I Uα

and f |Uα is continuous for all α ∈ I, then f is continuous.

Proof. To see that f is continuous, let V ∈ TY be arbitrary. Notice for all
α ∈ I that f |−1

Uα
(V ) is open in Uα equipped with the subspace topology from

X as f |Uα is continuous. Hence, by the definition of the subspace topology,
there exists a Vα ∈ TX such that

f |−1
Uα

(V ) = Uα ∩ Vα.

However, since Uα ∈ TX , we obtain that f |−1
Uα

(V ) ∈ TX being the intersection
of two elements of TX . Therefore, since

f−1(V ) =
⋃
α∈I

f |−1
Uα

(V ),

we obtain that f−1(V ) ∈ TX as TX is closed under unions. Hence, as V ∈ TY

was arbitrary, f is continuous by Definition A.6.1.

Theorem A.6.14 (The Pasting Lemma). Let (X, TX) and (Y, TY ) be a
topological spaces, let A,B be closed subsets of X such that X = A ∪B, and
let f : A → Y and g : B → Y be continuous functions such that f(x) = g(x)
for all x ∈ A ∩B. Then the function h : X → Y such that h(a) = f(a) for
all a ∈ A and h(b) = g(b) for all b ∈ B is continuous.

Proof. To see that h is continuous, let F be an arbitrary closed subset of Y .
Notice by construction that

h−1(F ) = f−1(F ) ∪ g−1(F ).

However, as f and g are continuous functions, Theorem A.6.6 implies that
f−1(F ) is a closed subset of A when A is equipped with the subspace topology
and g−1(F ) is a closed subset of B when B is equipped with the subspace
topology. Thus Lemma A.5.12 implies that there exist closed subsets F1
and F2 in X such that f−1(F ) = A ∩ F1 and g−1(F ) = B ∩ F2. Therefore,
as A and B are closed in X, f−1(F ) and g−1(F ) are closed in X. Thus
h−1(F ) = f−1(F ) ∪ g−1(F ) is closed in X. Therefore, as F was arbitrary, h
is continuous by Theorem A.6.6.

A.7 Homeomorphisms
With the construction of the objects and morphisms studied in this course
complete, the next natural progression in mathematics is to define using ones
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morphisms when two objects are the same. As topological spaces are the
objects in this course and continuous functions are the morphisms in this
course, we study the following concept in order to determine the notion of
when two topological spaces are the same.

Definition A.7.1. Let (X, TX) and (Y, TY ) be topological spaces. A function
f : X → Y is said to be a homeomorphism if f is bijective and both f and
f−1 are continuous. Equivalently, a function f : X → Y is a homeomorphism
if f is bijective and U ∈ TX if and only if f(U) ∈ TY .

Due to the above, we define the following notion.

Definition A.7.2. Two topological spaces (X, TX) and (Y, TY ) are said to
be homeomorphic if there is a homeomorphism from X to Y .

The reason why two homeomorphic topological spaces are ‘the same’ is
because a bijection means the sets are the same (so X = Y upto relabelling)
and the continuity of the homeomorphism and its inverse implies the open
sets are the same. This probably causes a modern mathematician to ask
why we do not call homeomorphisms isomorphisms and why we do not call
homeomorphic topological spaces isomorphic topological spaces. The only
reason for this is tradition.

Of course, any notion of equality in mathematics must be an equivalence
relation, we verify the following.

Proposition A.7.3. Consider a set Φ of topological spaces and define a
relation ∼ on Φ by (X, TX) ∼ (Y, TY ) if and only if (X, TX) and (Y, TY ) are
homeomorphic. Then ∼ is an equivalence relation.

Proof. First, clearly (X, TX) ∼ (X, TX) via the identity map. Secondly,
if (X, TX) ∼ (Y, TY ), then there is a homeomorphism f : X → Y . As
f−1 : Y → X is then a homeomorphism by definition, (Y, TY ) ∼ (X, TX).

Finally suppose (X, TX) ∼ (Y, TY ) and (Y, TY ) ∼ (Z, TZ). Thus there
exists homeomorphisms f : X → Y and g : Y → Z. Consider the map
h = g ◦ f : X → Z. We claim that h is a homeomorphism. Indeed as
the composition of bijections is a bijection, h is a bijection. Furthermore,
by Theorem A.6.11 h is continuous being the composition of continuous
functions. Finally, as h−1 = f−1 ◦ g−1, h−1 is the composition of continuous
functions (as f and g are homeomorphisms) and thus continuous. Hence h
is a homeomorphism so (X, TX) ∼ (Z, TZ) as desired.

Now onto some examples.

Example A.7.4. Let R be equipped with its canonical topology and let
A =

(
−π

2 ,
π
2
)

be equipped with the subspace topology inherited from R.
Then R and A are homeomorphic. Indeed consider the function f : A → R
defined

f(x) = tan(x)
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for all x ∈ R. It is well-known that f is a continuous bijective function on A
whose inverse, namely f−1(x) = arctan(x) is also continuous. Hence R and
A are homeomorphic.

As often a topological space is only homeomorphic to a subspace, we
define the following.

Definition A.7.5. Let (X, TX) and (Y, TY ) be topological spaces. An
function f : X → Y is said to be a embedding if f : X → f(X) is a
homeomorphism when f(X) is equipped with the subspace topology.

Example A.7.6. Let R2 and R3 be equipped with their Euclidean topologies,
and let

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}

(that is, S2 is the boundary of the unit ball in R3) equipped with the subspace
topology from R3. Since the Euclidean topologies on R2 and R3 are product
topologies by Example A.3.15, Theorem A.4.22 implies a net converges in
either of these spaces if and only if it converges entry-wise. Hence Proposition
A.4.21 implies that a net converges in S2 if and only if it converges entry-wise.

Consider the map f : R2 → S2 defined by

f(x, y) =
(

2x
x2 + y2 + 1 ,

2y
x2 + y2 + 1 ,

x2 + y2 − 1
x2 + y2 + 1

)

for all (x, y) ∈ R2. It is not difficult to see that f is continuous by the
net characterization of continuity from Theorem A.6.6. However, f is not
bijective. Indeed the point (0, 0, 1) ∈ S2 is not in the range of f .

Consider the function

g : S2 \ {(0, 0, 1)} → R2

defined by
g(x, y, z) =

(
x

1 − z
,

y

1 − z

)
for all (x, y, z) ∈ S2 \ {(0, 0, 1)}. It is not difficult to see that if the codomain
of f is restricted to S2 \ {(0, 0, 1)}, then f and g are inverses to each
other. Furthermore g is continuous by the net characterization of continuity
from Theorem A.6.6. Hence f is an embedding of R2 into S2 and R2 and
S2 \ {(0, 0, 1)} are homeomorphic.

Example A.7.7. Let R and R2 be equipped with their Euclidean topologies,
let A = [0, 2π) equipped with the subspace topology induced by R, and let

S1 = {(x, y) ∈ R2 | x2 + y2 = 1}

equipped with the subspace topology induced by R2. Since the Euclidean
topologies on R and R2 are product topologies by Example A.3.15, Theorem
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A.4.22 implies a net converges in either of these spaces if and only if it
converges entry-wise. Hence Proposition A.4.21 implies that a net converges
in S1 if and only if it converges entry-wise.

Consider the map f : A → S1 defined by

f(x) = (cos(x), sin(x))

for all x ∈ A. It is elementary to see that f is a bijection. It is not difficult
to see that f is continuous by the net characterization of continuity from
Theorem A.6.6. However f−1 is not continuous. Indeed consider the set
U = [0, 1). Since U is an open subset of A as U = A ∩ (−∞, 1), if f−1 were
continuous, then (f−1)−1(U)) = f(U) would be open in S1, so S1 \ f(U)
would be closed in S1. However, the sequence((

cos
(

2π − 1
n

)
, sin

(
2π − 1

n

)))
n≥1

is a net in S1 \ f(U) that converges to (1, 0) ∈ f(U) thereby contradicting
the fact that S1 \ f(U) was closed. Hence f cannot be continuous.

The reason that the map f in Example A.7.7 fails is that we have not
placed the correct topology on the circle. If one wants a bijective map from
a topological space to be a homeomorphism, we know exactly what topology
to put on the codomain to ensure as the following result demonstrates.

Proposition A.7.8. Let (X, TX) be a topological space, let Y be a non-empty
set, and let q : X → Y be a surjective map. Let

TY = {A ⊆ Y | q−1(A) ∈ TX}.

Then TY is the finest topology on Y such that q is continuous. If q is bijective,
then q is a homeomorphism.

Proof. First, we claim that TY is a topology. To see this, we note that
∅, Y ∈ TY since q−1(∅) = ∅ ∈ TX and q−1(Y ) = X ∈ TX as q is surjective
and as TX is a topology. Moreover, since for all {Uα}α∈I ⊆ P(Y ) we have
that

q−1
(⋃

α∈I

Uα

)
=
⋃
α∈I

q−1(Uα) and q−1
(⋂

α∈I

Uα

)
=
⋂
α∈I

q−1(Uα),

it is elementary to see that TY is closed under unions and finite intersections
since TX is. Hence TY is a topology.

To see that q : (X, TX) → (Y, TY ) is continuous, we know that q−1(U) ∈
TX for all U ∈ TY by the definition of TY . Hence q is continuous by definition.
To see that TY is the finest topology on T so that q is continuous, suppose
T is a topology on Y for which q is continuous. Then, by the definition of
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continuity, q−1(U) ∈ TX for all U ∈ T . Therefore, by the definition of TY ,
we obtain that T ⊆ TY . Hence TY is the finest topology on Y such that q is
continuous.

Finally, to see that q is a homeomorphism when q is bijective, we need
simply check that q−1 is continuous. To see this, let V ∈ TX be arbi-
trary. Then (q−1)−1(V ) = q(V ) will be an element of TY by definition as
q−1(q(V )) = V ∈ TX . Therefore, as V ∈ TX was arbitrary, q is a homeomor-
phism as desired.

Due to the importance and usefulness of the above topology, we name
this topology as follows.

Definition A.7.9. Let (X, TX) be a topological space, let Y be a non-empty
set, and let q : X → Y be a surjective map. The topology

TY = {A ⊆ Y | q−1(A) ∈ TX}

from Proposition A.7.8 is called the quotient topology on Y induced by q.

The reason we call the above the quotient topology is that one is really
identifying all of the points in q−1({y}) as a single point for all y ∈ Y
and placing a topology on these collections of points based on the original
topology; that is, we are taking a ‘quotient’ of a topological space by identify
points. This idea is also motivated from geometry by ‘cutting-and-pasting’
to identify points to create new geometric objects. Before we formalize this
and explore some examples, we first demonstrate, like with all things, how
bases work in the quotient topology.

Proposition A.7.10. Let (X, TX) be a topological space, let Y be a non-
empty set, let q : X → Y be a surjective map, and let TY be the quotient
topology on Y induced by q. If BX is a basis for (X, TX), then

BY = {A ⊆ Y | q−1(A) ∈ BX}

is a basis for (Y, TY ).

Proof. To see that BY is a basis for (Y, TY ), let y ∈ Y and U ∈ TY be
arbitrary. By the definition of the quotient topology, q−1(U) ∈ TX . Therefore,
as q−1(y) ∈ q−1(U), the fact that BX is a basis for (X, TX) implies that
there exists a B ∈ BX such that q−1(y) ⊆ B ⊆ q−1(U). Therefore, if
B′ = q(B) ⊆ Y , then B′ ∈ BY by definition and y ∈ q(B) = B′ ⊆ U .
Therefore, as y and U were arbitrary, BY is a basis for (Y, TY ).

Example A.7.11. Let A = [0, 2π) and let

S1 = {(x, y) ∈ R2 | x2 + y2 = 1} ⊆ R2
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equipped with the subspace topology induced by R2. As the intersection of
open balls in R2 with S1 yield open arcs on S1, the open arcs on S1 are a
basis for the subspace topology on S1.

Consider the map q : S1 → A defined by

q ((cos(x), sin(x))) = x

for all x ∈ [0, 2π) and let T be the quotient topology on A induced by q.
By the description of the basis of S1 given above and since only arcs of
arbitrarily small length around a point matter in forming a neighbourhood
basis, we see for all x ∈ (0, 2π) that

{(x− ϵ, x+ ϵ) | 0 < ϵ < min{x, 2π − x}}

form a neighbourhood basis of x and that

{[0, ϵ) ∪ (2π − ϵ, 2π) | 0 < ϵ < 2π}

for a neighbourhood basis of 0 in the quotient topology.
Example A.7.12. Let R be equipped with its usual topology, let Y =
{a, b, c}, and let q : R → Y be defined by

q(x) =


a if x < 0
b if x = 0
c if x > 0

.

Let T be the quotient topology on Y induced by q. Notice for all A ⊆ Y
that

q−1(A) =



∅ if A = ∅
(−∞, 0) if A = {a}
{0} if A = {b}
(0,∞) if A = {c}
(−∞, 0] if A = {a, b}
(−∞, 0) ∪ (0,∞) if A = {a, c}
[0,∞) if A = {b, c}
R if A = Y

.

Therefore, by our knowledge of the open subsets of R, we see that

T = {∅, {a}, {c}, {a, c}, {a, b, c}}.

Diagrammatically, the topology T is the following.

ca

b
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In Example A.7.12, one can think of a as (−∞, 0) ⊆ R, b as {0} ⊆ R,
and c as (0,∞) ⊆ R. That is, we can think of Y as a partition of R and the
quotient topology on Y is then induced by this partition. To formalize this,
we recall the definition a partition and how a partition produces a topological
space.

Definition A.7.13. Let X be a non-empty set. A partition of X is a
collection {Xα}α∈I ⊆ P(X) such that X =

⋃
α∈I Xα and Xα ∩ Xβ = ∅ if

α, β ∈ I and α ̸= β.

Definition A.7.14. Let (X, T ) be a topological space, let X∗ be a partition
of X, and let q : X → X∗ be the surjective map that maps each element
x ∈ X to the unique element in X∗ containing x. The pair (X∗, T ∗) where
T ∗ is quotient topology on X∗ induced by q is called a quotient space.

Example A.7.15. Let R be equipped with its usual topology and let

P = {{x+ 2πn | n ∈ Z} | x ∈ [0, 2π)}.

If (R∗, T ∗) is the quotient space induced by P, then R∗ is in canonical
bijective correspondence with [0, 2π) by identifying {x+ 2πn | n ∈ Z} for
x ∈ [0, 2π) with x. Under this identification, if q : X → X∗ is the surjective
map that maps each element x ∈ R to the unique element in R∗ containing
x, then we recall that

T ∗ = {A ⊆ [0, 2π) | q−1(A) is open in R}.

As the inverse image of every basis element exhibited in Example A.7.11 is a
union of a countable number of open intervals (each of which is a translate
of one fixed open interval by an integer multiple of 2π), we see that the
topology from Example A.7.11 must be coarser than T ∗. Furthermore, given
a subset A ⊆ [0, 2π) we see that q−1(A) is 2π-periodic and will be open if
and only if it is a union of open intervals and closed under 2π-periodicity.
Hence T ∗ is precisely the topology on [0, 2π) exhibited in Example A.7.11.

Example A.7.16. Let R2 be equipped with the Euclidean topology, let
A = {(x, y) ∈ R2 | x2 + y2 ≤ 1} equipped with the subspace topology
induced by R2, and let

P = {{(x, y)} | x2 + y2 < 1} ∪ {(x, y) | x2 + y2 = 1}.

Consider the quotient space (A∗, T ∗) and let q : A → A∗ be the canonical
surjective map. Then A∗ is canonically in bijective correspondence with the
shell

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} ⊆ R3

via the the map f : A∗ → S2 defined by

f(r cos(θ), r sin(θ)) = (sin(rπ) cos(θ), sin(rπ) sin(θ), cos (rπ))
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for all r ∈ [0, 1] and θ ∈ [0, 2π). If S2 is equipped with the subspace topology
inherited from R3, then f is a homeomorphism from A∗ to S2. To see this,
first notice that a subset of {(x, y) | x2 + y2 < 1} is open in A∗ if and only if
it is open in A and thus open in R2 by definition. Next, suppose U is an open
set in A∗ that contains S1 = {(x, y) | x2 + y2 = 1}. Thus q−1(U) is open in
the subspace topology on A and contains S1. Note for each point (x, y) ∈ S1

there must exist a δ(x,y) > 0 such that B((x, y), δ(x,y)) ∩A ⊆ q−1(U). As S1

is compact (see A.8), we may cover S1 with a finite number of these balls
in which case an ϵ > 0 may be found so that {(x, y) | ϵ < x2 + y2 ≤ 1} ⊆
q−1(U). Consequently, we see that q−1(U) is a union of a set of the form
{(x, y) | ϵ < x2 + y2 ≤ 1} and a subset of {(x, y) | x2 + y2 < 1} that is open
in A∗. It is then not difficult to see that the open sets in A∗ are in bijective
correspondence with those of S2 via f . Hence f is a homeomorphism from
A∗ to S2.

Example A.7.17. Let R2 be equipped with the Euclidean topology, let
A = [0, 1]2 ⊆ R2 equipped with the subspace topology induced by R2, and
let P be the union of

{{(x, y)} | x, y ∈ (0, 1)},
{{(x, 0), (x, 1)} | x ∈ (0, 1)},
{{(0, y), (1, y)} | y ∈ (0, 1)}, and
{(0, 0), (1, 0), (0, 1), (1, 1)}.

Consider the quotient space (A∗, T ∗) and let q : A → A∗ be the canonical
surjective map. Then A∗ is canonically in bijective correspondence to a torus
in R3 in such a way that that T ∗ corresponds to the subspace topology on
the torus inherited from R3. The details are similar to Example A.7.16.

To better understand functions, continuous functions, and homeomor-
phisms on quotient spaces, we give a name to the maps under consideration
when definition a quotient topology.

Definition A.7.18. Let (X, TX) and (Y, TY ) be topological spaces. A map
q : X → Y is said to be a quotient map if q is surjective and a set U ⊆ Y is
open if and only if p−1(U) ∈ TX ; that is, if TY is the quotient topology on Y
induced by q.

Clearly quotient maps are continuous maps by the definition of a quotient
map and by the definition of a continuous function. In addition, of course a
quotient of a quotient is still a quotient.

Lemma A.7.19. Let (X, TX), (Y, TY ), and (Z, TZ) be topological spaces, let
q : X → Y be a quotient map, and let p : Y → Z be a quotient map. Then
p ◦ q : X → Z is a quotient map.
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Proof. To see that p ◦ q is a quotient map, we first note that quotient maps
are continuous by definition. Therefore p ◦ q is a composition of continuous
maps and thus continuous. Hence if U ∈ TZ , then (p ◦ q)−1(U) is open in
TX by continuity.

Conversely, let U ⊆ Z such that (p ◦ q)−1(U) = q−1(p−1(U)) is open in
(X, TX) be arbitrary. Since q is a quotient map, q−1(p−1(U)) being open
in (X, TX) implies that p−1(U) is open in (Y, TY ) by the definition of a
quotient map. Therefore, since p is a quotient map, p−1(U) being open in
(Y, TY ) implies that U is open in (Z, TZ) by the definition of a quotient map.
Therefore, as U was arbitrary, p ◦ q is a quotient map.

One of the main reason quotient spaces are nice is that certain maps
factor over quotients and preserve topological properties.

Theorem A.7.20. Let (X, TX), (Y, TY ), and (Z, TZ) be topological spaces,
let q : X → Z be a quotient map, and let g : X → Y be a map that is constant
on q−1({z}) for each z ∈ Z. Then there exists a unique map f : Z → Y such
that g = f ◦ q.

Z

X

Y

q g

f

The map f is continuous if and only if g is continuous. Furthermore, f is a
quotient map if and only if g is a quotient map.

Proof. First, since g is constant on q−1({z}) for each z ∈ Z, we define
f : Z → Y by setting f(z) for each z ∈ Z to be the unique value of g
obtained on q−1({z}), then f is a well-defined function such that g = f ◦ q
as desired. Furthermore, as this is clearly the only way to define f so that
g = f ◦ q as q is surjective, uniqueness has been obtained.

Next, clearly if f is a continuous function than g is a continuous function
since quotient maps are continuous and the composition of continuous func-
tions is continuous. Conversely, suppose that g is continuous and let U be an
arbitrary open set in (Y, TY ). Hence g−1(U) = (f ◦ q)−1(U) = q−1(f−1(U))
must be an open set inX. However, as q is a quotient map, q−1(f−1(U)) ∈ TX

implies f−1(U) ∈ TZ . Hence, as U was arbitrary f is continuous as desired.
Finally, if f is a quotient map, then g is a quotient map as the com-

position of quotient maps is a quotient map. Conversely, suppose that g
is a quotient map. Thus a set U ⊆ Y is such that U ∈ TY if and only if
g−1(U) = (f ◦ q)−1(U) = q−1(f−1(U)) ∈ TX . However, as q is a quotient
map, q−1(f−1(U)) ∈ TX if and only if f−1(U) ∈ TZ . Hence f is a quotient
map by definition.
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Using Theorem A.7.20, we obtain a better understanding of quotient
spaces obtained by partitioning based on a surjective continuous linear
map. In particular, every surjective continuous linear map factors through a
quotient space.

Corollary A.7.21. Let (X, TX) and (Y, TY ) be topological spaces, let g :
X → Y be a surjective continuous linear map, let

X∗ = {g−1({y}) | y ∈ Y }

equipped with the quotient topology, and let q : X → X∗ be the surjective map
from Definition A.7.14 that maps each element x ∈ X to the unique element
in X∗ containing x. Then there exists a unique bijective, continuous map
f : X∗ → Y such that g = f ◦ q.

X∗

X

Y

q g

f

Furthermore X∗ is Hausdorff if (Y, TY ) is Hausdorff. Finally f is a homeo-
morphism if and only if g a quotient map.

Proof. First, the fact that f exists is unique, and is continuous follows from
Theorem A.7.20 as g is continuous. Furthermore, since g is surjective and
g = f ◦ q, f is surjective. To see that f is injective, suppose x1, x2 ∈ X∗ are
such that f(x1) = f(x2). As q is surjective, there exists x′

1, x
′
2 ∈ X such that

q(x′
1) = x1 and q(x′

2) = x2. Hence

g(x′
1) = f(q(x′

1)) = f(x1) = f(x2) = f(q(x′
2)) = g(x′

2).

Therefore, by the definition of X∗ we must have x1 = q(x′
1) = q(x′

2) = x2.
Thus f is bijective.

Next, suppose (Y, TY ) is Hausdorff. To see that X∗ is Hausdorff, let
x1, x2 ∈ X∗ be arbitrary points such that x1 ̸= x2. Then, as f is bijective,
f(x1) ̸= f(x2). Hence, as (Y, TY ) is Hausdorff, there exists open sets U1, U2 ∈
TY such that f(x1) ∈ U1, f(x2) ∈ U2, and U1 ∩U2 = ∅. Therefore, since f is
a continuous bijection, V1 = f−1(U1) and V2 = f−1(U2) are open sets in X∗

such that x1 ∈ V1, x2 ∈ V2, and V1 ∩ V2 = ∅. Therefore, as x1 and x2 were
arbitrary, X∗ is Hausdorff.

To see the last part of the statement, we note that if g is a quotient map,
then f is a quotient map by Theorem A.7.20. Therefore, as f is a bijective
quotient map, f is a homeomorphism by definition.

Finally, suppose f is a homeomorphism. To see that g is a quotient
map, we first notice g is surjective and, since g is continuous, that if U ∈ TY
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then g−1(U) ∈ TX . Thus, to complete the proof that g is a quotient map,
let U ⊆ Y be an arbitrary set such that g−1(U) ∈ TX . Hence g−1(U) =
q−1(f−1(U)) ∈ TX . Therefore, as q is a quotient map, f−1(U) is open in X∗.
However, since f is a homeomorphism, this implies that U ∈ TY . Therefore,
as U was arbitrary, g is a quotient map.

A.8 Compact Sets
One of the most important collection of topological spaces are those that are
compact. The notion of compactness follows by asking that we can extract a
finite open cover of our space from any open cover we may wish to consider.

Definition A.8.1. Let (X, T ) be a topological space and let A ⊆ X. Sets
{Uα}α∈I ⊆ P(X) are said to be an open cover of A if each Uα ∈ T for all
α ∈ I and A ⊆

⋃
α∈I Uα.

A subcover of A from {Uα}α∈I is any collection {Uα}α∈J where J ⊆ I
such that A ⊆

⋃
α∈J Uα

Definition A.8.2. A topological space (X, T ) is said to be compact if every
open cover of (X, T ) contains a finite subcover; that is, if {Uα}α∈I ⊆ T are
such that X =

⋃
α∈I Uα, then there exists J ⊆ I such that J is finite and

X =
⋃

α∈J Uα.

Of course, we have some trivial examples

Example A.8.3. Technically the empty set is compact as every open cover
has a subcover consisting of one element.

Example A.8.4. The trivial topology on a set X is always compact as the
only open covers of X will be {X} and {X, ∅}.

Example A.8.5. Let (X, T ) be a topological space with X finite. Then
(X, T ) is compact as T ⊆ P(X) is finite.

Example A.8.6. Let X be an infinite set and let T be the discrete topology
on X. Then (X, T ) is not compact as {{x}}x∈X is an open cover with no
finite subcovers.

To obtain more examples of compact topological spaces, we turn our
attention to subsets of R. Of course we have the following.

Example A.8.7. If R is equipped with its canonical topology, then R is not
compact. Indeed U = {(n− 1, n+ 1) | n ∈ Z} is an open cover of R with no
finite subcovers as each element of Z is covered by a unique element of U .

In order to determine which subsets of R are compact when equipped
with the subspace topology, we note the following.
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Lemma A.8.8. Let (X, T ) be a topological space and let Y be a subspace of
(X, T ). Then Y is compact if and only if every open cover of Y in (X, T )
has a finite subcover.

Proof. For simplicity, let TY denote the subspace topology on Y inherited
from (X, T ).

To begin, suppose (Y, TY ) is compact. To see the result, let {Uα}α∈I be
an arbitrary open cover of Y in (X, T ). Hence {Y ∩Uα}α∈I is an open cover
of Y in (Y, TY ) so the fact that (Y, TY ) is compact implies there exists a finite
subset J ⊆ I such that {Y ∩Uα}α∈J is an open cover of Y in (Y, TY ). Hence
clearly {Uα}α∈J is a finite open subcover of Y from {Uα}α∈I . Therefore, as
{Uα}α∈I was arbitrary, the claim follows.

Conversely, suppose that every open cover of Y in (X, T ) has a finite
subcover. To see that (Y, TY ) is compact, let {Vα}α∈I be an arbitrary open
cover of Y in (Y, TY ). By the definition of the subspace topology there exists
{Uα}α∈I ⊆ T such that Vα = Y ∩ Uα for all α ∈ I. Hence {Uα}α∈I is an
open cover of Y in (X, T ), which then must have a finite subcover {Uα}α∈J

of Y by assumption. Hence {Vα}α∈J is a finite open subcover of Y from
{Vα}α∈I . Therefore, since {Vα}α∈I was arbitrary, (Y, TY ) is compact.

Example A.8.9. The subset X = {0} ∪
{

1
n | n ∈ N

}
⊆ R is a compact

subspace of R. To see this, suppose that {Uα}α∈I is an open cover of
X using open subsets from R. Hence there exists an α0 ∈ I such that
0 ∈ Uα0 . Since Uα0 is open, there exists an ϵ > 0 such that (−ϵ, ϵ) ⊆ Uα0 .
Since X contains only a finite number of elements outside of (−ϵ, ϵ), X
contains only a finite number of element outside of Uα0 . Thus we can write
X \ Uα0 = {x1, . . . , xm} for some m ∈ N. Since {Uα}α∈I is an open cover
of X, for each k ∈ {1, . . . ,m} there exists an αk ∈ I such that xk ∈ Uαk

.
Hence {Uαk

}m
k=0 is a finite subcover of X from {Uα}α∈I . Hence, as {Uα}α∈I

was arbitrary, X is compact.

Example A.8.10. The subset X =
{

1
n | n ∈ N

}
⊆ R of R is not compact.

Indeed if Un =
(

1
n , 1

)
for all n ∈ N, then {Un}∞

n=1 is an open cover of X.
However, clearly {Un}∞

n=1 does not have a finite subcover as if n1, . . . , nm ∈ N
then

⋃m
k=1 Unk

=
(

1
max{n1,...,nm} , 1

)
which does not contain all of X since

limn→∞
1
n = 0.

Remark A.8.11. It is clear in the above example that the reason why X is
not compact was that X was not closed. However, for a general topological
space (X, T ), a subspace A of (X, T ) may still be compact even if A is not
closed in (X, T ). Indeed, if X is finite, then every subspace of (X, T ) is
compact as every subspace topology consists only of a finite number of sets.
As there are clearly examples of topologies on finite sets such that not every
set is closed, we have demonstrated our claim.
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The reason why the set in Example A.8.10 is not compact because it was
not closed follows from the fact that R is Hausdorff. In particular, mixing the
notions of Hausdorff and compactness yields some powerful results. Recall
that a topological space (X, T ) is Hausdorff means that (X, T ) has a lot
of open sets to separate points (i.e. it is “close” to the discrete topology)
whereas (X, T ) is compact means that (X, T ) does not have too many open
sets as every open cover has a finite subcover (i.e. it is “close” to the
trivial topology). It is this Goldilocks zone that makes compact Hausdorff
topological spaces some of the nicest topological spaces to study.

In order to study compact Hausdorff topological spaces, we note the
following incredibly useful lemma that lets us separate points from compact
subsets.

Lemma A.8.12. Let (X, T ) be a Hausdorff space, let Y be a compact
subspace of X, and let x0 ∈ X \ Y . Then there exists U, V ∈ T such that
x0 ∈ U , Y ⊆ V , and U ∩ V = ∅.

Proof. Since (X, T ) is Hausdorff and x0 ∈ X \Y , for each y ∈ Y there exists
Uy, Vy ∈ T such that x0 ∈ Uy, y ∈ Vy, and Uy ∩Vy = ∅. Hence {Vy}y∈Y is an
open cover of Y . Therefore, as Y is a compact subspace of X, Lemma A.8.8
implies there exists an n ∈ N and y1, y2, . . . , yn ∈ Y such that {Vyk

}n
k=1 is

an open cover of Y . Let

U =
n⋂

k=1
Uyk

and V =
n⋃

k=1
Vk.

Clearly Y ⊆ V by construction. Furthermore, as x0 ∈ Uyk
for all k ∈

{1, . . . , n}, x0 ∈ U . Finally, since Uy ∩ Vy = ∅ for all y ∈ Y , we obtain that
U ∩ V = ∅ as desired.

Using Lemma A.8.12, we can formalize the problem with Example A.8.10.

Theorem A.8.13. Every compact subspace of a Hausdorff topological space
is closed.

Proof. Let (X, T ) be a Hausdorff topological space and let Y be a compact
subspace of X. To see that Y is closed in (X, T ), it will be demonstrated
that X \ Y is open. To see that X \ Y is open, let x0 ∈ X \ Y be arbitrary.
By Lemma A.8.12, there exists open sets U, V ∈ T such that x0 ∈ U , Y ⊆ V ,
and U ∩V = ∅. Hence U is a neighbourhood of x0 that is contained in X \Y .
Therefore, as x0 ∈ X \ Y was arbitrary, X \ Y is open in (X, T ). Hence Y is
closed in (X, T ) as desired.

In fact, Theorem A.8.13 has somewhat of a converse in compact topolog-
ical spaces.
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Theorem A.8.14. Every closed subspace of a compact topological space is
compact.

Proof. Let (X, T ) be a compact topological space and let F be a closed
subspace of (X, T ). To see that F is compact, we will verify the conditions
of Lemma A.8.8. Thus let {Uα}α∈I be an arbitrary open cover of F from
(X, T ). Hence, as F is closed in (X, T ), {X \F} ∪ {Uα}α∈I is an open cover
of (X, T ). Therefore, as (X, T ) is compact, there exists a finite subset J ⊆ I
such that {X \ F} ∪ {Uα}α∈J is an open cover of (X, T ). Therefore, since
X \F is disjoint from F , {Uα}α∈I is a finite subcover F from {Uα}α∈I . Hence
Lemma A.8.8 implies that F is a compact subspace of (X, T ).

Combining Theorem A.8.13 and Theorem A.8.14, we can construct new
compact subspaces from other compact subspaces.

Corollary A.8.15. The arbitrary non-empty intersection of compact sub-
spaces of a Hausdorff topological space is compact.

Proof. Let (X, T ) be a Hausdorff topological space and let {Kα}α∈I be
compact subspaces of (X, T ) with I non-empty. By Theorem A.8.13, Kα is
closed in (X, T ) for all α ∈ I. Hence K =

⋂
α∈I Kα is closed in (X, T ). As I

is non-empty, K is a closed subset of Kα for all α ∈ I and thus a compact
subspace Kα for all α ∈ I by Theorem A.8.14.

Remark A.8.16. Note Corollary A.8.15 does not extend to (even the finite
intersection) of compact subspaces of non-Hausdorff topological spaces. For
such an example, let X = N and let

T = {A | A ⊆ N \ {1, 2}} ∪ {N} ∪ {N \ {1}} ∪ {N \ {2}}.

It is not difficult to verify that T is a topology on X. Furthermore, if
K1 = N \ {1} and K2 = N \ {2}, it is not difficult to verify that K1 and K2
are compact subspaces of X as any open cover of K1 must include either K1
or N (both of which are finite subcovers of K1) and any open cover of K2 must
include either K2 or N (both of which are finite subcovers of K2). However,
K1 ∩K2 = N \ {1, 2} is clearly not compact as {{n} | n ∈ N \ {1, 2}} is an
open cover of K1 ∩K2 with no finite subcovers.

Corollary A.8.17. The finite union of compact subspaces of a topological
space is compact.

Proof. Let {Kk}n
k=1 be compact subspaces of a topological space (X, T ) and

let K =
⋃n

k=1Kk. To see that K is compact in (X, T ), let U = {Uα}α∈I

be an arbitrary open cover of K. Hence U is an open cover of Kk for all
k ∈ {1, . . . , n}. Therefore, since Kk is compact for all k ∈ {1, . . . , n}, there
exists a finite subset Jk ⊆ I such that {Uα}α∈Jk

is an open cover off Kk.
Thus if J =

⋃n
k=1 Jk, then J is a finite subset of I and {Uα}α∈J is an open

cover of K. Therefore, as U was arbitrary, K is compact as desired.
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Remark A.8.18. Note Corollary A.8.17 does not extend to arbitrary unions
of compact subspaces. Indeed clearly X =

{
1
n | n ∈ N

}
is a union of compact

subsets of R as every singleton in R is trivially compact. However X is not
compact by Example A.8.10.

However, there more obstructions for a subset of R to be compact.

Example A.8.19. Let X = Z ⊆ R equipped with the subspace topology
inherited from the canonical topology on R. Clearly X is a closed subset
of R since any convergent net from X must eventually be constant as
dist(n,X \ {n}) = 1 for all n ∈ N. However, we claim that X is not compact.
Indeed if Un = (−n, n) for each n ∈ N, then U = {Un}∞

n=1 is an open cover
of X. However, U does not have a finite subcover since Un ⊆ Un+1 for all
n ∈ N so that U is closed under unions, and since each element of U contains
only a finite number of points in the infinite set X.

It is not difficult to see that the set in Example A.8.19 is not compact as
its elements get arbitrary far away from 0. To give a name to this issue, we
define the following property for metric spaces.

Definition A.8.20. A subset A of metric space (X, d) is said to be bounded
if there exists an M ≥ 0 such that

{d(a1, a2) | a1, a2 ∈ A} ⊆ [0,M ].

There are many ways to characterize boundedness in a metric space.

Lemma A.8.21. Let (X, d) be a metric space and let A ⊆ X be non-empty.
The following are equivalent:

(i) A is bounded.

(ii) For each a0 ∈ A, A ⊆ Bd(a0, R) for some R > 0.

(iii) For an a0 ∈ A, A ⊆ Bd(a0, R) for some R > 0.

Proof. To see that (i) implies (ii), suppose A is bounded. Thus there exists
an M > 0 such that

{d(a1, a2) | a1, a2 ∈ A} ⊆ [0,M ].

Hence (ii) follows by taking R = M for each a0 ∈ A.
Clearly (ii) implies (iii). To see that (iii) implies (i), let a0 ∈ A and R > 0

be such that A ⊆ Bd(a0, R). Hence for all a1, a2 ∈ A,

d(a1, a2) ≤ d(a1, a0) + d(a0, a2) ≤ R+R = 2R.

Hence
{d(a1, a2) | a1, a2 ∈ A} ⊆ [0, 2R]

so A is bounded by definition.

©For use through and only available at pskoufra.info.yorku.ca.



A.8. COMPACT SETS 239

Using the same idea as Example A.8.19, we have the following.

Theorem A.8.22. Every compact metric space is bounded.

Proof. Let (X, d) be a compact metric space. To see that (X, d) is bounded,
fix a point x0 ∈ X. For each n ∈ N, consider the open set Un = Bd(x0, n).
Since for all x ∈ X there exists an m ∈ N such that d(x, x0) < m, we see
that

⋃∞
n=1 Un = X. Hence {Un}∞

n=1 is an open cover of (X, d). Therefore,
since (X, d) is compact, there exists n1, . . . , nq ∈ N such that X =

⋃q
k=1 Unk

.
If N = max{n1, . . . , nq}, we clearly obtain that X = Bd(x0, N). Thus (X, d)
is bounded by Lemma A.8.21.

Combining Theorem A.8.13 and Theorem A.8.22, every compact subspace
of R must be closed and bounded. We desire to prove the converse to this
statement. To simplify notation, we define the following.

Definition A.8.23. Let (X, d) be a metric space and let A ⊆ X be non-
empty. The diameter of A, denoted diam(A), is defined to be

diam(A) = sup({d(a1, a2) | a1, a2 ∈ A}) ⊆ [0,∞].

Example A.8.24. In R equipped with its canonical metric

diam((0, 1)) = diam([0, 1]) = 1

whereas diam(R) = ∞.

Theorem A.8.25 (The Heine-Borel Theorem). Let K ⊆ Kn. Then K
is compact in (Kn, ∥ · ∥∞) if and only if K is closed and bounded.

Proof. First, suppose K is compact. As any subspace of a metric space
(X, d) has topology induced by a metric that was induced from d by Propo-
sition A.3.5, Theorem A.8.22 implies that K is bounded in (Kn, ∥ · ∥∞).
Furthermore, as the subspace of any Hausdorff topological space is Hausdorff,
Theorem A.8.13 implies that K is closed.

Conversely, let K be closed and bounded subspace of (Kn, ∥ · ∥∞). Sup-
pose to the contrary that K is not compact. Hence there exists an open
cover {Uα}α∈I of K that has no finite subcover.

Since K is bounded, there exists an M ∈ R such that

K ⊆ [−M,M ] × · · · × [−M,M ]

when K = R, and

K ⊆ {(a1 + b1i, . . . , an + bni) | ai, bj ⊆ [−M,M ]}

when K = C. We will proceed with the proof where K = R as the case where
K = C follows by the same arguments using 2n in place of n.
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Divide [−M,M ]n into 2n closed balls with side-lengths M . To be specific,
for all q1, . . . , qn ∈ {0, 1} let

Jq1,...,qn = [−M +Mq1,Mq1] × · · · × [−M +Mqn,Mqn].

Clearly each Jq1,...,qn is closed and the union of all possible Jq1,...,qns contains
K. Therefore, since {Uα}α∈I does not have a finite subcover of K, there
must exist one of these Jq1,...,qns such that {Uα}α∈I does not have a finite
subcover of K ∩ Jq1,...,qn (as there are a finite number of Jq1,...,qns). Denote
this Jq1,...,qn by B1 and notice diam(B1) = M .

Suppose for each k ∈ N we have constructed closed balls B1, . . . , Bk

such that Bj+1 ⊆ Bj , diam(Bj) = 1
2jM , and {Uα}α∈I does not have a finite

subcover of Bj ∩K for all j ∈ {1, . . . , k− 1}. By repeating the above process
on Bk, there exists a closed ball Bk+1 ⊆ Bk such that diam(Bk+1) = 1

2k+1M
and such that {Uα}α∈I does not have a finite subcover of Bk+1 ∩K. Thus,
by repeating this process ad infinitum, we obtain a collection {Bk}∞

k=1 of
closed balls of Kn such that Bk+1 ⊆ Bk, diam(Bk) = 1

2kM , and {Uα}α∈I

does not have a finite subcover of Vk ∩K for all k ∈ N (and thus Bk ∩K ̸= ∅
for all k ∈ N).

For each k ∈ N, let xk ∈ Bk ∩K. Then, as diam(Bk ∩K) ⊆ diam(Bk) ≤
1

2kM , we see for all n ≥ m ≥ N that xn, xm ∈ BN ∩K so

d(xn, xm) ≤ 1
2N

M

Therefore, since limN→∞M 1
2N = 0, we see that (xn)n≥1 is a Cauchy sequence.

Hence, as Kn is complete, there exists an x0 ∈ Kn such that limn→∞ xn = x0.
Moreover, since xn ∈ Bm ∩K for all n ≥ m, the fact that Bm ∩K is closed
implies that x0 ∈ Bm ∩K for all m ∈ N. Hence

Y =
∞⋂

k=1
(Ik ∩K) ̸= ∅.

We claim that Y has exactly one element. Indeed if x, y ∈ Y then
x, y ∈ Bk for all k ∈ N so d(x, y) ≤ diam(Bk) = 1

2kM for all k ∈ N which
implies d(x, y) = 0, or, equivalently, x = y. Hence Y contains exactly one
point, say z.

By construction z ∈ K. Therefore, as {Uα}α∈I is an open cover of K,
there exists an α0 ∈ I such that z ∈ Uα0 . Thus, since Uα0 is open, there
exists an ϵ > 0 such that B(z, ϵ) ⊆ Uα0 . Since diam(Bk) = 1

2kM for all
k ∈ N, there exists a k0 ∈ N such that diam(Bk0) < ϵ. Therefore, as z ∈ Bk0

we obtain for all x ∈ Bk0 that d(z, x) < ϵ so x ∈ B(z, ϵ) ⊆ Uα0 for all x ∈ Bk0 .
This implies Bk0 ∩K ⊆ Ik0 ⊆ B(z, ϵ) ⊆ Uα0 which contradicts the fact that
{Uα}α∈I did not have a finite subcover of Bk0 ∩K. As we have obtained a
contradiction, it must be the case that K is compact.
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Now that we have the Heine-Borel Theorem (Theorem A.8.25) and thus
a plethora of examples of compact topological spaces, we return to our initial
motivation for compact topological spaces; namely a generalization to the
Extreme Value Theorem to topological spaces. To obtain this characterization
knowing that every finite closed interval in R is compact, we note the following
exemplary property of compact topological spaces.

Theorem A.8.26 (The Extreme Value Theorem). Let (X, TX) and
(Y, TY ) be topological spaces and let f : X → Y be continuous. If (X, TX) is
compact, then f(X) is a compact subspace of (Y, TY ).

Proof. To see that f(X) is compact, let {Uα}α∈I be an arbitrary open cover
of f(X) in (Y, TY ). Therefore {f−1(Uα)}α∈I is an open cover of (X, TX).
Hence, as (X, TX) is compact, there exists a finite subset J ⊆ I such that
{f−1(Uα)}α∈J is an open cover of (X, TX). Therefore f(X) ⊆

⋃
α∈J Uα so

{Uα}α∈J is a finite subcover of f(X) from {Uα}α∈I Therefore, as {Uα}α∈I

was arbitrary, f(X) is compact.

Theorem A.8.26 has some wide-reaching implications.

Theorem A.8.27 (The Extreme Value Theorem). Let (X, T ) be a
compact topological space and let f : X → R be continuous. Then there exists
points x1, x2 ∈ X such that f(x1) ≤ f(x) ≤ f(x2) for all x ∈ X.

Proof. Since f is continuous and X is compact, Theorem A.8.26 implies
that f(X) is a compact subset of R. Hence f(X) is closed and bounded by
the Heine-Borel Theorem (Theorem A.8.25). Since f(X) is non-empty and
bounded, sup(f(X)) and inf(f(X)) are finite and we can construct sequences
of elements of f(X) converging to sup(f(X)) and inf(f(X)) respectively.
Since f(X) is also closed, this implies sup(f(X)), inf(f(X)) ∈ f(X). Hence
there exists x1, x2 ∈ X such that f(x1) = inf(f(X)) and f(x2) = sup(f(X))
so f(x1) ≤ f(x) ≤ f(x2) for all x ∈ X as desired.

Another application of Theorem A.8.26 is the following.

Corollary A.8.28. Every topological space homeomorphic to a compact
topological space is compact.

Proof. The result easily follows from Theorem A.8.26.

To finish off our preliminary study of compact topological spaces, we
further note that the notions of compact and Hausdorff topological spaces
intertwine nicely.

Theorem A.8.29. Let (X, TX) be a compact topological space and let (Y, TY )
be a Hausdorff space. If f : X → Y is a continuous bijection, then f is a
homeomorphism. Thus (X, TX) is Hausdorff and (Y, TY ) is compact.
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Proof. Suppose f : X → Y is a continuous bijection. To see that f−1 : Y →
X is continuous, let U ∈ TX be arbitrary. Then K = X \U is a closed subset
of (X, TX) and thus compact by Theorem A.8.14. Hence (f−1)−1(K) = f(K)
is a compact subset of (Y, TY ) by Theorem A.8.26. Therefore, since (Y, TY )
is Hausdorff, f(K) is closed by Theorem A.8.14. Thus

(f−1)−1(U) = f(U) = f(X \K) = f(X) \ f(K) = Y \ f(K)

is open in (Y, TY ). Therefore, as U ∈ TX was arbitrary, f−1 is continuous.
Hence f is a homeomorphism.

The facts that (X, TX) is Hausdorff and (Y, TY ) is compact then follow
as homeomorphisms clearly preserve these topological properties.

A.9 Other Characterizations of Compactness
Now that we have some knowledge of the basics and some examples of compact
topological spaces, we turn our attention to equivalent characterizations of
compact topological spaces in the general topological setting. For example,
in R, the Bolzano-Weierstrass Theorem states (upto a reformulation) that
a set A ⊆ R is closed and bounded if and only every sequence of elements
of A has a convergent subsequence to an element of A. As the Heine-Borel
Theorem (Theorem A.8.25) implies the closed, bounded subsets of R are
exactly the compact subsets of R, it is natural to ask whether ‘every sequence
having a convergent subsequence’ is a characterization of compact topological
spaces. Of course, as sequences are insufficient in general topological spaces,
it is more useful to ask whether ‘every net has a convergent subnet’ is an
equivalent characterization of compact topological spaces.

In this section, our main (and only) result will show this is indeed the case.
In addition, there is another incredibly useful characterization of compact
topological spaces using intersections of certain collections of subsets.

Definition A.9.1. Let (X, T ) be a topological space. A collection {Fα}α∈I

is said to have the finite intersection property if
⋂

α∈J Fα ̸= ∅ for every finite
subset J ⊆ I.

Theorem A.9.2. Let (X, T ) be a topological. The following are equivalent:

(i) (X, T ) is compact.

(ii) Whenever {Fα}α∈I is a collection of closed subsets of (X, T ) with the
finite intersection property,

⋂
α∈I Fα ̸= ∅.

(iii) For every net (xλ)λ∈Λ, there exists an x0 ∈ X such that

x0 ∈ {xλ | λ ∈ Λ such that λ ≥ λ0}

for every λ0 ∈ Λ (often x0 is called a cluster point of the net).
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(iv) Every net in (X, T ) has a convergent subnet.

Proof. To see that (i) implies (ii), let (X, T ) be a compact topological
space. Suppose {Fα}α∈I is a set of closed subsets of (X, T ) with the finite
intersection property yet

⋂
α∈I Fα = ∅. For each α ∈ I, let Uα = X \ Fα.

Hence {Uα}α∈I are open subsets of (X, T ) as {Fα}α∈I is a set of closed
subsets of (X, T ). Since

⋃
α∈I

Uα =
⋃
α∈I

X \ Fα = X \
(⋂

α∈I

Fα

)
= X \ ∅ = X,

we see that {Uα}α∈I is an open cover of X. Therefore, as (X, T ) is compact,
there exists a finite subset J ⊆ I such that

X =
⋃

α∈J

Uα.

Hence
∅ = X \X = X \

(⋃
α∈J

Uα

)
=
⋂

α∈J

X \ Uα =
⋂

α∈J

Fα

thereby contradicting the fact that {Fα}α∈I has the finite intersection prop-
erty. Thus, as we have obtained our contradiction, (i) implies (ii).

To see that (ii) implies (iii), suppose (ii) holds. Let (xλ)λ∈Λ be an
arbitrary net in (X, T ). For each λ ∈ Λ, let

Aλ = {xλ′ | λ′ ≥ λ} and Fλ = Aλ ⊆ X.

Clearly {Fλ}λ∈Λ are closed subsets of X. We claim that {Fλ}λ∈Λ has the
finite intersection property. Indeed suppose J ⊆ Λ is finite. Since J is finite,
the existence of upper bounds in directed sets implies there exists a λ0 ∈ Λ
such that λ0 ≥ λ for all λ ∈ Λ. Hence

xλ0 ∈
⋂

λ∈J

Fλ so
⋂

λ∈J

Fλ ̸= ∅.

Therefore, as J ⊆ I was an arbitrary finite subset, {Fλ}λ∈Λ has the finite
intersection property. By the assumption of (ii), we know that there exists
an x0 ∈

⋂
λ∈Λ Fλ as desired. Hence, as (xλ)λ∈Λ was arbitrary, (ii) implies

(iii).
To see that (iii) implies (iv), let (xλ)λ∈Λ be an arbitrary net in (X, T ).

For each λ ∈ Λ, let

Aλ = {xλ′ | λ′ ≥ λ} and Fλ = Aλ ⊆ X.

By the assumption of (iii), there exists an x0 ∈
⋂

λ∈Λ Fλ.
We claim that there exists a subnet of (xλ)λ∈Λ that converges to x0. To

see this, first notice for an arbitrary neighbourhood U of x0 that Aλ ∩U ̸= ∅
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by Theorem A.5.21 as x0 ∈ Fλ. Hence, for every neighbourhood U of x0 and
for every λ ∈ Λ there exists a λ′ ∈ Λ such that λ′ ≥ λ and xλ′ ∈ U .

Let

M = {(U, λ) | U a neighbourhood of x0 and λ ∈ Λ such that xλ ∈ U},

which is non-empty by previous discussions. For two pairs (U1, λ1), (U2, λ2) ∈
M , define (U1, λ1) ≤ (U2, λ2) if and only if U1 ⊇ U2 and λ1 ≤ λ2. We claim
that (M,≤) is a directed set. Indeed it is clear (M,≤) is reflexive and
transitive since reverse inclusion and the ordering on Λ are. Finally let
(U1, λ1), (U2, λ2) ∈ M be arbitrary. Let U3 = U1 ∩ U2. Clearly U3 is a
neighbourhood of x0 as U1 and U2 are. As (Λ,≤) is a directed set, there
exists a λ′ ∈ Λ such that λ′ ≥ λ1 and λ′ ≥ λ2. By the previous paragraph
there exists a λ3 ∈ Λ such that λ3 ≥ λ′ (so λ3 ≥ λ1 and λ3 ≥ λ2) and
xλ3 ∈ U3. Hence (U3, λ3) ∈ M , (U3, λ3) ≥ (U1, λ1), and (U3, λ3) ≥ (U2, λ2).
Therefore, as (U1, λ1), (U2, λ2) ∈ M were arbitrary, (M,≤) is a directed set.

We claim that (xλ)(U,λ)∈M is a subnet of (xλ)λ∈Λ. To see this, define
φ : M → Λ by φ((U, λ)) = λ. Clearly φ is increasing by the definition of
the ordering on M . To see that φ is cofinal, let λ ∈ Λ be arbitrary. Then
clearly (X,λ) ∈ M and φ((X,λ)) = λ ≥ λ. Hence (xλ)(U,λ)∈M is a subnet of
(xλ)λ∈Λ by Definition A.4.37

Finally, we claim that (xλ)(U,λ)∈M converges to x0. To see this, let U be
an arbitrary neighbourhood of x0. From previous discussions there exists
a λ ∈ Λ such that (U, λ) ∈ M . Thus for all (U ′, λ′) ≥ (U, λ) we have
that xλ′ ∈ U ′ ⊆ U . Therefore, as U was arbitrary, (xλ)(U,λ)∈M is a subnet
of (xλ)λ∈Λ that converges to x0. Therefore, as (xλ)λ∈Λ was arbitrary, (iii)
implies (iv).

To see that (iv) implies (i), suppose (iv) holds. To see that (X, T ) is
compact, suppose to the contrary that there exists an open cover {Uα}α∈I

of (X, T ) that has no finite subcover. We will use {Uα}α∈I to construct a
net that has no convergent subnets.

Let

Λ =
{
U ⊆ X

∣∣∣∣∣U =
⋃

α∈J

Uα for some finite subset J ⊆ U

}
.

For two sets U1, U2 ∈ Λ, define U1 ≤ U2 if and only if U1 ⊆ U2. Since Λ is
closed under finite unions, Example A.4.4 implies (Λ,≤) is a directed set.

Since {Uα}α∈I has no finite subcover of (X, T ), X \ (
⋃

α∈J Uα) ̸= ∅ for
each finite set J ⊆ I. Hence, for each U ∈ Λ we may choose a point
xU ∈ X \ U . Thus (xU )U∈Λ is a net in (X, T ).

We claim that (xU )U∈Λ has no convergent subnets thereby contradicting
the assumption that (iv) holds and yielding (iv) implies (i). To see this,
suppose to the contrary that (xU )U∈Λ has a subnet (xλµ)µ∈M that converges
to some point x0 ∈ X. Since {Uα}α∈I is an open cover of (X, T ), there exists
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an α0 ∈ I such that x0 ∈ Uα0 . Thus, as (xλµ)µ∈M is a subnet of (xU )U∈Λ,
there exists a µ0 such that λµ0 ≥ Uα0 . Moreover, since (xλµ)µ∈M converges
to x0, there exists an µ1 ∈ M such that xλµ ∈ Uα0 for all µ ≥ µ1. By the
definition of a directed set, there exists a µ2 ∈ M such that µ2 ≥ µ0 and
µ2 ≥ µ1. Hence λµ2 ≥ Uα0 and xλµ2

∈ Uα0 . However, λµ2 ≥ Uα0 implies that
λµ2 = U for some open set U in (X, T ) such that U ⊇ Uα0 so the definition
of xλµ2

implies that

xλµ2
/∈ U so xλµ2

/∈ Uα0 .

As this contradicts the fact that xλµ2
∈ Uα0 , (xU )U∈Λ has no convergent

subnets. Hence (iv) implies (i).
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Appendix B

Inner Product Spaces

In this appendix chapter, we will quickly review the elementary properties
of inner product spaces from linear algebra.

B.1 Inner Product Spaces
We begin with the definition of an inner product

Definition B.1.1. Let V be a vector space over K. An inner product on V
is a map ⟨ ·, · ⟩ : V × V → K such that

1. ⟨v⃗, v⃗⟩ ≥ 0 for all v⃗ ∈ V,

2. ⟨v⃗, v⃗⟩ = 0 if and only if v⃗ = 0⃗,

3. ⟨x⃗ + λy⃗, v⃗⟩ = ⟨x⃗, v⃗⟩ + λ⟨y⃗, v⃗⟩ for all v⃗, x⃗, y⃗ ∈ V and λ ∈ K (i.e. ⟨ ·, · ⟩)
is linear in the first entry), and

4. ⟨x⃗, y⃗⟩ = ⟨y⃗, x⃗⟩ for all x⃗, y⃗ ∈ V (where z is the complex conjugate of z).

Remark B.1.2. Combining properties (3) and (4) in Definition B.1.1, we
obtain for all v⃗, x⃗, y⃗ ∈ V and λ ∈ K that

⟨v⃗, x⃗+ λy⃗⟩ = ⟨x⃗+ λy⃗, v⃗⟩
= ⟨x⃗, v⃗⟩ + λ⟨y⃗, v⃗⟩
= ⟨x⃗, v⃗⟩ + λ⟨y⃗, v⃗⟩
= ⟨v⃗, x⃗⟩ + λ⟨v⃗, y⃗⟩.

That is, every inner product is conjugate linear in the second entry.

Remark B.1.3. Notice that if ⟨ ·, · ⟩ is an inner product on a vector space
V , the fact that ⟨ ·, · ⟩ is linear in the first entry and conjugate linear in the
second entries implies that ⟨⃗0, v⃗⟩ = ⟨v⃗, 0⃗⟩ = 0 for all v⃗ ∈ V.
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As we are interested in the vector space together with a fixed inner
product, we make the following definition.

Definition B.1.4. An inner product space is a pair (V, ⟨ ·, · ⟩) where V is a
vector space over K and ⟨ ·, · ⟩ is an inner product on V.

Remark B.1.5. Again, we will often abuse notation by said that V is an
inner product space without specifying ⟨ ·, · ⟩.

Example B.1.6. Let n ∈ N. Define ⟨ ·, · ⟩2 : Kn × Kn → K by

⟨(z1, . . . , zn), (w1, . . . , wn)⟩2 =
n∑

k=1
zkwk

for all (z1, . . . , zn), (w1, . . . , wn) ∈ Kn. It is elementary to verify that ⟨ ·, · ⟩ is
an inner product on Kn. We call ⟨ ·, · ⟩ the standard inner product on Kn.

Example B.1.7. Let n ∈ N and let Mn(K) denote the set of n×n matrices
with entries in K. Define ⟨ ·, · ⟩ : Mn(K) × Mn(K) → K by

⟨A,B⟩ = Tr(AB∗)

for all A,B ∈ Mn(K) where B∗ is the conjugate transpose of B and Tr :
Mn(K) → K is the trace. As the trace is linear, it is elementary to verify
that ⟨ ·, · ⟩ is an inner product on Mn(K).

Notice if we write A = [ai,j ] and B = [bi,j ] then

⟨A,B⟩ =
n∑

i,j=1
ai,jbi,j .

Therefore, by comparing with Example B.1.6, it is elementary to see that there
is an invertible linear map φ : Mn(K) → Kn2 such that ⟨φ(A), φ(B)⟩Kn2 =
Tr(AB∗) for all A,B ∈ Mn(K). In particular, Mn(K) with this inner
product is really Kn2 with the standard inner product in disguise.

Example B.1.8. Let n ∈ N and let ⟨ ·, · ⟩ be an inner product on Kn. It is
then possible to show that there exists a matrix A = [ai,j ] ∈ Mn(K) such
that A is invertible and positive definite, and

⟨(z1, . . . , zn), (w1, . . . , wn)⟩ =
n∑

i,j=1
ai,jzjwi

for all (z1, . . . , zn), (w1, . . . , wn) ∈ Kn. We leave the proof as an exercise that
will make use of the theory we will develop in this chapter and the fact that

⟨(z1, . . . , zn), (w1, . . . , wn)⟩ = ⟨A(z1, . . . , zn), (w1, . . . , wn)⟩2

where ⟨ ·, · ⟩2 is the standard inner product from Example B.1.6 and where
A(z1, . . . , zn) represents the vector obtained by matrix multiplication of A
against the column vector with entries (z1, . . . , zn). Note if A is the identity
matrix, then the standard inner product is recovered.
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Example B.1.9. Define ⟨ ·, · ⟩ : C[0, 1] × C[0, 1] → R by

⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx

for all f, g ∈ C[0, 1]. It is elementary to verify that ⟨ ·, · ⟩ is an inner product
on C[0, 1].

Example B.1.10. Define ⟨ ·, · ⟩ : ℓ2(N) × ℓ2(N) → K by

⟨(zn)n≥1, (wn)n≥1⟩ =
∞∑

n=1
znwn

for all (zn)n≥1, (wn)n≥1 ∈ ℓ2(N). It is not difficult to see that ⟨ ·, · ⟩ will satisfy
the conditions in Definition B.1.1 provided the sum under consideration
actually converges in K. Since

∞∑
n=1

|znwn| ≤ ∥(zn)n≥1∥2 ∥(wn)n≥1∥2

by Hölder’s Inequality (Theorem D.1.7), and since K is complete (so abso-
lutely summable series converge by Theorem 2.2.2), the sum is finite.

We desire to show that each inner product space has a norm induced
by the inner product, which happens to be the 2-norm in (almost) all of
the above examples. To do this, we first prove the following very useful
inequality.

Theorem B.1.11 (Cauchy-Schwarz Inequality). Let (V, ⟨ ·, · ⟩) be an
inner product space. For all x⃗, y⃗ ∈ V,

|⟨x⃗, y⃗⟩| ≤ ⟨x⃗, x⃗⟩
1
2 ⟨y⃗, y⃗⟩

1
2 .

Furthermore, the above inequality is an equality if and only if {x⃗, y⃗} is linearly
dependent.

Proof. First notice if x⃗ = 0⃗ or y⃗ = 0⃗, then the proof is trivial by Remark
B.1.3. Thus we may assume that x⃗, y⃗ ̸= 0⃗.

Choose λ ∈ K with |λ| = 1 such that

⟨λx⃗, y⃗⟩ = λ⟨x⃗, y⃗⟩ = |⟨x⃗, y⃗⟩|,

and notice for all t ∈ R that

0 ≤ ⟨λx⃗+ ty⃗, λx⃗+ ty⃗⟩
= |λ|2⟨x⃗, x⃗⟩ + t⟨y⃗, λx⃗⟩ + t⟨λx⃗, y⃗⟩ + t2⟨y⃗, y⃗⟩
= ⟨x⃗, x⃗⟩ + 2t|⟨x⃗, y⃗⟩| + t2⟨y⃗, y⃗⟩.
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By substituting
t0 = −|⟨x⃗, y⃗⟩|

⟨y⃗, y⃗⟩
which is well-defined as y⃗ ̸= 0, we obtain that

0 ≤ ⟨x⃗, x⃗⟩ − 2 |⟨x⃗, y⃗⟩|2

⟨y⃗, y⃗⟩
+ |⟨x⃗, y⃗⟩|2

⟨y⃗, y⃗⟩

which clearly implies the inequality.
For the additional claim, notice if x⃗ = αy⃗ for some α ∈ K, then

|⟨x⃗, y⃗⟩| = |α|⟨y⃗, y⃗⟩ = α
1
2α

1
2 ⟨y⃗, y⃗⟩

1
2 ⟨y⃗, y⃗⟩

1
2 = ⟨x⃗, x⃗⟩

1
2 ⟨y⃗, y⃗⟩

1
2 .

For the other direction, notice if the Cauchy-Schwarz inequality is an equality
then the above proof shows

⟨λx⃗+ t0y⃗, λx⃗+ t0y⃗⟩ = 0.

Hence λx⃗+ t0y⃗ = 0⃗ so {x⃗, y⃗} is linearly dependent (as λ ̸= 0).

Theorem B.1.12. Let (V, ⟨ ·, · ⟩) be an inner product space. Then V is a
normed linear space with a norm ∥ · ∥ : V → [0,∞) defined by

∥v⃗∥ =
√

⟨v⃗, v⃗⟩

for all v⃗ ∈ V .

Proof. It is elementary using Definition B.1.1 to see that ∥ · ∥ is well-defined,
∥v⃗∥ ≥ 0 for all v⃗ ∈ V, ∥v⃗∥ = 0 if and only if v⃗ = 0⃗, and ∥αv⃗∥ = |α| ∥v⃗∥ for
all v⃗ ∈ V and α ∈ K. To see that ∥ · ∥ satisfies the triangle inequality, notice
for all x⃗, y⃗ ∈ V that

∥x⃗+ y⃗∥2 = ⟨x⃗+ y⃗, x⃗+ y⃗⟩
= ⟨x⃗, x⃗⟩ + ⟨x⃗, y⃗⟩ + ⟨y⃗, x⃗⟩ + ⟨y⃗, y⃗⟩
= ∥x⃗∥2 + 2Re(⟨x⃗, y⃗⟩) + ∥y⃗∥2

≤ ∥x⃗∥2 + 2|⟨x⃗, y⃗⟩| + ∥y⃗∥2

≤ ∥x⃗∥2 + 2 ∥x⃗∥ ∥y⃗∥ + ∥y⃗∥2 by Cauchy-Schwarz (Theorem B.1.11)
= (∥x⃗∥ + ∥y⃗∥)2 .

Hence the triangle inequality follows.

Remark B.1.13. For the triangle inequality to be an equality, notice we
require equality in the Cauchy-Schwarz inequality which implies x⃗ and y⃗ are
linearly dependent. Furthermore, we notice we require Re(⟨x⃗, y⃗⟩) = |⟨x⃗, y⃗⟩|
will then occur only if x⃗ = αy⃗ or y⃗ = αx⃗ for some α ∈ [0,∞). Clearly this
later condition implies equality in the triangle inequality.
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Remark B.1.14. By the Cauchy-Schwarz inequality |⟨x⃗, y⃗⟩| ≤ ∥x⃗∥ ∥y⃗∥, we
see that the inner product is simultaneously continuous in its entry. Indeed
if x⃗ = limn→∞ x⃗n and y⃗ = limn→∞ y⃗n, then

lim sup
n→∞

|⟨x⃗, y⃗⟩ − ⟨x⃗n, y⃗n⟩| ≤ lim sup
n→∞

|⟨x⃗, y⃗⟩ − ⟨x⃗, y⃗n⟩| + |⟨x⃗, y⃗n⟩ − ⟨x⃗n, y⃗n⟩|

≤ lim sup
n→∞

∥x⃗∥ ∥y⃗ − y⃗n∥ + ∥x⃗− x⃗n∥ ∥y⃗n∥ = 0

as x⃗ = limn→∞ x⃗n and y⃗ = limn→∞ y⃗n, with the later implying that (y⃗n)n≥1
is bounded.

Remark B.1.15. The proof of Theorem B.1.12 also enables us to develop
a notion of an angle. To motivate this, recall the cosine law for a triangle
which states

c2 = a2 + b2 − 2ab cos(θ)

for a triangle with sides a, b, c and angle θ opposite to c. Thinking of a
‘triangle’ formed by two vectors x⃗, y⃗ and their difference in a real inner
product space, the proof of Theorem B.1.12 demonstrates

∥x⃗− y⃗∥2 = ∥x⃗∥2 + ∥y⃗∥2 − 2⟨x⃗, y⃗⟩.

Thus, for a real inner product space, we would like to define the angle θ
between x⃗ and y⃗ to be such that

cos(θ) = ⟨x⃗, y⃗⟩
∥x⃗∥ ∥y⃗∥

which exists by the Cauchy-Schwarz Inequality.

Using the above notion of an angle, we obtain the definition of what it
means for two vectors to be perpendicular.

Definition B.1.16. Let (V, ⟨ ·, · ⟩) be an inner product space. Two vectors
v⃗, w⃗ ∈ V are said to be orthogonal if ⟨v⃗, w⃗⟩ = 0.

Using the properties of the inner product, it is nearly trivial to obtain
the following theorems. Thus we omit the proofs.

Theorem B.1.17 (Pythagorean Theorem). Let (V, ⟨ ·, · ⟩) be an inner
product space. If {v⃗k}n

k=1 is a set of orthogonal vectors, then∥∥∥∥∥
n∑

k=1
v⃗k

∥∥∥∥∥
2

=
n∑

k=1
∥v⃗k∥2 .

Theorem B.1.18 (Parallelogram Law). Let (V, ⟨ ·, · ⟩) be an inner product
space. If x⃗, y⃗ ∈ V, then

∥x⃗+ y⃗∥2 + ∥x⃗− y⃗∥2 = 2 ∥x⃗∥2 + 2 ∥y⃗∥2 .
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Remark B.1.19. It is difficult but possible to show that any norm on any
vector space over K that satisfies the Parallelogram Law actually comes from
an inner product.

Theorem B.1.20 (Polarization Identity). Let (V, ⟨ ·, · ⟩) be an inner
product space. If x⃗, y⃗ ∈ V, then

• ⟨x⃗, y⃗⟩ = 1
4 ∥x⃗+ y⃗∥2 − 1

4 ∥x⃗− y⃗∥2 if K = R, and

• ⟨x⃗, y⃗⟩ = 1
4
∑4

k=1 i
k
∥∥∥x⃗+ iky⃗

∥∥∥2
if K = C.
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Appendix C

Completions of Normed
Linear Spaces

In this appendix chapter, we will demonstrate that given any normed linear
space (X , ∥ · ∥) there exists a unique way to complete X to obtain a Banach
space.

C.1 Completion of a Normed Linear Space
To be formal with our notion of how we are going to complete a normed
linear space, we define the following.

Definition C.1.1. Let (X , ∥ · ∥X ) be a normed linear space. A completion
of (X , ∥ · ∥X ) is a Banach space (Y, ∥ · ∥Y) such that there exists an isometry
φ : X → Y such that φ(X ) = Y.

We will first prove the existence of a completion of any normed linear
space followed by a proof of its uniqueness.

Theorem C.1.2. Every normed linear space has a completion.

Proof. Let (X , ∥ · ∥X ) be a normed linear space. Let V denote the set of
all Cauchy sequences in X . Note that V is non-empty as every constant
sequence is Cauchy. Since given Cauchy sequences (x⃗n)n≥1 and (y⃗n)n≥1 and
α ∈ K, the sequences

(x⃗n + y⃗n)n≥1 and (αx⃗n)n≥1

are Cauchy by the properties of the norm, V is a vector space over K.
However, V is not the normed linear space we want. To construct a normed
linear space, we require a quotient.

Let
W =

{
(x⃗n)n≥1 ∈ V | lim

n→∞
x⃗n = 0⃗

}
.
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Clearly W is a subspace of V and thus V/W is a vector space with operations
[v⃗1]+[v⃗2] = [v⃗1 + v⃗2] and α[v⃗] = [αv⃗]. Recall two elements (x⃗n)n≥1, (y⃗n)n≥1 ∈
V produce the same element in V/W if and only if

lim
n→∞

∥x⃗n − y⃗n∥X = 0

Define ∥ · ∥ : V/W → [0,∞) by

∥[(x⃗n)n≥1]∥ = lim sup
n→∞

∥x⃗n∥X

and note that since (x⃗n)n≥1 is Cauchy and thus bounded, ∥ · ∥ does indeed
map into [0,∞). Since we are dealing with equivalence classes, we must
check that ∥ · ∥ is well-defined. To see this, notice if [(x⃗n)n≥1] = [(y⃗n)n≥1]
then

lim
n→∞

∥x⃗n − y⃗n∥X = 0.

so
lim sup

n→∞
∥x⃗n∥X = lim sup

n→∞
∥y⃗n∥X

by the reverse triangle inequality. Hence ∥ · ∥ is well-defined. To see that ∥ · ∥
is indeed a norm, note that ∥[(x⃗n)n≥1]∥ = 0 if and only if lim supn→∞ ∥x⃗n∥X =
0 if and only if (x⃗n)n≥1 ∈ W if and only if [(x⃗n)n≥1] = 0⃗V/W . As the other
properties of a norm are trivial to verify, (V/W, ∥ · ∥) is a normed linear
space.

We will postpone the proof that (V/W, ∥ · ∥) is complete momentarily
in order to demonstrate some facts in relation to X . Define φ : X → V/W
by φ(x⃗) = [(x⃗)n≥1]; that is, map each element of X to a constant sequence.
Clearly φ is well-defined, linear, and an isometry. We claim that φ(X ) is
dense in V/W.

To see that φ(X ) is dense in V/W , let [(x⃗n)n≥1] ∈ V/W be arbitrary and
let ϵ > 0 be arbitrary. Since (x⃗n)n≥1 is Cauchy in X , there exists an N ∈ N
such that ∥x⃗n − x⃗m∥X < ϵ for all n,m ≥ N . Hence

∥φ(x⃗N ) − [(x⃗n)n≥1]∥ ≤ ϵ.

Therefore, as ϵ > 0 was arbitrary, [(x⃗n)n≥1] is in the closure of φ(X ). Hence,
as [(x⃗n)n≥1] ∈ V/W was arbitrary, φ(X ) is dense in V/W.

To see that (V/W, ∥ · ∥) is complete, let (z⃗n)n≥1 be an arbitrary Cauchy
sequence in (V/W, ∥ · ∥). Since φ(X ) is dense in V/W, for each n ∈ N there
exists an x⃗n ∈ X such that

∥φ(x⃗n) − z⃗n∥ < 1
n
.

©For use through and only available at pskoufra.info.yorku.ca.



C.1. COMPLETION OF A NORMED LINEAR SPACE 255

We claim that (x⃗n)n≥1 is a Cauchy sequence of elements of X and thus is an
element of V. To see this, notice for all n,m ∈ N that

∥x⃗n − x⃗m∥X = ∥φ(x⃗n) − φ(x⃗m)∥
≤ ∥φ(x⃗n) − z⃗n∥ + ∥z⃗n − z⃗m∥ + ∥z⃗m − φ(x⃗m)∥

≤ 1
n

+ 1
m

+ ∥z⃗n − z⃗m∥ .

Therefore, as (z⃗n)n≥1 is Cauchy, it is elementary to verify the above inequality
implies (x⃗n)n≥1 is Cauchy. Finally, to see that (z⃗n)n≥1 converges to z⃗ =
[(x⃗n)n≥1], we notice that

lim
n→∞

∥φ(x⃗n) − z⃗∥ = 0

as (x⃗n)n≥1 is Cauchy. Hence as

∥z⃗n − z⃗∥ ≤ ∥z⃗n − φ(x⃗n)∥ + ∥φ(x⃗n) − z⃗∥ ≤ 1
n

+ ∥φ(x⃗n) − z⃗∥ ,

we obtain that (z⃗n)n≥1 converges to z⃗ = [(x⃗n)n≥1]. Therefore, as (z⃗n)n≥1
was an arbitrary Cauchy sequence, V/W is complete thereby completing the
proof.

Proposition C.1.3. Any two completions of a metric space are isomorphic.

Proof. Let (X , ∥ · ∥X ) be a metric space. Suppose that (Y, ∥ · ∥Y) and
(Z, ∥ · ∥Z) are completions of (X , ∥ · ∥X ). Therefore there exists isometries
φY : X → Y and φZ : X → Z such that φY(X ) = Y and φZ(X ) = Z. Our
goal is to extend the identity map from X ⊆ Y to X ⊆ Z to obtain an
isometry from Y to Z.

To define an isometry φ : Y → Z, let y ∈ Y be arbitrary. Hence,
as Y is the closure of X there exists a sequence (xn)n≥1 of elements of
X such that y = limn→∞ φY(xn). However, as (φY(xn))n≥1 converges in
(Y, ∥ · ∥Y), (φY(xn))n≥1 is Cauchy in (Y, ∥ · ∥Y). Therefore, (xn)n≥1 is Cauchy
in (X , ∥ · ∥X ) as φY is an isometry. Hence (φZ(xn))n≥1 also must be Cauchy
as φZ is an isometry. Since (Z, ∥ · ∥Z) is complete, (φZ(xn))n≥1 converges
in (Z, ∥ · ∥Z). Let zy = limn→∞ φZ(xn). We would like to define φ : Y → Z
such that f(y) = zy. There is one technical issue with this definition that
we should get out of the way; that is, we desire to show that if (x′

n)n≥1
is another sequence of elements of X such that y = limn→∞ φY(x′

n), then
zy = limn→∞ φZ(x′

n). This will demonstrate that the sequence of elements
of X we choose converging to y ∈ Y does not affect the limit in (Z, ∥ · ∥Z).
To see this, notice by the triangle inequality and properties of limits that

lim
n→∞

∥∥φZ(x′
n) − φZ(xn)

∥∥
Z = lim

n→∞

∥∥x′
n − xn

∥∥
X

= lim
n→∞

∥∥φY(x′
n) − φY(xn)

∥∥
Y

= ∥y − y∥Y = 0.
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Hence as zy = limn→∞ φZ(xn), the above easily implies zy = limn→∞ φZ(x′
n).

Hence the claim is complete.
Hence we may define φ : Y → Z as follows: for each y ∈ Y choose a

sequence (xn)n≥1 of elements of X such that y = limn→∞ φY(xn) and define
φ(y) = limn→∞ φZ(xn). We claim that φ is an isometry. To see this, let
y, y′ ∈ Y be arbitrary. Choose sequence (xn)n≥1 and (x′

n)n≥1 of elements of
X such that y = limn→∞ φY(xn) and y′ = limn→∞ φY(x′

n). Then, by the
triangle inequality and properties of limits,∥∥φ(y) − φ(y′)

∥∥
Z = lim

n→∞

∥∥φZ(xn) − φZ(x′
n)
∥∥

Z

= lim
n→∞

∥∥xn − x′
n

∥∥
X

= lim
n→∞

∥∥φY(xn) − φY(x′
n)
∥∥

Y

=
∥∥y − y′∥∥

Y .

Hence φ is an isometry (and therefore injective).
To see that φ is surjective (and thus a bijection) let z ∈ Z be arbitrary.

Note as Z is the completion of φZ(X ), there exists a sequence (xn)n≥1 of
elements of X such that z = limn→∞ φZ(xn). By similar arguments to those
above, y = limn→∞ φY(xn) exists and thus φ(y) = z. Hence, as z ∈ Z was
arbitrary, φ is surjective. Hence Y and Z are isomorphic.

C.2 Completion of Inner Product Spaces
In this section, we demonstrate the following theorem that the completion of
a inner product space is a Hilbert space.

Theorem C.2.1. Let (V, ⟨ ·, · ⟩) be an inner product space and let H be the
normed linear space completion of V from Theorem C.1.2. There exists an
inner product ⟨ ·, · ⟩H : H × H → K such that ⟨x⃗, y⃗⟩H = ⟨x⃗, y⃗⟩ for all x⃗, y⃗ ∈ V .

Proof. To prove this result, we could proceed in one of two ways. The first
way would be to complete Remark B.1.19 and show that the norm on the
completion of an inner product space then satisfies the the Parallelogram
Law. Instead we will use an argument similar to Proposition C.1.3 to define
an inner product on the completion.

Let (V, ⟨ ·, · ⟩) be an inner product space and let H be the normed linear
space completion of V from Theorem C.1.2. Define ⟨ ·, · ⟩H : H × H → K as
follows: Given x⃗, y⃗ ∈ H, choose sequences (x⃗n)n≥1 and (y⃗n)n≥1 such that
x⃗ = limn→∞ x⃗n and y⃗ = limn→∞ y⃗n. We then define

⟨x⃗, y⃗⟩H = lim
n→∞

⟨x⃗n, y⃗n⟩.

To complete the proof, we will first need to demonstrate three things: that
the above limit exists, that the definition did not depend on the sequences
selected, and that the resulting definition does indeed yield an inner product.
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To see that the limit exists, notice for all n,m ∈ N that

|⟨x⃗n, y⃗n⟩ − ⟨x⃗m, y⃗m⟩| ≤ |⟨x⃗n, y⃗n⟩ − ⟨x⃗n, y⃗m⟩| + |⟨x⃗n, y⃗m⟩ − ⟨x⃗m, y⃗m⟩|
= |⟨x⃗n, y⃗n − y⃗m⟩| + |⟨x⃗n − x⃗m, y⃗m⟩|
≤ ∥x⃗n∥ ∥y⃗n − y⃗m∥ + ∥x⃗n − x⃗m∥ ∥y⃗m∥

with the last inequality coming from the Cauchy-Schwarz inequality. Since
(x⃗n)n≥1 and (y⃗n)n≥1 converge in H, (x⃗n)n≥1 and (y⃗n)n≥1 are bounded and
Cauchy. Hence the above inequality demonstrates that (⟨x⃗n, y⃗n⟩)n≥1 is
Cauchy in K and thus converges. Hence the limit exists.

Similarly, if (x⃗′
n)n≥1 and (y⃗′

n)n≥1 are such that x⃗ = limn→∞ x⃗′
n and

y⃗ = limn→∞ y⃗′
n, the above computation shows that∣∣⟨x⃗n, y⃗n⟩ − ⟨x⃗′

n, y⃗
′
n⟩
∣∣ ≤

∣∣⟨x⃗n, y⃗n⟩ − ⟨x⃗n, y⃗
′
n⟩
∣∣+ ∣∣⟨x⃗n, y⃗

′
n⟩ − ⟨x⃗′

n, y⃗
′
n⟩
∣∣

=
∣∣⟨x⃗n, y⃗n − y⃗′

n⟩
∣∣+ ∣∣⟨x⃗n − x⃗′

n, y⃗
′
n⟩
∣∣

≤ ∥x⃗n∥
∥∥y⃗n − y⃗′

n

∥∥+
∥∥x⃗n − x⃗′

n

∥∥ ∥∥y⃗′
n

∥∥ .
Hence we see that

lim
n→∞

⟨x⃗n, y⃗n⟩ = lim
n→∞

⟨x⃗′
n, y⃗

′
n⟩.

Thus the definition of ⟨x⃗, y⃗⟩H does not depend on the sequences representing
x⃗ and y⃗.

To see that ⟨ ·, · ⟩H is an inner product on H, first we notice that ⟨x⃗, x⃗⟩H ≥
0 as the limit of positive real numbers is positive. Furthermore, notice
that ⟨x⃗, x⃗⟩H = 0 if and only if there exists a sequence (x⃗n)n≥1 such that
x⃗ = limn→∞ x⃗n and limn→∞⟨x⃗n, x⃗n⟩ = 0. As the later is equivalent to
limn→∞ ∥x⃗n∥ = 0, we see that ⟨x⃗, x⃗⟩H = 0 if and only if x⃗ = 0⃗. Moreover

⟨x⃗, y⃗⟩H = lim
n→∞

⟨x⃗n, y⃗n⟩ = lim
n→∞

⟨y⃗n, x⃗n⟩ = ⟨y⃗, x⃗⟩H.

Finally, we see for all α ∈ K and x⃗, y⃗, v⃗ ∈ H that (x⃗)n≥1, (y⃗n)n≥1, and
(v⃗n)n≥1 are sequences in V that converge to x⃗, y⃗, and v⃗ respectively, then

⟨x⃗+ αy⃗, v⃗⟩H = lim
n→∞

⟨x⃗n + αy⃗n, v⃗n⟩

= lim
n→∞

⟨x⃗n, v⃗n⟩ + α⟨y⃗n, v⃗n⟩

= ⟨x⃗, v⃗⟩H + α⟨y⃗, v⃗⟩H.

Hence ⟨ ·, · ⟩H is an inner product.
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Appendix D

Lp Spaces

In this appendix chapter, we will look at some of the fundamental properties
of Lp spaces.

D.1 Constructing the Lp-Spaces
To begin our discuss of Lp spaces, we must begin with their definition.

Definition D.1.1. Let (X,A, µ) be a measure space and let p ∈ [1,∞). A
measurable function f : X → C is said to be p-integrable if∫

X
|f |p dµ < ∞.

The set of p-integrable functions on (X,A, µ) is denoted Lp(X,µ).

Unsurprisingly, Lp(X,µ) is a vector space.

Lemma D.1.2. Let (X,A, µ) be a measure space and let p ∈ [1,∞). Then
Lp(X,µ) is a vector space is a vector space over C (and thus, restricting to
real-valued functions produces a vector space over R).

Proof. Let f, g ∈ Lp(X,µ) and let α ∈ C. Then, as∫
X

|αf |p dµ = |α|p
∫

X
|f |p dµ < ∞,

we see that αf ∈ Lp(X,µ). Moreover, since

|f + g|p ≤ (|f | + |g|)p ≤ (2 max{|f |, |g|})p

= 2p max {|f |p, |g|p} ≤ 2p (|f |p + |g|p) ,

we see that ∫
X

|f + g|p dµ ≤ 2p
∫

X
|f |p dµ+ 2p

∫
X

|g|p dµ < ∞

so f + g ∈ Lp(X,µ). Hence Lp(X,µ) is a vector space.
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Remark D.1.3. Of course, given p ∈ [1,∞), we would like to define a
norm on Lp(X,µ) so that we can perform analysis. In particular, given
f ∈ Lp(X,µ) we would like to define

∥f∥p =
(∫

X
|f |p dµ

) 1
p

to be the p-norm of f . It is elementary to see that if f ∈ Lp(X,µ), then
∥f∥p ∈ [0,∞). Moreover, for all α ∈ C we see that

∥αf∥p =
(∫

X
|αf |p dµ

) 1
p

=
(

|α|p
∫

X
|f |p dµ

) 1
p

= |α|
(∫

X
|f |p dµ

) 1
p

= |α| ∥f∥p .

Furthermore, we will be able to verify the triangle inequality below. However,
one problem remains. In the definition of a norm, the only vector that can
have zero norm is the zero vector. However ∥f∥p = 0 if and only if f is zero
almost everywhere. Thus it is possible there is a function f that is not the
zero function (but zero almost everywhere) such that ∥f∥p = 0. How can we
rectify this situation?

Well, as the problem is that functions that are equal almost everywhere
are not equal, let’s define a new notion of equality to make then equal. To
begin, recall that M(X,C), the set of measurable functions from X to C, is
a vector space. Since it is elementary to verify that

W = {f ∈ M(X,C) | f = 0 µ-almost everywhere}

is a subspace of M(X,C), we can form the quotient space M(X,C)/W .
Given a function f ∈ M(X,C), we will use [f ] to denote the equivalence
class f +W in M(X,C)/W . Clearly if f, g ∈ M(X,C), then [f ] = [g] if and
only if f = g almost everywhere. In particular, if [f ] = [g] then∫

X
|f |p dµ =

∫
X

|g|p dµ

as |f |p = |g|p almost everywhere so f ∈ Lp(X,µ) if and only if g ∈ Lp(X,µ).
Furthermore, since W is clearly a subspace of Lp(X,µ), we can consider
Lp(X,µ)/W
Definition D.1.4. Given a measure space (X,A, µ) and a p ∈ [1,∞), the
Lp-space of (X,A, µ), denote Lp(X,µ), is the vector space over C defined by

Lp(X,µ) = {[f ] | f ∈ Lp(X,µ)} .

Furthermore, the p-norm is the function ∥ · ∥p : Lp(X,µ) → [0,∞) defined
by

∥[f ]∥p =
(∫

X
|f |p dµ

) 1
p

for all [f ] ∈ Lp(X,µ).
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Remark D.1.5. First, note that the p-norm is well-defined on Lp(X,µ).
Indeed if [f ] = [g] then ∫

X
|f |p dµ =

∫
X

|g|p dµ

so the value of ∥[f ]∥p does not depend on the representative of the equivalence
class.

Due to the definition of Lp(X,µ) and Remark D.1.3, we will often not
distinguish elements of Lp(X,µ) and Lp(X,µ). In actuality, elements of
Lp(X,µ) are functions whereas elements of Lp(X,µ) are equivalence classes
of functions in Lp(X,µ). However, each element v⃗ of Lp(X,µ) can be
represented by a function f ∈ Lp(X,µ) and if g ∈ Lp(X,µ) is such that
g = f a.e., then v⃗ can also be represented by g. Consequently, we will treat
elements of Lp(X,µ) as functions that are p-integrable where we are allowed
to modify the functions on a set of µ-measure zero. Thus we will often
omit the notation of an equivalence class. One thing to keep in mind is
that we must verify that any function defined on Lp(X,µ) respects almost
everywhere equivalence.

To prove that the p-norm is a norm on Lp(X,µ), we require some in-
equalities.

Lemma D.1.6 (Young’s Inequality). Let a, b ≥ 0 and let p, q ∈ (1,∞)
be such that 1

p + 1
q = 1. Then ab ≤ 1

pa
p + 1

q b
q.

Proof. Notice 1 = 1
p + 1

q = p+q
pq implies p+ q − pq = 0. Hence q = p

p−1 .
Fix b ≥ 0. Notice if b = 0, the inequality easily holds. Thus we will

assume b > 0.
Define f : [0,∞) → R by f(x) = 1

px
p + 1

q b
q − bx. Clearly f(0) > 0

and limx→∞ f(x) = ∞ as p > 1 so xp grows faster than x. We claim that
f(x) ≥ 0 for all x ∈ [0,∞) thereby proving the inequality. Notice f is
differentiable on [0,∞) with

f ′(x) = xp−1 − b.

Therefore f ′(x) = 0 if and only if x = b
1

p−1 . Moreover, it is elementary to
see from the derivative that f has a local minimum at b

1
p−1 and thus f has a

global minimum at b
1

p−1 due to the boundary conditions. Therefore, since

f
(
b

1
p−1
)

= 1
p
b

p
p−1 + 1

q
bq − b

1+ 1
p−1 = 1

p
bq + 1

q
bq − bq = 0,

we obtain that f(x) ≥ 0 for all x ∈ [0,∞) as desired.
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Theorem D.1.7 (Hölder’s Inequality). Let (X,A, µ) be a measure space
and let p, q ∈ (1,∞) be such that 1

p + 1
q = 1. If f ∈ Lp(X,µ) and g ∈ Lq(X,µ),

then fg ∈ L1(X,µ) and∫
X

|fg| dµ ≤
(∫

X
|f |p dµ

) 1
p
(∫

X
|g|q dµ

) 1
q

.

Proof. Let

α =
(∫

X
|f |p dµ

) 1
p

and β =
(∫

X
|g|q dµ

) 1
q

.

If α = 0, then |f |p = 0 almost everywhere. Hence |f | = 0 almost everywhere
so |fg| = 0 almost everywhere and hence the inequality holds. Similarly, if
β = 0 then the inequality holds. Hence we may assume that α, β > 0.

Since α, β > 0, we obtain that∫
X

|fg| dµ = αβ

∫
X

|f |
α

|g|
β
dµ

≤ αβ

∫
X

|f |p

pαp
+ |g|q

qβq
dµ by Lemma D.1.6

= αβ

( 1
pαp

∫
X

|f |p dµ+ 1
qβq

∫
X

|g|q dµ
)

= αβ

(1
p

+ 1
q

)
= αβ

as desired.

In addition to being used to prove that Lp(X,µ) is a vector space, Hölder’s
inequality (Theorem D.1.7) also has following important corollary.

Corollary D.1.8. Let (X,A, µ) be a measure space with µ(X) < ∞ and let
p ∈ (1,∞). If f ∈ Lp(X,µ), then f ∈ L1(X,µ) with∫

X
|f | dµ ≤ µ(X)

1
q

(∫
X

|f |p dµ
) 1

p

.

where q ∈ (1,∞) is such that 1
p + 1

q = 1.

Proof. Since µ(X) < ∞, it is elementary to see that 1 ∈ Lq(X,µ); that is,
the function that is one everywhere is q-integrable as∫

X
1q dµ = µ(X) < ∞.

Hence, by Hölder’s inequality (Theorem D.1.7) f = f1 ∈ L1(X,µ) and∫
X

|f | dµ ≤ µ(X)
1
q

(∫
X

|f |p dµ
) 1

p

.
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Hölder’s inequality (Theorem D.1.7) also enables us to show that the
p-norm satisfies the triangle inequality modulo one technicality.

Theorem D.1.9 (Minkowski’s Inequality). Let (X,A, µ) be a measure
space and let p ∈ [1,∞). If f, g ∈ Lp(X,µ)

(∫
X

|f + g|p dµ
) 1

p

≤
(∫

X
|f |p dµ

) 1
p

+
(∫

X
|g|p dµ

) 1
p

.

Proof. Let f, g ∈ Lp(X,µ). Recall from Lemma D.1.2 that f + g ∈ Lp(X,µ).
Moreover, if p = 1 then∫

X
|f + g| dµ ≤

∫
X

|f | + |g| dµ ≤
∫

X
|f | dµ+

∫
X

|g| dµ

so the inequality holds.
Now suppose p ∈ (1,∞). Choose q ∈ (1,∞) so that 1

p + 1
q = 1. Thus

q = p
p−1 . Since p ∈ (1,∞), notice by Hölder’s inequality (Theorem D.1.7)

that ∫
X

|f + g|p dµ

=
∫

X
|f + g||f + g|p−1 dµ

≤
∫

X
(|f | + |g|)|f + g|p−1 dµ

=
∫

X
|f ||f + g|p−1 dµ+

∫
X

|g||f + g|p−1 dµ

≤
(∫

X
|f |p dµ

) 1
p
(∫

X
(|f + g|p−1)q dµ

) 1
q

+
(∫

X
|g|p dµ

) 1
p
(∫

X
(|f + g|p−1)q dµ

) 1
q

=
((∫

X
|f |p dµ

) 1
p

+
(∫

X
|g|p dµ

) 1
p

)(∫
X

|f + g|p dµ
) 1

q

.

If
∫

X |f + g|p dµ = 0, the result follows trivially. Otherwise, we may divide
both sides of the equation by (

∫
X |f + g|p dµ)

1
q to obtain that

(∫
X

|f + g|p dµ
) 1

p

=
(∫

X
|f + g|p dµ

)1− 1
q

≤
(∫

X
|f |p dµ

) 1
p

+
(∫

X
|g|p dµ

) 1
p

as desired.

Corollary D.1.10. Let (X,A, µ) be a measure space and let p ∈ [1,∞).
Then the p-norm is a norm on Lp(X,µ).
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Proof. To see that ∥ · ∥p is indeed a norm on Lp(X,µ), we first note by
Remark D.1.5 that ∥ · ∥p is well-defined (i.e. its value does not depend on
the representative of the equivalence class) and finite by the definition of
Lp(X,µ). Furthermore, notice that ∥f∥p = 0 if and only if f = 0 almost
everywhere if and only if [f ] = 0. Furthermore, as clearly ∥αf∥p = |α| ∥f∥p

for all α ∈ C and f ∈ Lp(X,µ), and as the triangle inequality holds by
Minkowski’s Inequality (Theorem D.1.9), we obtain that ∥ · ∥p is a norm on
Lp(X,µ) as desired.

Of course, the above did not deal with the case that p = ∞ as the formula
for the norm does not make sense in this situation. To develop a notion of
an ∞-norm for measurable functions, we define the following concept which
is motivated by the fact that we don’t need our functions to be bounded
everywhere, just almost everywhere.

Definition D.1.11. Let (X,A, µ) be a measure space. A function f : X → K
is said to be essentially bounded if there exists an M ≥ 0 such that

µ({x ∈ X | |f(x)| > M}) = 0.

The set of essentially bounded functions on (X,A, µ) is denoted L∞(X,µ).

Of course, L∞(X,µ) will not have a well-defined norm for the same
reason that Lp(X,µ) did not have a well-defined norm; we have to deal with
functions that are equal almost everywhere. Notice if f, g : X → C are
such that f is essentially bounded and f = g almost everywhere, then g is
essentially bounded as the union of µ-measure zero sets has µ-measure zero.
Hence we may define the following.

Definition D.1.12. Given a measure space (X,A, µ), the L∞-space of
(X,A, µ), denote L∞(X,µ), is

L∞(X,µ) = {[f ] | f : X → C essentially bounded} .

Remark D.1.13. Given a measure space (X,A, µ) and f, g ∈ M(X,C) such
that [f ] = [g], we have seen that f ∈ L∞(X,µ) if and only if g ∈ L∞(X,µ).
In particular, every representative of an equivalence class in L∞(X,µ) is
an element of L∞(X,µ). Because of this and to abuse notation, we will
consider elements of L∞(X,µ) as elements of L∞(X,µ) and drop the explicit
reminder that we are dealing with an equivalence class in most (if not all)
arguments.

Theorem D.1.14. Let (X,A, µ) be a measure space. Then L∞(X,µ) is a
normed linear space with respect to the norm

∥f∥∞ = inf{M ≥ 0 | µ({x | |f(x)| > M}) = 0}.
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Proof. First we claim that L∞(X,µ) is a subspace of M(X,C)/ ∼ and thus
a vector space over C. To see this, let f, g ∈ L∞(X,µ) be arbitrary. Then
there exists M1,M2 ≥ 0 such that

µ({x | |f(x)| > M1}) = 0 and µ({x | |g(x)| > M2}) = 0.

Hence as

{x | |f(x) + g(x)| > M1 +M2}
⊆ {x | |f(x)| + |g(x)| > M1 +M2}
⊆ {x | |f(x)| > M1} ∪ {x | |g(x)| > M2}

we see that

µ({x | |f(x) + g(x)| > M1 +M2})
≤ µ({x | |f(x)| > M1}) + µ({x | |g(x)| > M2}) = 0.

Hence f + g ∈ L∞(X,µ). Further for all α ∈ C

µ({x | |αf(x)| > |α|M}) = 0

so αf ∈ L∞(X,µ). Hence, as 0 ∈ L∞(X,µ), we have shown that L∞(X,µ)
is a subspace of M(X,C)/ ∼ and thus a vector space over C.

To see that ∥ · ∥∞ is a well-defined norm on L∞(X,µ), first notice that if
f = g almost everywhere and M ≥ 0 then

µ({x | |f(x)| > M}) = 0 if and only if µ({x | |g(x)| > M}) = 0.

Hence ∥ · ∥∞ is well-defined. Furthermore, notice that ∥f∥∞ < ∞ for all
f ∈ L∞(X,µ) by the definition of an essentially bounded function. Next
notice that ∥f∥∞ ≥ 0 with equality if and only if

µ

({
x

∣∣∣∣ |f(x)| > 1
n

})
= 0

for all n ∈ N if and only if

µ ({x | |f(x)| > 0}) = µ

⋃
n≥1

{
x

∣∣∣∣ |f(x)| > 1
n

} = 0

if and only if f = 0 almost everywhere if and only if f = 0 in L∞(X,µ).
Next let α ∈ C and f ∈ L∞(X,µ) be arbitrary. If α = 0, then clearly

∥αf∥∞ = 0 = |α| ∥f∥∞. Otherwise, if α ̸= 0, we see that

∥αf∥∞ = inf{M ≥ 0 | µ({x | |αf(x)| > M}) = 0}

= inf
{
M ≥ 0

∣∣∣∣µ({x ∣∣∣∣ |f(x)| > M

|α|

})
= 0

}
= inf{|α|M ′ ≥ 0 | µ({x | |f(x)| > M ′}) = 0}
= |α| ∥f∥∞
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as desired.
Finally, to verify that ∥ · ∥∞ satisfies the triangle inequality, let f, g ∈

L∞(X,µ) be arbitrary. If M1,M2 ≥ 0 are such that

µ({x | |f(x)| > M1}) = 0 and µ({x | |g(x)| > M2}) = 0,

the above shows that

µ({x | |f(x) + g(x)| > M1 +M2}) = 0.

Hence
∥f + g∥∞ ≤ M1 +M2.

Therefore, as this holds for all such M1 and M2, we obtain that

∥f + g∥∞ ≤ ∥f∥∞ + ∥g∥∞

as desired.

Remark D.1.15. If f ∈ L∞(X,µ), then µ({x ∈ X | |f(x)| > ∥f∥∞}) = 0.
To see this, for each n ∈ N let

An =
{
x ∈ X

∣∣∣∣ |f(x)| > ∥f∥∞ + 1
n

}
.

Then each An is measurable. Furthermore, by the definition of ∥f∥∞, we
obtain that µ(An) = 0. Therefore, as

{x ∈ X | |f(x)| > ∥f∥∞} =
∞⋃

n=1
An,

the claim follows by the Monotone Convergence Theorem for measures
or simply the subadditivity of measures. Hence |f(x)| ≤ ∥f∥∞ almost
everywhere.

Remark D.1.16. If f ∈ C[a, b], then the Extreme Value Theorem implies
f is bounded. Thus, as f is Lebesgue measurable, f ∈ L∞([a, b], λ). In
addition, it is not difficult to verify that two notions of the ∞-norm agree.
Indeed if

M0 = sup({|f(x)| | x ∈ [a, b]}) ≥ 0

then clearly
λ({x ∈ [a, b] | |f(x)| > M}) = 0.

Hence

sup({|f(x)| | x ∈ [a, b]}) ≥ inf{M ≥ 0 | λ({x | |f(x)| > M}) = 0}.

For the reverse inequality, suppose

0 ≤ M < sup({|f(x)| | x ∈ [a, b]}).
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By the Extreme Value Theorem, there exists an x0 ∈ [a, b] such that

|f(x0)| = sup({|f(x)| | x ∈ [a, b]}) > M.

However, if ϵ = 1
2(|f(x0)|−M) > 0, there exists a δ > 0 such that if x ∈ [a, b]

and |x− x0| < δ then |f(x) − f(x0)| < ϵ. Hence, as (x0 − δ, x0 + δ) ∩ [a, b]
has non-zero λ-measure and

|f(x)| > |f(x0)| − ϵ = 1
2(|f(x0)| +M) > M

for all x ∈ (x0 − δ, x0 + δ) ∩ [a, b], we see that

λ({x ∈ [a, b] | |f(x)| > M}) > 0.

Thus it follows that

sup({|f(x)| | x ∈ [a, b]}) = inf{M ≥ 0 | λ({x | |f(x)| > M}) = 0}.

as desired.

Clearly essentially bounded functions behave like bounded functions when
it comes to integration.

Theorem D.1.17 (Hölder’s Inequality). Let (X,A, µ) be a measure
space. If f ∈ L1(X,µ) and g ∈ L∞(X,µ), then fg ∈ L1(X,µ) and

∥fg∥1 ≤ ∥f∥1 ∥g∥∞ .

Proof. As |g| ≤ ∥g∥∞ almost everywhere by Remark D.1.15, we obtain that

∥fg∥1 =
∫

X
|f ||g| dµ ≤

∫
X

|f | ∥g∥∞ dµ = ∥f∥1 ∥g∥∞

as desired.

Corollary D.1.18. Let (X,A, µ) be a measure space with µ(X) < ∞ and
let p ∈ [1,∞). If f ∈ L∞(X,µ), then f ∈ Lp(X,µ) and

∥f∥p ≤ ∥f∥∞ µ(X)
1
p

Proof. Since µ(X) < ∞, it is elementary to see that

(∫
X

|f |p dµ
) 1

p

≤
(∫

X
∥f∥p

∞ dµ

) 1
p

= (∥f∥p
∞ µ(X))

1
p = ∥f∥∞ µ(X)

1
p < ∞.

Hence f ∈ Lp(X,µ).
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D.2 Lp-Spaces are Banach Spaces
In this section, we will use measure theoretic techniques to show that all Lp

spaces are Banach spaces. First we begin with the case p ̸= ∞.

Theorem D.2.1 (Riesz-Fisher Theorem). Let (X,A, µ) be a measure
space and let p ∈ [1,∞). Then Lp(X,µ) is a Banach space.

Proof. To see that Lp(X,µ) is a Banach space, let (fn)n≥1 be an arbitrary
Cauchy sequence in Lp(X,µ) (of course this really means an Cauchy sequence
of equivalence classes, each of which is represented by a function fn ∈
Lp(X,µ)). Since (fn)n≥1 is Cauchy, it is not difficult to see that there exists
a subsequence (fkn)n≥1 such that

∥∥fkn+1 − fkn

∥∥
p
<

1
2n

for all n ∈ N (i.e. choose kn ∈ N to be a natural number greater than kn−1
that works in the definition of a Cauchy sequence for ϵ = 1

2n ). As (fn)n≥1
is Cauchy, it suffices to show that (fkn)n≥1 converges to some element in
Lp(X,µ).

Define a function g : X → [0,∞] by

g(x) = |fk1(x)| +
∞∑

n=1
|fkn+1(x) − fkn(x)|

for all x ∈ X. As the sum of measurable functions is measurable, the
absolute value of measurable functions is measurable, and the pointwise limit
of measurable functions is measurable, we obtain that g is a measurable
function. Furthermore, as g is the pointwise limit of(

|fk1 | +
m∑

n=1
|fkn+1 − fkn |

)
m≥1

,

we obtain by Fatou’s Lemma and Minkowski’s inequality (Theorem D.1.9)
that(∫

X
|g|p

) 1
p

dµ ≤ lim inf
m→∞

(∫
X

(
|fk1(x)| +

m∑
n=1

|fkn+1(x) − fkn(x)|
)p

dµ

) 1
p

≤ lim inf
m→∞

∥fk1∥p +
m∑

n=1

∥∥fkn+1 − fkn

∥∥
p

= ∥fk1∥p + 1 < ∞.

Hence g ∈ Lp(X,µ).
Note if A = {x ∈ X | g(x) = ∞}, then A ∈ A and µ(A) = 0. By

replacing each fn with fnχAc (which does not affect the equivalence classes
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as fn = fnχAc almost everywhere), we may assume that g(x) < ∞ for all
x ∈ X.

As g(x) < ∞ for all x ∈ X and as C is complete so every absolutely
summable sequence is summable by Theorem 2.2.2, we obtain that the
function f : X → C defined by

f(x) = fk1(x) +
∞∑

n=1
fkn+1(x) − fkn(x)

for all x ∈ X is well-defined. Notice for all m ∈ N that

fk1 +
m∑

n=1
fkn+1 − fkn = fkm .

Hence |fkm | ≤ g for all m ∈ N and

f(x) = lim
n→∞

fkn(x)

for all x ∈ X. Hence f is measurable being the pointwise limit of measurable
functions. Furthermore, as clearly |f | ≤ g, we obtain that f ∈ Lp(X,µ).

We claim that (fkn)n≥1 converges to f in the p-norm. To see this, notice
since |f |p, |fkm |p ≤ gp for all m ∈ N that

|f − fkm |p ≤ (|f | + |fkm |)p ≤ (2|g|)p = 2p|g|p.

Therefore, since g ∈ Lp(X,µ) and since (|f − fkm |p)m≥1 converges pointwise
to zero, the Dominated Convergence Theorem implies that that

lim
m→∞

∫
X

|f − fkm |p dµ = 0.

Hence (fkn)n≥1 converges to f with respect to ∥ · ∥p. Therefore, as (fn)n≥1
was Cauchy, we obtain that (fn)n≥1 converges to f in Lp(X,µ). Thus,
as (fn)n≥1 was an arbitrary Cauchy sequence in Lp(X,µ), we obtain that
Lp(X,µ) is complete.

Notice the proof of the Riesz-Fisher Theorem (Theorem D.2.1) immedi-
ately implies the following.

Corollary D.2.2. Let (X,A, µ) be a measure space, let p ∈ [1,∞), and let
f ∈ Lp(X,µ). If (fn)n≥1 is a sequence of elements of Lp(X,µ) that converge
to f in Lp(X,µ), then there exists a subsequence (fkn)n≥1 of (fn)n≥1 that
converges to f pointwise almost everywhere.

Proof. As (fn)n≥1 converges to f in Lp(X,µ), (fn)n≥1 is Cauchy in Lp(X,µ).
Therefore the proof of the Riesz-Fisher Theorem (Theorem D.2.1) implies
there exists a subsequence (fkn)n≥1 of (fn)n≥1 that converges both pointwise
almost everywhere and in Lp(X,µ) to some function h (i.e. h(x) = fk1(x) +∑∞

n=1 fkn+1(x) − fkn(x) for all x ∈ X). Therefore, as limits in normed
linear spaces are unique, we obtain that h = f almost everywhere thereby
completing the proof.
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For those familiar with undergraduate real analysis, it should not be
surprising that the p = 2 case is special.

Corollary D.2.3. Let (X,A, µ) be a measure space. Then L2(X,µ) is a
Hilbert space with inner product ⟨ ·, · ⟩ : L2(X,µ) × L2(X,µ) → C defined by

⟨f, g⟩ =
∫

X
fg dµ.

Proof. First, clearly if g ∈ L2(X,µ) then g ∈ L2(X,µ) and ∥g∥2 = ∥g∥2.
Hence, by Hölder’s inequality (Theorem D.1.7), we see that if f, g ∈ L2(X,µ)
then fg ∈ L1(X,µ) so

⟨f, g⟩ =
∫

X
fg dµ

is a well-defined element of C. Hence, as in addition the definition of ⟨f, g⟩
does not depend on the representative of the equivalence classes of f and g
selected, ⟨ ·, · ⟩ is well-defined.

It is not difficult to see that ⟨f, f⟩ ≥ 0 for all f ∈ L2(X,µ) with equality
if and only if f = 0 almost everywhere, that ⟨ ·, · ⟩ is linear in the first entry
by the linearity of the integral, and that

⟨f, g⟩ = ⟨g, f⟩.

Hence ⟨ ·, · ⟩ is an inner product on L2(X,µ). As ∥f∥2 =
√

⟨f, f⟩ for all
f ∈ L2(X,µ), we obtain that L2(X,µ) is a Hilbert space by Theorem
D.2.1.

Unsurprisingly, we also have the following.

Theorem D.2.4 (Riesz-Fisher Theorem). Let (X,A, µ) be a measure
space. Then L∞(X,µ) is a Banach space.

Proof. To see that L∞(X,µ) is a Banach space, let (fn)n≥1 be an arbitrary
Cauchy sequence in L∞(X,µ). For each n ∈ N let

An = {x ∈ X | |fn(x)| > ∥fn∥∞}

and for each n,m ∈ N let

Bn,m = {x ∈ X | |fn(x) − fm(x)| > ∥fn − fm∥∞}.

Hence, by Remark D.1.15, each An and Bn,m are measurable for all n,m ∈ N,
µ(An) = 0 for all n ∈ N, and µ(Bn,m) = 0 for all n,m ∈ N. Let

B =
( ∞⋃

n=1
An

)⋃ ∞⋃
n,m=1

Bn,m

 .
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Then B is a measurable set and µ(B) = 0 as B is a countable union of
µ-measure zero sets.

By replacing each fn with fnχBc (which doesn’t affect the equivalence
classes), we may assume that |fn(x)| ≤ ∥fn∥∞ for all x ∈ X and n ∈ N, and
that |fn(x) − fm(x)| ≤ ∥fn − fm∥∞ for all x ∈ X and n,m ∈ N. By this
assumption, for each x ∈ X we see that (fn(x))n≥1 is a Cauchy sequence in
C and thus converges. Hence the function f : X → C defined by

f(x) = lim
n→∞

fn(x)

for all x ∈ X is well-defined and measurable.
We claim that f ∈ L∞(X,µ) and that (fn)n≥1 converges to f in L∞(X,µ).

To see this, notice for all x ∈ X and n ∈ N that

|f(x) − fn(x)| = lim
m→∞

|fm(x) − fn(x)| ≤ lim sup
m→∞

∥fm − fn∥∞ .

Hence
sup{|f(x) − fn(x)| | x ∈ X} ≤ lim sup

m→∞
∥fm − fn∥∞

for all n ∈ N. In particular

sup{|f(x) − f1(x)| | x ∈ X} ≤ lim sup
m→∞

∥fm − f1∥∞

≤ lim sup
m→∞

∥fm∥∞ + ∥f1∥∞ < ∞

as Cauchy sequences are bounded. Hence by the definition of essentially
bounded functions we see that f − f1 ∈ L∞(X,µ). Hence, as f1 ∈ L∞(X,µ)
and L∞(X,µ) is closed under addition, we see that f ∈ L∞(X,µ). Thus the
above shows that

∥f − fn∥∞ ≤ lim sup
m→∞

∥fm − fn∥∞

for all n ∈ N. As
lim

n→∞
lim sup

m→∞
∥fm − fn∥∞ = 0

since (fn)n≥1 is Cauchy, we obtain that (fn)n≥1 converges to f in L∞(X,µ).
Hence, as (fn)n≥1 was an arbitrary Cauchy sequence, we obtain that L∞(X,µ)
is complete.

D.3 Dense Subset of Lp-Spaces

To conclude this section, we note specific types of functions are dense in the
Lp-spaces (well, when p ̸= ∞).
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Theorem D.3.1. Let (X,A, µ) be a measure space. The set

F = span
{
φ : X → [0,∞)

∣∣∣ φ is simple and there exists a A∈A
such that µ(A)<∞ and φ|Ac =0

}
is dense in Lp(X,µ) for all p ∈ [1,∞).

Proof. Fix p ∈ [1,∞). To begin, we claim that if φ : X → [0,∞) is a simple
function, then φ ∈ Lp(X,µ) if and only if there exists an A ∈ A such that
µ(A) < ∞ and φ|Ac = 0. Indeed, suppose there exists an A ∈ A such that
µ(A) < ∞ and φ|Ac = 0. Since φ is a simple function, φ is essentially
bounded. Hence the proof of Corollary D.1.18 yields

∥φ∥p ≤ ∥φ∥
1
p
∞ µ(A)

1
p < ∞

so φ ∈ Lp(X,µ). Conversely, suppose φ ∈ Lp(X,µ). Clearly if φ = 0
the result is true. Hence suppose φ ̸= 0. By the definition of a simple
function, there exists pairwise disjoint sets {Ak}n

k=1 ⊆ A and elements
{ak}n

k=1 ⊆ (0,∞) such that φ =
∑n

k=1 akχAk
(where we have removed the

characteristic function on which φ is zero). If c = min{a1, . . . , an} > 0, then
we see that

cpµ

(
n⋃

k=1
Ak

)
= cp

n∑
k=1

µ(Ak) ≤
n∑

k=1
ap

kµ(Ak) =
∫

X
φp dµ < ∞.

Therefore, if A =
⋃n

k=1Ak ∈ A, then µ(A) < ∞ and φ|Ac = 0 as desired.
To demonstrate the theorem, we must first show that F ⊆ Lp(X,µ).

However, this follows from the above claim as F is a span of elements of
Lp(X,µ) and thus is a subspace of Lp(X,µ).

Finally, to show that F is dense in Lp(X,µ), it suffices (as F and
Lp(X,µ) are closed under linear combinations) to show that if f ∈ Lp(X,µ)
and f ≥ 0 then there exists a sequence (φn)n≥1 of elements of F such that
limn→∞ ∥f − φn∥p = 0. Indeed notice it is easy to see that the positive and
negative parts of the real and imaginary parts of f are smaller than |f | and
thus elements of Lp(X,µ). If we can approximate each of these non-negative
functions in Lp(X,µ) via elements of F , then the triangle inequality will
yield the result.

Fix f ∈ Lp(X,µ) such that f ≥ 0. As f is non-negative, there exists an
increasing sequence of simple functions (φn)n≥1 that converge to f pointwise.
Hence 0 ≤ φn ≤ f so ∫

X
|φn|p dµ ≤

∫
X

|f |p dµ < ∞.

Hence φn ∈ Lp(X,µ) so φn ∈ F by the result at the beginning of the proof.
Moreover, since (|f − φnχAn |p)n≥1 converges to zero pointwise and since

|f − φnχAn |p ≤ |f |p ∈ L1(X,µ),
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we obtain by the Dominated Convergence Theorem that

lim
n→∞

∫
X

|f − φnχAn |p dµ = 0.

Hence limn→∞ ∥f − φnχAn∥p = 0 as desired.

Theorem D.3.2. For all p ∈ [1,∞),

Cc(R,C) =
{
f : R → C

∣∣∣ f is continuous and there exists a compact set
K⊆C such that f |Kc =0

}
is dense in Lp(R, λ).

Proof. By Theorem D.3.1 we know that

F = span
{
φ : R → [0,∞)

∣∣∣ φ is simple and there exists a A∈M(R)
such that µ(A)<∞ and φ|Ac =0

}
is dense in Lp(R, λ). However, if φn : R → [0,∞) is simple and φ ∈ Lp(R, λ),
then the end of the proof of Theorem D.3.1 can be used to show that
φχ[−n,n] converges to φ in Lp(R, λ). Therefore, as Corollary D.1.18 implies
that Cc(R,C) ⊆ Lp(R, λ), to show that Cc(R,C) is dense in Lp(R, λ), it
suffices by the triangle inequality to show that each simple function φ such
that φ|[−n,n]c = 0 for some n ∈ N can be approximated in ∥ · ∥p by an element
of Cc(R,C).

To see the above, let φ be an arbitrary simple function such that
φ|[−n,n]c = 0 for some n ∈ N and let ϵ > 0 be arbitrary. By Lusin’s
Theorem there exists a continuous function f : [−n, n] → C such that

λ({x ∈ [−n, n] | f(x) ̸= φ(x)}) < ϵ

and
sup{|f(x)| | x ∈ [−n, n]} ≤ ∥φ∥∞ < ∞.

Extend f to a continuous function g : R → C by defining

g(x) =


f(x) if x ∈ [−n, n]
−f(x)

ϵ (x− n) + f(x) if x ∈ [n, n+ δ)
f(x)

ϵ (x+ n) + f(x) if x ∈ (−n− δ,−n]
0 otherwise

.

Clearly g ∈ Cc(R,C) and it is easy to see that ∥g∥∞ ≤ ∥φ∥∞ as we extended
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f to g using linear functions connecting f(±n) to 0. Therefore, since∫
R

|g − φ|p dλ

=
∫

[−n,n]
|f − φ|p dλ+

∫
[n,n+ϵ)∪(−n−ϵ,−n]

|g|p dλ

=
∫

{x∈[−n,n] | f(x)̸=φ(x)}
|f − φ|p dλ+

∫
[n,n+ϵ)∪(−n−ϵ,−n]

|g|p dλ

≤
∫

{x∈[−n,n] | f(x)̸=φ(x)}
(2 ∥φ∥∞)p dλ+

∫
[n,n+ϵ)∪(−n−ϵ,−n]

∥φ∥p
∞ dλ

≤ (2 ∥φ∥∞)pϵ+ 2ϵ ∥φ∥p
∞

= (2p + 2) ∥φ∥p
∞ ϵ

the proof is complete as ∥φ∥∞ is fixed and ϵ > 0 was arbitrary.

By using more topological concepts, the following can be demonstrated.

Theorem D.3.3. Let (X, T ) be a locally compact Hausdorff space, let µ be
a regular measure on the Borel subets of (X, T ) such that µ(K) < ∞ for all
compact subsets K ⊆ X. For all p ∈ [1,∞),

Cc(X,C) =
{
f : X → C

∣∣∣ f is continuous and there exists a compact set
K⊆X such that f |Kc =0

}
is dense in Lp(X,µ).

Proof. As Lusin’s Theorem holds in this context, the proof of Theorem D.3.2
can be adapted with the use of Urysohn’s Lemma and the regularity of µ.

D.4 Dual Spaces from Measure Theory
Using measure theory, several examples of linear functionals and dual spaces
can be discussed.

Example D.4.1. Let (X,A, µ) be a σ-finite measure space, let p, q ∈ [1,∞]
be such that 1

p + 1
q = 1, and let g ∈ Lq(X,µ). Define Ψg : Lp(X,µ) → C by

Ψg(f) =
∫

X
fg dµ

for all f ∈ Lp(X,µ). To see that T is well-defined, notice since g ∈ Lq(X,µ)
and 1

p + 1
q = 1 that fg ∈ L1(X,µ) for all f ∈ Lp(X,µ) by Hölder’s Inequality

(Theorems D.1.7 and D.1.17). Hence Ψg is well-defined. Furthermore, clearly
Ψg is linear.

To see that Ψg is continuous, notice for all f ∈ Lp(X,µ) that

|Ψg(f)| =
∣∣∣∣∫

X
fg dµ

∣∣∣∣ ≤
∫

X
|fg| dµ ≤ ∥f∥p ∥g∥q
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by Hölder’s Inequality. Hence Ψg ∈ Lp(X,µ)∗ with ∥Ψg∥ ≤ ∥g∥q.
We claim that ∥Ψg∥ = ∥g∥q. To see this, we divide the discussion into

three cases.
Case 1: q = 1. In this case p = ∞. Consider f : X → C defined by

f(x) = sgn(g)(x) =


|g(x)|
g(x) if g(x) ̸= 0

1 if g(x) = 0

for all x ∈ X. It is not difficult to see that f is measurable with |f(x)| = 1
for all x ∈ X and thus f ∈ L∞(X,µ) with ∥f∥∞ = 1. Therefore, since

Ψg(f) =
∫

X
fg dµ =

∫
X

|g| dµ = ∥g∥1 ,

we see that ∥Ψg∥ ≥ ∥g∥1 and thus ∥Ψg∥ = ∥g∥1 as desired.
Case 2: 1 < q < ∞. In this case 1 < p < ∞. Let f = sgn(g)|g|

q
p . Clearly

f is a well-defined measurable function since 1 < p, q < ∞. We claim that
f ∈ Lp(X,µ). To see this, notice

(∫
X

|f |p dµ
) 1

p

=
(∫

X
|g|q dµ

) 1
p

= ∥g∥
q
p
q < ∞

as |sgn(g)| = 1 and g ∈ Lq(X,µ). Hence f ∈ Lp(X,µ) with ∥f∥p = ∥g∥
q
p
q .

Therefore, since
1
p

+ 1
q

= 1 =⇒ q

p
+ 1 = q

we see that

Ψg(f) =
∫

X
fg dµ

=
∫

X
|g|

q
p

+1
dµ

=
∫

X
|g|q dµ

= ∥g∥q
q

= ∥g∥q ∥g∥
q
p
q

= ∥g∥q ∥f∥p .

If f = 0 then clearly g = 0 and the result follows. Otherwise if h = 1
∥f∥p

f

then h ∈ Lp(X,µ), ∥h∥p = 1, and the above computation implies that

Ψg(h) = ∥g∥q .

Therefore ∥Ψg∥ ≥ ∥g∥q and thus ∥Ψg∥ = ∥g∥q as desired.
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Case 3: q = ∞. In this case p = 1. Notice the previous cases did not
require µ to be σ-finite whereas we will need to use σ-finiteness here. To
begin, as µ is σ-finite there exists a collection {Xn}∞

n=1 ⊆ A such that
µ(Xn) < ∞ for all n ∈ N, X =

⋃∞
n=1Xn, and Xn ⊆ Xn+1 for all n ∈ N.

Let ϵ > 0 be arbitrary and let

Aϵ = {x ∈ X | |g(x)| > ∥g∥∞ − ϵ}.

Since g ∈ L∞(X,µ), we know that µ(Aϵ) > 0. For each n ∈ N let Bn =
Aϵ∩Xn. Then clearly Aϵ =

⋃∞
n=1Bn and Bn ⊆ Bn+1 for all n ∈ N. Therefore

µ(Aϵ) = limn→∞ µ(Bn) by the Monotone Convergence Theorem for Measures.
Moreover, since 0 ≤ µ(Bn) ≤ µ(Xn) < ∞ for all n ∈ N, there exists an
N ∈ N such that

0 < µ(BN ) < ∞.

Let f = 1
µ(BN )χBN

sgn(g). Then f is clearly measurable with

∫
X

|f | dµ = 1
µ(BN )

∫
X
χBN

dµ = 1.

Therefore, since

Ψg(f) =
∫

X
fg dµ

= 1
µ(BN )

∫
X
χBN

|g| dµ

≥ 1
µ(BN )

∫
X
χBN

(∥g∥∞ − ϵ) dµ

= ∥g∥∞ − ϵ

as BN ⊆ Aϵ, we obtain that ∥Ψg∥ ≥ ∥g∥∞ − ϵ. Hence, as ϵ > 0 was arbitrary,
the result follows.

Remark D.4.2. Notice as a direct corollary Example D.4.1 that if (X,A, µ)
is a σ-finite measure space and p, q ∈ [1,∞] are such that 1

p + 1
q = 1, then

∥g∥q = ∥Ψg∥ = sup
{∣∣∣∣∫

X
fg dµ

∣∣∣∣ ∣∣∣∣ f ∈ Lp(X,µ), ∥f∥p ≤ 1
}

for all g ∈ Lq(X,µ). This alternative way to compute the norm can be useful
on occasion.

The linear functionals from Example D.4.1 are all there are as the following
theorem shows. In particular, this theorem lets us represent the complicated
dual spaces of certain normed linear spaces using better understood normed
linear spaces.
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Theorem D.4.3 (Riesz Representation Theorem for Lp-Spaces). Let
(X,A, µ) be a σ-finite measure space, let 1 ≤ p < ∞, and let 1 < q ≤ ∞ be
such that 1

p + 1
q = 1. If Ψ ∈ Lp(X,µ)∗ then there exists a unique g ∈ Lq(X,µ)

such that
Ψ(f) =

∫
X
fg dµ

for all f ∈ Lp(X,µ). Moreover ∥Ψ∥ = ∥g∥q. In particular, Lp(X,µ)∗ =
Lq(X,µ).

First note that the norm estimates in the Riesz Representation Theorem
for Lp-spaces (Theorem D.4.3) immediately follow for Example D.4.1. Thus
it suffices to prove given a continuous linear functional on Lp(X,µ) that
there is one and exactly one element of Lq(X,µ) that, via Example D.4.1,
produces the continuous linear functional.

To begin, we desire to reduce to the setting that our functions are real-
valued. Thus, let Lp(X,µ)R denote the real-valued p-integrable function and
consider the following.

Lemma D.4.4. Let (X,A, µ) be a σ-finite measure space, let 1 ≤ p < ∞,
and let Ψ ∈ Lp(X,µ)∗. Then there exists continuous functions

ψ1, ψ2 : Lp(X,µ)R → R

such that ψ1 and ψ2 are (real-)linear and

Ψ(f) = ψ1(Re(f)) + iψ1(Im(f)) + iψ2(Re(f)) − ψ2(Im(f))

for all f ∈ Lp(X,µ).

Proof. Given a function f ∈ Lp(X,µ), recall the complex conjugate of f ,
denoted f , is an element of Lp(X,µ). Define ψ1, ψ2 : Lp(X,µ)R → R by

ψ1(f) = Re(Ψ(f)) and ψ2(f) = Im(Ψ(f))

for all f ∈ Lp(X,µ)R. Since Ψ is complex linear and continuous, it is
elementary to see that ψ1 and ψ2 are real linear and continuous. Moreover,
the equation

Ψ(f) = ψ1(Re(f)) + iψ1(Im(f)) + iψ2(Re(f)) − ψ2(Im(f))

for all f ∈ Lp(X,µ) is then trivial to verify.

Next we require a method for verifying that a function is in Lq(X,µ)
based on knowledge of its integral against elements of Lp(X,µ). This is
achieved via the following two lemma (one for p ∈ (1,∞) and one for p = 1).
Note this has significance outside the proof of the Riesz Representation
Theorem (Theorem D.4.3) as it enables us to deduce a function is in Lq(X,µ)
and obtain a bound on its norm based on integration.
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Lemma D.4.5. Let (X,A, µ) be a finite measure space, let 1 < p < ∞, and
1 < q < ∞ be such that 1

p + 1
q = 1, and let g ∈ L1(X,µ)R. If there exists an

M ∈ R such that ∣∣∣∣∫ gφ dµ

∣∣∣∣ ≤ M ∥φ∥p

for all measurable functions φ : X → R of finite range, then g ∈ Lq(X,µ)
with ∥g∥q ≤ M .

Proof. Since |g|q is a measurable function, there exists an increasing sequence
(φn)n≥1 of simple functions that converges to |g|q pointwise. For each n ∈ N
let

ψn = φ
1
p
n sgn(g).

Since sgn(g) obtains a finite number of values as g is real-valued, it is
elementary to see that each ψn is a measurable function of finite range.
Moreover, notice for all n ∈ N that

∥ψn∥p =
(∫

X
|ψn|p dµ

) 1
p

=
(∫

X
φn dµ

) 1
p

and
0 ≤ φn = φ

1
p
nφ

1
q
n ≤ φ

1
p
n |g| = φ

1
p
n sgn(g)g = ψng.

Therefore, for all n ∈ N

0 ≤
∫

X
φn dµ ≤

∫
X
gψn dµ ≤ M ∥ψn∥p = M

(∫
X
φn dµ

) 1
p

.

Since all simple functions are integrable as µ is finite, we know that∫
X
φn dµ < ∞

for all n ∈ N. Hence the above equation implies that(∫
X
φn dµ

) 1
q

=
(∫

X
φn dµ

)1− 1
p

≤ M.

However, by the Monotone Convergence Theorem

lim
n→∞

∫
X
φn dµ =

∫
X

|g|q dµ

and thus ∥g∥q ≤ M . Hence g ∈ Lq(X,µ) as desired.

Lemma D.4.6. Let (X,A, µ) be a finite measure space, and let g ∈ L1(X,µ)R.
If there exists an M ∈ R such that∣∣∣∣∫ gφ dµ

∣∣∣∣ ≤ M ∥φ∥1

for all measurable functions φ : X → R of finite range, then g ∈ L∞(X,µ)
with ∥g∥∞ ≤ M .
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Proof. Let ϵ > 0 be arbitrary. Consider the set

Aϵ = {x ∈ X | |g(x)| ≥ M + ϵ}.

Clearly Aϵ is measurable. Hence

(M + ϵ)µ(Aϵ) ≤
∫

Aϵ

|g| dµ

=
∫

X
sgn(g)χAϵg dµ

≤ M ∥sgn(g)χAϵ∥1
= Mµ(Aϵ)

since sgn(g)χAϵ is a measurable function of finite range (as g is real-valued).
Therefore ϵµ(Aϵ) ≤ 0 so µ(Aϵ) = 0. Therefore, as ϵ > 0 was arbitrary, we
obtain that g ∈ L∞(X,µ) with ∥g∥∞ ≤ M .

Proof of the Riesz Representation Theorem for Lp-Spaces (Theorem D.4.3).
Recall from Example D.4.1 that if Ψg : Lp(X,µ) → C is defined by

Ψg(f) =
∫

X
fg dµ

for all f ∈ Lp(X,µ), then Ψg ∈ Lp(X,µ)∗ and ∥Ψg∥ = ∥g∥q. Furthermore,
notice if g1, g2 ∈ Lq(X,µ) are such that Ψg1 = Ψg2 , then

0 = Ψg1(f)−Ψg2(f) =
∫

X
fg1 dµ−

∫
X
fg2 dµ =

∫
X
f(g1−g2) dµ = Ψg1−g2(f)

for all f ∈ Lp(X,µ). Therefore 0 = ∥Ψg1−g2∥ = ∥g1 − g2∥q so g1 = g2. Hence,
to complete the proof, it suffices to show that if Ψ ∈ Lp(X,µ)∗ then there
exists a g ∈ Lq(X,µ) such that Ψ = Ψg (as the above produces the value of
the norm and uniqueness).

Fix Ψ ∈ Lp(X,µ)∗. Recall by Lemma D.4.4 that there exists continuous
real-linear functions ψ1, ψ2 : Lp(X,µ)R → R such that

Ψ(f) = ψ1(Re(f)) + iψ1(Im(f)) + iψ2(Re(f)) − ψ2(Im(f))

for all f ∈ Lp(X,µ). If we demonstrate that there exists g1, g2 ∈ Lq(X,µ)R
such that

ψ1(h) =
∫

X
hg1 dµ and ψ2(h) =

∫
X
hg2 dµ

for all h ∈ Lp(X,µ)R, then we obtain (using complex linearity) that

Ψ(f) =
∫

X
f(g1 + ig2) dµ
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for all f ∈ Lp(X,µ), which would complete the proof as g1 + ig2 ∈ Lq(X,µ).
Therefore, it suffices to show that if ψ : Lp(X,µ)R → R is continuous and
real-linear then there exists a g ∈ Lq(X,µ)R such that

ψ(f) =
∫

X
fg dµ

for all f ∈ Lp(X,µ).
To see the above claim, we will divide the proof into two cases.
Case 1: µ is finite. Since µ is finite, χA ∈ Lp(X,µ) for all A ∈ A. Hence

define ν : A → R by
ν(A) = ψ(χA)

for all A ∈ A. We claim that ν is a finite signed measure that is absolutely
continuous with respect to µ. To see this, first notice that

ν(∅) = ψ(χ∅) = ψ(0) = 0

as ψ is linear. Moreover, clearly ν does not obtain the values ±∞ by
definition.

To see that ν is countably additive, let {Ak}∞
k=1 ⊆ A be pairwise disjoint

and let A =
⋃∞

k=1Ak. Since µ is a finite measure,

µ(A) =
∞∑

k=1
µ(Ak) < ∞.

Hence

lim
n→∞

∞∑
k=n

µ(Ak) = 0.

Therefore

lim
n→∞

∥∥∥∥∥χA −
n∑

k=1
χAk

∥∥∥∥∥
p

= lim
n→∞

( ∞∑
k=n

µ(Ak)
) 1

p

= 0.

Hence χA =
∑∞

k=1 χAk
as a sum of vectors in Lp(X,µ). Therefore, since ψ

is a continuous linear functional, we obtain that

ν(A) = ψ(χA) =
∞∑

k=1
ψ(χAk

) =
∞∑

k=1
ν(Ak).

Thus ν is countably additive. However, to show that ν is a signed measure,
it is necessary to show that the sum converges absolutely. For each n ∈ N
let cn = sgn(ν(An)) and let fn =

∑n
k=1 ckχAk

. Then for all n,m ∈ N with
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n ≥ m

∥fn − fm∥p =

∥∥∥∥∥∥
n∑

k=m+1
ckχAk

∥∥∥∥∥∥
p

=

 n∑
k=m+1

µ(Ak)

 1
p

≤
( ∞∑

k=m

µ(Ak)
) 1

p

.

Therefore, since limm→∞ (
∑∞

k=m µ(Ak))
1
p = 0, (fn)n≥1 is Cauchy in Lp(X,µ).

Since Lp(X,µ) is complete by the Riesz-Fisher Theorem (Theorems D.2.1 and
D.2.4), there exists an f ∈ Lp(X,µ) such that f = limn→∞ fn in Lp(X,µ).
Therefore, since ψ is a continuous linear functional, we obtain that

ψ(f) = lim
n→∞

ψ(fn) = lim
n→∞

n∑
k=1

|ν(An)|.

Therefore, as ψ(f) ∈ R, we see that the sum converges absolutely.
To see that ν is finite, notice for all A ∈ A that

|ν(A)| = |ψ(χA)| ≤ ∥ψ∥ ∥χA∥p = ∥ψ∥µ(A)
1
p < ∞

as µ is finite. Hence ν is finite. Finally, to see that ν is absolutely continuous
with respect to µ, notice if A ∈ A is such that µ(A) = 0, then χA = 0 as an
element of Lp(X,µ) and thus

ν(A) = ψ(χA) = ψ(0) = 0

as ψ is linear. Hence ν is a finite signed measure that is absolutely continuous
with respect to µ.

By the Radon-Nikodym Theorem for signed measures there exists a
real-valued function g ∈ L1(X,µ) such that

ψ(χA) = ν(A) =
∫

A
g dµ =

∫
X
gχA dµ

for all A ∈ A. Using the linearity of the integral and of ψ, we obtain for any
measurable function φ : X → R with finite range that

ψ(φ) =
∫

X
φg dµ.

However, this implies that∣∣∣∣∫
X
φg dµ

∣∣∣∣ = |ψ(φ)| ≤ ∥ψ∥ ∥φ∥p
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for all measurable functions φ : X → R with finite range. Hence Lemma
D.4.5 or Lemma D.4.6 implies that g ∈ Lq(X,µ)R.

Since
ψ(φ) =

∫
X
φg dµ

for all simple functions in Lp(X,µ), we obtain by linearity that

ψ(φ) =
∫

X
φg dµ

for all φ which are linear combinations of simple functions in Lp(X,µ).
Therefore Theorem D.3.1 (along with continuity) implies that

ψ(f) =
∫

X
fg dµ

for all f ∈ Lp(X,µ) as desired.
Case 2: µ is σ-finite. Recall there exists {Xn}∞

n=1 ⊆ A such that X =⋃∞
n=1Xn, µ(Xn) < ∞ for all n ∈ N, and Xn ⊆ Xn+1 for all n ∈ N.

For each n ∈ N, let

An = {A ∩Xn | A ∈ A}

and let µn = µ|An . It is elementary to verify that An is a σ-algebra on Xn

and that µn is a measure on (Xn,An). Notice if f ∈ Lp(Xn, µn), we can
view f as an element of Lp(X,µ) by extending f to be zero on Xc

n. Hence,
for each n ∈ N, we can define ψn : Lp(Xn, µn) → R by

ψn(f) = ψ(f)

for all f ∈ Lp(Xn, µn) ⊆ Lp(X,µ). It is elementary to verify that ψn is a
continuous linear functional on Lp(Xn, µn) with norm at most ∥ψ∥ as the
norms on Lp(Xn, µn) and Lp(X,µ) agree on elements of Lp(Xn, µn).

Since (Xn,An, µn) is a finite measure space, the first case of this proof
implies there exists a unique function gn ∈ Lq(Xn, µn) such that∫

Xn

fgn dµn = ψn(f) = ψ(f)

for all f ∈ Lp(Xn, µn). Moreover ∥gn∥Lq(Xn,µn) = ∥ψn∥ ≤ ∥ψ∥.
Extend each gn to be zero on Xc

n. Hence gn ∈ Lq(X,µ) for all n ∈ N,
∥gn∥Lq(Xn,µn) = ∥gn∥q, and

ψn(f) =
∫

X
fgn dµ

for all f ∈ Lp(Xn, µn). Moreover, notice for all n ∈ N and f ∈ Lp(Xn, µn) ⊆
Lp(Xn+1, µn+1) that∫

X
fgn+1 dµ = ψn+1(f) = ψn(f) =

∫
X
fgn dµ.
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Therefore, due to the uniqueness of gn, we obtain that gn+1|Xn = gn.
Define g : X → R by g(x) = gn(x) whenever x ∈ Xn. As gn+1|Xn = gn

and as X =
⋃∞

n=1Xn, g is well-defined up to a set of measure zero and defines
a measurable function (as it is the pointwise limit of (gn)n≥1). If q = ∞
then as ∥gn∥∞ ≤ ∥ψ∥ for all n ∈ N, we easily see that ∥g∥∞ ≤ ∥ψ∥ < ∞ and
thus g ∈ L∞(X,µ). Otherwise, if q ̸= ∞, notice that as |gn| ≤ |gn+1| for
all n ∈ N and as (gn)n≥1 converges to g pointwise almost everywhere, the
Monotone Convergence Theorem implies that

(∫
X

|g|q dµ
) 1

q

= lim
n→∞

(∫
X

|gn|q dµ
) 1

q

≤ ∥ψ∥ < ∞.

Hence g ∈ Lq(X,µ).
Finally, to see that

ψ(f) =
∫

X
fg dµ

for all f ∈ Lp(X,µ), let f ∈ Lp(X,µ) be arbitrary and for each n ∈ N let
fn = fχXn . Then

|fn − f |p ≤ |f |p

and (|fn − f |p)n≥1 converges to zero almost everywhere. Therefore, since
|f |p ∈ L1(X,µ), the Dominated Convergence Theorem implies that limn→∞ ∥f − fn∥p =
0. As ψ is continuous

ψ(f) = lim
n→∞

ψ(fn) = lim
n→∞

ψn(fn) = lim
n→∞

∫
X
fngn dµ = lim

n→∞

∫
X
fng dµ

since fngn = fng for all n ∈ N. However, since (fng)n≥1 converges pointwise
to fg and since |fng| ≤ |fg| ∈ L1(X,µ) by Hölder’s Inequality (Theorems
D.1.7 and D.1.7), the Dominated Convergence Theorem implies that

ψ(f) = lim
n→∞

∫
X
fng dµ =

∫
X
fg dµ

as desired.

Using only the Riesz Representation Theorem (Theorem D.4.3)) it is
possible to verify that a function is in Lq(X,µ) via only integrals against
Lp(X,µ) functions.

Corollary D.4.7. Let (X,A, µ) be a σ-finite measure space and let p, q ∈
[1,∞] be such that 1

p + 1
q = 1 and q ̸= 1. If

sup
{∣∣∣∣∫

X
fg dµ

∣∣∣∣ ∣∣∣∣ f ∈ Lp(X,µ), ∥f∥p ≤ 1
}
< ∞,

then g ∈ Lq(X,µ).
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Proof. Define Ψ : Lp(X,µ) → R by

Ψ(f) =
∫

X
fg dµ

for all f ∈ Lp(X,µ). By the assumptions in the statement, we easily see that
Ψ is a well-defined continuous linear functional on Lp(X,µ). Therefore, by the
Riesz Representation Theorem there exists an unique function h ∈ Lq(X,µ)
such that

Ψ(f) =
∫

X
fh dµ

for all f ∈ Lp(X,µ). In particular, for all f ∈ Lp(X,µ) and A ∈ A we see
that ∫

A
fg dµ =

∫
X

(fχA)g dµ = Ψ(fχA) =
∫

X
(fχA)h dµ =

∫
A
fh dµ.

Therefore, as µ is σ-finite, by the Radon-Nikodym Theorem we obtain that
fg = fh for all f ∈ Lp(X,µ).

Since µ is σ-finite, there exists {Xn}∞
n=1 ⊆ A such that X =

⋃∞
n=1Xn,

µ(Xn) < ∞ for all n ∈ N, and {Xn}∞
n=1 are pairwise disjoint. Since µ(Xn) <

∞, χXn ∈ Lp(X,µ) for all n ∈ N. Hence the above implies that

gχXn = hχXn

for all n ∈ N. Therefore, as X =
⋃∞

n=1Xn, we obtain that g = h ∈ Lq(X,µ)
as desired.

Of course, there are many other other versions of the Riesz Representation
Theorem we could analyze in the context of measure theory. Here are two
which describe the dual spaces of two very natural collections of functions
seen in this course.

Theorem D.4.8 (Riesz Representation Theorem for L∞). Let (X,A, µ)
be a σ-finite measure space. If Ψ ∈ L∞(X,µ)R → R is a continuous linear
functional, then there exists a unique ‘bounded, finitely additive’ signed
measure ν such that ν is absolutely continuous with respect to µ and

Ψ(f) =
∫

X
f dν

for all f ∈ L∞(X,µ). Moreover ∥Ψ∥ = |ν|(X).

Theorem D.4.9 (Riesz-Markov Theorem). Let X be a locally compact
Hausdorff space and let M(X) denote the space of all K-valued, finite, regular,
Borel measures on X equipped with the total variation norm.

If µ ∈ M(X), define Tµ : C0(X,K) → K by

Tµ(f) =
∫

X
f(x) dµ
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for all f ∈ C0(X,K). Then Tµ ∈ C0(X,K)∗ for all µ ∈ M(X). Moreover, if
Θ : M(X) → C0(X,K)∗ is defined by

Θ(µ) = Tµ

for all µ ∈ M(X), then Θ is an isometric isomorphism.
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bilateral backward shift, 14
bilateral forward shift, 14
boundary point, 216
bounded function, range normed linear space, 8
bounded linear operator, compact, 149
bounded linear operator, finite rank, 150
bounded subset of metric space, 238
bounded, linear map, 12

canonical embedding, 25
Cantor set, 208
Cauchy net, 70
Cauchy sequence, normed linear space, 3
Cauchy-Schwarz Inequality, 249
closed ball, metric space, 207
closed convex hull, 115
Closed Graph Theorem, 50
closed half-space, 109
closed set, 207
closed set, normed linear space, 3
closure of a set, 210
cluster point, 213
cluster point of a net, 242
coarser topology, 183
cocountable topology, 182
cofinite topology, 182
compact bounded linear operator, 149
compact set, 234
comparable topologies, 183
complete, normed linear space, 3
complete, topological vector space, 70
completion, normed linear space, 253
conjugate linear, 247
continuous function, 218
continuous function, normed linear space, 3
continuous, at a point, 222
converge, net, 197
convergent sequence space, 7
convergent to 0 sequence space, 7
converges weak∗, 127
converges weakly, 119
converges, sequence, normed linear space, 2
convex hull, 80
convex set, 64
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diameter, 239
dimension, 166
directed set, 195
direction, directed set, 195
discrete topology, 182
double dual space, 24
dual pair, 118
dual space, 17
dual space (topological), 94

embedding, 226
equivalent norms, 5
essentially bounded, 264
Euclidean norm, 4
eventually 0 sequence space, 8
extreme point, 143
Extreme Value Theorem, 241

Fσ set, 40
finer topology, 183
finite intersection property, 242
finite rank bounded linear operator, 150

Gδ set, 40
gauge functional, 84
Goldstine’s Theorem, 138
Gram-Schmidt Orthogonalization Process, 161

Hölder’s Inequality, 262, 267
Hahn-Banach Extension Theorem, 101–103
Hahn-Banach Separation Theorem, 112–114
Hausdorff space, 203
Heine-Borel Theorem, 239
Hermitian operator, 174
Hilbert space, 155
homeomorphic, 225
homeomorphism, 225
hyperplane, 96

imaginary part of a linear functional, 94
inner product, 247
inner product space, 248
interior of a set, 215
Inverse Mapping Theorem, 49
isometric isomorphism, 21
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isometrically isomorphic, normed linear space, 21
isomorphic, Hilbert space, 166
isomorphic, normed linear space, 21
isomorphism, normed linear space, 21

Krein-Milman Theorem, 147
Kronecher delta, 106

limit of a net, 204
limit, net, 197
linear functional, 94
linear functionals, continuous, 17
locally compact topology, 78
locally convex topological vector space, 65
lower limit topology, 185

Minkowski functional, 84
Minkowski’s Inequality, 263

neighbourhood, 197
neighbourhood basis, 200
net, 196
norm, 2
normed linear space, 2

open ball, normed linear space, 2
open cover, 234
open half-space, 108
open map, 67
Open Mapping Theorem, 48
open set, normed linear space, 2
open sets, 181
operator norm, 12
orthogonal, 251
orthogonal complement, 157
orthogonal projection, 159
orthonormal basis, 161
orthonormal set, 160

Parallelogram Law, 251
partition, 230
Pasting Lemma, 224
point-mass linear functional, 18
pointwise convergence topology, 63
polar, 136
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Polarization Identity, 252
predual, 128
product topology, 194
product topology, X × Y , 192
projection map, 218
Pythagorean Theorem, 251

quotient map, 231
quotient norm, 10
quotient space, 230
quotient topology, 67, 228

real part of a linear functional, 94
reflexive, 25
Reverse triangle inequality, 3
Riesz Representation Theorem, 168
Riesz Representation Theorem, ℓp(N), 18
Riesz Representation Theorem, c, 23
Riesz Representation Theorem, c0, 21
Riesz Representation Theorem, L∞, 284
Riesz Representation Theorem, Lp, 277
Riesz-Fisher Theorem, L∞, 270
Riesz-Fisher Theorem, Lp, 268
Riesz-Markov Theorem, 284

second dual space, 24
self-adjoint operator, 174
seminorm, 59
separated subsets, 110
separating family of seminorms, 60
strictly coarser, 183
strictly finer, 183
strictly separated subsets, 110
Strong Operator Topology, 63
subbasis, 189
sublinear functional, 84
subnet, 206
subspace of a topological space, 190
subspace topology, 190
sum over uncountable sets, 199
summable, 36
sup-norm, 4, 8

topological space, 181
topological vector space, 55
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topologically complemented, 105
topology, 181
topology generated by family of seminorms, 60
topology, generated by a basis, 184
total variation norm, complex measures, 8
triangle inequality, norm, 2
trivial topology, 182
Tychonoff’s Theorem, 134

Uniform Boundedness Principle, 51
Uniform Boundedness Principle, Banach Space, 52
uniform convergence, 31
uniform convergence on compact sets topology, 63
uniformly continuous function, topological vector spaces, 72
unilateral backward shift, 14
unilateral forward shift, 14
unit vector, 160
unitary operator, 166

vanish at infinity, continuous function, 9
Volterra operator, 178

weak convergence, 119
Weak Operator Topology, 63
weak topology, 107
weak topology, dual pair, 118
weak topology, locally convex topological vector space, 119
weak∗ convergent, 127
weak∗ topology, 64
weak∗ topology, locally convex topological vector space, 126
Weierstrass M-Test, 37

Young’s Inequality, 261
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