
MATH 2001
Real Analysis I

Paul Skoufranis

December 12, 2023



ii

©For use through and only available at pskoufra.info.yorku.ca.



Preface:
These are the first edition of these lecture notes for MATH 2001 (Real
Analysis I). Consequently, there may be several typographical errors,
missing exposition on necessary background, or unclear explanations. If you
come across any typos, errors, omissions, or unclear explanations, please feel
free to contact me so that I may continually improve these notes.

Please note that any text in the colour blue was not covered in class. Some
of this text was not covered in class as its difficult level is not suitable for
this course (most of this is in Chapter 1). Some of this text was not covered
in class as it was suitable for assignment work and appears there. The
remainder of the text I would love to cover if there was sufficient time, but
there will not be. Thus I have selected the most essential material and
examples to present in class. Students taking this course are only
responsible for the material covered in class and on the assignments, and a
student can skip any text in blue and still obtain a deep introduction to real
analysis. However, understanding this additional material will deepen a
student’s comprehension and abilities in real analysis thereby enhancing
their success in this and future courses.
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Motivation for this Course

Calculus as we know it was developed in the 17th century to tackle the
prominent physics problems at the time. As the study of kinematics (the
study of motion) was paramount to describe the motion of celestial bodies, the
theory to compute rates of change (i.e. derivatives) and areas (i.e. integrals)
was developed. However, eventually scientists encountered issues in their
theory which yielded bizarre contradictions in specific cases.

For one such example, consider the problem of adding up the following
infinite number of numbers:

1 − 1
2 + 1

3 − 1
4 + 1

5 − 1
6 + 1

7 − 1
8 + 1

9 − 1
10 + · · · .

It is not difficult to use elementary techniques to show this infinite sum
makes sense. But what is its value? Let S denote the value of this infinite
sum. On the one hand

S =
(

1 − 1
2

)
+
(1

3 − 1
4

)
+
(1

5 − 1
6

)
+
(1

7 − 1
8

)
+
(1

9 − 1
10

)
+ · · · .

Thus S is a sum of strictly positive numbers so we expect that S > 0.
However, on the other hand

S =
(

1 − 1
2

)
− 1

4 +
(1

3 − 1
6

)
− 1

8 +
(1

5 − 1
10

)
− 1

12 + · · ·

= 1
2 − 1

4 + 1
6 − 1

8 + 1
10 − 1

12 + · · ·

= 1
2

(
1 − 1

2 + 1
3 − 1

4 + 1
5 − 1

6 + · · ·
)

= 1
2S.

This latter equation implies S = 0 in direct contradiction to our initial claim
that S > 0. So what went wrong?

The root of our error comes from the question, “What do we mean by
adding up an infinite number of elements?” As we have not made a precise
definition of “adding up an infinite number of elements”, we cannot find our
mathematical mistake. This is where analysis and this course begin.

1



2 CONTENTS

This course will serve as an introduction to analysis for mathematics
majors. In particular, we will rebuild calculus up from base axioms through
logic and rigorous proofs. Consequently the apparent contradictions from
calculus are resolved and one has a rich theory that can go beyond studying
kinematics. In particular, the notions of limits, topology, continuity, deriva-
tives, and integrals will be developed and studied in a rigorous proof-based
manner. More importantly, students will learn the proper way to think and
prove facts about analysis, which is an essential skill for more advanced
courses in analysis and mathematics.
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Chapter 1

The Real Numbers

To develop a completely rigorous and logically based mathematical theory of
analysis, the first question we must ask is, “What is real? How do you define
‘real’? If you’re talking about what you can feel, what you can smell, what
you can taste and see, then ‘real’ is simply electrical signals interpreted by
your brain.” That is,

• How do we write down a rigorous definition of the real numbers?

• What properties do the real numbers have?

• What properties of the real numbers distinguish them from other
number systems?

In this chapter, we will answer the above questions. As this is a second-
year undergraduate course, the focus in this chapter will be to introduce
and develop understanding of the defining properties of the real numbers
over studying the advanced set theoretic and logical considerations of this
construction.

To begin, it is best to first understand how one constructs a much more
simple mathematical object.

1.1 The Natural Numbers

To motivate the complexity of providing a rigorous definition of the real
numbers, we begin by showing even defining the natural numbers rigorously
in mathematics is not a non-trivial task.

1.1.1 Peano’s Axioms

Peano’s Axioms are the five properties one must impose on a number system
to uniquely identify the natural numbers. They are as follows:

3



4 CHAPTER 1. THE REAL NUMBERS

Definition 1.1.1 (Peano’s Axioms). The natural numbers, denoted N,
are the unique number system satisfying the following five axioms:

(P1) There is a number, denoted 1, such that 1 ∈ N.

(P2) For each number n ∈ N, there is a number S(n) ∈ N called the successor
of n (i.e. S(n) = n+ 1).

(P3) The number 1 is not the successor of any number in N.

(P4) If m,n ∈ N and S(n) = S(m), then n = m.

(P5) (Induction Axiom) If X ⊆ N is such that

(a) 1 ∈ X, and
(b) if k ∈ N and k ∈ X, then S(k) ∈ X,

then X = N.

Each of the above five axioms are necessary to uniquely identify the
natural numbers as the following examples show. Note (P2) is necessary to
discuss (P4) so no example is provided where (P1), (P3), (P4), and (P5)
hold but (P2) does not.

Example 1.1.2. The empty set ∅ does not satisfy (P1) but satisfies (P2),
(P3), (P4), and (P5) vacuously.

Example 1.1.3. Consider the set X = {1, 2} where we define S(1) = 2 and
S(2) = 1. One may verify that X satisfies (P1), (P2), (P4), and (P5) but
does not satisfy (P3) since 1 is the successor of 2.

Example 1.1.4. Consider the set X = {1, 2} where we define S(1) = 2 and
S(2) = 2. One may verify that X satisfies (P1), (P2), (P3), and (P5) but
does not satisfy (P4) since S(1) = S(2) but 1 ̸= 2.

Example 1.1.5. Consider the set N2 = {(n,m) | n,m ∈ Z} where we define
1 = (1, 1) and S(n,m) = (n+1,m+1). One may verify that N2 satisfies (P1),
(P2), (P3), and (P4) but does not satisfy (P5) since X = {(n, n) | n ∈ N}
has properties (a) and (b) but is not all of N2.

Remark 1.1.6. It should be pointed out that Peano’s Axioms immediately
give us our notion of < on N. Indeed we define n < m to mean that there
exists a chain n = k0, k1, . . . , kℓ = m so that kj = S(kj−1) for all j.

Instead of focusing on set theoretic and logical implications of the Peano’s
Axioms, our focus will be on what tools they provide for us.

©For use through and only available at pskoufra.info.yorku.ca.



1.1. THE NATURAL NUMBERS 5

1.1.2 The Principle of Mathematical Induction

The Induction Axiom from Definition 1.1.1 leads to the following principle
which students should be familiar with from MATH 1200.

Theorem 1.1.7 (The Principle of Mathematical Induction). For each
k ∈ N, let Pk be a mathematical statement. Suppose

• (base case) P1 is true, and

• (inductive step) if k ∈ N and Pk is true, then Pk+1 is true.

Then Pn is true for all n ∈ N.

Proof. Let
X = {n ∈ N | Pn is true}.

Our goal is to show that X = N using the Induction Axiom in Definition
1.1.1. Hence we must show two things:

(a) 1 ∈ X, and

(b) if k ∈ N and k ∈ X, then k + 1 ∈ X.

By assumption we see that 1 ∈ X as P1 is true. Thus (a) is true.
To see that (b) is true, suppose that k ∈ N and k ∈ X. By the definition

of X, we know Pk is true. Thus, by the assumptions in the statement of the
theorem, Pk+1 is true and hence k+ 1 ∈ X by the definition of X. Therefore
(b) is true.

Hence the Induction Axiom in Definition 1.1.1 implies X = N. Hence Pn

is true for all n ∈ N.

The Principle of Mathematical Induction is a very convenient method
for proving a collection of mathematical statements indexed by the natural
numbers are true. The following is one specific example (which is reliant on
properties of the real numbers we will discuss shortly).

Theorem 1.1.8 (Binomial Theorem). For all n ∈ N and x, y ∈ R,

(x+ y)n =
n∑

j=0

(
n

j

)
xjyn−j .

[Here x0 = 1 = y0 by definition.]

Proof. To see this result is true, fix x, y ∈ R and for each n ∈ N let Pn be
the statement that (x+ y)n =

∑n
j=0

(n
j

)
xjyn−j . To show that Pn is true for

all n ∈ N, we will apply the Principle of Mathematical Induction. To do so,
we must demonstrate the two conditions in Theorem 1.1.7.

©For use through and only available at pskoufra.info.yorku.ca.



6 CHAPTER 1. THE REAL NUMBERS

Base Case: To see that P1 is true, notice that when n = 1,

(x+ y)1 = x+ y =
(

1
1

)
x1y0 +

(
1
0

)
x0y1.

Hence P1 is true.
Inductive Step: Assume that Pk is true; that is, assume (x + y)k =∑k

j=0
(k

j

)
xjyk−j (this assumption is known as the induction hypothesis). To

see that Pk+1 is true, first notice for all ℓ ∈ {1, . . . , k} that(
k

ℓ− 1

)
+
(
k

ℓ

)
= k!

(ℓ− 1)!(k − (ℓ− 1))! + k!
ℓ!(k − ℓ)!

= k!
(ℓ− 1)!(k − ℓ)!

( 1
k + 1 − ℓ

+ 1
ℓ

)
= k!

(ℓ− 1)!(k − ℓ)!

(
ℓ+ (k + 1 − ℓ)

(k + 1 − ℓ)ℓ

)
= k!

(ℓ− 1)!(k − ℓ)!

(
k + 1

(k + 1 − ℓ)ℓ

)
= (k + 1)!
ℓ!((k + 1) − ℓ)! =

(
k + 1
ℓ

)

and that 1 =
(k

0
)

=
(k

k

)
=
(k+1

0
)

=
(k+1

k+1
)
. Therefore, we have that

(x+ y)k+1

= (x+ y)(x+ y)k

= (x+ y)
k∑

j=0

(
k

j

)
xjyk−j by the induction hypothesis

=

x k∑
j=0

(
k

j

)
xjyk−j

+

y k∑
j=0

(
k

j

)
xjyk−j


=

(k
k

)
xk+1 +

k−1∑
j=0

(
k

j

)
xj+1yk−j

+

(k
0

)
yk+1 +

k∑
j=1

(
k

j

)
xjyk−j+1


=
(
xk+1 +

k∑
ℓ=1

(
k

ℓ− 1

)
xℓy(k+1)−ℓ

)
+
(
yk+1 +

k∑
ℓ=1

(
k

ℓ

)
xℓy(k+1)−ℓ

)

=
(
k + 1
k + 1

)
xk+1 +

(
k∑

ℓ=1

((
k

ℓ− 1

)
+
(
k

ℓ

))
xℓy(k+1)−ℓ

)
+
(
k + 1

0

)
yk+1

=
(
k + 1
k + 1

)
xk+1y0 +

(
k∑

ℓ=1

(
k + 1
ℓ

)
xℓy(k+1)−ℓ

)
+
(
k + 1

0

)
x0yk+1

=
k+1∑
ℓ=0

(
k

ℓ

)
xℓyk−ℓ.
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1.1. THE NATURAL NUMBERS 7

Hence Pk+1 is true.
Therefore, as we have demonstrated the base case and the inductive step,

the result follows by the Principle of Mathematical Induction.

In addition to the Principle of Mathematical Induction, students saw in
MATH 1200 the following improvement which allows for one to assume all
the previous statements are true in the inductive step.

Theorem 1.1.9 (The Principle of Strong Induction). For each k ∈ N,
let Pk be a mathematical statement. Suppose

1. P1 is true, and

2. if k ∈ N and Pm is true for all m ≤ k, then Pk+1 is true.

Then Pn is true for all n ∈ N.

Proof. For each k ∈ N, let Qk be the mathematical statement “P1, P2, . . . , Pk

are all true”. Thus, to show that Pn is true for all n ∈ N, it suffices to show
that Qn is true for all n ∈ N.

To show that Qn is true for all n ∈ N, we will apply the Principle of
Mathematical Induction. To do so, we must demonstrate the two conditions
in Theorem 1.1.7.

Base Case: To see that Q1 is true, notice that P1 is true by our assump-
tions. Hence Q1 is true.

Inductive Step: Assume that Qk is true; that is, assume P1, P2, . . . , Pk

are all true. To see that Qk+1 is true, notice since P1, P2, . . . , Pk are all true,
our assumptions imply that Pk+1 is true. Hence P1, P2, . . . , Pk, Pk+1 are all
true so Qk+1 is true.

Therefore, as we have demonstrated the base case and the inductive step,
the result follows by the Principle of Mathematical Induction.

1.1.3 The Well-Ordering Principle

There is another way to think about the Principle of Mathematical Induction
which is quite useful in analysis. Instead of thinking about whether we can
show Pn is true for all n ∈ N, we can think about whether there is a first
natural number where Pn fails. This leads to the following additional form
of the Principle of Mathematical Induction.

Theorem 1.1.10 (The Well-Ordering Principle). Every non-empty
subset of N has a least element; that is, if X ⊆ N and X ≠ ∅, then there is
an element m ∈ X such that m ≤ k for all k ∈ X.

Proof. Suppose for the sake of a contradiction that X is a non-empty subset
of N that does not have a least element. Let

Y = N \X = {n ∈ N | n /∈ X}.

©For use through and only available at pskoufra.info.yorku.ca.



8 CHAPTER 1. THE REAL NUMBERS

For each n ∈ N let Pn be the statement that “n ∈ Y ”. We will apply the
Principle of Strong Induction to show that Pn is true for all n ∈ N and thus
Y = N. This will complete the proof since Y = N implies X = ∅, which
contradicts the fact that X is non-empty.

To apply Principle of Strong Induction, we must demonstrate the two
necessary assumptions in Theorem 1.1.9.

Base Case: To see that P1 is true, note since X does not have a least
element that we know that 1 /∈ X or else 1 would be the least element of X.
Hence 1 ∈ Y so P1 is true.

Inductive Step: Assume k ∈ N and Pm is true for all m ≤ k. Hence
{1, . . . , k} ⊆ Y . Thus each element of {1, . . . , k} is not in X. Therefore
k + 1 /∈ X for otherwise k + 1 would be the least element of X since none of
1, . . . , k are in X. Hence k + 1 ∈ Y as k + 1 /∈ X so Pk+1 is true.

Hence, by Strong Induction, Y = N thereby completing the proof by
earlier discussions.

The Well-Ordering Principle is quite useful in proofs where one wants to
know there is a first natural number where something fails. For example, we
can prove the following results from MATH 1200 using the Well-Ordering
Principle.

Proposition 1.1.11 (The Division Algorithm). Let a, b ∈ N. Then there
exists unique q, r ∈ N ∪ {0} such that 0 ≤ r < b and a = bq + r.

Proof. Let a, b ∈ N be fixed. First we will show the existence of q, r ∈ N∪{0}
such that 0 ≤ r < b and a = bq + r. To show this, we divide the discussion
into three cases.

Case 1: a < b. In this case, let r = a and q = 0. Clearly 0 ≤ r = a < b
and a = r = 0b+ r = bq + r as desired.

Case 2: a = b. In this case, let r = 0 and q = 1. Clearly 0 ≤ r < b and
a = b = 1b+ 0 = bq + r as desired.

Case 3: a > b. In this case, let

X = {n ∈ N | a < nb}.

Since a ≥ 1 we know that 2a = a+ a > a+ 0 = a. Moreover, since b ≥ 1 we
know that ab ≥ a and thus

(a+ 1)b = ab+ a ≥ a+ a = 2a > a.

Hence a+ 1 ∈ X so X ̸= ∅.
Since X ̸= ∅, the Well Ordering Principle (Theorem 1.1.10) implies there

exists a least element c ∈ X. Let

q = c− 1 ∈ N ∪ {0}.

©For use through and only available at pskoufra.info.yorku.ca.



1.1. THE NATURAL NUMBERS 9

Since q ∈ N∪{0} and q < c, q /∈ X as c was the least element of X. Therefore
a ≥ qb. Hence if we let r = a− qb, then r ≥ 0 and a = qb+ r.

To complete the proof in this case, it remains only to show that r < b.
To see this, suppose to the contrary that r ≥ b. Hence a− qb ≥ b so that

a ≥ qb+ b = (q + 1)b = cb.

This implies that c /∈ X. However, this contradicts the fact that c was the
least element of X (and thus, in particular, was an element of X). As we
have obtained a contradiction it must be the case that r < b. Thus this case
holds.

As the above three cases cover all possible cases for a, b ∈ N, it follows
that there exist q, r ∈ N ∪ {0} such that 0 ≤ r < b and a = bq + r.

To see that q, r ∈ N ∪ {0} are unique, assume q′, r′ ∈ N ∪ {0} are such
that 0 ≤ r′ < b and a = bq′ + r′. To see that q′ = q and r′ = r, note that

bq + r = a = bq′ + r′

so that
b(q − q′) = r′ − r.

Suppose for the sake of a contradiction that q ≠ q′. Hence q − q′ ≤ −1
or q − q′ ≥ 1. Therefore, as b ≥ 1, we have that

r′ − r = b(q − q′) ≤ −b or r′ − r = b(q − q′) ≥ b.

However, since 0 ≤ r < b and 0 ≤ r′ < b, we must have that

−b < r′ − r < b.

As this is a contradiction, we have that q = q′. Hence r′ − r = b(q − q′) =
b(0) = 0 so r′ = r as desired.

To complete our discussion of the natural numbers, we should note we
used the Induction Axiom from Definition 1.1.1 to prove the Principle of
Mathematical Induction (Theorem 1.1.7), which we then used to prove the
Principle of Strong Induction (Theorem 1.1.9), which we then used to prove
the Well-Ordering Principle (Theorem 1.1.10). It turns out that if one
replaces the Induction Axiom in Definition 1.1.1 with the Well-Ordering
Principle, then one can deduce the Induction Axiom. That is, the Induction
Axiom and the Well-Ordering Principle are logically equivalent! The proof
of this fact is below.

Theorem 1.1.12. Let (P1), (P2), (P3), (P4), and (P5) be as in Definition
1.1.1. Consider the mathematical statement.

(P′5) (Well-Ordering Principle) If X ⊆ N and X ̸= ∅, then X has a least
element.
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10 CHAPTER 1. THE REAL NUMBERS

If (P1), (P2), (P3), (P4), and (P′5) are true, then (P5) is true.

Proof. Assume (P1), (P2), (P3), (P4), and (P′5) are true. Before showing
that (P5) is true, we claim that if n ∈ N \ {1}, then n = S(k) for some k ∈ N.
To see this, let

Y = {n ∈ N | n ̸= S(k) for all k ∈ N}.

Note 1 ∈ Y by (P3) so Y ̸= ∅. Hence Y has a least element. This means that
1 is the least element of Y . Hence the definition of < implies that Y = {1}
as desired.

To see that (P5) is true, let X ⊆ N be such that

(a) 1 ∈ X, and

(b) if k ∈ N and k ∈ X, then S(k) ∈ X.

Our goal is to show that X = N.
To see this, let Y = N \X. Thus, to show that X = N, it suffices to show

that Y = ∅.
Suppose to the contrary that Y ≠ ∅. Hence (P′5) implies that Y has a

least element. Let m be the least element of Y . Note since 1 ∈ X, 1 /∈ Y
and thus m ̸= 1. Since m ̸= 1, there exists a k ∈ N such that S(k) = m.
Since m is the least element of Y , k /∈ Y so k ∈ X. However (b) implies
then implies that m = S(k) ∈ X so m /∈ Y . As this contradicts the fact that
m is the least element of Y , we have a contradiction. Hence Y = ∅ thereby
completing the proof.

1.2 What are the Real Numbers?
With a rigorous formal definition of the natural numbers now complete, we
turn our attention to more interesting pursuits. Using the natural numbers
and equivalence relations, it is possible to construct the integers (denoted Z)
and the rational numbers (denoted Q). For the interested reader, this is done
in Appendices B.1 and B.2. However, our interest lies in the real numbers
(denoted R). In particular, how does one construct the real numbers, what
properties do the real numbers have, and what properties do we need to
enforce on a number system to guarantee it is the real numbers? That is,
how do we rigorously define the real numbers? Of course, since defining N
was not a simple task, we expect defining R to be very non-trivial.

1.2.1 Fields

To begin our discussion of what are the real numbers, we note there are some
natural operations we want to apply to the real numbers: namely addition,
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1.2. WHAT ARE THE REAL NUMBERS? 11

subtraction, multiplication, and division. These operations have specific
properties that we shall explore and formalize.

We begin with addition and multiplication. Recall that addition and
multiplication are operations on pairs of real numbers; that is, for every
x, y ∈ R there are numbers, denoted x + y and x · y, which are elements
of R. Furthermore, there are two properties we require for addition and
multiplication to behave well, and one property that says addition and
multiplication play together nicely:

(F1) (Commutativity) x+ y = y + x and x · y = y · x for all x, y ∈ R.

(F2) (Associativity) (x+ y) + z = x+ (y + z) and (x · y) · z = x · (y · z) for
all x, y, z ∈ R.

(F3) (Distributivity) x · (y + z) = (x · y) + (x · z) for all x, y, z ∈ R.

Instead of adding in the operations of subtraction and division, we can
realize how they may be derived from addition and multiplication. For
example, what does subtracting 3 from 4 mean in terms of addition? Well, it
really means add the number −3 to 4. And how are 3 and −3 related? Well,
−3 is the unique number x such that 3 + x = 0. And what is 0 in terms
of addition? Well, 0 is the unique number y that when you add y to any
number z, you end up with z.

Similarly, what does dividing by 7 mean in terms of multiplication? Well,
it really means multiply by 1

7 . And how are 7 and 1
7 related? Well, 1

7 is the
unique number x such that 7x = 1. And what is 1 in terms of multiplication?
Well, 1 is the unique number y that when you multiply y to any number z,
you end up with z.

Using the above, we added the following properties to our list of properties
defining R:

(F4) (Existence of Identities) There are numbers 0, 1 ∈ R with 0 ̸= 1 such
that 0 + x = x and 1 · x = x for all x ∈ R.

(F5) (Existence of Inverses) For all x, y ∈ R with y ̸= 0, there exists
−x, y−1 ∈ R such that x+ (−x) = 0 and y · y−1 = 1.

Using these two properties, one then defines subtraction and division via
x−y = x+(−y) and x÷z = x·z−1 for all x, y, z ∈ R with z ̸= 0. Furthermore,
it is possible to show that all of the numbers listed in (F4) and (F5) are
unique; that is, any number with the same properties as one of 0, 1, −x, or
y−1 must be the corresponding number. The following lemma elaborates
and shows that numbers behave in an arbitrary field as one would expect.

Lemma 1.2.1. Assuming (F1), (F2), and (F3), the following hold:

a) If 01, 02 ∈ R are such that 01 + x = x and 02 + x = x for all x ∈ R, then
01 = 02.
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12 CHAPTER 1. THE REAL NUMBERS

b) If 11, 12 ∈ R are such that 11 · x = x and 12 · x = x for all x ∈ R, then
11 = 12.

c) If 0 is as in (F4), if x ∈ R, and if y1, y2 ∈ R are such that x+ y1 = 0 and
x+ y2 = 0, then y1 = y2 (i.e. y1 = y2 = −x).

d) If 1 is as in (F4), if x ∈ R \ {0}, and if y1, y2 ∈ R are such that x · y1 = 1
and x · y2 = 1, then y1 = y2 (i.e. y1 = y2 = x−1).

e) If x ∈ R, then 0 · x = 0.

f) If x ∈ R, then −x = (−1) · x.

Proof. a) Let 01, 02 ∈ R be such that 01 +x = x and 02 +x = x for all x ∈ R.
Then

01 = 02 + 01 i.e. take x = 01 in 02 + x = x

= 01 + 02 by commutivity
= 02 i.e. take x = 02 in 01 + x = x

as desired.
b) Let 11, 12 ∈ R are such that 11 · x = x and 12 · x = x for all x ∈ R.

Then

11 = 12 · 11 i.e. take x = 11 in 12 · x = x

= 11 · 12 by commutivity
= 12 i.e. take x = 12 in 11 · x = x

as desired.
c) Let 0 be as in (F4) and suppose x ∈ R and y1, y2 ∈ R are such that

x+ y1 = 0 and x+ y2 = 0. Then

y1 = 0 + y1 by identity properties
= (x+ y2) + y1 by assumption
= x+ (y2 + y1) by associativity
= x+ (y1 + y2) by commutivity
= (x+ y1) + y2 by associativity
= 0 + y2 by assumption
= y2 by identity properties

as desired.
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1.2. WHAT ARE THE REAL NUMBERS? 13

d) Let 1 be as in (F4) and suppose x ∈ R \ {0} and y1, y2 ∈ R are such
that x · y1 = 1 and x · y2 = 1. Then

y1 = 1 · y1 by identity properties
= (x · y2) · y1 by assumption
= x · (y2 · y1) by associativity
= x · (y1 · y2) by commutivity
= (x · y1) · y2 by associativity
= 1 · y2 by assumption
= y2 by identity properties

as desired.
e) Let x ∈ R. To see that 0 · x = 0, notice that

0 · x = (0 + 0) · x by identity properties
= (0 · x) + (0 · x) by distributivity.

Hence

0 = (0 · x) + (−(0 · x)) by inverses
= ((0 · x) + (0 · x)) + (−(0 · x)) by the above equation
= (0 · x) + ((0 · x) + (−(0 · x))) by associativity
= (0 · x) + 0 by inverses
= 0 · x by identity properties

as desired.
f) Finally, let x ∈ R. To see that −x = (−1) · x, we recall by part c) that

−x is the unique element y ∈ R such that x+ y = 0. Thus, to complete the
proof, it suffices to show that x+ (−1) · x = 0. Notice that

x+ (−1) · x = 1 · x+ (−1) · x by identity properties
= (1 + (−1)) · x by distributivity
= 0 · x by inverses
= 0 by part (e)

as desired.

Although we want the real numbers have the above five properties, they
are not the only number system that has all five properties. Consequently,
we make the following definition.

Definition 1.2.2. A field is a set F together with two operations + and
· such that a + b ∈ F and a · b ∈ F for all a, b ∈ F, and + and · satisfy
(F1), (F2), (F3), (F4), and (F5) as written above (replacing R with F - note
Lemma 1.2.1 also automatically holds for F) with 0 ̸= 1.
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14 CHAPTER 1. THE REAL NUMBERS

Thus the simple way to say we want the real numbers to have the above
five properties is to say that we want the real numbers to be a field. However,
some of our other number systems may or may not be fields.

Example 1.2.3. The natural numbers and integers are not a field. One
way to see this is that the number 2 does not have a multiplicative inverse
inside the natural numbers nor integers. To see this, suppose k ∈ Z were
such that 2k = 1. If k ≤ 0, then 2x ≤ k ̸= 1. Otherwise, if k > 0 then
2k = k + k > k ≥ 1 so 2k ̸= 1.

Example 1.2.4. The rational numbers are a field. This is shown in Appendix
B.2.

Example 1.2.5. The complex numbers are a field. This should have been
shown in MATH 1200 assuming that the real numbers are a field.

Notice if one is given a field F and a subset E of F then E is a field with
the same operations of + and · provided

• (closed under + and ·) if a, b ∈ E, then a+ b ∈ E and a · b ∈ E,

• (contains the identities) 0, 1 ∈ E,

• (closed under additive inverses) if a ∈ E, then −a ∈ E, and

• (closed under multiplicative inverses) if a ∈ E and a ̸= 0 then a−1 ∈ E.

Indeed, if these properties hold for E, it is easy to see that (F1), (F2), (F3),
(F4), and (F5) hold because of these properties and because these field axioms
hold in F. In this case, we call E a subfield of F. There are many examples
of subfields of R with the following just being one example (assuming we
have made sense of

√
2 and shown

√
2 ∈ R).

Proposition 1.2.6. The set

Q[
√

2] := {x+ y
√

2 | x, y ∈ Q}

is a subfield of R such that Q ⊊ Q[
√

2] ⊊ R.

Proof. First, we claim that Q ⊊ Q[
√

2]. Clearly Q ⊆ Q[
√

2]. To see that
the inclusion is strict, we will reprove the fact that

√
2 /∈ Q (which student

surely saw in MATH 1200). To see this, suppose to the contrary that there
exists a, b ∈ Z with b ̸= 0 such that

√
2 = a

b
.

By removing any common divisors, we can assume without loss of generality
that a and b have no common divisors. Since b

√
2 = a, we have that 2b2 = a2.
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1.2. WHAT ARE THE REAL NUMBERS? 15

Therefore 2 divides a2. Since the square of an odd number is odd, we have
that a must be even and thus a = 2c for some c ∈ Z. Hence

2b2 = a2 = (2c)2 = 4c2

so that b2 = 2c2. Hence 2 divides b2. Since the square of an odd number is
odd, we have that b must be even. However, we have now shown that both
a and b are even which contradicts the fact that a and b have no common
divisors. Thus

√
2 /∈ Q so Q ⊊ Q[

√
2].

Assuming we know that Q ⊆ R and
√

2 ∈ R (see Proposition 1.3.10), we
have that Q[

√
2] ⊆ R. To see that the inclusion is strict, we will show that√

3 /∈ Q[
√

2] (the fact that
√

3 ∈ R is similar to Proposition 1.3.10). To see
that

√
3 /∈ Q[

√
2], suppose to the contrary that there exists x, y ∈ Q such

that
x+ y

√
2 =

√
3.

By squaring both sides, we obtain that

(x2 + 2y2) + 2xy
√

2 = 3.

If x ̸= 0 and y ̸= 0, then we have that

√
2 = 3 − x2 − 2y2

2xy .

However, since x, y ∈ Q, this implies
√

2 ∈ Q, which contradicts the fact
that

√
2 /∈ Q. Thus x = 0 or y = 0.

By a similar proof to that used to show that
√

2 /∈ Q (i.e. use divisibility
by 3 instead of divisibility by 2), we obtain

√
3 /∈ Q. If y = 0 then x =

√
3

which implies that
√

3 ∈ Q, which is a contradiction. Thus it must be the
case that x = 0 so that y

√
2 =

√
3.

Since y ∈ Q, there exists a, b ∈ Z with b ̸= 0 such that y = a
b . By

removing any common divisors, we can assume without loss of generality
that a and b have no common divisors. Thus

a
√

2 = b
√

3

so that 2a2 = 3b2. Since 2 does not divide 3, this implies that 2 divides b2.
Since the square of an odd number is odd, we have that b must be even and
thus b = 2c for some c ∈ Z. Hence

2a2 = 3b2 = 3(2c)2 = 12c2

so that a2 = 6c2. Hence 2 divides a2. Since the square of an odd number is
odd, we have that a must be even. However, we have now shown that both
a and b are even which contradicts the fact that a and b have no common
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16 CHAPTER 1. THE REAL NUMBERS

divisors. Therefore, we have a contradiction in all possible cases. Hence√
3 /∈ Q[

√
2] and thus Q[

√
2] ⊊ R.

Before moving on to the proof that Q[
√

2] is a field, we claim that if
x, y ∈ Q are such that x + y

√
2 = 0, then x = 0 and y = 0. To see thus,

notice if y ̸= 0 then √
2 = −x

y
∈ Q,

which is a contradiction. Hence y = 0. Therefore x + 0
√

2 = 0 and thus
x = 0 as desired.

To prove that Q[
√

2] is a field, we note by the comments before this
proposition that it suffices to show that

• If a, b ∈ Q[
√

2] then a+ b ∈ Q[
√

2] and a · b ∈ Q[
√

2],

• 0, 1 ∈ Q[
√

2],

• if a ∈ Q[
√

2] then −a ∈ Q[
√

2], and

• if a ∈ Q[
√

2] and a ̸= 0, then a−1 ∈ Q[
√

2].

Notice for all x1, x2, y1, y2 ∈ Q that

(x1 + y1
√

2) + (x2 + y2
√

2) = (x1 + x2) + (y1 + y2)
√

2 ∈ Q[
√

2]
(x1 + y1

√
2) · (x2 + y2

√
2) = (x1x2 + 2y1y2) + (x2y1 + x1y2)

√
2 ∈ Q[

√
2].

Moreover 0 = 0+0
√

2 ∈ Q[
√

2] and 1 = 1+0
√

2 ∈ Q[
√

2]. Clearly if x, y ∈ Q
then −(x+ y

√
2) = (−x) + (−y)

√
2 ∈ Q[

√
2].

Finally, suppose x, y ∈ Q are such that x + y
√

2 ̸= 0. Thus x ̸= 0 or
y ≠ 0. Moreover, we claim that x2 − 2y2 ̸= 0. To see this, suppose to the
contrary that x2 − 2y2 = 0. If y = 0 then x2 = 0 which implies that x = 0
contradicting the fact that x ̸= 0 or y ̸= 0. Thus y ̸= 0 so that

2 = x2

y2 .

This implies
√

2 = ±x
y ∈ Q which is a contradiction. Hence x2 − 2y2 ̸= 0.

By the above, we have that
x

x2 − 2y2 + −y
x2 − 2y2

√
2 ∈ Q[

√
2].

Moreover, since (
x

x2 − 2y2 + −y
x2 − 2y2

√
2
)

(x+ y
√

2) = 1

we have that
x

x2 − 2y2 + −y
x2 − 2y2

√
2 = (x+ y

√
2)−1 ∈ Q[

√
2]

as desired. Hence Q[
√

2] is a subfield of R.
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1.2. WHAT ARE THE REAL NUMBERS? 17

Although there are many subfields of R, there are also many fields that
look strikingly different from R that we need to consider if we are to rigorously
define R.

Example 1.2.7. Recall from MATH 1200 that if n ∈ N then

Zn = {[0], [1], . . . , [n− 1]}

denotes the integers modulo n. It is elementary to verify that (F1), (F2),
and (F3) hold and (F4) holds with [0] the zero and [1] the one. Moreover,
clearly −[k] = [−k] = [n− k] for all k ∈ {0, 1, . . . , n− 1}.

However, in general, it need not be true that for all [k] ∈ {[1], . . . , [n−1]}
there exists an [m] ∈ {[0], [1], . . . , [n − 1]} such that [k][m] = [1]; that is,
km ≡ 1 mod n. However, if n is prime, then the Euclidean algorithm does
imply that for all k ∈ {1, . . . , n − 1} there exists integers s and t so that
ks + nt = 1 and thus ks ≡ 1 mod n. Hence Zp for p prime satisfies (F5)
and thus is a field.

Notice that all the field properties are algebraic in nature (and can be
studied future in the Algebra sequence - MATH 3021, MATH 3022, and
MATH 4021). Are there other properties of R we can include to distinguish
R from other fields?

1.2.2 Partially Ordered Sets

One way we think of the real numbers beyond their algebraic properties
is that we think of them as a line of numbers. What this line implicitly
means is that we have a nice ordering of the real numbers; that is, given
two numbers, we have a notion which tells us which number is bigger. Thus,
in order to rigorously define the real numbers and distinguish it from other
fields, it is useful for us to examine mathematical notions of orderings.

The base mathematical notion of an ordering is formalized as follows.

Definition 1.2.8. Let X be a set. A relation ⪯ on the elements of X is
called a partial ordering if:

1. (reflexivity) a ⪯ a for all a ∈ X,

2. (antisymmetry) if a ⪯ b and b ⪯ a, then a = b for all a, b ∈ X, and

3. (transitivity) if a, b, c ∈ X are such that a ⪯ b and b ⪯ c, then a ⪯ c.

Example 1.2.9. Let ≤ be our usual notion of “less than or equal to” on R.
Then ≤ is a partial ordering on R. In fact, ≤ defines a partial ordering on
any subfield of R (e.g. Q).

It is useful to note that there are many other orderings that do not look
like ≤ does on R.
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18 CHAPTER 1. THE REAL NUMBERS

Example 1.2.10. Let X be a non-empty set and consider the power set of
X

P(X) := {Y | Y ⊆ X}.
We define a relation ⪯ on P(X) as follows: given A,B ∈ P(X),

A ⪯ B if and only if A ⊆ B.

It is not difficult to verify that ⪯ is a partial ordering on P(R).

The partial ordering in Example 1.2.10 is not as nice as our ordering on R.
To see this, for example consider X = Z and the sets A = {1} and B = {2}.
Then A ⪯̸ B and B ⪯̸ A; that is, we cannot use the partial ordering to
compare A and B. However, if x, y ∈ R, then either x ≤ y or y ≤ x. The
ability to compare any two elements is a property we would like to impose
on our partial orderings.

Definition 1.2.11. Let X be a set. A partial ordering ⪯ on X is called a
total ordering if for all x, y ∈ X we have x ⪯ y or y ⪯ x.

Example 1.2.12. Let ≤ be our usual notion of “less than or equal to” on
R. Then ≤ is a total ordering on R. In fact, ≤ defines a total ordering on
any subfield of R (e.g. Q).

Unfortunately for our goal of isolating R among all fields, it is easy to
place a total ordering on Zp.

Example 1.2.13. Let Zp be as in Example 1.2.7 with p prime. For k,m ∈
{0, . . . , n− 1}, define [k] ⪯ [m] if and only if k ≤ m. It is easy to verify that
⪯ is a total ordering on Zp.

As Zp has a total ordering, are there any other nice properties that ≤
on R has that we would like to impose? Indeed by combining the algebraic
notions of a field together with the notion of a total ordering, we can describe
properties ≤ on R has that the total ordering on Zp does not.

Definition 1.2.14. An ordered field is a pair (F,⪯) where F is a field and
⪯ is a total ordering on F such that the following two properties hold:

• (Additive Property) if x, y, z ∈ F are such that x ⪯ y, then x+z ⪯ y+z.

• (Multiplicative Property) if x, y ∈ F are such that 0 ⪯ x and 0 ⪯ y,
then 0 ⪯ x · y.

Example 1.2.15. The pair (R,≤) is an ordered field. In addition, if E is
any subfield of R (e.g. Q or Q[

√
2]), then (E,≤) is an ordered field.

It is possible to show that there are no total orderings on Zp nor C which
turns them into ordered fields. To show this, we first prove the following
property. While we are at it, we might as well prove that our usual operations
on inequalities hold.
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1.2. WHAT ARE THE REAL NUMBERS? 19

Lemma 1.2.16. If (F,⪯) is an ordered field, then 0 ⪯ 1.

Proof. As (F,⪯) is an ordered field, either 0 ⪯ 1 or 1 ⪯ 0.
Suppose for the sake of a contradiction that 1 ⪯ 0. Thus, by the Additive

Property of an ordered field,

0 = 1 + (−1) ⪯ 0 + (−1) = −1.

Hence, by the Multiplicative Property of an ordered field,

0 ⪯ (−1) · (−1) = 1.

However, since 1 ⪯ 0 and 0 ⪯ 1, it follows that 0 = 1 by antisymmetry. As
this contradicts property (F4) of a field, we have a contradiction. Hence it
must be the case that 0 ⪯ 1.

Lemma 1.2.17. If (F,⪯) is an ordered field and a ∈ F \ {0} is such that
0 ⪯ a, then 0 ⪯ a−1.

Proof. Let (F,⪯) be an ordered field and let a ∈ F \ {0} be such that 0 ⪯ a.
Since (F,⪯) is an ordered field and thus ⪯ is a total ordering, either 0 ⪯ a−1

or a−1 ⪯ 0.
Suppose for the sake of a contradiction that a−1 ⪯ 0. By the Additive

Property of an ordered field, this implies that

0 = a−1 + (−a−1) ≤ 0 + (−a−1) = −a−1.

Since a > 0, the Multiplicative Property of an ordered field, this implies that

0 ≤ (a)(−a−1) = (a)(−1)(a−1) = (a)(a−1)(−1) = (1)(−1) = −1.

However, the Additive Property of an ordered field then implies that

1 = 1 + 0 ≤ 1 + (−1) = 0.

However, since 0 ≤ 1 by Lemma 1.2.16, we obtain that 0 ≤ 1 and 1 ≤ 0 so
1 = 0 by anti-symmetry. As this contradicts the fact that 0 ̸= 1 in any field,
we have our contradiction. Hence the result follows.

Lemma 1.2.18. Let (F,⪯) be an ordered field. Then the following hold:

a) If a, b, c ∈ F are such that 0 ⪯ a and b ⪯ c, then a · b ⪯ a · c.

b) If a, b, c ∈ F are such that a ⪯ 0 and b ⪯ c, then a · c ⪯ a · b.

c) If a, b ∈ F \ {0} are such that 0 ⪯ a ⪯ b, then 0 ⪯ b−1 ⪯ a−1.
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Proof. a) Let a, b, c ∈ F be such that 0 ⪯ a and b ⪯ c. By the Additive
Property of an ordered field, we know that

0 = b+ (−b) ⪯ c+ (−b).

Hence the Multiplicative Property of an ordered field implies that

0 ⪯ a · (c+ (−b)) = (a · c) + (a · (−b)).

Note

a · (−b) = a · ((−1) · b) by Lemma 1.2.1 part f)
= (a · (−1)) · b by associativity
= ((−1) · a) · b by commutivity
= (−1) · (a · b) by associativity
= −(a · b) by Lemma 1.2.1 part f).

Thus the Additive Property of an ordered field implies that

a · b ⪯ ((a · c) + (a · (−b)))) + (a · b)
= (a · c) + ((a · (−b) + (a · b)) by associativity
= (a · c) + 0 by a · (−b) = −(a · b)
= a · c

as desired.
b) Let a, b, c ∈ F be such that a ⪯ 0 and b ⪯ c. By the Additive Property

of an ordered field, we know that

0 = (−a) + a ⪯ (−a) + 0 = −a.

Therefore, by part a) we know that (−a) · b ⪯ (−a) · c. By a similar
computation to that used in the proof of part a), we can show that

(−a) · b = −(a · b) and (−a) · c = −(a · c).

Thus −(a · b) ⪯ −(a · c). Thus the Additive Property of an ordered field
implies that

a · c = (a · c) + 0 by identity properties
= (a · c) + ((a · b) + (−(a · b))) by inverses
= ((a · c) + (a · b)) + (−(a · b)) by associativity
= (−(a · b)) + ((a · c) + (a · b)) by commutivity
⪯ (−(a · c)) + ((a · c) + (a · b)) by the Additive Property
= ((−(a · c)) + (a · c)) + (a · b) by associtivity
= ((a · c) + (−(a · c))) + (a · b) by commutivity
= 0 + (a · b) by inverses
= (a · b) + 0 by commutivity
= a · b

©For use through and only available at pskoufra.info.yorku.ca.



1.2. WHAT ARE THE REAL NUMBERS? 21

as desired.
c) Let a, b ∈ F \ {0} be such that 0 ⪯ a ≺ b. Thus 0 ⪯ a−1 and 0 ⪯ b−1

by Lemma 1.2.17. Since 0 ⪯ a−1 and a ⪯ b, part a) implies that

1 = a−1 · a ⪯ a−1 · b.

Therefore, since 0 ⪯ b−1 and 1 ⪯ a−1 · b, again part a) implies that

b−1 = b−1 · 1 ⪯ b−1 · (a−1 · b).

Since

b−1 · (a−1 · b) = b−1 · (b · a−1) by commutivity
= (b−1 · b) · a by associativity
= 1 · a by inverses
= a by identity properties,

the proof is complete.

Proposition 1.2.19. For all prime numbers p, there is no total ordering ⪯
on Zp such that (Zp,⪯) is an ordered field.

Proof. Suppose for the sake of a contradiction that there was a total ordering
⪯ on Zp so that (Zp,⪯) is an ordered field. For each n ∈ N let Pn be the
statement that [n − 1] ⪯ [n]. To show that Pn is true for all n ∈ N, we
will apply the Principle of Mathematical Induction. To do so, we must
demonstrate the two conditions in Theorem 1.1.7.

Base Case: To see that P1 is true, notice that [0] ⪯ [1] by Lemma 1.2.16.
Hence P1 is true.

Inductive Step: Assume that Pk is true; that is, assume [k− 1] ≺ [k]. To
see that Pk+1 is true, notice by the Additive Property of an ordered field
that

[k] = [k − 1] + [1] ⪯ [k] + [1] = [k + 1].

Hence Pk+1 is true.
Therefore, as we have demonstrated the base case and the inductive step,

the Principle of Mathematical Induction implies that [n − 1] ⪯ [n] for all
n ∈ N.

By the transitivity of a partial ordering, the fact that [n− 1] ⪯ [n] for
all n ∈ N implies that [1] ⪯ [p] = [0]. However, as [0] ⪯ [1], it follows
that [0] = [1] by antisymmetry. As 1 ̸≡ 0 mod p for p prime, we have a
contradiction. Hence the result follows.

Proposition 1.2.20. There is no total ordering ⪯ on C such that (C,⪯) is
an ordered field.
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Proof. Suppose for the sake of a contradiction that there was a total ordering
⪯ on C so that (C,⪯) is an ordered field. As ⪯ is a total ordering, either
0 ⪯ i or i ⪯ 0. We will show that both 0 ⪯ i and i ⪯ 0 lead to contradictions
thereby completing the proof.

Suppose that 0 ⪯ i. Hence the Multiplicative Property of an ordered
field implies that

0 = 0 · 0 ⪯ i · i = −1.

Thus the Additive Property of an ordered field implies that

1 = 1 + 0 ⪯ 1 + (−1) = 0.

However, as 0 ⪯ 1 by Lemma 1.2.16, it follows that 0 = 1 by antisymmetry
which is a clear contradiction.

Suppose that i ⪯ 0. Thus the Additive property of an ordered field
implies that

0 = i+ (−i) ⪯ 0 + (−i) = −i.

Hence the Multiplicative Property of an ordered field implies that

0 = 0 · 0 ⪯ (−i) · (−i) = −1.

Thus the Additive Property of an ordered field implies that

1 = 1 + 0 ⪯ 1 + (−1) = 0.

However, as 0 ⪯ 1 by Lemma 1.2.16, it follows that 0 = 1 by antisymmetry
which is a clear contradiction. Hence the result follows.

Thus by requiring that the real numbers are an ordered field, we have
distinguished the real numbers from Zp and from C by Propositions 1.2.19 and
1.2.20 respectively. However, every subfield of R (e.g. Q) will automatically
be an ordered field. What other properties do we need?

1.2.3 The Least Upper Bound Property

It turns out that there is only one final property we need to distinguish R
from all other fields! To introduce this property, we first define the following.

Definition 1.2.21. Let X be a set, let ⪯ be a partial ordering on X, and
let A ⊆ X. An element α ∈ X is said to be

• an upper bound for A if a ⪯ α for all a ∈ A.

• a lower bound for A if α ⪯ a for all a ∈ A.

Moreover, we say that

• A is bounded above if A has an upper bound,
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• A is bounded below if A has a lower bound, and

• A is bounded if A has both an upper and lower bound.

For the sake of examples, we will be focusing on R together with its usual
ordering ≤. To begin (and for much future use in this course), it is useful to
define the following sets.

Notation 1.2.22. For all a, b ∈ R with a ≤ b, we define

(a, b) := {x ∈ R | a < x < b}
[a, b) := {x ∈ R | a ≤ x < b}
(a, b] := {x ∈ R | a < x ≤ b}
[a, b] := {x ∈ R | a ≤ x ≤ b}.

For the first two, we permit ∞ to replace b, and, for the first and third, we
permit −∞ to replace a. Each of the above sets is called an interval with
(a, b) called an open interval and [a, b] called a closed interval.

Example 1.2.23. Let A = (0, 1). Then 1 is an upper bound of X and 0 is
a lower bound of A. Thus A is bounded. Furthermore, note that 5 is also an
upper bound of A and −7 is a lower bound of A. In particular, [1,∞) is the
set of all upper bounds for A and (−∞, 0] is the set of all lower bound for A.

Example 1.2.24. Let A = [0, 1]. Then 1 is an upper bound of A and 0 is a
lower bound of A. Thus A is bounded. Furthermore, note that 5 is also an
upper bound of A and −7 is a lower bound of A. In particular, [1,∞) is the
set of all upper bounds for A and (−∞, 0] is the set of all lower bound for A.

Example 1.2.25. Let A = ∅. Then every number in R is both an upper
and lower bound of A vacuously (that is, there are no elements of A to which
to check the defining property).

Example 1.2.26. Let A = N. Clearly A is bounded below by 1 and the set
of lower bounds for A is precisely (−∞, 1]. However, does N have an upper
bound? Our intuition says no so that N is not bounded above. However, how
do we prove this? What property of the R gives us that N is not bounded
above?

Example 1.2.27. Let A =
{

1
n | n ∈ N

}
. Clearly A is bounded above by

1 and the set of upper bounds for A is precisely [1,∞). Moreover, clearly
every element of (−∞, 0] is a lower bound for A. However, are there any
other lower bounds of A in R? How do we prove this?

Example 1.2.28. Let A = {q ∈ Q | q2 ≤ 2}. It is not difficult to see that
2 is an upper bound for A since if q ∈ Q and q ≥ 2 then q2 ≥ 4 and thus
q /∈ A. Moreover, we see that

√
2 is an upper bound for A in R. Is the set of

upper bounds of A in R exactly [
√

2,∞)?
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Example 1.2.28 is quite interesting when it comes to defining R. In
particular, instead of trying to add in

√
2 to Q via the desire to have√

22 = 2, we could instead think of
√

2 as the upper bound of the set A that
is smallest in size. We formalize this notion as follows.

Definition 1.2.29. Let X be a set, let ⪯ be a partial ordering on X, and
let A ⊆ X. An element α ∈ X is said to be the least upper bound of A if

• α is an upper bound of A, and

• if β is an upper bound of A, then α ⪯ β.

We write lub(A) in place of α, provided α exists.
Similarly, an element α ∈ X is said to be the greatest lower bound of A if

• α is a lower bound of A, and

• if β is a lower bound of A, then β ⪯ α.

We write glb(A) in place of α, provided α exists.

Remark 1.2.30. In the above definition, notice we have used the term ‘the
least upper bound’ instead of ‘a least upper bound’. This is because it is
elementary to show that a set with a least upper bound has exactly one least
upper bound. Indeed if α1 and α2 are both least upper bounds of a set A,
then α1 ≤ α2 and α2 ≤ α1 by the two defining properties of a least upper
bound, so α1 = α2.

Example 1.2.31. Let A = (0, 1). Then 0 = glb(A) and 1 = lub(A).

Example 1.2.32. Let A = [0, 1]. Then 0 = glb(A) and 1 = lub(A).

Example 1.2.33. Clearly a set that is not bounded above cannot have
a least upper bound and a set that is not bounded below cannot have a
greatest lower bound. Consequently ∅ ⊆ R has no least upper bound nor
greatest lower bound.

Remark 1.2.34. Let
A = {q ∈ Q | q2 ≤ 2}.

Using this set and the notion of least upper bounds, we can illustrates a
substantial difference between Q and R. Notice that A ⊆ Q. However, if we
only consider numbers in Q, then A does not have a least upper bound in Q
as if b ∈ Q and

√
2 < b, there is always an r ∈ Q such that

√
2 < r < b (see

Proposition 1.3.8). However, inside of R, our hope is that lub(A) =
√

2.

Based on the above, we can use the following property of R to distinguish
it from its subfields.

Axiom 1.2.35 (The Least Upper Bound Property). Every non-empty
subset of R that is bounded above has a least upper bound.

Note the term ‘non-empty’ must be included because of Example 1.2.33.
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1.2.4 Constructing the Real Numbers

Using the above, we can finally define the real numbers!

Definition 1.2.36. The real numbers, denoted R, are the unique ordered
field with the Least Upper Bound Property.

There are two parts to Definition 1.2.36: 1) that we can actually construct
an ordered fields with the Least Upper Bound Property, and 2) all such
constructions give the same number system (which we call R).

To construct the real numbers, one first must construct the rational
numbers (see Appendix B.2). Then there are many ways one can construct
the real numbers from the rational numbers.

One such way is to use sets of rational numbers similar to the one
discussed in Example 1.2.28. This is done in Appendix B.3. Another method
uses an equivalence relation on the set of Cauchy sequences (see Chapter 3)
of rational numbers. This approach is discussed in Appendix B.4.

Finally, one can show that every ordered field with the Least Upper
Bound Property can be identified with the real numbers “up to relabeling"
(i.e. for example, instead of calling

√
2 ‘the square root of two’, perhaps we

want to all it ‘Frodo’). This is done in Appendix B.5.

1.3 Some Properties of the Real Numbers

Instead of focusing on the unproven (unless you read the appendices) aspects
of the previous section, we will focus using the fact that R is an ordered
field with the Least Upper Bound Property to show that R has other useful
properties one would expect.

1.3.1 Comparing Least Upper and Greatest Lower Bounds

To begin, at the moment there is an an asymmetry in our definition of the
real number. Indeed we have said that the real numbers had the Least Upper
Bound Property, but we have completely ignored the concept of lower bounds.
Due to the ordered field structure of R, the following lemma shows that we
need not worry.

Lemma 1.3.1. Let A be a non-empty subset of R and let

B = −A = {−a | a ∈ A}.

Then α ∈ R is a lower bound of A if and only if −α is a upper bound of B.

©For use through and only available at pskoufra.info.yorku.ca.



26 CHAPTER 1. THE REAL NUMBERS

Proof. Notice that

α is a lower bound for A if and only if α ≤ a for all a ∈ A

if and only if −a ≤ −α for all a ∈ A

if and only if b ≤ −α for all b ∈ B

if and only if −α is an upper bound for B.

Consequently, the real numbers also have the Greatest Lower Bound
Property.

Proposition 1.3.2 (The Greatest Lower Bound Property). Every
non-empty subset of R that is bounded below has a greatest lower bound.

Proof. Let A be a non-empty subset of R that is bounded below. Let

B = −A = {−a | a ∈ A}.

Since A is bounded below, there exists an α ∈ R such that α is a lower bound
for A. Hence Lemma 1.3.1 implies that −α is an upper bound for B. Thus
B is bounded above.

Since B is bounded above, the Least Upper Bound Property implies
that B has a least upper bound. Let β = lub(B). We claim that −β is the
greatest lower bound of A.

First, since β is an upper bound for B, Lemma 1.3.1 implies that −β
is a lower bound of A. To see that −β is a lower bound of A, let α be a
lower bound of A. Thus −α is an upper bound of B by Lemma 1.3.1. Since
β is the least upper bound for B, we obtain that β ≤ −α. Hence α ≤ −β.
Therefore, as α was an arbitrary lower bound for A, −β is the greatest lower
bound of A. Hence the result follows.

In fact, combining Lemma 1.3.1 and the proof of Proposition 1.3.2, we
immediately have the following.

Corollary 1.3.3. Let A be a set and let

−A = {−a | a ∈ A}.

Then A is bounded below if and only if −A is bounded above. Moreover

glb(A) = −lub(−A).

Similar to how the least upper bound and greatest lower bounds behave
well with respect to negation, the following shows they behave well with
respect to multiplication.
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Lemma 1.3.4. Let c ∈ R be such that c > 0. If A is a non-empty subset of
R that is bounded above, then

cA = {ca | a ∈ A}

is bounded above. Moreover lub(cA) = club(A).
Similarly, if A is a non-empty subset of R that is bounded below, then

cA is bounded below and glb(cA) = cglb(A).

Proof. We will only prove the result for when A is bounded above as the
proof when A is bounded below is similar (or follows from the connection
between least upper bounds and greatest lower bounds in Corollary 1.3.3).

Assume A is non-empty and bounded above. Therefore cA is non-empty
and α = lub(A) exists. We claim that cα is an upper bound for cA. To see
this, let b ∈ cA be arbitrary. Hence, by the definition of cA there exists an
a ∈ A such that b = ca. Since α is an upper bound for A and since a ∈ A,
we have that a ≤ α. Therefore, since c > 0, we have that

b = ca ≤ cα.

Therefore, since b ∈ cA was arbitrary, cα is an upper bound for cA. Hence
cA is bounded above. Thus lub(cA) exists and

lub(cA) ≤ cα = club(A).

To prove the other inequality, we can interchange the roles of A and cA
above. To begin, note that 1

c > 0 and

A = 1
c

(cA).

Therefore, by the above proof using cA in place of A and 1
c in place of c, we

obtain that
lub(A) = lub

(1
c

(cA)
)

≤ 1
c

lub(cA).

Hence, since c > 0, we obtain that

club(A) ≤ lub(cA).

Therefore, by combining the two inequalities, we obtain that lub(cA) =
club(A) as desired.

Furthermore, the least upper bounds and greatest lower bounds play well
with respect to translation.

Lemma 1.3.5. Let c ∈ R. If A is a non-empty subset of R that is bounded
above, then

c+A = {c+ a | a ∈ A}
is bounded above. Moreover lub(c+A) = c+ lub(A).

Similarly, if A is a non-empty subset of R that is bounded below, then
c+A is bounded below and glb(c+A) = c+ glb(A).
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Proof. We will only prove the result for when A is bounded above as the
proof when A is bounded below is similar (or follows from the connection
between least upper bounds and greatest lower bounds in Corollary 1.3.3).

Assume A is non-empty and bounded above. Therefore c+A is non-empty
and α = lub(A) exists. We claim that c+α is an upper bound for c+A. To
see this, let b ∈ c+A be arbitrary. Hence, by the definition of c+A there
exists an a ∈ A such that b = c+ a. Since α is an upper bound for A and
since a ∈ A, we have that a ≤ α. Therefore we have that

b = c+ a ≤ c+ α.

Therefore, since b ∈ c+A was arbitrary, c+ α is an upper bound for c+A.
Hence c+A is bounded above. Thus lub(c+A) exists and

lub(c+A) ≤ c+ α = c+ lub(A).

To prove the other inequality, we can interchange the roles of A and c+A
above. To begin, note that −c ∈ R and

A = (−c) + (c+A).

Therefore, by the above proof using c+A in place of A and −c in place of c,
we obtain that

lub(A) = lub ((−c) + (c+A)) ≤ (−c) + lub(c+A).

Hence, we obtain that

c+ lub(A) ≤ lub(c+A).

Therefore, by combining the two inequalities, we obtain that lub(c+A) =
c+ lub(A) as desired.

1.3.2 Density of Q in R

Using the Least Upper Bound Property (or Greatest Lower Bound Property),
we can answer some nagging questions posed in Examples 1.2.26 and 1.2.27.
Indeed we can prove two results (both known as the Archimedean Property
as they are logically equivalent) with the first showing that N is not bounded
above in R and the second which shows that no number ϵ > 0 is a lower
bound of { 1

n | n ∈ N}.

Theorem 1.3.6 (The Archimedean Property - I). The natural numbers
are not bounded above in R.
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Proof. Suppose for the sake of a contradiction that N is bounded above in
R. Thus the Least Upper Bound Property implies that N must has a least
upper bound. Let α ∈ R be the least upper bound of N.

Since α is an upper bound of N, we know that n ≤ α for all n ∈ N. Hence
m+ 1 ≤ α for all m ∈ N and thus m ≤ α− 1 for all m ∈ N. Thus α− 1 is
an upper bound for N. However, since α− 1 ≤ α, this contradicts the fact
that α is the least upper bound of N. Hence the result follows.

Theorem 1.3.7 (The Archimedean Property - II). For all ϵ > 0 there
exists an N ∈ N such that 0 < 1

N < ϵ.

Proof. Fix ϵ > 0. Thus 1
ϵ > 0. Since N is not bounded above, 1

ϵ is a not
an upper bound for N. Thus there exists an N ∈ N such that 0 < 1

ϵ < N .
Hence 0 < 1

N < ϵ as desired.

Using the Archimedean Property, we can show that every open interval
contains a rational number; that is, for all a, b ∈ R with a < b there exists
a q ∈ Q such that q ∈ (a, b). This is known as the density of the rational
numbers in the real numbers (a concept that can be visited in Chapter 3).

Proposition 1.3.8 (Density of Q in R). For all a, b ∈ R with a < b, there
exists a q ∈ Q such that a < q < b.

Proof. Fix a, b ∈ R with a < b. We will divide the proof into two cases.
Case 1: a > 0. In this case, let ϵ = b − a > 0. By the Archimedean

Property (Theorem 1.3.7) there exists an N ∈ N such that 0 < 1
N < ϵ.

Let
X =

{
m ∈ N

∣∣∣∣ mN > a

}
.

Recall that the natural numbers are not bounded above in R by the Archimedean
Property (Theorem 1.3.6). Therefore there exists an n ∈ N such that a < n.
Hence nN

N = n > a so nN ∈ X and thus X ̸= ∅. Therefore the Well-Ordering
Principle (Theorem 1.1.10) implies that X has a least element.

Let k be the least element of X. Hence a < k
N and if m ∈ N is such that

m < k, then m
N ≤ a. In particular, since a > 0, we have that k−1

N ≤ a < k
N

(i.e. we need a > 0 in the case k = 1).
We claim that k

N < b. To see this, note that

k − 1 ≤ Na

= N(b− ϵ)
= Nb−Nϵ

< Nb− 1

since 1 < Nϵ. Therefore k < Nb so k
N < b as desired.

Hence a < k
N < b which completes the proof of this case since k−1

N ∈ Q.
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Case 2: a ≤ 0. Recall that the natural numbers are not bounded above
in R by the Archimedean Property (Theorem 1.3.6). Therefore there exists
an n ∈ N such that −a < n. Hence 0 < a+n < b+n. Therefore, by the first
case of this proof, there exists a q ∈ Q such that a+ n < q < b+ n. Hence
a < q − n < b. Therefore, since q, n ∈ Q implies q − n ∈ Q, the proof of this
case is complete.

Therefore, since the above two cases cover all possible cases, the proof is
complete.

Of course, the irrational numbers are also ‘dense’ in the real numbers.

Proposition 1.3.9 (Density of R \ Q in R). For all a, b ∈ R with a < b,
there exists a r ∈ R \ Q such that a < r < b.

Proof. Fix a, b ∈ R with a < b. Thus a −
√

2 < b −
√

2. By the density of
the rational numbers, there exists a q ∈ Q such that a−

√
2 < q < b−

√
2.

Hence a < q +
√

2 < b.
To complete the proof, it suffices to show that q +

√
2 ∈ R \ Q. To see

this, suppose for the sake of a contradiction that q +
√

2 ∈ Q. Hence there
exists a q′ ∈ Q such that q +

√
2 = q′. Hence

√
2 = q − q′ ∈ Q. Therefore,

since
√

2 ∈ R \ Q, we have a contradiction. Hence q +
√

2 ∈ R \ Q and
a < q +

√
2 < b as desired.

1.3.3 Existence of Square Roots

Using the definition of the real numbers, it is possible to show that
√

2 is
a real number. In fact, the following proof can be considered are first true
‘real analysis’ proof of the course! In particular, the ideas and techniques
used in this proof are a preview of the type of arguments will be used again
and again throughout the course.

Proposition 1.3.10. There exists a unique α ∈ R such that α > 0 and
α2 = 2 (i.e. α is what we call

√
2).

Proof. First we will show that such an α exists.
Let

A = {x ∈ R | x2 < 2}.

Notice if x ∈ R and x ≥ 2 then x2 ≥ 4 and thus x /∈ A. Hence 2 is an upper
bound for A so A is bounded above. Therefore, by the Least Upper Bound
Property, A has a least upper bound.

Let α be the least upper bound of A. We expect that α is the droid... I
mean number we are looking for. To see this, first note since 1 ∈ A and α is
an upper bound of A that α ≥ 1. We claim that α2 = 2. To see this, we will
show that α2 < 2 and α2 > 2 both lead to contradictions.
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Suppose for the sake of a contradiction that α2 < 2. We will show that
this contradicts the fact that α is an upper bound of A by finding an x1 ∈ R
such that x1 > α yet x2

1 < 2 so that x1 ∈ A. When reading this proof, it is
far more helpful to look at how we define x1, look at the computation, and
then go back and pick things correctly to make the calculations work.

Let

ϵ1 = 2 − α2

2α+ 1 .

Note ϵ1 is well-defined since α ≥ 1 so that 2α + 1 > 0. Moreover, since
2 − α2 > 0, we see that ϵ1 > 0. Hence the Archimedean Property (Theorem
1.3.7) implies there exists an N1 ∈ N such that 0 < 1

N1
< ϵ1.

Let x1 = α+ 1
N1

. Clearly x1 > α. Moreover

x2
1 =

(
α+ 1

N1

)2

= α2 + 2α 1
N1

+ 1
N2

1

≤ α2 + 2α 1
N1

+ 1
N1

since 1
N2

1
≤ 1
N1

= α2 + (2α+ 1) 1
N1

< α2 + (2α+ 1)ϵ1 since 1
N1

< ϵ1

= α2 + (2α+ 1)
(

2 − α2

2α+ 1

)
= α2 + (2 − α2) = 2.

Hence x1 ∈ A. Since x1 > α and x1 ∈ A, we have a contradiction to the fact
that α was an upper bound of A. Hence α2 ≥ 2.

Suppose for the sake of a contradiction that α2 > 2. We will show that
this contradicts the fact that α is the least upper bound of A by finding an
x2 ∈ R such that x2 < α yet x2 is an upper bound of A. Again, it is far
more helpful to look at how we define x2, look at the computation, and then
go back and pick things correctly to make the calculations work.

Let

ϵ2 = α2 − 2
2α .

Note ϵ2 is well-defined since α ≥ 1 so that 2α > 0. Moreover, since α2 −2 > 0,
we see that ϵ2 > 0. Hence the Archimedean Property (Theorem 1.3.7) implies
there exists an N2 ∈ N such that 0 < 1

N2
< ϵ2.

Let x2 = α− 1
N2

. Clearly x2 < α. Moreover, since α ≥ 1 and 1
N2

≤ 1, we
have that x2 ≥ 0.
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Notice that

x2
2 =

(
α− 1

N2

)2

= α2 − 2α 1
N2

+ 1
N2

2

> α2 − 2α 1
N2

since 1
N2

2
> 0

> α2 − 2αϵ2 since 1
N2

< ϵ2

= α2 − 2α
(
α2 − 2

2α

)
= α2 − (α2 − 2) = 2.

We claim that x2
2 > 2 implies that x2 is an upper bound of A. To see this,

suppose to the contrary that x2 is not an upper bound of A. Thus there
must exists an x ∈ A such that x2 < x. However, this implies since x2 ≥ 0
that x2

2 < x2 < 2. Since this contradicts the fact that x2
2 > 2, we have our

contradiction. Hence x2 is an upper bound of A.
Since x2 is an upper bound of A and since x2 < α, α is not the least

upper bound of A. Hence we have a contradiction.
Since α2 < 2 and α2 > 2 have both lead to contradictions, we have that

α2 = 2 as desired.
Finally, to see that α is the unique element of R with the desired properties,

assume β ∈ R is such that β > 0 and β2 = 2. To see that β = α, we will
show that β < α and β > α both lead to contradictions.

Suppose for the sake of a contradiction that β < α. Then 0 < β < α and
thus 2 = β2 < α2 = 2, which is absurd. Hence we have a contradiction in
this case.

Similarly, suppose for the sake of a contradiction that β > α. Then
β > α > 0 and thus 2 = β2 > α2 = 2, which is absurd. Hence we have a
contradiction in this case.

Since β < α and β > α have both lead to contradictions, we have that
β = α. Hence α is the unique element of R such that α > 0 and α2 = 2.

Of course, one could repeat the proof of Proposition 1.3.10 to show that√
3,

√
5,

√
7, etc. all are real numbers. Furthermore, one can repeat the same

idea using the Binomial Theorem to show that nth roots exist. To show the
existence such elements (and more elements) in the real numbers, it is prefer
to take the approach that x 7→ n

√
x is the inverse of x 7→ xn although with

the theory of Chapter 5 (see Corollary 4.5.5).
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1.3.4 The Absolute Value Function

To complete this section, it is useful throughout the course to consider the
following function.

Definition 1.3.11. Given x ∈ R, the absolute value of x is

|x| =
{
x if x ≥ 0
−x if x < 0 .

The absolute value has many important properties and uses in analysis.
Notice that |x| represents the distance from x to 0. Consequently, we can
also see that |x− y| represents the distance from x to y for all x, y ∈ R. In
particular, the absolute value function has many properties one would expect
of a ‘distance function’.

Lemma 1.3.12. The absolute value function has the following properties:

a) |x| = 0 if and only if x = 0.

b) For x, y ∈ R, the distance x to y in R is zero if and only if x = y.

c) | − x| = |x| for all x ∈ R.

d) |xy| = |x||y| for all x, y ∈ R.

e) For all x, y ∈ R, the distance from x to y is equal to the distance from y
to x.

Proof. a) This follows immediately from the definition of the absolute value.
b) The distance from x to y is zero if and only if |x− y| = 0 if and only

if x− y = 0 (by part a)) if and only if x = y as desired.
c) Note if x = 0 then | − x| = | − 0| = |0| = |x|. If x > 0 then −x < 0 so

| −x| = −(−x) = x = |x|. Finally, if x < 0 then −x > 0 so | −x| = −x = |x|.
Hence the result follows.

d) Consider the following four cases.
Case 1: x, y ≥ 0. In this case xy ≥ 0 so |xy| = xy = |x||y|.
Case 2: x, y < 0. In this case xy > 0 so that |xy| = xy = (−1)2xy =

(−x)(−y) = |x||y|.
Case 3: x ≥ 0 and y < 0. In this case xy ≤ 0 so that |xy| = −xy =

x(−y) = |x||y|.
Case 4: x < 0 and y ≥ 0. In this case xy ≤ 0 so |xy| = −xy = (−x)y =

|x||y|.
Thus, as these four cases cover all possible cases, the result is true.
e) Notice for all x, y ∈ R that |y−x| = |(−1)(x−y)| = |−1||x−y| = |x−y|.

Hence the distance from x to y is equal to the distance from y to x.
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Finally, there is one more property our ‘distance function’ should have.

Proposition 1.3.13 (The Triangle Inequality). Let x, y, z ∈ R. Then

|x− y| ≤ |x− z| + |z − y|.

That is, the distance from x to y is no more than the sum of the distance
from x to z and the distance from z to y.

x

y

z

Proof. If x = y, the result is trivial to verify. Consequently we will assume
x < y (if y < x, we can relabel y with x and x with y to run the following
proof). We have three cases to consider.

z x y

Case 1
x y z

Case 2
x z y

Case 3

Case 1. z < x: In this case, notice

|x− y| ≤ |z − y| = 0 + |z − y| ≤ |x− z| + |z − y|

as desired.
Case 2. y < z: In this case, notice

|x− y| ≤ |x− z| = |x− z| + 0 ≤ |x− z| + |z − y|

as desired.
Case 3. x ≤ z ≤ y: In this case, we easily see that

|x− y| = |x− z| + |z − y|.

Hence, as we have exhausted all cases (up to flipping x and y), the proof
is complete.

The Triangle Inequality is an incredibly useful tool in analysis. Further-
more, there are many other forms of the Triangle Inequality. For example,
letting x = a, y = −b, and z = 0 in the inequality in Proposition 1.3.13
produces

|a+ b| ≤ |a| + |b| for all a, b ∈ R.
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In addition, if we let x = a, y = 0, and z = b, we obtain

|a| ≤ |a− b| + |b| so |a| − |b| ≤ |a− b|,

and if we let x = b, y = 0, and z = a, we obtain

|b| ≤ |a− b| + |a| so − (|a| − |b|) ≤ |a− b|.

Consequently, we obtain that

||a| − |b|| ≤ |a− b| for all a, b ∈ R.

All of these inequalities will be considered the Triangle Inequality and will
be of incredible use.
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Chapter 2

Limits of Sequences

With our understanding of the real numbers, we can move onto studying
more mathematical topics in analysis. The whole premise of mathematical
analysis is the ability to take limits; that is, the ability to approximation
one object with an collection of other objects. In this section, we will study
the formal definition of a limit of a sequence of real numbers. Subsequently,
we will develop several tools to determine when sequences of real numbers
have a limit and several tools to help compute the limit. By understanding
the formal definitions, properties, and results in this section, one has all the
basic tools necessary to comprehend more advanced topics in analysis.

2.1 The Formal Definition of a Limit of a Sequence

2.1.1 Sequences

Before discussing limits, let us provide a precise mathematical definition of a
sequence.

Definition 2.1.1. A sequence of real numbers is an ordered list of real
numbers indexed by the natural numbers.

Notation 2.1.2. If we have ak ∈ R for all k ∈ N, we will use (an)n≥1 or
(a1, a2, a3, . . .) to denote a sequences whose first element is a1, whose second
element is a2, etc.

Example 2.1.3. If c ∈ R and an = c for all n ∈ N, then the sequence
(an)n≥1 is the constant sequence with value c.

Example 2.1.4. For all n ∈ N, let an = 1
n . Then (an)n≥1 is the sequence

(1, 1
2 ,

1
3 ,

1
4 , . . .).

Example 2.1.5. For all n ∈ N, let an = (−1)n+1. Then (an)n≥1 is the
sequence (1,−1, 1,−1, 1,−1, . . .).

37
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Example 2.1.6. Let a1 = 1 and a2 = 1. For n ∈ N with n ≥ 3, let
an = an−1 + an−2. Then (an)n≥1 is the sequence

(1, 1, 2, 3, 5, 8, 13, . . .).

This sequence is known as the Fibonacci sequence and is an example of a
recursively defined sequence (a sequence where subsequent terms are defined
using the previous terms under a fixed pattern).

2.1.2 Definition of a Limit

With the above definition of a sequence, we turn to providing a precise
definition of a limit of a sequence of real numbers. If we consider the
sequence ( 1

n)n≥1, we intuitively know that as n gets larger and larger, the
sequence gets closer and closer to zero. Thus we would want to use this to
say that 0 is the limit of ( 1

n)n≥1. This may lead us to take the following as
our definition of a limit:

“A sequence (an)n≥1 has limit L (as n tends to infinity)
if as n gets larger and larger, an gets closer to L.”

However, the fault in the above idea of a limit is that ( 1
n)n≥1 also gets

‘closer and closer’ to −1. We prefer 0 over −1 as the limit of ( 1
n)n≥1 since 1

n
better and better approximates 0 whereas we intuitively know that ( 1

n)n≥1
cannot approximate −1. This leads us to the following better idea of what a
limit is:

Heuristic Definition. A sequence (an)n≥1 has limit L if the terms of
(an)n≥1 are eventually all approximately L.

Using the above as a guideline, we obtain a rigorous, mathematical
definition of the limit of a sequence of real numbers.

Definition 2.1.7. Let (an)n≥1 be a sequence of real numbers. A number
L ∈ R is said to be the limit of (an)n≥1 if for every ϵ > 0 there exists an
N ∈ N (which depends on ϵ) such that |an − L| < ϵ for all n ≥ N .

If (an)n≥1 has limit L, we say that (an)n≥1 converges to L and write
L = limn→∞ an. Otherwise, if L is not a limit of (an)n≥1 for all L ∈ R, we
say that (an)n≥1 diverges.

Example 2.1.8. Consider the constant sequence (an)n≥1 where an = c for
all n ∈ N and some c ∈ R. Notice for all ϵ > 0, |an − c| = 0 < ϵ for all n ∈ N.
Hence (an)n≥1 converges to c.

Example 2.1.9. To see that limn→∞
1
n = 0 using the definition of the limit,

let ϵ > 0 be arbitrary. Then by the Archimedean Property (Theorem 1.3.7)
there exists an N ∈ N such that 0 < 1

N < ϵ. Therefore, for all n ≥ N
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we obtain that 0 < 1
n ≤ 1

N < ϵ. Hence
∣∣∣ 1

n − 0
∣∣∣ < ϵ for all n ≥ N . Hence

limn→∞
1
n = 0. Note that ( 1

n)n≥1 has limit zero, but no term in the sequence
is zero.

Remark 2.1.10. By negating Definition 2.1.7, we see that a sequence
(an)n≥1 does not converge to L if there is an ϵ > 0 (depending on the L)
such that for every N ∈ N there is an n ≥ N such that |an − L| ≥ ϵ.

Hence a sequence (an)n≥1 diverges if for all L ∈ R there is an ϵ > 0
(depending on the L) such that for every N ∈ N there is an n ≥ N such that
|an − L| ≥ ϵ.

Example 2.1.11. Using Remark 2.1.10, we can show that ((−1)n+1)n≥1
does not converge. Indeed let L ∈ R be arbitrary and let ϵ = 1

2 . Suppose
there exists an N ∈ N such that |(−1)n+1 − L| < ϵ for all n ≥ N . Since
there exists an odd number n greater than N , we obtain that |1 − L| < ϵ.
Therefore, since ϵ = 1

2 , we obtain that 1
2 < L < 3

2 . Similarly, since there
exists an even number n greater than N , we obtain that | − 1 − L| < ϵ.
Therefore, since ϵ = 1

2 , we obtain that −3
2 < L < −1

2 . Hence L < −1
2 and

L > 1
2 , which is absurd. Hence we have a contradiction so L is not the limit

of ((−1)n+1)n≥1. Therefore, since L ∈ R was arbitrary, ((−1)n+1)n≥1 does
not converge.

2.1.3 Uniqueness of the Limit

Notice in the definition of ‘the’ limit of a sequence, we used ‘the’ instead of ‘a’;
that is, how do we know that there is at most one limit to a sequence? The
following justifies the use of the word ‘the’ and demonstrates one important
proof technique when dealing with limits.

Proposition 2.1.12. Let (an)n≥1 be a sequence of real numbers. If L and
K are limits of (an)n≥1, then L = K.

Proof. We will provide two different (but basically the same) proofs of this
fact.

For the first, we will provide a direct proof. Assume L and K are limits
of (an)n≥1. To see that L = K, let ϵ > 0. Since L is a limit of (an)n≥1, we
know by the definition of a limit that there exists an N1 ∈ N such that if
n ≥ N1 then |an − L| < ϵ. Similarly, since K is a limit of (an)n≥1, we know
by the definition of a limit that there exists an N2 ∈ N such that if n ≥ N2
then |an −K| < ϵ.

Let N = max{N1, N2}. By the above paragraph, we have that |aN −L| <
ϵ and |aN −K| < ϵ. Hence by the Triangle Inequality

|L−K| ≤ |L− aN | + |aN −K| < ϵ+ ϵ = 2ϵ.

Therefore, we have obtained that |L−K| < 2ϵ for all ϵ > 0.
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We claim that this implies |L − K| = 0 thereby completing the proof.
To see this, we claim that if x ∈ R and 0 ≤ x < 2ϵ for all ϵ > 0, then
x = 0. To see this, suppose to the contrary that x ∈ R, 0 ≤ x < 2ϵ for all
ϵ > 0, but x ̸= 0. Thus x > 0. Therefore if we take ϵ = 1

2x, then ϵ > 0 and
2ϵ = x. Since this contradicts the fact that x < 2ϵ for all ϵ > 0, we have our
contradiction. Hence |L−K| = 0 so L = K as desired.

For the second, we will provide a proof by contradiction. Suppose for the
sake of a contradiction that L ̸= K. Let ϵ = |L−K|

2 . Since L ̸= K, we know
that ϵ > 0.

Since L is a limit of (an)n≥1, we know by the definition of a limit that
there exists an N1 ∈ N such that if n ≥ N1 then |an − L| < ϵ. Similarly,
since K is a limit of (an)n≥1, we know by the definition of a limit that there
exists an N2 ∈ N such that if n ≥ N2 then |an −K| < ϵ.

Let N = max{N1, N2}. By the above paragraph, we have that |aN −L| <
ϵ and |aN −K| < ϵ. Hence by the Triangle Inequality

|L−K| ≤ |L− aN | + |aN −K| < ϵ+ ϵ = 2ϵ = |L−K|

which is absurd (i.e. x < x is false for all x ∈ R). Thus we have obtained a
contradiction so it must be the case that L = K.

Remark 2.1.13. It should be noted the idea of taking N = max{N1, N2}
will be quite prevalent in analysis proofs. This is due to the fact that if one
has a condition that holds for n ≥ N1 and another condition that holds for
n ≥ N2, then one can ensure both conditions hold for all n ≥ max{N1, N2}.
Note the same holds for any finite number N1, . . . , Nk, but need not hold for
an infinite number N1, N2, . . . since there need not be any natural numbers
n such that n ≥ Nk for all k ∈ N.

2.1.4 Equivalent Formulations of the Limit

To conclude this section, we note the following that demonstrates that
|an −L| < ϵ may be replaced with |an −L| ≤ ϵ in the definition of the limit of
a sequence. This can be useful on occasion and also establishes an important
idea in handling limits: ϵ is simply a constant and may be modified. In
particular, the proof of the following simply comes down to dealing with
quantifies.

Proposition 2.1.14. Let (an)n≥1 be a sequence of real numbers, let k > 0,
and let L ∈ R. Then (an)n≥1 converges to L if and only if for all ϵ > 0 there
exists an N ∈ N such that |an − L| ≤ kϵ for all n ≥ N .

Proof. Assume that (an)n≥1 converges to L. To see the desired result, let
ϵ > 0 be arbitrary. Let ϵ0 = kϵ. Since ϵ > 0 and k > 0, ϵ0 > 0. Hence, by
the definition of the limit, there exists an N ∈ N such that |an − L| < ϵ0 for
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all n ≥ N . Thus |an − L| ≤ ϵ0 = kϵ for all n ≥ N . Therefore, as ϵ > 0 was
arbitrary, one direction of the proof is complete.

For the other direction, assume that (an)n≥1 and L have the property
listed in the statement of this proposition. To see that (an)n≥1 converges
to L, let ϵ > 0 be arbitrary. Let ϵ0 = ϵ

2k . Since ϵ > 0 and k > 0, we
know that ϵ0 > 0. Therefore, by the assumptions of this direction imply
that there exists an N ∈ N such that |an − L| ≤ ϵ0 for all n ≥ N . Hence
|an − L| ≤ ϵ0 < 2ϵ0 = kϵ for all n ≥ N . As ϵ > 0 was arbitrary, (an)n≥1
converges to L by the definition of the limit.

Remark 2.1.15. It is very important in Proposition 2.1.14 to note that the
constant k CANNOT depend on n nor ϵ; k must be a fixed positive real
number that exists independently of n and ϵ. Indeed, if we could choose
k after we chose ϵ, we could have chose k = 1

ϵ and thus the condition
|an − L| ≤ kϵ would always equate to |an − L| ≤ 1, which is very different
from the definition of a limit.

2.2 The Monotone Convergence Theorem

With a formal definition of a limit complete, there are two main natural
questions for us to ask: “Are there methods for determining certain sequences
converge without appealing to the definition?” and “How can we find the
limits of sequences without always appealing to the definition?” These two
goals are intertwined. Let’s begin with some elementary results related to
the first question.

Consider the question, “Does the sequence (n)n≥1 converge?” Intuitively
the answer is no since this sequence does not approximate a number. In
particular, the Archimedean Property (Theorem 1.3.6) implies that N is not
bounded. This is the true reason (n)n≥1 does not converge. To make this
rigorous, consider the following.

Definition 2.2.1. A sequence (an)n≥1 of real numbers is said to be bounded,
sequence if the set {an | n ∈ N} is bounded.

Before we show that convergent sequences must be bounded, we note the
following useful equivalent characterization of boundedness that we will use
quite often.

Lemma 2.2.2. Let (an)n≥1 be a sequence of real numbers. Then (an)n≥1 is
bounded if and only if there exists an M ∈ R such that M > 0 and |an| ≤ M
for all n ∈ N.

Proof. First, assume that (an)n≥1 is bounded. Hence, by the definition of a
bounded sequence, {an | n ∈ N} has an upper and lower bound. Therefore
there exists m1,m2 ∈ R such that m1 ≤ an ≤ m2 for all n ∈ N. Hence,
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by taking M = max{|m1|, |m2|, 1}, we obtain that M ∈ R, M > 0, and
−M ≤ m1 ≤ an ≤ m2 ≤ M for all n ∈ N. Therefore |an| ≤ M for all n ∈ N
as desired.

Conversely, assume M ∈ R is such that M > 0 and |an| ≤ M for all n ∈ N.
Then −M ≤ an ≤ M for all n ∈ N. Therefore {an | n ∈ N} is bounded
below by −M and bounded above by M . Hence (an)n≥1 is bounded.

Proposition 2.2.3. Every convergent sequence is bounded.

Proof. Let (an)n≥1 be a sequence of real numbers that converge to a number
L ∈ R. Let ϵ = 1. By the definition of a limit, there exists an N ∈ N such
that |an − L| ≤ ϵ = 1 for all n ≥ N . Hence |an| ≤ |L| + 1 for all n ≥ N by
the Triangle Inequality.

Let M = max{|a1|, |a2|, . . . , |aN |, |L| + 1}. Clearly if n ≤ N then |an| ≤
M whereas if n ≥ N then |an| ≤ L+ 1 ≤ M by the above paragraph. Hence
−M ≤ an ≤ M for all n ∈ N so (an)n≥1 is bounded.

Remark 2.2.4. The above shows us that boundness is a requirement for
a sequence to converge. However, a bounded sequence need not converge.
Indeed Example 2.1.11 shows that the sequence ((−1)n+1)n≥1 (which is
clearly bounded) does not converge.

Luckily, there is a simple condition one can combine with the notion of
boundedness to guarantee that certain sequences converge.

Definition 2.2.5. A sequence (an)n≥1 of real numbers is said to be

• increasing if an < an+1 for all n ∈ N,

• non-decreasing if an ≤ an+1 for all n ∈ N,

• decreasing if an > an+1 for all n ∈ N,

• non-increasing if an ≥ an+1 for all n ∈ N, and

• monotone if (an)n≥1 is non-decreasing or non-increasing.

The following result shows a sequence being monotone and bounded
is enough to guarantee the sequence converges. Indeed, if a sequence is
non-decreasing and bounded, we expect the limit to be the least upper bound
of the terms in the sequence by the definition of the least upper bound. Let’s
see why this is the case.

Theorem 2.2.6 (Monotone Convergence Theorem). A monotone
sequence (an)n≥1 of real numbers converges if and only if (an)n≥1 is bounded.
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Proof. By Proposition 2.2.3, if (an)n≥1 converges, then (an)n≥1 is bounded.
For the other direction, assume that (an)n≥1 is a monotone sequence that

is bounded. We will assume that (an)n≥1 is a non-decreasing sequence for
the remainder of the proof as the case when (an)n≥1 is non-increasing can
be proved using similar arguments.

Since (an)n≥1 is bounded, {an | n ∈ N} has a least upper bounded, say
α, by the Least Upper Bound Property (Theorem 1.2.35). We claim that α
is the limit of (an)n≥1. To see this, let ϵ > 0 be arbitrary. Since α is the least
upper bound of {an | n ∈ N}, we know that an ≤ α for all n ∈ N and α− ϵ
is not an upper bound of {an | n ∈ N}. Hence there exists an N ∈ N such
that α− ϵ < aN . Since (an)n≥1 is non-decreasing, we obtain for all n ≥ N
that

α− ϵ < aN ≤ an ≤ α,

which implies |an −α| < ϵ for all n ≥ N . Since ϵ > 0 was arbitrary, we obtain
that α is the limit of (an)n≥1 by definition. Hence (an)n≥1 converges.

The Monotone Convergence Theorem can be quite useful in showing
certain sequences converge. In particular, consider the following two examples
where in the second we do not even have a formula for the nth term of the
sequence.

Example 2.2.7. Let 0 ≤ x < 1. Consider the sequence (xn)n≥1. Since
0 ≤ x < 1, we see that 0 ≤ xn+1 < xn < 1 for all n ∈ N. Hence (xn)n≥1 is a
bounded monotone sequence. Therefore (xn)n≥1 converges by the Monotone
Convergence Theorem.

Example 2.2.8. Consider the sequence (an)n≥1 defined recursively via
a1 = 1 and an+1 =

√
5 + 4an for all n ≥ 1. We claim that 0 ≤ an ≤ an1 ≤ 5

for all n ∈ N.
To see this, for each n ∈ N let Pn be the statement that “an and an+1

are well-defined real numbers and 0 ≤ an ≤ an+1 ≤ 5”. (Note we need
to include the “well-defined” part since we cannot take a square root of a
negative number inside the real numbers and a priori we do not know that
an+1 =

√
5 + 4an guarantees an+1 is a real number for all n). We claim that

Pn is true for all n ∈ N. To show that Pn is true for all n ∈ N, we will apply
the Principle of Mathematical Induction. To do so, we must demonstrate
the two conditions in Theorem 1.1.7.

Base Case: To see that P1 is true, notice that when n = 1, that an =
a1 = 1 and an+1 = a2 =

√
5 + 4(1) =

√
9 = 3 are well-defined. Moreover

0 ≤ a1 ≤ a2 ≤ 3 ≤ 5.

Hence P1 is true.
Inductive Step: Assume that Pk is true; that is, assume ak and ak+1 are

well-defined real numbers and 0 ≤ ak ≤ ak+1 ≤ 5. To see that Pk+1 is true,
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first notice ak+1 is a well-defined real number. Moreover, since ak+1 ≥ 0 so
that 5 + 4ak+1 ≥ 0, we see that a(k+1)+1 =

√
5 + 4ak+1 is a well-defined real

number. Since we already have that 0 ≤ ak+1 by the induction hypothesis,
it remains to show that ak+1 ≤ ak+2 and ak+2 ≤ 5.

Notice since 0 ≤ ak ≤ ak+1 by the induction hypothesis, we have that
0 ≤ 4ak ≤ 4ak+1. Hence 0 ≤ 5 + 4ak ≤ 5 + 4ak+1. Therefore, by taking the
square root of both sides, we obtain that

ak+1 =
√

5 + 4ak ≤
√

5 + 4ak+1 ≤ ak+2

as desired. Moreover, notice since ak+1 ≤ 5 that 5 + 4ak+1 ≤ 25. Hence, by
taking square root of both sides, we obtain that

ak+2 =
√

5 + 4ak+1 ≤
√

25 = 5

as desired. Hence Pk+1 is true.
Therefore, as we have demonstrated the base case and the inductive step,

the result follows by the Principle of Mathematical Induction.
Hence (an)n≥1 is a bounded monotone sequence and thus converges by

the Monotone Convergence Theorem.

Of course, although we know the sequences in Examples 2.2.7 and 2.2.8
converge, we have yet to compute their limits. Of course, we know by the
proof of the Monotone Convergence Theorem that the limits are related to
the greatest lower bound and least upper bounds respectively. Although we
might have some luck showing that 0 is the greatest lower bound of (xn)n≥1
when 0 ≤ x < 1, if (an)n≥1 is as in Example 2.2.8, all we know at the moment
is that lub({an | n ∈ N}), which is at most 5. But is the answer 5 or a
number less than 5? What tools do we have to help us compute limits?

2.3 Computing Limits

To answer the above questions and aid us in our computation of limits, there
are several theorems we may explore to aid us.

2.3.1 Limit Arithmetic

Our first goal is to determine how limits behave with respect to the simplest
operations on R. Understanding the proofs provided below are essential
understanding the definition of a limit.

Theorem 2.3.1. Let (an)n≥1 and (bn)n≥1 be sequences of real numbers such
that L = limn→∞ an and K = limn→∞ bn exist. Then

a) limn→∞ an + bn = L+K.
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b) limn→∞ anbn = LK.

c) limn→∞ can = cL for all c ∈ R.

d) If K ̸= 0, then there exists an N0 ∈ N such that bn ̸= 0 for all n ≥ N0.

e) If K ̸= 0 then limn→∞
1

bn
= 1

K (where we start bn at n = N0 as in part
(d)).

f) If K ̸= 0 then limn→∞
an
bn

= L
K (where we start bn at n = N0 as in part

(d)).

Proof. To create all of these proofs, it is useful to work backwards. In
particular, one should think about what one needs to show in order for a
sequence to be a limit, do some computations, and then check we have the
conditions based on the assumptions to make things work. Thus, when
reading these proofs for the first time (if you did NOT come to class) it is
useful to look a the computations involving the inequalities near the end of
each portion of the proof, see what we are trying to approximate to be small,
and then go back and see we could do this. We present the proof as follows
instead of adding the motivation in as we go in order for the reader to see
how simple and elegant these proofs are once they are put together.

a) Let ϵ > 0 be arbitrary. Since L = limn→∞ an, there exists an N1 ∈ N
such that |an − L| < ϵ

2 for all n ≥ N1. Similarly, since K = limn→∞ bn,
there exists an N2 ∈ N such that |bn − K| < ϵ

2 for all n ≥ N2. Let
N = max{N1, N2}. Hence, using the Triangle Inequality, for all n ≥ N ,

|(an + bn) − (L+K)| = |(an − L) + (bn −K)|
≤ |an − L| + |bn −K|

<
ϵ

2 + ϵ

2
= ϵ.

Hence (an + bn)n≥1 converges to L+K by definition.
b) Let ϵ > 0 be arbitrary. First note that 0 ≤ |K| < |K| + 1 so

0 ≤ |K|
|K|+1 ≤ 1 (we will use this later). Next, since (an)n≥1 convergence,

(an)n≥1 is bounded by Proposition 2.2.3. Hence there exists an M > 0 such
that |an| ≤ M for all n ∈ N.

Since L = limn→∞ an, there exists an N1 ∈ N such that |an−L| < ϵ
2(|K|+1)

for all n ≥ N1 (as 1
2(|K|+1) > 0 is a constant and does not depend on ϵ nor

n - see Proposition 2.1.14). Similarly, since K = limn→∞ bn, there exists
an N2 ∈ N such that |bn − K| < ϵ

2M for all n ≥ N2 (as 1
2M is a constant

and does not depend on ϵ nor n). Let N = max{N1, N2}. Hence, using the
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Triangle Inequality, for all n ≥ N ,

|anbn − LK| = |(anbn − anK) + (anK − LK)|
≤ |anbn − anK| + |anK − LK|
≤ |an||bn −K| + |K||an − L|
≤ M |bn −K| + |K||an − L|

≤ M
ϵ

2M + |K| ϵ

2(|K| + 1)
≤ ϵ

2 + ϵ

2 = ϵ.

Hence (anbn)n≥1 converges to LK by definition.
c) Given c ∈ R, the constant sequence (c)n≥1 converges to c. Hence part

(c) follows from part (b) by taking bn = c for all n ∈ N.
d) Assume K ̸= 0. Let ϵ = |K|

2 > 0. Since K = limn→∞ bn, there exists
an N0 ∈ N such that |bn − K| < |K|

2 for all n ≥ N0. Therefore, by the
Triangle Inequality,

|bn| ≥ |K| − |K|
2 = |K|

2 > 0

for all n ≥ N0. Hence, if n ≥ N0 we have that |bn| > 0. Therefore bn ≠ 0 for
all n ≥ N0.

e) Let ϵ > 0 be arbitrary. By repeating the proof of part (d), there
exists an N1 ∈ N such that |bn| ≥ |K|

2 for all n ≥ N1. Thus 1
|bn| ≤ 2

|K| for
all n ≥ N1 (as K ̸= 0). Since K = limn→∞ bn, there exists an N2 ∈ N such
that |bn −K| < ϵ|K|2

2 for all n ≥ N2 (as |K|2
2 > 0 is a constant and does not

depend on ϵ nor n). Therefore, for all n ≥ max{N1, N2},∣∣∣∣ 1
bn

− 1
K

∣∣∣∣ = |K − bn|
|bn||K|

≤ ϵ|K|2

2|bn||K|

≤ ϵ|K|
2

1
|bn|

≤ ϵ|K|
2

2
|K|

= ϵ.

Hence ( 1
bn

)n≥1 converges to 1
K by definition.

f) By part (e), limn→∞
1

bn
= 1

K . Hence, as limn→∞ an = L, part (b)
implies that limn→∞ an

1
bn

= L 1
K completing the proof.

Using Theorem 2.3.1, we can compute a lot of limits with our limited
knowledge.
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Example 2.3.2. For 0 ≤ x < 1, consider the sequence (xn)n≥1. In Ex-
ample 2.2.7, we saw that (xn)n≥1 converges. To compute its limit, let
L = limn→∞ xn. Notice by Theorem 2.3.1 that

L = lim
n→∞

xn

= lim
n→∞

xn+1 index shift does not change the limit

= lim
n→∞

x(xn)

= xL by Theorem 2.3.1 part (c).

Therefore L(1 − x) = 0. Hence, as 1 − x ̸= 0, we obtain that L = 0. Thus
limn→∞ xn = 0. (Was there any surprise?)

Example 2.3.3. Consider the sequence (an)n≥1 defined recursively via
a1 = 1 and an+1 =

√
5 + 4an for all n ≥ 1. In Example 2.2.8, we used the

Monotone Convergence Theorem (Theorem 2.2.6) along with the fact that
0 ≤ an ≤ an+1 ≤ 5 to show that (an)n≥1 converges. It remains to compute
the limit of this sequence.

Let L = limn→∞ an. Since an+1 =
√

5 + 4an for all n ≥ 1, we have that
a2

n+1 = 5 + 4an for all n ∈ N. Therefore, using Theorem 2.3.1, we obtain
that

5 + 4L = lim
n→∞

5 + 4an = lim
n→∞

a2
n+1

= lim
n→∞

a2
n index shift does not change the limit

=
(

lim
n→∞

an

)2
= L2.

Hence L2 − 4L− 5 = 0 so (L− 5)(L+ 1) = 0 so L = 5 or L = −1. However,
since −1 < 0 < 1 = a1 ≤ an for all n ∈ N, |an − (−1)| ≥ 2 for all n ∈ N and
thus −1 cannot be the limit of (an)n≥1 by the definition of the limit. Hence
limn→∞ an = 5.

Moreover, we can build up our collection of useful limits.

Example 2.3.4. Let m ∈ N be fixed. We claim that the sequence ( 1
nm )n≥1

converges and limn→∞
1

nm = 0. Indeed this result easily follows by induction
on m since limn→∞

1
n = 0 by Example 2.1.9 and by part (b) of Theorem

2.3.1 .

Example 2.3.5. Consider the sequence (an)n≥1 where an = 5n2+2n
3n2−n+4 for all

n ∈ N. Does (an)n≥1 converge and, if so, what is its limit?
To answer this question, notice that

an = 5n2 + 2n
3n2 − n+ 4 =

n2
(
5 + 2

n2

)
n2
(
3 − 1

n + 4
n2

) =
5 + 2

n2

3 − 1
n + 4

n2
.
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Since limn→∞
1
n = 0 by Example 2.1.9, and since limn→∞

1
n2 = 0 by Example

2.3.4, we obtain that

lim
n→∞

5 + 2
n2 = 5 and lim

n→∞
3 − 1

n
+ 4
n2 = 3 so lim

n→∞
an = 5

3 .

Remark 2.3.6. In part (f) of Theorem 2.3.1, it was required in the proof that
the denominator does not converge to 0. This is due to the fact that there
are many different types of behaviour that may occur when the denominator
of a sequence of fractions tends to zero.

For two examples, first consider the sequences (an)n≥1 and (bn)n≥1 where
an = bn = 1

n for all n ∈ N. Then clearly limn→∞ an = 0 = limn→∞ bn, and

an

bn
=

( 1
n

)
( 1
n

) = 1

for all n ∈ N. Hence limn→∞
an
bn

= 1.
Alternatively, consider the sequences (an)n≥1 and (bn)n≥1 where an = 1

and bn = 1
n for all n ∈ N. Then clearly limn→∞ an = 1 and limn→∞ bn = 0,

yet
an

bn
= 1( 1

n

) = n

does not converge as (n)n≥1 is not bounded (see Proposition 2.2.3).
Thus, if (an)n≥1 and (bn)n≥1 are sequences and limn→∞ bn = 0, it is

possible that
(

an
bn

)
n≥1

does not converge. However, if limn→∞
an
bn

exists, then
by part (b) of Theorem 2.3.1 we must have that

lim
n→∞

an = lim
n→∞

an

bn
bn =

(
lim

n→∞
an

bn

)(
lim

n→∞
bn

)
=
(

lim
n→∞

an

bn

)
(0) = 0.

Thus a necessary condition for limn→∞
an
bn

to exist when limn→∞ bn = 0 is
limn→∞ an = 0.

2.3.2 Diverging to Infinity

We have seen several examples of sequences that do not converge. In par-
ticular, Proposition 2.2.3 says that unbounded sequences have no chance to
converge. However, it is useful to discuss specific notions of divergence for
unbounded sequences.

Definition 2.3.7. A sequence (an)n≥1 of real numbers is said to diverge to
infinity, denoted limn→∞ an = ∞, if for every M > 0 there exists an N ∈ N
such that an ≥ M for all n ≥ N .
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Similarly, a sequence (an)n≥1 of real numbers is said to diverge to negative
infinity, denoted limn→∞ an = −∞, if for every M < 0 there exists an N ∈ N
such that an ≤ M for all n ≥ N .

Example 2.3.8. It is clear that limn→∞ n = ∞.

Example 2.3.9. Consider the sequence (an)n≥1 defined by

an =
{

0 if n is odd
n
2 if n is even

.

Thus (an)n≥1 is the sequence (0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, . . .).
We claim that (an)n≥1 does not diverge to infinity. To see this, let M = 1.

Then for any N ∈ N we see that 2N + 1 ≥ N and a2N+1 = 0 ̸≥ M since
2N + 1 is odd. Thus (an)n≥1 does not diverge to infinity.

Using the same proof ideas as in Theorem 2.3.1, we obtain the following.

Theorem 2.3.10. Let (an)n≥1 and (bn)n≥1 be sequences of real numbers.
Suppose that (bn)n≥1 diverges to ∞ (respectively −∞). Then

a) If (an)n≥1 is bounded below (respectively above), then limn→∞ an +bn = ∞
(respectively limn→∞ an + bn = −∞).

b) If there exists a K > 0 such that an ≥ K for all n ∈ N, then limn→∞ anbn =
∞ (respectively limn→∞ anbn = −∞).

c) If (an)n≥1 is bounded, then limn→∞
an
bn

= 0.

Proof. We will provide the proofs when (bn)n≥1 diverges to ∞. The proofs
in the case that (bn)n≥1 diverges to −∞ are similar.

Assume (bn)n≥1 diverges to ∞.
a) Assume (an)n≥1 is bounded below. To see that (an + bn)n≥1 diverges

to ∞, let M > 0 be arbitrary. Since (an)n≥1 is bounded below, by definition
there exists a K ∈ R such that an ≥ K for all n ∈ N. Since (bn)n≥1 diverges
to ∞, by definition there exists an N ∈ N such that bn ≥ M − K for all
n ≥ N . Hence for all n ≥ N

an + bn ≥ K + (M −K) = M.

Hence (an + bn)n≥1 diverges to ∞ by definition.
b) Assume there exists an K > 0 such that an ≥ K for all n ∈ N. To see

that (anbn)n≥1 diverges to ∞, let M > 0 be arbitrary. Since (bn)n≥1 diverges
to ∞ and K > 0, by definition there exists an N ∈ N such that bn ≥ M

K for
all n ≥ N . Hence for all n ≥ N

anbn ≥ K

(
M

K

)
= M.
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Hence (an + bn)n≥1 diverges to ∞ by definition.
c) Assume (an)n≥1 is bounded. To see that

(
an
bn

)
n≥1

converges to 0, let
ϵ > 0 be arbitrary. Since (an)n≥1 is bounded, there exists an K > 0 such
that |an| ≤ K for all n ∈ N. Let M = K

ϵ . Clearly M > 0. Therefore,
since (bn)n≥1 diverges to ∞, by definition there exists an N ∈ N such that
bn ≥ M = K

ϵ for all n ≥ N . Hence

1
bn

≤ ϵ

K

for all n ≥ N . Therefore, for all n ≥ N we have that∣∣∣∣an

bn
− 0

∣∣∣∣ = |an|
∣∣∣∣ 1
bn

∣∣∣∣ ≤ K

(
ϵ

K

)
= ϵ.

Hence
(

an
bn

)
n≥1

converges to 0 by definition.

The above theorem aids us in computing limits of rational functions
where the denominator grows faster than the numerator.

Example 2.3.11. Consider the sequence (an)n≥1 where an = 2n+1
n2+3 for all

n ∈ N. Then

an =
n
(
2 + 1

n

)
n
(
n+ 3

n

) =
2 + 1

n

n+ 3
n

.

Therefore, since limn→∞
3
n = 0 so

(
3
n

)
n≥1

is bounded, and since limn→∞ n =

∞, we have limn→∞ n+ 3
n = ∞. Hence since limn→∞ 2+ 1

n = 2 so
(
2 + 1

n

)
n≥1

is bounded, we have that limn→∞
2n+1
n2+3 = 0 by Theorem 2.3.10 part (c).

Example 2.3.12. Consider the sequence (an)n≥1 where an = cos(n)
n for all

n ∈ N. Since −1 ≤ cos(n) ≤ 1 for all n ∈ N, the sequence (cos(n))n≥1 is
bounded. Therefore, since limn→∞ n = ∞, we have that limn→∞

cos(n)
n = 0

by Theorem 2.3.10 part (c).

2.3.3 The Squeeze Theorem

As an alternatively method to what was done in Example 2.3.12, we can
show limn→∞

cos(n)
n = 0 by noting that − 1

n ≤ cos(n)
n ≤ 1

n for all n ∈ N and
by applying the following useful theorem. In fact, if we proved the following
theorem first, we could use it to prove part (c) of Theorem 2.3.10.

Theorem 2.3.13 (Squeeze Theorem). Let (an)n≥1, (bn)n≥1 and (cn)n≥1
be sequences of real numbers such that there exists an N0 ∈ N such that

an ≤ bn ≤ cn for all n ≥ N0.

If limn→∞ an = limn→∞ cn = L, then (bn)n≥1 converges and limn→∞ bn = L.
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Proof. Let ϵ > 0 be arbitrary. Since L = limn→∞ an, there exists an N1 ∈ N
such that |an − L| < ϵ for all n ≥ N1. Hence L − ϵ < an for all n ≥ N1.
Similarly, since L = limn→∞ cn, there exists an N2 ∈ N such that |cn −L| < ϵ
for all n ≥ N2. Hence cn < L + ϵ for all n ≥ N2. Therefore, for all
n ≥ max{N0, N1, N2}, we have that

L− ϵ < an ≤ bn ≤ cn ≤ L+ ϵ.

Hence L − ϵ ≤ bn ≤ L + ϵ for all n ≥ max{N0, N1, N2}, which implies
−ϵ ≤ bn − L ≤ ϵ and thus |bn − L| < ϵ for all n ≥ max{N0, N1, N2}. Hence
(bn)n≥1 converges and limn→∞ bn = L by definition.

Example 2.3.14. Let x ∈ R be such that −1 < x < 1. We claim that
limn→∞ xn = 0. Indeed, recall from Example 2.3.2 that if 0 ≤ x < 1, then
limn→∞ xn = 0.

If −1 < x < 0, let a = |x|. Then −an ≤ xn ≤ an for all n ∈ N (i.e.
xn = an if n is even and xn = −an if n is odd). Therefore, since 0 ≤ a < 1,
we know from Example 2.3.2 that limn→∞ an = 0. Hence part (c) of Theorem
2.3.1 we also know that limn→∞ −an = 0. Thus the Squeeze Theorem implies
that limn→∞ xn = 0 as desired.

2.3.4 Limit Supremum and Limit Infimum

There are several sequences that do not converge nor diverge to ±∞. For
example, the sequence ((−1)n+1)n≥1 has been shown to not converge and
clearly does not diverge to ±∞ as it is bounded. Consequently, we may ask,
“Is it possible to obtain some information about this sequence as n tends to
infinity?”

Clearly everything we want to know about the sequence ((−1)n+1)n≥1
can be obtained by taking the least upper bound and greatest lower bound
of its elements. Consequently, we extend the notions of least upper bound
and greatest lower bound to include infinities.

Definition 2.3.15. Let X be a subset of the real numbers. The supremum
of X, denoted sup(X), is defined to be

sup(X) =


−∞ if X = ∅
lub(X) if X ̸= ∅ and X is bounded above
∞ if X is not bounded above

.

Similarly, the infimum of X, denoted inf(X), is defined to be

inf(X) =


∞ if X = ∅
glb(X) if X ̸= ∅ and if X is bounded below
−∞ if X is not bounded below
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The infimum and supremum of sequences are not the objects we are after
since we are more interested in the behaviour of sequences as n gets large.
For example, consider the sequence(

(−1)n(1 + 1
n

)
)

n≥1
.

It is not difficult to see that 3
2 is the supremum of this sequence and −2

is the infimum of this sequence. However, as n gets larger and larger, the
largest values of the sequence are very close to 1 and the smallest values
of the sequence are very close to −1. How can we express this notion for
arbitrary sequences mathematically?

Let (an)n≥1 be a sequence. To see how the largest values of (an)n≥1
behave as n grows, we can take the suprumum after we ignore the first few
terms. Consequently, we define a new sequence (bn)n≥1 defined by

bn = sup{ak | k ≥ n}.

It is not difficult to see that b1 ≥ b2 ≥ b3 ≥ · · · as the supremum may
only get smaller as we remove terms from the set from which we are taking
the supremum. Consequently we see that (bn)n≥1 is a monotone sequence.
Since (bn)n≥1 is non-increasing, (bn)n≥1 either converges to a number (by
the Monotone Convergence Theorem), diverges to −∞, or bn = ∞ for all n.

Applying the same idea with the sequence (cn)n≥1 where

cn = inf{ak | k ≥ n}

we arrive at the following.

Definition 2.3.16. The limit supremum of a sequence (an)n≥1 of real
numbers, denoted lim supn→∞ an, is

lim sup
n→∞

an = lim
n→∞

sup{ak | k ≥ n} ∈ R ∪ {±∞}.

Similarly, the limit infimum of a sequence (an)n≥1 of real numbers, denoted
lim infn→∞ an, is

lim inf
n→∞

an = lim
n→∞

inf{ak | k ≥ n} ∈ R ∪ {±∞}.

Remark 2.3.17. One huge advantage of the limit supremum and limit
infimum over limits is that lim supn→∞ an and lim infn→∞ an always exist
for all bounded sequences (an)n≥1 and are real numbers whereas (an)n≥1
need not converge! Indeed if (an)n≥1 is bounded, then with

bn = sup{ak | k ≥ n},
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we have that (bn)n≥1 is a bounded monotone sequence and thus converges
by Monotone Convergence Theorem. Since limn→∞ bn = lim supn→∞ an by
definition, lim supn→∞ an exists.

Thus one can always discuss lim supn→∞ an and lim infn→∞ an, which is
quite useful when one does not know limn→∞ an exists.

Example 2.3.18. We claim that

lim sup
n→∞

(−1)n
(

1 + 1
n

)
= 1.

To see this, for each n ∈ N let

bn = sup
{

(−1)k
(

1 + 1
k

) ∣∣∣∣ k ≥ n

}
.

Thus lim supn→∞(−1)n
(
1 + 1

n

)
= limn→∞ bn by definition.

Since limk→∞
1
k = 0, we see that

bn =
{

1 + 1
n if n is even

1 + 1
n+1 if n is odd

.

Therefore (bn)n≥1 is the sequence
(

3
2 ,

3
2 ,

5
4 ,

5
4 ,

7
6 ,

7
6 , . . .

)
(i.e. the sequence(

1 + 1
n

)
n≥1

but each term is repeated an additional time in succession).
We claim that limn→∞ bn = 1. To see this, let ϵ > 0 be arbitrary. By the

Archimedean Property (Theorem 1.3.7), there exists an N ∈ N such that
0 < 1

n < ϵ for all n ≥ N . Therefore, if n ≥ N and n is even, then

|bn − 1| = 1
n
< ϵ,

and if n ≥ N and n is odd, then

|bn − 1| = 1
n+ 1 <

1
n
< ϵ.

Hence |bn − 1| < ϵ for all n ≥ N . Hence limn→∞ bn = 1 so

lim sup
n→∞

(−1)n
(

1 + 1
n

)
= 1

as desired.

Example 2.3.19. We claim that

lim inf
n→∞

(−1)n
(

1 + 1
n

)
= −1.

The proof is nearly identical to Example 2.3.18.
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Unsurprisingly, there is a solid connection between limit supremum, limit
infimum, and limit. In particular, one can use limit supremum and limit
infimum to prove the limit exists when it does. To see this connection
between these concepts, we require the following.

Theorem 2.3.20 (Comparison Theorem). Let (an)n≥1 and (bn)n≥1 be
convergent sequences of real numbers. Suppose that there exists an N0 ∈ N
such that an ≤ bn for all n ≥ N0. Then limn→∞ an ≤ limn→∞ bn.

Proof. Let L = limn→∞ an and let K = limn→∞ bn. Suppose for the sake of
a contradiction that that K < L. Therefore if ϵ = L−K

2 , then ϵ > 0.
Since L = limn→∞ an, there exists an N1 ∈ N such that |an−L| < ϵ for all

n ≥ N1. Hence L− ϵ < an for all n ≥ N1. Similarly, since K = limn→∞ bn,
there exists an N2 ∈ N such that |bn − K| < ϵ for all n ≥ N2. Hence
bn < K + ϵ for all n ≥ N2.

Therefore, if n ≥ max{N1, N2, N0}, we obtain that

an − bn > (L− ϵ) − (K + ϵ) = (L−K) − 2ϵ = 0.

However, this contradicts the fact that an ≤ bn for all n ≥ N0. Hence we
have obtained a contradiction in the case that K < L so it must be the case
that L ≤ K.

Proposition 2.3.21. Let (an)n≥1 be a bounded sequence so that

lim inf
n→∞

an, lim sup
n→∞

an ∈ R.

Then
lim inf
n→∞

an ≤ lim sup
n→∞

an.

In addition, (an)n≥1 converges if and only if lim infn→∞ an = lim supn→∞ an.
In this case

lim
n→∞

an = lim inf
n→∞

an = lim sup
n→∞

an.

Proof. For the remainder of the proof, for each n ∈ N let

bn = sup{ak | k ≥ n} ∈ R and cn = inf{ak | k ≥ n} ∈ R.

Clearly

lim sup
n→∞

an = lim
n→∞

bn, lim inf
n→∞

an = lim
n→∞

cn, and cn ≤ an ≤ bn for all n ∈ N.

Hence, since the limit supremum and limit infimum exist by Remark 2.3.17,
the Comparison Theorem (Theorem 2.3.20) implies

lim inf
n→∞

an ≤ lim sup
n→∞

an.
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Next, assume that lim infn→∞ an = lim supn→∞ an. Therefore, since
cn ≤ an ≤ bn for all n ∈ N, we obtain that (an)n≥1 converges and

lim
n→∞

an = lim inf
n→∞

an = lim sup
n→∞

an

by the Squeeze Theorem (Theorem 2.3.13).
Finally, assume L = limn→∞ an exists. To see that lim infn→∞ an =

lim supn→∞ an, let ϵ > 0 be arbitrary. Hence there exists an N ∈ N such
that |an − L| < ϵ for all n ∈ N. Thus L − ϵ ≤ an ≤ L + ϵ for all n ≥ N .
Therefore L− ϵ ≤ cn ≤ bn ≤ L+ ϵ for all n ≥ N by the definition of bn and
cn. Hence, by considering constant sequences and the Comparison Theorem
(Theorem 2.3.20), we have that

L− ϵ ≤ lim
n→∞

cn ≤ lim
n→∞

bn ≤ L+ ϵ

for all ϵ > 0. In particular,

L− 1
m

≤ lim
n→∞

cn ≤ lim
n→∞

bn ≤ L+ 1
m

for all m ∈ N. Therefore, since limm→∞
1
m = 0, the above is only possible

(for example, by the Squeeze Theorem (Theorem 2.3.13)) if

L = lim
n→∞

bn = lim
n→∞

cn.

One important way to think about the limit supremum and limit infimum
is that they give “approximate asymptotic bounds” on sequences as the
following results show.

Proposition 2.3.22. Let (an)n≥1 be a bound sequence of real numbers so
that

L = lim sup
n→∞

an ∈ R.

Then for all ϵ > 0 there exists an N ∈ N such that an < L+ ϵ for all n ≥ N .
Furthermore, if K < L, then there exists an ϵ > 0 such that for all N ∈ N

there exists an n ≥ N such that an ≥ K + ϵ.

Proof. For each n ∈ N let

bn = sup{ak | k ≥ n} ∈ R

so that L = limn→∞ bn by definition.
To see the first result, let ϵ > 0 be arbitrary. Since L = limn→∞ bn, by

the definition of the limit there exists an N ∈ N such that |bn − L| < ϵ for
all n ≥ N . Hence bn − L < ϵ for all n ≥ N so that

an ≤ bn < L+ ϵ
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for all n ≥ N . Therefore, as ϵ > 0 was arbitrary, the first part of the proof is
complete.

For the second result, assume K < L. Suppose for the sake of a contra-
diction that for all ϵ > 0 there exists an N ∈ N such that an < K + ϵ for all
n ≥ N . To obtain our contradiction, let ϵ = L−K

2 > 0. By our assumptions,
there exists an N ∈ N such that ak < K + ϵ for all k ≥ N . Therefore, by
the definition of bn, we then have that bn ≤ K + ϵ for all n ≥ N . Hence the
Comparison Theorem (Theorem 2.3.20) implies that

L = lim
n→∞

bn ≤ K + ϵ = K + L−K

2 = L+K

2 .

Thus
0 ≤ K − L

2
so that L ≤ K, which contradicts the fact that K < L. Hence we have
obtained our contradiction, so the proof is complete.

Proposition 2.3.23. Let (an)n≥1 be a bound sequence of real numbers so
that

L = lim inf
n→∞

an ∈ R.

Then for all ϵ > 0 there exists an N ∈ N such that an > L− ϵ for all n ≥ N .
Furthermore, if K > L, then there exists an ϵ > 0 such that for all N ∈ N

there exists an n ≥ N such that an ≤ K − ϵ.

Proof. For each n ∈ N let

cn = inf{ak | k ≥ n} ∈ R

so that L = limn→∞ cn by definition.
To see the first result, let ϵ > 0 be arbitrary. Since L = limn→∞ cn, by

the definition of the limit there exists an N ∈ N such that |cn − L| < ϵ for
all n ≥ N . Hence L− cn < ϵ for all n ≥ N so that

an ≥ cn > L− ϵ

for all n ≥ N . Therefore, as ϵ > 0 was arbitrary, the first part of the proof is
complete.

For the second result, assume K > L. Suppose for the sake of a contra-
diction that for all ϵ > 0 there exists an N ∈ N such that an > K − ϵ for all
n ≥ N . To obtain our contradiction, let ϵ = K−L

2 > 0. By our assumptions,
there exists an N ∈ N such that ak > K − ϵ for all k ≥ N . Therefore, by
the definition of cn, we then have that cn ≥ K − ϵ for all n ≥ N . Hence the
Comparison Theorem (Theorem 2.3.20) implies that

L = lim
n→∞

cn ≥ K − ϵ = K − K − L

2 = L+K

2 .
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Thus
0 ≥ K − L

2
so that L ≥ K, which contradicts the fact that K > L. Hence we have
obtained our contradiction, so the proof is complete.

2.3.5 The Decimal Expansion of Real Numbers

Now that we have some knowledge of convergent sequences, we are able to
demonstrate one common way to represent real numbers; via their decimal
expansions. The goal of this subsection is to show that every real number in
[0, 1] has a decimal expansion.

Remark 2.3.24. Once we have shown that every element of [0, 1] has a
decimal expansion, we will automatically obtain that every real number
has a decimal expansion. Indeed if x ∈ R and x > 0, then the Well
Ordering Principle (Theorem 1.1.10) together with the Archimedean Property
(Theorem 1.3.6) implies there exists a natural number n such that x ∈
[n, n+ 1]. Hence, since x− n ∈ [0, 1] has a decimal expansion by the results
of this subsection, the decimal expansion of x is n plus the decimal expansion
of x− n. Subsequently, if x < 0, then −x > 0 has a decimal expansion and
the decimal expansion of x is the negative of the decimal expansion of −x.

To make mathematically precise what we mean by the decimal expansion
of an element of [0, 1], consider the following. The decimal 0.1 is the decimal
representation of 1

10 , the decimal 0.01 is the decimal representation of 1
100 =

1
102 , the decimal 0.001 is the decimal representation of 1

1000 = 1
103 , and so on.

So, by the decimal expression 0.a1a2a3a4 . . . where ak ∈ {0, 1, 2, . . . , 9} for
all k ∈ N, we really mean

a1
10 + a2

102 + a3
103 + a4

104 + · · · .

Thus, the decimal expansion is most accurately represented by the infinite
sum

∑∞
k=1

ak

10k . However, as in the motivation for this course, we must be
careful as we have not mathematically defined what we mean by an infinite
sum. To focus on this specific case, our goal is to demonstrate that x ∈ [0, 1]
if and only if we can write

x = lim
n→∞

n∑
k=1

ak

10k

for some sequence of (ak)k≥1 with ak ∈ {0, 1, 2, . . . , 9} in which case “x =
0.a1a2a3a4 . . .”.

To begin the proof, we first need to recall the formula for the sum of a
geometric series.
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Lemma 2.3.25. If a ∈ R and a ̸= 1, then for all n ∈ N,
n∑

k=0
ak = 1 + a+ a2 + · · · + an = 1 − an+1

1 − a
.

Proof. For each n ∈ N let Pn be the statement that
∑n

k=0 a
k = 1−an+1

1−a . To
show that Pn is true for all n ∈ N, we will apply the Principle of Mathematical
Induction.

Base Case: To see that P1 is true, notice when n = 1 that

1 − an+1

1 − a
= 1 − a2

1 − a
= (1 − a)(1 + a)

1 − a
= 1 + a = a0 + a1 =

n∑
k=0

ak.

Hence P1 is true.
Inductive Step: Assume that Pn is true; that is, assume

∑n
k=0 a

k =
1−an+1

1−a . To see that Pn+1 is true, notice that

n+1∑
k=0

ak = an+1 +
n∑

k=0
ak

= an+1 + 1 − an+1

1 − a
by the induction hypothesis

= (an+1 − an+2) + (1 − an+1)
1 − a

= 1 − a(n+1)+1

1 − a
.

Hence Pn+1 is true.
Therefore, as we have demonstrated the base case and the inductive step,

the result follows by the Principle of Mathematical Induction.

To demonstrate characterization of the elements of [0, 1] via their decimal
expansion, we will divide the result into two parts. First we will demonstrate
the easier result that “decimal expansion” define elements of R.

Proposition 2.3.26. Let (an)n≥1 be a sequence with an ∈ {0, 1, . . . , 9} for
all n ∈ N and for each n ∈ N, let

sn =
n∑

k=1

ak

10k
.

Then the sequence (sn)n≥1 converges and limn→∞ sn ∈ [0, 1].

Proof. To see that (sn)n≥1 converges, we will apply the Monotone Conver-
gence Theorem (Theorem 2.2.6). To see that (sn)n≥1 is monotone, note by
construction that for all n ∈ N

0 ≤ sn ≤ sn + an+1
10n+1 = sn+1.
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Hence (sn)n≥1 is monotone. To see that (sn)n≥1 is bounded, we claim that
sn ≤ 1 for all n ∈ N. To see this, notice

sn =
n∑

k=1

ak

10k
≤

n∑
k=1

9
10k

= 9
10

n∑
k=1

1
10k−1

= 9
10

n−1∑
k=0

( 1
10

)k

= 9
10

1 −
(

1
10

)n

1 − 1
10

by Lemma 2.3.25

= 9
10

1 −
(

1
10

)n

9
10

= 1 −
( 1

10

)n

≤ 1

for all n ∈ N. Hence (sn)n≥1 is a bounded monotone sequence and thus
converges by the Monotone Convergence Theorem (Theorem 2.2.6). Moreover,
since 0 ≤ sn ≤ 1 for all n ∈ N, it follows from the Comparison Theorem
(Theorem 2.3.20) that limn→∞ sn ∈ [0, 1] as desired.

Now that we have seen every ‘decimal expansion” define an element of
R we will complete the converse and show that every element of R has a
decimal expansion!

Theorem 2.3.27. If x ∈ [0, 1], then there exists a sequence (ak)k≥1 such
that ak ∈ {0, 1, . . . , 9} for all k ∈ N such that if

sn =
n∑

k=1

ak

10k

for all n ∈ N, then (sn)n≥1 converges to x.

Proof. Fix x ∈ [0, 1]. We will construct the sequence (ak)k≥1 recursively.
Let

a1 = max
{
k ∈ {0, 1, . . . , 9}

∣∣∣∣ k10 ≤ x

}
.

Thus s1 = a1
10 has been defined. Subsequently define

a2 = max
{
k ∈ {0, 1, . . . , 9}

∣∣∣∣ k

100 ≤ x− s1

}
.

Thus s2 = a1
10 + a2

100 has been defined. To proceed recursively if a1, . . . , an

and thus s1, . . . , sn have been defined, we define

an+1 = max
{
k ∈ {0, 1, 2, . . . , 9}

∣∣∣∣ k

10n+1 ≤ x− sn

}
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and thus sn+1 =
∑n+1

k=1
ak

10k is defined.
With (ak)k≥1 defined recursively as above, all that remains is to prove

that (sn)n≥1 converges to x. To see that limn→∞ sn = x, we claim that
sn ≤ x ≤ sn + 1

10n for all n ∈ N. To see this, for each n ∈ N let Pn be the
statement that sn ≤ x ≤ sn + 1

10n . To show that Pn is true for all n ∈ N, we
will apply the Principle of Mathematical Induction.

Base Case: To see that P1 is true, recall that

a1 = max
{
k ∈ {0, 1, . . . , 9}

∣∣∣∣ k10 ≤ x

}
and s1 = a1

10 . Therefore s1 ≤ x by definition. To see the other inequality, we
must divide the discussion into two cases.

Case 1: a1 ̸= 9. Assume a1 ̸= 9. To see that x ≤ s1 + 1
10 , suppose for

the sake of a contradiction that x > s1 + 1
10 = a1+1

10 . Therefore a1 + 1 is
such that a1 + 1 ∈ {0, 1, 2, . . . , 9} and a1+1

10 ≤ x. Since this contradicts the
definition of a1, we have a contradiction. Hence x ≤ s1 + 1

10 in this case.
Case 2: a1 = 9. Assume a1 = 9. Then

x ≤ 1 = a1
10 + 1

10 = s1 + 1
10

as desired.
Therefore P1 is true.
Inductive Step: Assume that Pn is true; that is, assume sn ≤ x ≤ sn+ 1

10n .
To see that Pn+1 is true, recall

an+1 = max
{
k ∈ {0, 1, 2, . . . , 9}

∣∣∣∣ k

10n+1 ≤ x− sn

}
and sn+1 =

∑n+1
k=1

ak

10k . Hence sn+1 ≤ x by definition. To see the other
inequality, we must divide the discussion into two cases.

Case 1: an+1 ̸= 9. Assume an+1 ̸= 9. To see that x ≤ sn+1 + an+1
10n+1 ,

suppose for the sake of a contradiction that x > sn+1 + 1
10n+1 = sn + an+1+1

10 .
Therefore an+1 +1 is such that an+1 +1 ∈ {0, 1, 2, . . . , 9} and an+1+1

10 ≤ x−sn.
Since this contradicts the definition of an+1, we have a contradiction. Hence
x ≤ sn+1 + 1

10n+1 when an+1 ̸= 9.
Case 2: an+1 = 9. Assume an+1 = 9. Suppose for the sake of a contra-

diction that x > sn+1 + 1
10n+1 . Then

x >
9

10n+1 + sn + 1
10n+1 = sn + 1

10n

which contradicts the induction hypothesis. Hence x ≤ sn+1 + 1
10n+1 .

Therefore Pn+1 is true.
Therefore, as we have demonstrated the base case and the inductive step,

the result follows by the Principle of Mathematical Induction.
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Since sn ≤ x ≤ sn + 1
10n for all n ∈ N, we see that

0 ≤ |sn − x| ≤ 1
10n

for all n ∈ N. Since limn→∞
1

10n = 0 by Example 2.3.2, for all ϵ > 0 there
exists an N ∈ N such that 1

10n < ϵ for all n ≥ N and thus |sn − x| < ϵ for
all n ≥ N . Hence x = limn→∞ sn as desired.

Remark 2.3.28. An observant reader of Proposition 2.3.26 and Theorem
2.3.27 would have notice that there was nothing special in the proofs that
required the number 10 (provided we stopped the terms of the decimal
expansion at 9). Therefore, by repeating these proofs, it is possible to show
that x ∈ [0, 1] if and only if there exists a sequence (ak)k≥1 with ak ∈ {0, 1}
for all k ∈ N such that

x = lim
n→∞

n∑
k=1

ak

2k
.

The above representation is called the binary representation of x. Similarly,
it can be shown that x ∈ [0, 1] if and only if there exists a sequence (ak)k≥1
with ak ∈ {0, 1, 2} for all k ∈ N such that

x = lim
n→∞

n∑
k=1

ak

3k
.

The above representation is called the ternary representation of x. These
and other expansions can often be useful.

2.4 The Bolzano–Weierstrass Theorem

We have seen that many sequences do not converge. The limit supremum and
limit infimum do provide us with some information about how a sequence
(an)n≥1 behaves for large n. However, one question we can ask is, “If we
have a sequence that does not converge, can we remove some terms from the
sequence to make it converge?” Of course for convergence, our new sequence
must be bounded by Proposition 2.2.3. Thus perhaps a better question is,
“If we have a bounded sequence that does not converge, can we remove terms
from the sequence to make it converge?”

2.4.1 Subsequences

To answer the above question, we must describe what we mean by ‘remove
terms from a sequence’. This is made precise by the following mathematical
notion.
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Definition 2.4.1. A subsequence of a sequence (an)n≥1 of real numbers is
any sequence (bk)k≥1 of real numbers such that there exists an increasing
sequence of natural numbers (nk)k≥1 so that bk = ank

for all k ∈ N.

It is important to note that a subsequence of (an)n≥1 removes some terms
but leaves an infinite number of terms that appear in the same order.

Example 2.4.2. If (an)n≥1 is our favourite sequence an = (−1)n+1 for all
n ∈ N and if we choose nk = 2k− 1 for all n ∈ N, then (ank

)k≥1 is the subse-
quence (1, 1, 1, . . .). Note (an)n≥1 diverges whereas the subsequence (ank

)k≥1
converges. Hence divergent sequences can have convergent subsequences.

Example 2.4.3. If (bn)n≥1 is the sequence where bn = 1
n for all n ∈ N

and if we choose nk = k2 for all k ∈ N, then (bnk
)k≥1 is the subsequence

(1, 1
4 ,

1
9 , . . .) =

(
1

k2

)
k≥1

. Notice that (bn)n≥1 and the subsequence (bnk
)k≥1

both converge to 0. In fact, for convergent sequences, the subsequences must
also converge to the same number as the following result show.

Proposition 2.4.4. Let (an)n≥1 be a sequence of real numbers that converges
to L. Every subsequence of (an)n≥1 converges to L.

Proof. Let (ank
)k≥1 be a subsequence of (an)n≥1. To see that (ank

)k≥1
converges to L, let ϵ > 0 be arbitrary. Since L = limn→∞ an, there exists an
N ∈ N such that |an − L| < ϵ for all n ≥ N . Since (nk)k≥1 is an increasing
sequence of natural numbers, there exists an N0 ∈ N such that nk ≥ N for
all k ≥ N0. Hence |ank

− L| < ϵ for all k ≥ N0. Therefore, as ϵ > 0 was
arbitrary, we obtain that limk→∞ ank

= L by the definition of the limit.

2.4.2 The Peak Point Lemma

It is natural to ask, “Given a sequence, are there any ‘nice’ subsequences?”
Of course ‘nice’ is a subjective term. However, we have seen that monotone
sequences were quite nice via the Monotone Convergence Theorem. So,
“Does every sequence have a monotone subsequence?” Yes they do!

Lemma 2.4.5 (The Peak Point Lemma). Every sequence of real numbers
has a monotone subsequence.

In order to prove the above lemma (and from which it gets its name), we
will use the following notion.

Definition 2.4.6. Let (an)n≥1 be a sequence of real numbers. An index
n0 ∈ N is said to be a peak point for the sequence (an)n≥1 if an0 > an for all
n ≥ n0.

The reason we think of n0 as a peak point of (an)n≥1 if an ≤ an0 for all
n ≥ n0 is that if along a number line of the natural numbers we draw a line
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of height an at n for all n ∈ N, then if one stood on top of the line at n0 one
is at a peak and can see off to infinity without another line getting in the
way.

With the notion of a peak point, we can prove the Peak Point Lemma.

Proof of Lemma 2.4.5. Let (an)n≥1 be a sequence of real numbers. The
proof is divided into two cases:

Case 1: (an)n≥1 has an infinite number of peak points. By assumption
there exists indices n1 < n2 < n3 < · · · such that nk is a peak point
for all k ∈ N. Therefore, we have by the definition of a peak point that
ank

> ank+1 for all k ∈ N. Hence (ank
)k≥1 is a decreasing subsequence of

(an)n≥1.
Case 2: (an)n≥1 has a finite number (or no) peak points. Let n0 be the

largest (i.e. last) peak point of (an)n≥1 (or n0 = 1 if (an)n≥1 has no peak
points). Let n1 = n0 + 1. Thus n1 is not a peak point of (an)n≥1. Therefore
there exists a n2 > n1 = n0 + 1 such that an2 ≥ an1 . Subsequently, since
n2 > n1 > n0, n2 is not a peak point. Therefore there exists a n3 > n2 such
that an3 ≥ an2 . Repeating this process ad nauseum, we obtain a sequence
of indices n1 < n2 < n3 < · · · such that ank+1 ≥ ank

for all k ∈ N. Hence
(ank

)k≥1 is a non-decreasing subsequence of (an)n≥1.
As in either case a monotone subsequence can be constructed, the result

follows.

2.4.3 The Bolzano–Weierstrass Theorem

Combining the Peak Point Lemma together with the Monotone Convergence
Theorem, we easily obtain the following very useful result.

Theorem 2.4.7 (The Bolzano-Weierstrass Theorem). Every bounded
sequence of real numbers has a convergent subsequence.

Proof. Let (an)n≥1 be a bounded sequence of real numbers. By the Peak
Point Lemma (Lemma 2.4.5), there exists a monotone subsequence (ank

)k≥1
of (an)n≥1. Since (an)n≥1 is bounded, (ank

)n≥1 is also bound and thus
converges by the Monotone Convergence Theorem (Theorem 2.2.6).

2.5 Completeness of the Real Numbers
In the previous sections, we have seen some methods that can help us compute
limits provided we know they exist and we have seen how to show that some
sequences converge. However, for a general sequence, determining whether a
given sequence converges can be a difficult task as the only method we have
is to verify Definition 2.1.7. The challenge with verifying the definition of a
convergent sequence is that one must first guess the limit and then show the
sequence converges to the limit. Thus it is natural to ask, “Is there a way to
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determine whether a sequence converges without having an intuition about
what the limit should be?”

2.5.1 Cauchy Sequences

If a sequence was going to converge, then eventually all terms in the sequence
are as close to the limit as we would like. In particular, by the Triangle
Inequality, eventually all terms in the sequence are as close to each other as
we would like. This leads us to the notion of a Cauchy sequence.

Heuristic Definition. A sequence (an)n≥1 is said to be Cauchy if the terms
of (an)n≥1 are arbitrarily as close to each other as we would like as long as n
is large enough.

As with the definition of the limit of a sequence, the notion of Cauchy
sequence can be made mathematically precise.

Definition 2.5.1. A sequence (an)n≥1 of real numbers is said to be Cauchy
if for all ϵ > 0 there exists an N ∈ N such that |an −am| < ϵ for all n,m ≥ N .

To formalize our motivation that if “eventually all terms in the sequence
are as close to the limit” then “eventually all terms in the sequence are as
close to each other as we would like”, we prove the following showing that a
sequence being Cauchy is required for the sequence to converge.

Theorem 2.5.2. Every convergent sequence of real numbers is Cauchy.

Proof. Let (an)n≥1 be a sequence of real numbers that converges to L ∈ R.
To see that (an)n≥1 is Cauchy, let ϵ > 0 be arbitrary. Since L = limn→∞ an,
there exists an N ∈ N such that |an − L| < ϵ

2 for all n ≥ N . Thus, for all
n,m ≥ N ,

|an − am| ≤ |an − L| + |L− am| < ϵ

2 + ϵ

2 = ϵ.

Therefore, as ϵ > 0 was arbitrary, (an)n≥1 is Cauchy by definition.

Consequently, it is natural to ask whether the converse of Theorem 2.5.2
holds; that is, if a sequence is Cauchy, does it automatically converge? Before
we tackle this question, a few examples and a remark are useful.

Remark 2.5.3. We claim that to verify |an − am| < ϵ for all n,m ≥ N , it
suffices to only verify |an − am| < ϵ for all n,m ≥ N with n ≥ m. Indeed if
we have that |an − am| < ϵ for all n,m ≥ N with n ≥ m, then if n,m ≥ N
are such that m > n, then since

|an − am| = |(−1)(am − an)| = |am − an|

we obtain that |an − am| ≤ |am − an| < ϵ as desired.
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Moreover, just by repeating the same ideas as used in the proof of
Proposition 2.1.14 (i.e. manipulating the “for all ϵ > 0” quantifies), a
sequence (an)n≥1 is Cauchy if and only if for all ϵ > 0 there exists an N ∈ N
such that |an − am| ≤ ϵ for all n,m ≥ N .

Note the following example show that it can be easier to check that a
sequence is Cauchy then it is to check whether the sequence converges. Thus
a proof that “Every Cauchy sequence converges” would be incredibly useful.

Example 2.5.4. For each n ∈ N, let an =
∑n

k=1
1

2k sin(k). Consider the
sequence (an)n≥1. It is difficult to determine whether (an)n≥1 converges by
the definition of the limit since we have no idea what the limit should be.
Moreover, since 1

2n sin(n) could be positive or negative (and it is difficult to
know which when n is large), it could be an ≤ an−1 or an ≥ an−1. Hence
(an)n≥1 is not monotone so the Monotone Convergence Theorem does not
help. Thus we have no techniques to determine whether or not (an)n≥1
converges.

However, it is not too difficult to verify that (an)n≥1 is Cauchy. To see
this, let ϵ > 0 be arbitrary. Since limn→∞

1
2n = 0 by Example 2.2.7, there

exists an N ∈ N so that 1
2N < ϵ. Then, for all n,m ≥ N with n ≥ m, we

have that

|an − am| =
∣∣∣∣∣

n∑
k=1

1
2k

sin(k) −
m∑

k=1

1
2k

sin(k)
∣∣∣∣∣ by definition

=

∣∣∣∣∣∣
n∑

k=m+1

1
2k

sin(k)

∣∣∣∣∣∣ by cancellation

≤
n∑

k=m+1

∣∣∣∣ 1
2k

sin(k)
∣∣∣∣ by the Triangle Inequality

≤
n∑

k=m+1

1
2k

as | sin(x)| ≤ x

=
(1

2

)m+1 1 −
(

1
2

)n−m

1 − 1
2

the sum of a geometric series

≤
(1

2

)m+1 1 − 0
1 − 1

2
since

(1
2

)n−m

> 0

≤ 1
2N+1

1
1 − 1

2
as m ≥ N

= 1
2N

< ϵ.

Therefore, as ϵ > 0 was arbitrary, (an)n≥1 is Cauchy.

Example 2.5.5. Note that it is possible that a sequence (an)n≥1 satisfies
limn→∞ an+1 − an = 0 but is not Cauchy. Indeed if an =

∑n
k=1

1
k for all
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n ∈ N, then an+1 − an = 1
n+1 which clearly converges to zero. However, it is

possible to show that (an)n≥1 diverges to infinity. Although we cannot prove
this divergence at this time, many students will have seen series in previous
courses and techniques of the Chapter 6 will enable this proof.

2.5.2 Convergence of Cauchy Sequences

As discussed in the previous subsection, a positive answer to the question
“Does every Cauchy sequence converge?” would be incredibly useful as it is
often easier to check a sequence is Cauchy then it is to verify the definition
of the limit. One method for providing intuition to what the answer of this
question is is to see if Cauchy sequences share similar properties to convergent
sequences. In particular, analyzing Proposition 2.2.3 and its proof, we obtain
the following.

Lemma 2.5.6. Every Cauchy Sequence is bounded.

Proof. Let (an)n≥1 be a Cauchy sequence. Since (an)n≥1 is Cauchy, there
exists an N ∈ N such that |an − am| < 1 for all n,m ≥ N . Hence, by
letting m = N , we obtain that |an| ≤ |aN | + 1 for all n ≥ N by the Triangle
Inequality.

Let M = max{|a1|, |a2|, . . . , |aN−1|, |aN | + 1}. Clearly if n ≤ N then
|an| ≤ M whereas if n ≥ N then |an| ≤ |aN | + 1 ≤ M by the above
paragraph. Hence −M ≤ an ≤ M for all n ∈ N so (an)n≥1 is bounded.

As further intuition towards whether all Cauchy sequence converge, recall
Proposition 2.4.4 demonstrates subsequences of convergent sequence must
converge. The following demonstrates the converse is true if our sequence is
assumed to be Cauchy.

Lemma 2.5.7. Let (an)n≥1 be a Cauchy sequence. If a subsequence of
(an)n≥1 converges, then (an)n≥1 converges.

Proof. Let (an)n≥1 be a Cauchy sequence with a convergent subsequence
(ank

)k≥1 and let L = limk→∞ ank
. We claim that limn→∞ an = L. To see this,

let ϵ > 0 be arbitrary. Since (an)n≥1 is Cauchy, there exists an N ∈ N such
that |an − am| < ϵ

2 for all n,m ≥ N . Furthermore, since L = limk→∞ ank
,

there exists an nj ≥ N such that |anj − L| < ϵ
2 . Hence, if n ≥ N then

|an − L| ≤ |an − anj | + |anj − L| < ϵ

2 + ϵ

2 = ϵ.

Thus, as ϵ > 0 was arbitrary, (an)n≥1 is converges to L by definition.

Using Lemma 2.5.7, we easily obtain the following.

Theorem 2.5.8 (Completeness of the Real Numbers). Every Cauchy
sequence of real numbers converges.
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Proof. Let (an)n≥1 be a Cauchy sequence. By Lemma 2.5.6, (an)n≥1 is
bounded. Therefore the Bolzano-Weierstrass Theorem (Theorem 2.4.7)
implies that (an)n≥1 has a convergent subsequence. Hence Lemma 2.5.7
implies that (an)n≥1 converges.

Again, the advantage of Theorem 2.5.8 is that it is often much easier to
check a sequence is Cauchy over checking the definition of a limit. Indeed,
consider the following example.

Example 2.5.9. For each n ∈ N, let an =
∑n

k=1
1

2k sin(k). Recall from
Example 2.5.4 that we could not deduce whether or not the sequence (an)n≥1
converges, but we were able to show that (an)n≥1 was Cauchy. Hence (an)n≥1
converges by Theorem 2.5.8.

Remark 2.5.10. Theorem 2.5.8 demonstrates that the real numbers is
a complete space (a space where every Cauchy sequence converges). The
terminology comes from the fact that complete spaces have no ‘holes’ in
them. In fact, the Completeness of the Real Numbers is logically equivalent
to the Least Upper Bound Property (i.e. if instead of asking for the real
numbers to have the Least Upper Bound Property we asked for them to
be complete, we would still end up with the real numbers). In fact, some
authors call the Least Upper Bound Property the “Completeness Property”.
We elected for our choice of terminology as “completeness” does refer to
“every Cauchy sequence converges” in subsequent analysis courses whereas
the Least Upper Bound Property is of lesser importance in future analysis
courses.

Remark 2.5.11. Cauchy sequences have additional uses beyond verify con-
vergence of sequences of real numbers. In particular, by using an equivalence
relation on the set of all Cauchy sequences of rational numbers, it is possible
to construct the real numbers. This is done in Appendix B.4 for the interested
reader.

©For use through and only available at pskoufra.info.yorku.ca.



68 CHAPTER 2. LIMITS OF SEQUENCES

©For use through and only available at pskoufra.info.yorku.ca.



Chapter 3

An Introduction to Topology

In addition to the notion of convergent sequences, we desire to analyze
analytic properties of the real numbers. In particular, by changing our
perspective slightly on what it means for a sequence to converge, we arrive at
an area of mathematics closely related to analysis called topology. The term
topology comes from the Greek words τóπoσ meaning place (or space) and
λóγoσ meaning study. Thus topology exactly means the study of spaces! In
this chapter, we will introduce students to topology via analysis motivated
topological properties of the real numbers.

3.1 Topology of the Real Numbers

Recall that a sequence (an)n≥1 of real numbers is said to converge to L ∈ R
if for all ϵ > 0 there exists an N ∈ N such that |an − L| < ϵ for all n ≥ N .
Instead, by using the notion of an open interval, we see that a sequence
(an)n≥1 of real numbers is said to converge to L ∈ R if for all ϵ > 0 there exists
an N ∈ N such that an ∈ (L− ϵ, L+ ϵ) for all n ≥ N . Consequently, we can
use open intervals to describe convergent sequences instead of distances. The
whole basis for topology that we will explore in this section is to generalize
the notion of an open interval.

3.1.1 Open Sets

The following is the correct generalization of open intervals to discuss further
topics in analysis and to introduce the area of topology.

Definition 3.1.1. A set U ⊆ R is said to be open if whenever x ∈ U there
exists an ϵ > 0 such that (x− ϵ, x+ ϵ) ⊆ U . The set

T = {U ⊆ R | U is open}

is called the topology on R.
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Note the letter U is traditionally used for an open set since open sets
nearly the same as another topological notion known as a neighbourhood
and the German word for neighbourhood is ‘umgebung’.

Example 3.1.2. Unsurprisingly, each open interval is open. To see this,
suppose a, b ∈ R are such that a < b. To see that (a, b) is open, let
x ∈ (a, b) be arbitrary. Then, if ϵ = min{x − a, b − x}, then ϵ > 0 and
(x− ϵ, x+ ϵ) ⊆ (a, b). Thus, as x ∈ (a, b) was arbitrary, (a, b) is open.

Using similar arguments, it is possible to show that if a = −∞ and/or
b = ∞, then (a, b) is open. Consequently (−∞,∞) = R is open.

Example 3.1.3. If a, b ∈ R are such that a < b, then [a, b) is not open. To
see this, we note that a ∈ [a, b) but we claim that (a− ϵ, a+ ϵ) ̸⊆ [a, b) for
all ϵ > 0. To see this, note for all ϵ > 0 that a − 1

2ϵ ∈ (a − ϵ, a + ϵ) but
a− 1

2ϵ /∈ [a, b). Hence [a, b) is not open is not open by definition.
Similar arguments can be used to show that (a, b] and [a, b] are not open.

Example 3.1.4. The empty set is open since the definition of open is
vacuously true for ∅ (as there are no elements in the empty set).

To solidify our motivation for examining open subsets of R, we prove the
following.

Proposition 3.1.5. Let (an)n≥1 be a sequence of real numbers. A number
L ∈ R is the limit of (an)n≥1 if and only if for every open set U ⊆ R such
that L ∈ U there exists an N ∈ N such that an ∈ U for all n ≥ N .

Proof. Assume that L = limn→∞ an. To see the desired property holds,
let U be an arbitrary open subset of R such that L ∈ U . Since L ∈ U
and U is open, there exists an ϵ > 0 such that (L − ϵ, L + ϵ) ⊆ U . Since
L = limn→∞ an, the definition of the limit implies that there exists an N ∈ N
such that |an − L| < ϵ for all n ≥ N . Hence an ∈ (L − ϵ, L + ϵ) ⊆ U for
all n ≥ N . Therefore, as U was arbitrary, the desired property has been
demonstrated.

Conversely, assume that every open set U ⊆ R such that L ∈ U there
exists an N ∈ N such that an ∈ U for all n ≥ N . To see that (an)n≥1
converges to L, let ϵ > 0 be arbitrary. Since (L − ϵ, L + ϵ) is an open by
Example 3.1.2, the assumptions of this direction imply that there exists an
N ∈ N such that an ∈ (L− ϵ, L+ ϵ) for all n ≥ N . Hence |an − L| < ϵ for
all n ≥ N . Therefore, since ϵ > 0 was arbitrary, (an)n≥1 converges to L by
the definition of the limit.

Proposition 3.1.5 yields an alternative definition for the limit of a sequence
of real numbers. This definition is particularly useful in generalizing limits
to abstract spaces where one defines a ‘good’ notion of open sets (i.e. a
topology) which then determines which sequences converge. A ‘good’ notion
of open sets must mimic the properties illustrated in the following proposition
for open subsets of R.
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Proposition 3.1.6. Let I be an non-empty set and for each i ∈ I let Ui be
an open subset of R. Then

a)
⋃

i∈I Ui is open in R, and

b)
⋂

i∈I Ui is open in R provided I has a finite number of elements.

Proof. a) To see that
⋃

i∈I Ui is open, let x ∈
⋃

i∈I Ui be arbitrary. Then
x ∈ Ui0 for some i0 ∈ I. Therefore, as Ui0 is open, there exists an ϵ > 0 such
that (x− ϵ, x+ ϵ) ⊆ Ui0 . Hence

(x− ϵ, x+ ϵ) ⊆
⋃
i∈I

Ui.

Since x ∈
⋃

i∈I Ui was arbitrary,
⋃

i∈I Ui is open.
b) To see that

⋂
i∈I Ui is open in R provided I has a finite number of

elements, x ∈
⋂

i∈I Ui be arbitrary. Hence x ∈ Ui for each i ∈ I. Since Ui is
open, for each i ∈ I there exists an ϵi > 0 such that (x− ϵi, x+ ϵi) ⊆ Ui. Let

ϵ = min{ϵi | i ∈ I}.

Since I has a finite number of elements, ϵ > 0. Furthermore, by the definition
of ϵ, (x− ϵ, x+ ϵ) ⊆ Ui for all i ∈ I. Hence

(x− ϵ, x+ ϵ) ⊆
⋂
i∈I

Ui.

Since x ∈
⋂

i∈I Ui was arbitrary,
⋂

i∈I Ui is open.

Remark 3.1.7. It is important to note that the conclusions of part (b) of
Proposition 3.1.6 fails when I has an infinite number of elements. To see
this, for each n ∈ N let Un =

(
− 1

n ,
1
n

)
. Then Un is open for all n ∈ N by

Example 3.1.2 but ⋂
n≥1

Un = {0}

is clearly not open as there is no open interval that is contained inside a
single point.

Proposition 3.1.6 shows us that the union of any number of open intervals
is an open set. In fact, our next result demonstrates that every open subset
of the real numbers is a union of open intervals. To begin, we require a
lemma.

Lemma 3.1.8. Let U ⊆ R be a non-empty open set. Define a relation ∼
on U as follow: for x, y ∈ U , x ∼ y if and only if [x, y] ⊆ U and [y, x] ⊆ U
(note ∅ ⊆ U , [y, x] = ∅ if y > x, and [x, y] = ∅ if x > y). Then ∼ is an
equivalence relation on U .
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Proof. To see that ∼ is an equivalence relation, we must check that ∼ satisfies
three properties.

Reflexivity. To see that ∼ is reflexive, let x ∈ U be arbitrary. Since
[x, x] = {x} ⊆ U , x ∼ x by definition. Hence ∼ is reflexive.

Symmetry. To see that ∼ is symmetric, let x, y ∈ U be such that x ∼ y.
Thus [x, y] ⊆ U and [y, x] ⊆ U . Hence [y, x] ⊆ U and [x, y] ⊆ U so y ∼ x by
definition. Thus ∼ is symmetric.

Transitivity. To see that ∼ is transitive, let x, y, z ∈ U be such that x ∼ y
and y ∼ z. Since we have already verified symmetry, we may assume without
loss of generality that x ≤ z (otherwise interchange x and z). Consequently,
to show that x ∼ z, it suffices to prove that [x, z] ⊆ U . We can now divide
the proof into three cases.

Case 1: y ≤ x. Since y ∼ z, we know that [y, z] ⊆ U . Therefore, since
y ≤ x in this case, we know that [x, z] ⊆ [y, z] ⊆ U . Thus x ∼ z in this case.

Case 2: x ≤ y ≤ z. Since x ∼ y and y ∼ z, we know that [x, y] ⊆ U and
[y, z] ⊆ U . Therefore, since x ≤ y ≤ z, we have that

[x, z] = [x, y] ∪ [y, z] ⊆ U ∪ U = U.

Thus x ∼ z in this case.
Case 3: z ≤ y. Since x ∼ y, we know that [x, y] ⊆ U . Therefore, since

z ≤ y in this case, we know that [x, z] ⊆ [x, z] ⊆ U . Thus x ∼ z in this case.
Therefore, since the above three cases cover all possible cases, we have

that ∼ is transitive as desired.
Hence, as we have verified the three properties of an equivalence relation,

∼ is an equivalence relation.

Proposition 3.1.9. Every (non-empty) open subset of R is a union of
disjoint open intervals.

Proof. Let U be an open subset of R. If U = ∅, then U is technically an
empty union of open intervals. Thus, assume that U is non-empty. Let ∼ be
the equivalence relation on U from Lemma 3.1.8.

For each x ∈ U , let Ex denote the equivalence class of x with respect to
∼. Clearly

U =
⋃

x∈U

Ex

as x ∈ Ex for all x ∈ U . Moreover, by the properties of equivalence relations,
if x, y ∈ U then either Ex = Ey or Ex ∩Ey = ∅. Hence if each Ex is an open
interval, the proof will be complete.

Let x ∈ U be fixed. Let

αx = inf(Ex) and βx = sup(Ex).
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We claim that Ex = (αx, βx).
First, we claim that αx < βx. To see this, notice that x ∈ Ex ⊆ U . Since

U is open, there exists an ϵ > 0 such that (x− ϵ, x+ ϵ) ⊆ U . Clearly y ∼ x
for all y ∈ (x− ϵ, x+ ϵ) so

αx ≤ x− ϵ < x+ ϵ ≤ βx.

To see that (αx, βx) ⊆ Ex, let y ∈ (αx, βx) be arbitrary. Since αx < y <
βx, by the definition of inf and sup there exists z1, z2 ∈ Ex such that

αx ≤ z1 < y < z2 ≤ βx.

Since z1, z2 ∈ Ex, we have z1 ∼ x and z2 ∼ x. Thus z1 ∼ z2 by transitivity so
[z1, z2] ⊆ U . Hence y ∈ [z1, z2] ⊆ U . Therefore, as y ∈ (αx, βx) was arbitrary,
(αx, βx) ⊆ Ex.

To see that Ex ⊆ (αx, βx), note that

Ex ⊆ (αx, βx) ∪ {αx, βx}

by the definition of αx and βx. Thus it suffices to show that αx, βx /∈ Ex.
Suppose for the sake of a contradiction that βx ∈ Ex. Thus βx ∼ x and

βx ∈ Ex ⊆ U ⊆ R.

Since βx ∈ U and U is open, there exists an ϵ > 0 so that (βx −ϵ, βx +ϵ) ⊆ U .
Hence

βx + 1
2ϵ ∼ βx ∼ x.

Thus βx + 1
2ϵ ∈ Ex. However βx + 1

2ϵ > βx so βx + 1
2ϵ ∈ Ex contradicts

the fact that βx = sup(Ex). Hence we have obtained a contradiction so
βx /∈ Ex. Similar arguments show that αx /∈ Ex. Hence Ex = (αx, βx)
thereby completing the proof.

Remark 3.1.10. Considering Proposition 3.1.9, a natural question to ask
is, “How many open intervals do we need in the union?” Looking at the
proof of Proposition 3.1.9, we see instead of writing U =

⋃
x∈U Ex, we can

write U =
⋃

x∈S Ex where S contains one element from each equivalence
class. Since each equivalence class is an open interval and since each open
interval contains a rational number by Proposition 1.3.8, we can write
U =

⋃
x∈QEx where Q ⊆ Q. As the cardinality of the rational numbers

equals the cardinality of the natural numbers (see your MATH 1200 textbook
if there was not time to cover countable and uncountable sets), we can write
U =

⋃
n∈N In where each In is an open interval. In particular, every open

subset of R is a countable union of open intervals!
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3.1.2 Closed Sets

Although the notion of open sets is important in future courses, the following
notion is far more important for this course.

Definition 3.1.11. A set F ⊆ R is said to be closed if F c = R \ F is open.

Note the letter F is traditionally used for a closed set since the French
word for closed is ‘fermé’.

Example 3.1.12. As ∅ and R are open, ∅c = R and Rc = ∅ are closed.

Example 3.1.13. For all a, b ∈ R with a ≤ b, the closed interval [a, b] is
closed. Indeed notice that

[a, b]c = (−∞, a) ∪ (b,∞)

which is a union of open sets and thus open by Proposition 3.1.6. Hence
[a, b] is closed by definition.

Example 3.1.14. For all a ∈ R, the sets [a,∞) and (−∞, a] are closed. To
see this, notice that

[a,∞)c = (−∞, a) and (−∞, b]c = (b,∞)

are open. Hence [a,∞) and (−∞, a] are closed by definition.

Example 3.1.15. It is important to note that there are subsets of R that
are not open nor closed. Indeed if a, b ∈ R are such that a < b, then [a, b)
is not open and not closed. To see this, first note that [a, b) is not open by
Example 3.1.3. Furthermore, notice that

[a, b)c = (−∞, a) ∪ [b,∞).

We claim that [a, b)c is not open. To see this, we note that b ∈ [a, b)c but we
claim that (b− ϵ, b+ ϵ) ̸⊆ [a, b)c for all ϵ > 0. Indeed, if ϵ > 0 and

δ = min
{1

2ϵ,
b− a

4

}
,

then b− δ ∈ (b− ϵ, b+ ϵ) but b− δ /∈ (−∞, a) ∪ [b,∞) = [a, b)c. Therefore,
by definition, [a, b)c is not open so [a, b) is not closed.

Due to the nature of the complement of a set, the following trivially
follows from Proposition 3.1.6.

Proposition 3.1.16. Let I be an non-empty set and for each i ∈ I let Fi be
a closed subset of R. Then

•
⋂

i∈I Fi is closed in R, and
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•
⋃

i∈I Fi is closed in R provided I has a finite number of element.

Proof. Since(⋂
i∈I

Fi

)c

=
⋃
i∈I

F c
i and

(⋃
i∈I

Fi

)c

=
⋂
i∈I

F c
i

by de Morgan’s Laws, the result follows by the definition of a closed set along
with Proposition 3.1.6.

The reason we are interested in closed sets is the following result that
shows that closed sets contain all of their limits.

Proposition 3.1.17. A set F ⊆ R is closed if and only if whenever (an)n≥1
is a convergent sequence of real numbers with an ∈ F for all n ∈ N, then
limn→∞ an ∈ F .

Proof. Assume F ⊆ R is closed. Let (an)n≥1 be a convergent sequence of
real numbers with an ∈ F for all n ∈ N and let L = limn→∞ an. To see that
L ∈ F , suppose for the sake of a contradiction that L /∈ F . Hence L ∈ F c.
Since F is closed, F c is open. Therefore since L ∈ F c and F c is open, there
exists an ϵ > 0 such that (L− ϵ, L+ ϵ) ⊆ F c. However, since L = limn→∞ an,
there exists an N ∈ N such that aN ∈ (L− ϵ, L+ ϵ) ⊆ F c. Hence aN ∈ F c

and aN ∈ F which is a contradiction. Therefore it must be the case that
L ∈ F .

To prove the other direction, assume F is not closed. Our goal is to
construct a sequence (an)n≥1 that converges to L /∈ F with an ∈ F for all
n ∈ N. Since F is not closed, F c is not open. Therefore there exists an
L ∈ F c such that (L − ϵ, L + ϵ) ̸⊆ F c for all ϵ > 0. Thus for each n ∈ N
there exists a number an ∈ (L− 1

n , L+ 1
n) with an /∈ F c. Hence (an)n≥1 is a

sequence of real numbers with an ∈ F for all n ∈ N and

L− 1
n

≤ an ≤ L+ 1
n

for all n ∈ N. By the Squeeze Theorem (Theorem 2.3.13), (an)n≥1 converges
to L. Since an ∈ F for all n ∈ N and L /∈ F , the proof is complete.

Example 3.1.18. The set

A =
{ 1
n

∣∣∣∣ n ∈ N
}

is not closed since 1
n ∈ A for all n ∈ N and 0 = limn→∞

1
n yet 0 /∈ A. However,

one can show that
B =

{ 1
n

∣∣∣∣ n ∈ N
}

∪ {0}
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is closed by showing that every convergent sequence whose elements are
in B (of which there are lots) converges to an element in B. Indeed, if
(bn)n≥1 is a convergent sequence with bn ∈ B for all n ∈ N, then either
limn→∞ bn = 0 ∈ B, or there exists an N, k ∈ N such that bn = 1

k for all
n ≥ N and thus limn→∞ bn = 1

k ∈ B in this case. Alternatively, one can use
the technology of the next section (specifically Example 3.2.6 and Theorem
3.2.8) to prove that B is closed.

3.1.3 Closure of a Set

As Example 3.1.18 shows, it can be possible to take a set and add a few
number of points in order to make the set closed. This can be formalized by
the following result which shows there is a smallest closed set containing a
given set.

Lemma 3.1.19. Let A ⊆ R. Then there exists a closed subset F ⊆ R such
that A ⊆ F and if F1 ⊆ R is closed and A ⊆ F1, then F ⊆ F1. That is, there
is a smallest closed subset of R that contains A.

Proof. Let
FA = {Y ⊆ R | X ⊆ Y, Y is closed}

and let
F =

⋂
Y ∈FA

Y.

We claim that F is the set we are looking for. To see this, first notice
that F is closed by Proposition 3.1.16 as it is the intersection of closed sets.
Moreover, since A ⊆ Y for all Y ∈ FA, A ⊆ F . Thus F is a closed set that
contains A.

To see that F is the smallest closed set that contains A, let F1 ⊆ R be
an arbitrary closed set such that A ⊆ F1. Hence F1 ∈ FA by definition.
Therefore

F =
⋂

Y ∈FA

Y ⊆ F1

since F1 is one of the sets in the intersection. Therefore, as F1 was arbitrary,
F has the desired properties.

Due to Lemma 3.1.19, we can make the following definition.

Definition 3.1.20. The closure of a subset A of R, denoted A, is the smallest
closed subset of R containing A.

Example 3.1.21. It is not difficult to see that (0, 1) = [0, 1]. Indeed, clearly
[0, 1] is a closed set containing (0, 1) and any closed set containing (0, 1)
must contain 0 and 1 since there are sequences with elements in (0, 1) that
converge to 0 and 1 respectively.
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Example 3.1.22. It is not difficult to see that if F ⊆ R is closed, then
F = F (i.e. the smallest closed set containing a closed set is the initial closed
set).

Example 3.1.23. The closure of the rational numbers in the real numbers
is the real numbers. To see this, note for each γ ∈ R and n ∈ N there exists
a rational number qn such that

γ − 1
n

≤ qn ≤ γ + 1
n

by Proposition 1.3.8. Hence, the Squeeze Theorem (Theorem 2.3.13) implies
that (qn)n≥1 converges to γ. Therefore, any closed set that contains Q must
also contain γ by Proposition 3.1.17. Hence the only closed set containing Q
is R so Q = R.

Generalizing the idea in Example 3.1.23, we obtain the following alterna-
tive characterization of the closure of a set of real numbers.

Lemma 3.1.24. Let A ⊆ R and let x ∈ R. Then x ∈ A if and only if for
all ϵ > 0 there exists a a ∈ A so that |x− a| < ϵ.

Proof. Assume x ∈ A. To see the desired property of x, suppose for the
sake of a contradiction that there exists an ϵ > 0 so that |x − a| ≥ ϵ for
all a ∈ A. Then (x − ϵ, x + ϵ) ∩ A = ∅. Hence A ⊆ (−∞, x − ϵ] ∩ [x +
ϵ,∞). Since (−∞, x− ϵ] ∩ [x+ ϵ,∞) is a closed set containing A, we have
A ⊆ (−∞, x − ϵ] ∩ [x + ϵ,∞) by the definition of the closure. However,
A ⊆ (−∞, x− ϵ] ∩ [x+ ϵ,∞) contradicts the fact that x ∈ A. Hence x has
the desired property.

Conversely, assume that x ∈ R has the property that for all ϵ > 0 there
exists a a ∈ A so that |x − a| < ϵ. Thus, for each n ∈ N there exists an
an ∈ A such that |x − an| < 1

n . Hence (an)n≥1 is a sequence in A that
converges to x. By Proposition 3.1.17, any closed set that contains A must
contain an for all n ∈ N and thus must contain x. Hence x ∈ A by definition
as desired.

Moreover, the closure of a set can be characterized by adding all of the
points to make Proposition 3.1.17 work.

Lemma 3.1.25. Let A ⊆ R and let x ∈ R. Then x ∈ A if and only if there
exists a sequence (an)n≥1 such that an ∈ A for all n ∈ N and x = limn→∞ an.

Proof. Assume x ∈ A. To see the desired property, note by Lemma 3.1.24
that for all n ∈ N there exists an an ∈ A such that |x − an| < 1

n . Thus
(an)n≥1 is a sequence of real numbers with an ∈ A for all n ∈ N and

x− 1
n

≤ an ≤ x+ 1
n
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for all n ∈ N. By the Squeeze Theorem (Theorem 2.3.13), (an)n≥1 converges
to x. Therefore, as x ∈ A was arbitrary, one direction is complete.

To see the other direction, let x ∈ R be such that there exists a sequence
(an)n≥1 such that an ∈ A for all n ∈ N and x = limn→∞ an. Since A ⊆ A by
definition, an ∈ A for all n ∈ N. Therefore, since A is closed, Proposition
3.1.17 implies that

x = lim
n→∞

an ∈ A

as desired.

3.1.4 Limit, Interior, and Boundary Points

There are many other topological notions that describe whether or not a
point is related to a set. In this subsection, we will analyze the notions of a
limit point, an interior point, and a boundary point for subsets of R.

With our previous study of closed sets and the closure of a set, we have
all the tools necessary to study limit points.

Definition 3.1.26. Let A ⊆ R. A point x ∈ R is said to be a limit point
of A if exists a sequence (an)n≥1 such that an ∈ A for all n ∈ N and
x = limn→∞ an.

In particular, a limit point of A is a limit of a sequence of points from
A. Based on the previous subsection, we immediately have the following
alternative characterization of limit points

Corollary 3.1.27. Let A ⊆ R and let x ∈ R. The following are equivalent:

• x is a limit point of A (that is, there exists a sequence (an)n≥1 such
that an ∈ A for all n ∈ N and x = limn→∞ an).

• x ∈ A.

• For all ϵ > 0, there exists an a ∈ A such that |a− x| < ϵ.

Proof. This follows immediately from the definition of a limit point and
Lemmata 3.1.24 and 3.1.25.

Furthermore, we immediately have a characterization of closed sets via
limit points.

Corollary 3.1.28. Let F ⊆ R. Then F is a closed subset of R if and only
if F contains all of its limit points.

Proof. This follows immediately Proposition 3.1.17 and Corollary 3.1.27.

To define the next useful topological notion of a point related to a set,
we channel the idea of an open set.
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Definition 3.1.29. Let A ⊆ R. A point x ∈ R is said to be an interior
point of A if exists an ϵ > 0 such that (x− ϵ, x+ ϵ) ⊆ A. The set of interior
points of A is denoted by int(A).

Example 3.1.30. Consider the sets [a, b], (a, b], [a, b), and (a, b). It is
elementary to see by Definition 3.1.29 that the interior of all of these sets is
(a, b). Hence the term ‘interior’.

Example 3.1.31. If U is an open subset of R, then every element of U is
an interior point of U by definition.

In particular, similar to how the closure of a set A is the smallest closed
set containing A, the interior of a set A actually is the largest open set
contained in A. To show this, we divide the proof into a few lemmata;
first showing that the interior is an open set, and then showing the interior
contains all open subsets of A.

Lemma 3.1.32. If A ⊆ R, then int(A) is an open set.

Proof. To see that int(A) is open, let x ∈ int(A) be arbitrary. By the
definition of an interior point, there exists an ϵ > 0 such that (x−ϵ, x+ϵ) ⊆ A.

We claim that (x− 1
2ϵ, x+ 1

2ϵ) ⊆ int(A). To see this, let y ∈ (x− 1
2ϵ, x+ 1

2ϵ)
be arbitrary. To see that y ∈ int(A), first notice if z ∈ (y − 1

2ϵ, y + 1
2ϵ) then

|z − x| ≤ |z − y| + |y − x| < ϵ

2 + ϵ

2 = ϵ

and thus z ∈ (x − ϵ, x + ϵ) ⊆ A. Hence (y − 1
2ϵ, y + 1

2ϵ) ⊆ A so y ∈
int(A) by definition. Therefore, since y ∈ (x − 1

2ϵ, x + 1
2ϵ) was arbitrary,

(x − 1
2ϵ, x + 1

2ϵ) ⊆ int(A). Hence, since x ∈ int(A) was arbitrary, int(A) is
open by the definition of an open set.

Lemma 3.1.33. Let A ⊆ R. If U ⊆ A and U is an open subset of R, then
U ⊆ int(A).

Proof. Assume U ⊆ A and U is an open subset of R. To see that U ⊆ int(A),
let x ∈ U be arbitrary. Since U is open, by the definition of an open set there
exists an ϵ > 0 such that (x− ϵ, x+ ϵ) ⊆ U ⊆ A. Hence x ∈ int(A) by the
definition of the interior. Therefore, since x ∈ U was arbitrary, U ⊆ int(A)
as desired.

Corollary 3.1.34. If A ⊆ R, then

int(A) =
⋃

U∈Γ
U where Γ = {U ⊆ A | U is an open subset of R}.

Hence int(A) is the largest open subset of A.
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Proof. If U ∈ Γ then U ⊆ int(A) by Lemma 3.1.33. Hence
⋃

U∈Γ U ⊆ int(A).
For the other inclusion, let x ∈ int(A) be arbitrary. By the definition

of the interior there exists an ϵ > 0 such that (x − ϵ, x + ϵ) ⊆ A. Since
(x− ϵ, x+ ϵ) is an open set and thus (x− ϵ, x+ ϵ) ∈ Γ, we obtain that

x ∈ (x− ϵ, x+ ϵ) ⊆
⋃

U∈Γ
U.

Therefore, since x ∈ int(A) was arbitrary, we obtain that int(A) ⊆
⋃

U∈Γ U
as desired.

For our final type of point based on a set, there are many equivalent
characterizations. We will adopt the following as the definition as it mim-
ics the definition of the interior point and we will prove the equivalent
characterizations in due course.

Definition 3.1.35. Let A ⊆ R. A point x ∈ R is said to be an boundary
point of A if for all ϵ > 0 there exists an a ∈ A and a b ∈ R \ A such that
a, b ∈ (x− ϵ, x+ ϵ). The set of boundary points of A is denoted by bdy(A).

As promised, there are many equivalent characterizations of boundary
points.

Proposition 3.1.36. Let A ⊆ R and let x ∈ R. The following are equivalent:

(i) x is a boundary point of A (that is, ϵ > 0 there exists an a ∈ A and a
b ∈ R \A such that a, b ∈ (x− ϵ, x+ ϵ)).

(ii) There exists sequences (an)n≥1 and (bn)n≥1 such that an ∈ A and
bn ∈ R \A for all n ∈ N and x = limn→∞ an = limn→∞ bn.

(iii) x ∈ A ∩ (R \A).

(iv) x ∈ A \ int(A).

(v) x /∈ int(A) ∪ int(R \A).

Proof. To begin, note that (i), (ii), and (iii) are equivalent by Corollary 3.1.27.
To complete the proof, we will show that (iii) =⇒ (iv) =⇒ (v) =⇒ (i).

To see that (iii) =⇒ (iv), assume x ∈ A∩(R \A). Hence x ∈ A. Therefore,
to show that x ∈ A \ int(A), it remains only to show that x /∈ int(A). To
see this, suppose for the sake of a contradiction that x ∈ int(A). By the
definition of the interior, this implies that there exists an ϵ > 0 such that
(x− ϵ, x+ ϵ) ⊆ A. Hence (x− ϵ, x+ ϵ) ∩ (R\A) = ∅. Therefore Lemma 3.1.24
implies that x /∈ (R \A). Since this contradicts the fact that x ∈ A∩ (R \A),
it follows that x /∈ int(A). Hence (iii) =⇒ (iv).

To see that (iv) =⇒ (v), assume x ∈ A \ int(A). Therefore x /∈ int(A).
Therefore, to show that x /∈ int(A) ∪ int(R \ A), it remains only to show
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that x /∈ int(R \ A). To see this, suppose for the sake of a contradiction
that x ∈ int(R \ R). By the definition of the interior, this implies that there
exists an ϵ > 0 such that (x− ϵ, x+ ϵ) ⊆ R \ R. Hence (x− ϵ, x+ ϵ) ∩A = ∅.
Therefore Lemma 3.1.24 implies that x /∈ A. Since this contradicts the fact
that x ∈ A \ int(A), it follows that x /∈ int(R \A). Hence (iv) =⇒ (v).

To see that (v) =⇒ (i), assume x /∈ int(A) ∪ int(R \A). Since x /∈ int(A),
by the definition of the interior we know for all ϵ > 0 that (x− ϵ, x+ ϵ) ̸⊆ A.
Hence for all ϵ > 0 there exists a b ∈ R \ A such that b ∈ (x − ϵ, x + ϵ).
Similarly, since x /∈ int(R \A), by the definition of the interior we know for
all ϵ > 0 that (x − ϵ, x + ϵ) ̸⊆ R \ A). Hence for all ϵ > 0 there exists an
a ∈ A such that a ∈ (x− ϵ, x+ ϵ). Hence (i) holds so (v) =⇒ (i).

To motivate the terminology of the boundary point, consider the following
examples.
Example 3.1.37. Consider the sets [a, b], (a, b], [a, b), and (a, b). We claim
that the set of boundary points of all of these sets is {a, b}. This follows
immediately since the closure of these sets are [a, b] and since the closure
of the complements of these sets are (−∞, a] ∪ [b,∞). Hence the boundary
points of these sets are truly “on the boundary.

In fact, we boundary points are related to one of the initial concepts in
this course.
Example 3.1.38. Let A be a non-empty subset of R that is bounded above.
We claim that α = lub(A) is a boundary point of A. Hence all of the
characterizations from Proposition 3.1.36 hold for α.

To see that α is a boundary point of A, let ϵ > 0 be arbitrary. We desire to
show that there exists an a ∈ A and a b ∈ R\A such that a, b ∈ (α− ϵ, α+ ϵ).
To begin, let b = α + 1

2ϵ. Therefore, since b > α and α is the least upper
bound of A, it follows that b /∈ A. Hence b ∈ R \ A and b ∈ (α − ϵ, α + ϵ).
Therefore, it remains only to show the existence of a.

To see that there exists an a ∈ A such that a ∈ (α− ϵ, α+ ϵ), suppose for
the sake of a contradiction that A∩(α−ϵ, α+ϵ) = ∅. Let γ = α− 1

2ϵ. Clearly
γ < α. Moreover, since a ≤ α for all a ∈ A and since A ∩ (α− ϵ, α+ ϵ) = ∅,
it follows that a ≤ γ for all a ∈ A. Therefore γ is an upper bound of A that
is less than α. Since this contradicts the fact that α is the least upper bound
of A, we have a contradiction. Hence α is a boundary point of A.
Remark 3.1.39. By combining Example 3.1.38 together with Proposition
3.1.36, it follows that if A is a non-empty subset of R that is bounded above,
then exists sequences (an)n≥1 and (bn)n≥1 such that an ∈ A and bn ∈ R \A
for all n ∈ N and lub(A) = limn→∞ an = limn→∞ bn. This not only is a
useful property of the least upper bound of a set, but it also shows that
students’ original intuition when it comes to computing least upper bounds
is correct: the least upper bound of a set is, in essence, the “largest element
of the set” (of course, it does not need to be in the set, but it almost is).
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3.1.5 The Cantor Set

In order to have one non-trivial example of for interior and boundary points,
we consider an example of a subset of R that is very important example in
analysis.

Definition 3.1.40. Let P0 = [0, 1]. Construct P1 from P0 by removing the
open interval of length 1

3 from the middle of P0 (i.e. P1 = [0, 1
3 ] ∪ [2

3 , 1]).
Then construct P2 from P1 by removing the open intervals of length 1

32 from
the middle of each closed subinterval of P1. Subsequently, having constructed
Pn, construct Pn+1 by removing the open intervals of length 1

3n+1 from the
middle of each of the 2n closed subintervals of Pn. The set

C =
⋂

n≥1
Pn

is known as the Cantor set.

The Cantor set has many interesting properties. First, note that Propo-
sition 3.1.16 implies the Cantor set is closed being the intersection of closed
sets. The following gives an alternate characterization of the Cantor set
using the ternary expansion of real numbers as described in Remark 2.3.28.

Lemma 3.1.41. Let x ∈ R. Then x ∈ C if and only if there is a sequence
(an)n≥1 with an ∈ {0, 2} for all n ∈ N such that x = limn→∞

∑n
k=1

ak

3k (i.e.
x ∈ [0, 1] and x has a ternary expansion using only 0s and 2s).

Proof. To begin, assume x ∈ C. Hence x ∈ Pn for all n ∈ N by the definition
of C. Furthermore, by the recursive construction of the Pn, there exists a
sequent (an)n≥1 such that an ∈ {0, 2} for all n ∈ N and

x ∈
[

n∑
k=1

ak

3k
,

1
3n

+
n∑

k=1

ak

3k

]
⊆ Pn

for all n ∈ N.
To see that x = limn→∞

∑n
k=1

ak

3k , notice that∣∣∣∣∣x−
n∑

k=1

ak

3k

∣∣∣∣∣ ≤
∣∣∣∣∣
(

1
3n

+
n∑

k=1

ak

3k

)
−

n∑
k=1

ak

3k

∣∣∣∣∣ = 1
3n
.

Hence
x− 1

3n
≤

n∑
k=1

ak

3k
≤ x+ 1

3n

for all n ∈ N. Therefore, since limn→∞
1

3n = 0, the Squeeze Theorem
(Theorem 2.3.13) implies that x = limn→∞

∑n
k=1

ak

3k as desired.
For the converse direction, assume x ∈ R is such that there exists a se-

quence (an)n≥1 with an ∈ {0, 2} for all n ∈ N such that x = limn→∞
∑n

k=1
ak

3k .
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For each n ∈ N, let sn =
∑n

k=1
ak

3k . By the description of Pn, we obtain that
sn ∈ Pn for all n ∈ N. In fact, we claim that sm ∈ Pn whenever m ≥ n. To
see this, notice if m ≥ n then

n∑
k=1

ak

3k
≤

m∑
k=1

ak

3k
= sm ≤

n∑
k=1

ak

3k
+

m∑
k=n+1

2
3k

≤
n∑

k=1

ak

3k
+ 2

3n+1

1 −
(

1
3

)m−n

1 − 1
3

=
n∑

k=1

ak

3k
+

1 −
(

1
3

)m−n

3n

≤
n∑

k=1

ak

3k
+ 1

3n

so that sm ∈ Pn as claimed.
Since each Pn is a closed set, since x = limm→∞ sm, and since sm ∈ Pn

whenever m ≥ n, we obtain that x ∈ Pn for each n ∈ N by Proposition 3.1.17.
Hence x ∈

⋂
n≥1 Pn = C as desired.

Lemma 3.1.41 enables us to demonstrate the following which shows the
set of interior and boundary points of a set may behave far differently than
what was seen for intervals.

Corollary 3.1.42. For the Cantor set C, int(C) = ∅ and bdy(C) = C.

Proof. To see that int(C) = ∅, suppose for the sake of a contradiction that
there exists an x ∈ int(C). By the definition of the interior, this implies
that there exists an ϵ > 0 such that (x − ϵ, x + ϵ) ⊆ C =

⋂
n≥1 Pn. Hence

(x − ϵ, x + ϵ) ⊆ Pn for all n ∈ N. Since limn→∞
1

3n = 0, there exists an
N ∈ N such that 1

3N < ϵ. By the construction of PN we see that PN does not
contain an open interval of length more that 1

3N . Therefore, it is impossible
that (x− ϵ, x+ ϵ) ⊆ PN . Hence we have obtained a contradiction so it must
be the case that int(C) = ∅.

To see that bdy(C) = C, note bdy(C) = C \ int(C) by Proposition 3.1.36.
Since C is closed, we know that C = C. Therefore, since we have shown that
int(C) = ∅, we obtain that

bdy(C) = C \ int(C) = C \ ∅ = C

as desired.

The intriguing thing about the Cantor set being a closed set with empty
interior is that Cantor set is equinumerous with the real numbers; that is,
the Cantor set and the real numbers have the same cardinality (the same
number of elements). For those that saw cardinality in MATH 1200, we
include the following.
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Corollary 3.1.43. |C| = |R|.

Proof. To see that C is uncountable, let

X = {(bn)n≥1 | , bn ∈ {0, 1} for all n ∈ N}.

Define f : X{0, 1} → C by

f((bn)n≥1) = lim
n→∞

n∑
k=1

2bk

3k

for all (bn)n≥1 ∈ X. Clearly f is a well-defined injective function so |C| ≥
2|N| = |R|. Therefore, since C ⊆ R, we obtain that |C| = |R| as desired.

3.2 Compact Sets
Although the topological notion of a closed set is nice due to Proposition
3.1.17, there is a far more useful topological notion. One essential idea in
analysis is the ability to reduce infinity objects into finite objects as the
latter are easier to handle. Since the topology on R determines the analytic
structure on subsets of R and it would be nice when given a subset of R to
be able to reduce to a finite number of open sets. This notion is known as
a compact set. Although for the real numbers there is not much difference
between closed and compact sets, it is really the notion of compactness
that makes many results in analysis work. In particular, many of the most
important theorems in this course fundamentally rely on the fact that every
closed interval is compact.

3.2.1 Definition of a Compact Set

It turns out that there are many equivalent notions of a compact set for
subsets of the real numbers and many of these notions extend to more general
settings. However, the most general notion of a compact set is based on the
following.

Definition 3.2.1. Let A ⊆ R. A collection {Ui | i ∈ I} of subsets of R is
said to be an open cover of A if Ui is open for all i ∈ I and A ⊆

⋃
i∈I Ui.

Example 3.2.2. If for each n ∈ N we let Un = (−n, n), then {Un | n ∈ N}
is an open cover of R (and any subset of R).

Example 3.2.3. If for each n ∈ N we let Un =
(

1
n , 1

)
, then

{(
1
n , 1

) ∣∣∣ n ∈ N
}

is an open cover of (0, 1).

The most general definition of a compact set is as follows.
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Definition 3.2.4. A set K ⊆ R is said to be compact if every open cover of
K has a finite subcover; that is, if {Ui | i ∈ I} is an open cover of K, then
there exists an n ∈ N and i1, . . . , in ∈ I such that K ⊆

⋃n
k=1 Uik

.

Note the letter K is traditionally used for a compact set since the German
word for compact is ‘kompakt’.

Remark 3.2.5. The rationale for why compact sets are easy to work with is
that it is much easier to deal with a finite number of objects than it is to deal
with an infinite number (e.g. taking a maximum instead of a supremum).

Example 3.2.6. Let

K = {0} ∪
{ 1
n

∣∣∣∣ n ∈ N
}
.

We claim that K is a compact set.
To see this, let {Ui | i ∈ I} be any open cover of K. Since 0 ∈

⋃
i∈I Ui,

there exists an i0 ∈ I such that 0 ∈ Ui0 . Therefore, since Ui0 is open, there
exists an ϵ > 0 so that (−ϵ, ϵ) ⊆ Ui0 .

Since limn→∞
1
n = 0 there exists an N ∈ N such that 1

n ∈ (−ϵ, ϵ) ⊆ Ui0

for all n ≥ N . Furthermore, since K ⊆
⋃

i∈I Ui, for each n < N we may
chose an in ∈ I such that 1

n ∈ Uin . Hence, by construction

K ⊆
N−1⋃
k=0

Uik

so {Ui0 , . . . , UiN−1} is a finite open subcover of K. Hence, since {Ui | i ∈ I}
was an arbitrary open cover of K, K is compact by definition.

It is natural to ask whether R is compact. Since the open cover {(−n, n) |
n ∈ N} of R clearly has no finite subcovers, we see that R is not compact.
More generally, using the same open cover, we note the following.

Theorem 3.2.7. If K ⊆ R is compact, then K is bounded.

Proof. Let K ⊆ R be compact. For each n ∈ N, let Un = (−n, n). Therefore,
since

⋃
n≥1 Un = R, we have that {Un | n ∈ N} is an open cover of K. Since

K is compact, there exists numbers k1, . . . , km ∈ N such that {Uk1 , . . . , Ukm}
is an open cover of K. Therefore, if M = max{k1, . . . , km}, then

K ⊆
m⋃

j=1
Ukj

= (−M,M).

Hence K is bounded.
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By analyzing the open cover
{(

1
n , 1

) ∣∣∣ n ∈ N
}

of (0, 1), we see that any
finite subcover does not contain an interval of the form (0, ϵ) for some ϵ > 0.
Hence this open cover has no finite subcovers so (0, 1) is not compact. More
generally, using similar ideas, we obtain the following.

Theorem 3.2.8. If K ⊆ R is compact, then K is closed.

Proof. Let K ⊆ R be compact. Suppose for the sake of a contradiction that
K is not closed. By Proposition 3.1.17 there exists a convergent sequence
(an)n≥1 such that an ∈ K for all n ∈ N yet L = limn→∞ an /∈ K. We will
use the sequence (an)n≥1 to construct an open cover of K that has no finite
subcovers thereby contradicting the fact that K is compact.

For each n ∈ N let

Un =
(

−∞, L− 1
n

)
∪
(
L+ 1

n
,∞
)
.

Notice that each Un is open and⋃
n≥1

Un = R \ {L}.

Hence, as L /∈ K, {Un | n ∈ N} is an open cover of K.
Since K is compact, {Un | n ∈ N} has a finite subcover of K. Thus there

exists k1, . . . , km ∈ N such that K ⊆
⋃m

j=1 Ukj
. Let M = max{k1, . . . , km}.

Then
K ⊆

m⋃
j=1

Ukj
⊆
(

−∞, L− 1
M

)
∪
(
L+ 1

M
,∞
)
.

However, since an ∈ K for all n ∈ N, we see that |an − L| ≥ 1
M for all

n ∈ N. Since this contradicts the fact that L = limn→∞ an we have obtained
a contradiction. Hence K is closed.

3.2.2 The Heine-Borel Theorem

By combining Theorems 3.2.7 and 3.2.8, we see that every compact subset
of R is closed and bounded. In fact, the following theorem shows these are
the only compact subsets of R. Before the proof, it should be noted that the
notion of a compact set is very different and much more important than the
notion of a closed and bound set in future courses.

Theorem 3.2.9 (The Heine-Borel Theorem). A set K ⊆ R is compact
if and only if K is closed and bounded.

Proof. If K is a compact subset of R, then K is bounded and closed by
Theorems 3.2.7 and 3.2.8 respectively.

Assume K ⊆ R is closed and bounded. To see that K is compact, let
{Ui | i ∈ I} be an arbitrary an open cover of K. We claim that {Ui | i ∈ I}
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has a finite subcover of K. To see this, suppose for the sake of a contradiction
that {Ui | i ∈ I} does not have a finite subcover of K.

Before we proceed, perhaps a little intuition on where this proof is going
is required. We will use the supposition that {Ui | i ∈ I} does not have a
finite subcover of K to construct a sequence of decreasing closed intervals In

with lengths tending to 0 so that K ∩ In does not have a finite subcover for
all n ∈ N. We will then use the concepts of Cauchy sequences and closed
sets to prove that there is a point x that is in all of the K ∩ In. This point x
must then be in Ui0 for some i0. However, as Ui0 is open, there is an interval
around x that is contained in Ui0 . Since the length of In tends to 0 and In

contains x for all n ∈ N, this will force IN ⊆ Ui0 for some N ∈ N thereby
contradicting the fact that K ∩ IN does not have a finite subcover. Now, let
us formalize this argument.

Since K is bounded, there exists an M ∈ R such that K ⊆ [−M,M ].
Since {Ui | i ∈ I} is an open cover that does not have a finite subcover of
K, it must be the case that

K ∩ [−M, 0] or K ∩ [0,M ]

does not have a finite subcover (as if each had a finite subcover, then
combining the two finite subcovers would yield a finite subcover of K).
Choose I1 = [a1, b1] from {[−M, 0], [0,M ]} so that K ∩ I1 does not have a
finite subcover. Note that |b1 − a1| = M .

Next, since {Ui | i ∈ I} is an open cover that does not have a finite
subcover of K ∩ I1, it must be the case that

K ∩
[
a1,

a1 + b1
2

]
or K ∩

[
a1 + b1

2 , b1

]
does not have a finite subcover (as if each had a finite subcover, then
combining the two finite subcovers would yield a finite subcover of K ∩ I1).
Choose I2 = [a2, b2] from{[

a1,
a1 + b1

2

]
,

[
a1 + b1

2 , b1

]}
so that K ∩ I2 does not have a finite subcover. Note that |b2 − a2| =
1
2 |b1 − a1| = 1

2M .
Using the same idea in the previous paragraph, there must exist closed

intervals I1 ⊇ I2 ⊇ I3 ⊇ · · · such that K ∩ In does not have a finite subcover
for all n ∈ N and if In = [an, bn], then |bn − an| = 1

2n−1M . Since K ∩ In

does not have a finite subcover for all n ∈ N, K ∩ In ≠ ∅ for all n ∈ N (since
the empty set clearly has a finite subcover). Hence, for each n ∈ N, we can
choose a cn ∈ K ∩ In.

We claim that the sequence (cn)n≥1 is Cauchy. To see this, let ϵ > 0 be
arbitrary. Since limn→∞

1
2n = 0 by Example 2.2.7, there exists an N ∈ N
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such that 1
2N−1M < ϵ. Therefore, if n,m ≥ N , then cn ∈ In ⊆ IN and

cm ∈ Im ⊆ IN so

|cn − cm| ≤ |bN − aN | = 1
2N−1M < ϵ.

Hence, as ϵ > 0 was arbitrary, (cn)n≥1 is Cauchy. Hence L = limn→∞ cn

exists by the Completeness of the Real Numbers (Theorem 2.5.8).
Since K is closed by assumption and cn ∈ K for all n ∈ N, L ∈ K by

Proposition 3.1.17. Moreover, note that L ∈ In for all n ∈ N by Proposition
3.1.17 since In is closed and cm ∈ In for all m ≥ n (as we can start the
sequence at n instead of at 1).

Since {Ui | i ∈ I} is an open cover of K and L ∈ K, there exists an
i0 ∈ I so that L ∈ Ui0 . Since Ui0 is open and L ∈ Ui0 , there exists an ϵ > 0
so that (L− ϵ, L+ ϵ) ⊆ Ui0 .

Since limn→∞
1

2n = 0, there exists an N ∈ N such that |bN − aN | =
1

2N−1M < ϵ. Hence, since L ∈ IN = [aN , bN ], we have that aN ≤ L ≤ bN .
Therefore, since |bN − aN | < ϵ and aN ≤ L ≤ bN , we must have that

L− ϵ < aN ≤ L ≤ bN < L+ ϵ.

Hence
IN = [aN , bN ] ⊆ (L− ϵ, L+ ϵ) ⊆ Ui0 .

Thus Ui0 is a finite open cover of K ∩ IN . However, this contradicts the
fact that K ∩ In does not admit a finite subcover. Hence we have obtained
a contradiction so {Ui | i ∈ I} must admit a finite subcover of K. Since
{Ui | i ∈ I} was an arbitrary an open cover of K, K is compact by
definition.

3.2.3 Sequential Compactness

In general topological spaces, there are other notions of compactness. The
following is another notion of compactness notion that can be quite useful.

Definition 3.2.10. A set K ⊆ R is said to be sequentially compact if
whenever (an)n≥1 is a sequence of real numbers with an ∈ K for all n ∈ N
there exist a subsequence of (an)n≥1 that converges to an element of K.

We have seen that bounded sequences in R have convergent subsequences
by the Bolzano-Weirstrass Theorem (Theorem 2.4.7) and this has already
been of use for us in this course to show that every Cauchy sequence in R
converges. This is one of the many reasons why one might be interested in
sequentially compact sets.

Perhaps (unsurprisingly), sequentially compact and compact are the same
notion for subsets of real numbers.
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Theorem 3.2.11. A set K ⊆ R is sequentially compact if and only if K is
compact.

Proof. Assume K is compact. Thus K is closed and bounded by the Heine-
Borel Theorem (Theorem 3.2.9). To see that K is sequentially compact,
let (an)n≥1 be an arbitrary sequence of real numbers with an ∈ K for all
n ∈ N. Thus (an)n≥1 must be bounded as K is bounded. Hence (an)n≥1
has a convergent subsequence (ank

)k≥1 by the Bolzano-Weierstrass Theorem
(Theorem 2.4.7). Since ank

∈ K for all k ∈ N and since K is closed, the
limit of (ank

)k≥1 must be in K by Proposition 3.1.17. Hence, as (an)n≥1 was
arbitrary, K is sequentially compact by definition.

Assume K is sequentially compact. To see that K is compact, we will
show that K is closed and bounded in order to invoke the Heine-Borel
Theorem (Theorem 3.2.9.

To see that K is bounded above, suppose for the sake of a contradiction
that K is not bounded above. Thus for all n ∈ N there exists a an ∈ K such
that an ≥ n. Therefore, since every subsequence of (an)n≥1 is unbounded
and thus cannot converge by Proposition 2.2.3, (an)n≥1 does not have a
convergent subsequence. As this contradicts the fact that K is sequentially
compact, we must have that K is above bounded. As a similar argument
shows that K is bounded below, K is bounded as desired.

To see that K is closed, suppose for the sake of a contradiction that K is
not closed. Thus Proposition 3.1.17 implies that there exists a convergent
sequence (an)n≥1 such that an ∈ K for all n ∈ N yet if L = limn→∞ an

then L /∈ K. Therefore Proposition 2.4.4 implies that every subsequence
of (an)n≥1 converges to L /∈ K. As this contradicts the fact that K is
sequentially compact, we must have that K is closed.

Hence K is closed and bounded. Hence the Heine-Borel Theorem (Theo-
rem 3.2.9) implies that K is compact.

3.2.4 The Finite Intersection Property

To describe our final equivalent definition of compactness, we require the
following definition.

Definition 3.2.12. A collection {Ai | i ∈ I} of subsets of R is said to have
the finite intersection property if whenever J ⊆ I has a finite number of
elements,

⋂
j∈J Aj ̸= ∅. That is, any finite intersection involving the sets

from {Ai | i ∈ I} must be non-empty.

Proposition 3.2.13. Let K ⊆ R be closed. Then K ⊆ R is compact if and
only if whenever

{Fi | i ∈ I}
is a collection of closed subsets of K with the finite intersection property,
then

⋂
i∈I Fi ̸= ∅.
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Proof. Assume K is a compact subset of R. Let {Fi | i ∈ I} be a collection
of closed subsets of K with the finite intersection property. We must show
that

⋂
i∈I Fi ̸= ∅. To see this, suppose for the sake of a contradiction that⋂

i∈I Fi = ∅. For each i ∈ I, let Ui = F c
i . Thus each Ui is an open set for

each i ∈ I. Moreover

⋃
i∈I

Ui =
⋃
i∈I

F c
i =

(⋂
i∈I

Fi

)c

= ∅c = R

by de Morgan’s Laws. Hence {Ui | i ∈ I} is an open subcover of K.
Therefore, since K is compact, by definition there exists an n ∈ N and
i1, . . . , in ∈ I such that

K ⊆
n⋃

m=1
Uim .

Hence
n⋂

m=1
Fim =

n⋂
m=1

U c
im

=
(

n⋃
m=1

Uim

)c

⊆ Kc.

However, since Fim ⊆ K for all m, we have that
⋂n

m=1 Fim ⊆ K. Hence

n⋂
m=1

Fim ⊆ K ∩Kc = ∅

so
⋂n

m=1 Fim = ∅. As this contradicts the finite intersection property, we
have a contradiction. Hence

⋂
i∈I Fi ̸= ∅.

For the other direction, to see that K is compact, let {Ui | i ∈ I} be
any open cover of K. To see that {Ui | i ∈ I} has a finite subcover of K,
suppose for the sake of a contradiction that {Ui | i ∈ I} does not have a
finite subcover of K. For each i ∈ I, let Fi = U c

i ∩K. Thus Fi is closed for
all i ∈ I by Proposition 3.1.16 being the intersection of closed sets. Moreover,
clearly Fi ⊆ K for all i ∈ I.

We claim that {Fi | i ∈ I} has the finite intersection property. To see
this, fix n ∈ N and i1, . . . , in ∈ I. Since {Ui | i ∈ I} does not have a finite
subcover of K, we know that

K ̸⊆
n⋃

m=1
Uim .

Hence there exists an x ∈ K such that x /∈ Uim for all m ∈ {1, . . . , n}. Hence
x ∈ K and x ∈ U c

im
for all m ∈ {1, . . . , n} so x ∈ K ∩ U c

im
= Fim for all

m ∈ {1, . . . , n}. Thus x ∈
⋂n

m=1 Fim . Thus, as n ∈ N and i1, . . . , in ∈ I were
arbitrary, {Fi | i ∈ I} has the finite intersection property.

Since {Fi | i ∈ I} are closed subsets of K with the finite intersection
property, the assumptions of this direction imply that

⋂
i∈I Fi ̸= ∅. Let
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y ∈
⋂

i∈I Fi. Then y ∈ K as each Fi is a subset of K. Moreover y ∈ Fi ⊆ U c
i

for all i ∈ I. Hence y /∈ Ui for all i ∈ I so that

y /∈
⋃
i∈I

Ui.

However, as y ∈ K, this contradicts the fact that {Ui | i ∈ I} is an open
cover of K. Therefore {Ui | i ∈ I} must have a finite subcover of K.
Therefore, since {Ui | i ∈ I} was arbitrary, K is compact by definition.
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Chapter 4

Continuity

So far we have examined the analytical properties of the real numbers via
sequences and open sets. Although sequences are quite useful in analysis,
they are more of a discrete structure on the real numbers. If we desire to
be able to deal with a continuum of real numbers at once, we should turn
our attention to functions on the real numbers. In particular, we need to
upgrade our notion of a limit to functions. Subsequently, we can examine
one if not the most important concept in analysis: continuity.

4.1 Limits of Functions

Given a function f : R → R and a point α ∈ R, our goal is to upgrade the
notion of a limit of a sequence to define the limit of f at α. In particular,
we desire to describe the behaviour of f(x) as x gets ‘closer and closer’ to α.
However, f(α) exists, so this concept might seem weird; that is, why do we
want to know how f behaves as x gets ‘closer and closer’ to α since we know
f(α)? The short answer is that f(x) may behave very differently as x gets
‘closer and closer’ to α than it does at x = α. This leads us to the following
heuristic concept.

Heuristic Definition. A number L is said to be the limit of a function
f as x tends to α if the values of f(x) approximate L provided that x is
arbitrarily close to but not equal to a.

Of course, since we only care about the behaviour of f at points close to
α, we do not need that f is be defined on all of R. Although it is possible to
write down the notion of a limit of a function defined on an arbitrary subset
of the real numbers, we will focus our attention on functions that are defined
on the following sets as we do not feel this takes away the spirit of what is
being done.

Definition 4.1.1. A finite interval is any interval of the form (a, b), (a, b],
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[a, b), or [a, b] where a, b ∈ R are such that a < b. The point a the left
endpoint of I and the point b the right endpoint of the interval.

4.1.1 Definition of a Limit

By formalizing our heuristic definition of the limit of a function as we did
with sequences, we arrive at our definition of a limit (and the reason this
course is often called a first course in ϵ-δ).

Definition 4.1.2. Let I be a finite interval, let α be an element or endpoint
of I, and let f : I → R. A number L ∈ R is said to be the limit of f as x
tends to α if for every ϵ > 0 there exists a δ > 0 (which depends on ϵ) such
that if x ∈ I and 0 < |x− α| < δ then |f(x) − L| < ϵ.

If L is the limit of f as x tends to α, we say the limit of f(x) as x tends
to α exists and write L = limx→α f(x). If no L ∈ R is the limit of f as x
tends to α, we say that the limit of f(x) as x tends to α does not exist.

In the case that L = limx→α f(x) and α is the left endpoint of I, we
say that f converges to L as x approaches α from above or that L is the
right-sided limit of f as x approaches α and write L = limx→α+ f(x).

In the case that L = limx→α f(x) and α is the right endpoint of I, we
say that f converges to L as x approaches α from below or that L is the
left-sided limit of f as x approaches α and write L = limx→α− f(x).

Remark 4.1.3. Note the assumptions that α is an element or endpoint of
I and f : I → R are necessary to ensure for all δ > 0 there are x ∈ I such
that 0 < |x− α| < δ and f(x) is define (i.e. there are points where we can
evaluate f at).

Moreover, since we are only interested in the behaviour of f as x tends
to α, it is not necessary that f(α) is defined. Of course, since the value of
f(α) does not effect any portion of the definition of the limit, if f(α) is not
defined, we can just set f(α) = 0 and use the definition.

Remark 4.1.4. If I is a finite interval, α ∈ I is not an endpoint, and
f : I → R, then limx→α+ f(x) and limx→α− f(x) can still be discussed by
restricting f to the intervals I ∩ (α,∞) and I ∩ (−∞, α) respectively.

As it took some time for to get use to the ϵ-N definition of a limit of a
sequence, some examples of using the ϵ-δ definition of a limit are warranted.

Example 4.1.5. Let c ∈ R and let f : R → R be defined by f(x) = c for all
x ∈ R. We claim for all α ∈ R that limx→α f(x) = c. To see this, fix α ∈ R
and let ϵ > 0 be arbitrary. Then, if δ = 1 we have that δ > 0. Moreover, if
x ∈ R and 0 < |x− α| < δ, then

|f(x) − c| = |c− c| = 0 < ϵ.

Therefore, as ϵ > 0 was arbitrary, limx→α f(x) = c by definition.
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Unsurprisingly, changing the value of the function at a single point does
not change the limit. The following is an example of how to show this.

Example 4.1.6. Let f : R → R be defined by

f(x) =
{
π if x ̸= 0
−π if x = 0

.

We claim for all α ∈ R that limx→α f(x) = π. To see this, we will first deal
with the case that α = 0.

To see that limx→0 f(x) = π, let ϵ > 0 be arbitrary. Then, if δ = 1 we
have that δ > 0. Moreover, if x ∈ R and 0 < |x − 0| < δ, then x ≠ 0 so
f(x) = π and thus

|f(x) − π| = |π − π| = 0 < ϵ.

Therefore, as ϵ > 0 was arbitrary, limx→0 f(x) = π by definition.
Now, suppose α ∈ R \ {0}. To see that limx→0 f(x) = π, let ϵ > 0 be

arbitrary. Let δ = |α|. Thus δ > 0. Moreover, if x ∈ R and 0 < |x− α| < δ,
then x ̸= 0 so f(x) = π and thus

|f(x) − π| = |π − π| = 0 < ϵ.

Therefore, as ϵ > 0 was arbitrary, limx→π f(x) = c by definition.

Of course, it is easy to see the limit of a specific function.

Example 4.1.7. Let f : R → R be defined by f(x) = x for all x ∈ R. We
claim for all α ∈ R that limx→α f(x) = α. To see this, fix α ∈ R and let
ϵ > 0 be arbitrary. Then, if δ = ϵ we have that δ > 0. Moreover, if x ∈ R
and 0 < |x− α| < δ, then

|f(x) − α| = |x− α| < δ < ϵ.

Therefore, as ϵ > 0 was arbitrary, limx→α f(x) = α by definition.

As when working with the definition of the limit of a sequence, it is often
useful to see what one needs in order to obtain |f(x) − L| < ϵ and then pick
the appropriate δ. Indeed, in the following example, look at the computation
we do for |f(x) − L| first and then see how and why we chose the δ we did.

Example 4.1.8. We claim that limx→3 x
2 = 9. To see this, let ϵ > 0 be

arbitrary. Let
δ = min

{
ϵ

7 , 1
}
.

Clearly δ > 0. Moreover, if 0 < |x − 3| < δ, then |x − 3| < 1 so 2 < x < 4
and thus 5 < x+ 3 < 7. Hence 0 < |x− 3| < δ implies |x+ 3| < 7. Hence, if
0 < |x− 3| < δ then

|x2 − 9| = |(x+ 3)(x− 3)| = |x+ 3||x− 3| < 7δ < ϵ.

Therefore, as ϵ > 0 was arbitrary, limx→3 x
2 = 9 by definition.
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Remark 4.1.9. Assume I is a finite interval, α is an element or endpoint of
I, and f : I → R. By negating Definition 4.1.2, f does not converge to L as
x tends to α if there exists an ϵ > 0 such that for all δ > 0 there exists an
x ∈ I with 0 < |x− α| < δ such that |f(x) − α| ≥ ϵ.

Thus, the limit of f as x tends to α does not exist if for all L ∈ R
there exists an ϵ > 0 such that for all δ > 0 there exists an x ∈ I with
0 < |x− α| < δ such that |f(x) − α| ≥ ϵ.

Example 4.1.10. Let f : R → R be defined by

f(x) =
{

1 if x ≥ 0
−1 if x < 0

.

We claim that limx→0 f(x) does not exist. To see this, suppose for the sake
of a contradiction that limx→0 f(x) = L. Let ϵ = 1. Since limx→0 f(x) = L,
by the definition of the limit there exists a δ > 0 so that if x ∈ R and
0 < |x− 0| < δ, then |f(x) − L| < ϵ.

Let x1 = 1
2δ. Therefore 0 < |x1 − 0| < δ and thus

|1 − L| = |f(x1) − L| < ϵ = 1.

Hence 0 < L < 2 so L > 0. Similarly, let x2 = −1
2δ. Therefore 0 < |x2 − 0| <

δ and thus
| − 1 − L| = |f(x2) − L| < ϵ = 1.

Hence −2 < L < 0 so L < 0. As L > 0 and L < 0 are impossible, we have a
contradiction. Thus limx→0 f(x) does not exist.

Of course the real problem with Example 4.1.10 is that limx→0+ f(x) =
1 ̸= −1 = limx→0− f(x).

Theorem 4.1.11. Let I be a finite interval, let α ∈ I not be an endpoint,
and let f : I → R. Then limx→α f(x) exists if and only if limx→α+ f(x)
and limx→α− f(x) exist and limx→α+ f(x) = limx→α− f(x). Furthermore, if
limx→α f(x) exists, then

lim
x→α

f(x) = lim
x→α+

f(x) = lim
x→α−

f(x).

Proof. First assume limx→α f(x) exists and let L = limx→α f(x). To see
that limx→α+ f(x) and limx→α− f(x) exist and are both equal to L, let ϵ > 0
be arbitrary. Since L = limx→α f(x), there exists a δ > 0 such that if x ∈ I
and 0 < |x − α| < δ, then |f(x) − L| < ϵ. Hence if x ∈ I ∩ (α,∞) and
0 < |x − α| < δ then |f(x) − L| < ϵ. Thus, as ϵ > 0 was arbitrary, by the
definition of the right-sided limit limx→α+ f(x) exists and equals L. Similarly
if x ∈ I ∩ (−∞, α) and 0 < |x− α| < δ then |f(x) − L| < ϵ. Thus, as ϵ > 0
was arbitrary, by the definition of the left-sided limit limx→α− f(x) exists
and equals L. Hence this direction of the proof is complete.
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For the other direction, assume limx→α+ f(x) and limx→α− f(x) exist
and L = limx→α+ f(x) = limx→α− f(x). To see that limx→α f(x) exists and
equals L, let ϵ > 0 be arbitrary. Since L = limx→α+ f(x), there exists a δ1 > 0
such that if x ∈ I∩(α,∞) and 0 < |x−α| < δ1, then |f(x)−L| < ϵ. Similarly,
since L = limx→α− f(x), there exists a δ2 > 0 such that if x ∈ I ∩ (−∞, α)
and 0 < |x− α| < δ2, then |f(x) − L| < ϵ. Therefore, if δ = min{δ1, δ2} > 0,
then x ∈ I and 0 < |x−α| < δ implies |f(x) −L| < ϵ. Therefore, since ϵ > 0
was arbitrary, we have by the definition of the limit that limx→α f(x) exists
and equals L.

4.1.2 Uniqueness of the Limit

Of course, just with sequences, there can be only one limit. Thus the use of
the word ‘the’ in the definition of ‘the’ limit. Note the proof is very similar
to the proof used in Proposition 2.1.12.

Proposition 4.1.12. Let I be a finite interval, let α be an element or
endpoint of I, and let f : I → R. If L and K are limits of f as x tends to α,
then L = K.

Proof. We will provide two different (but basically the same) proofs of this
fact.

For the first, we will provide a direct proof. Assume L and K are limits
of f as x tends to a. To see that L = K, let ϵ > 0 be arbitrary. Since L is a
limit of f as x tends to a, we know by the definition of a limit that there
exists a δ1 > 0 such that if x ∈ I and 0 < |x− α| < δ1 then |f(x) − L| < ϵ.
Similarly, since K is a limit of f as x tends to a, we know by the definition
of a limit that there exists a δ2 > 0 such that if x ∈ I and 0 < |x− α| < δ1
then |f(x) −K| < ϵ

Let δ1 = min{δ1, δ2} > 0. By the above paragraph, we have that if x ∈ I
and 0 < |x− α| < δ then |f(x) − L| < ϵ and |f(x) −K| < ϵ. Choose x0 ∈ I
such that 0 < |x0 − α| < δ (such an x0 exists since I is an interval and α be
an element or endpoint of I). Hence by the Triangle Inequality

|L−K| ≤ |L− f(x0)| + |f(x0) −K| < ϵ+ ϵ = 2ϵ.

Therefore, we have obtained that |L − K| < 2ϵ for all ϵ > 0. Hence, by
the same argument used in the proof of Proposition 2.1.12, |L−K| = 0 so
L = K as desired.

For the second, we will provide an indirect proof. Suppose for the sake
of a contradiction that L ̸= K. Let ϵ = |L−K|

2 . Since L ̸= K, we know that
ϵ > 0.

Since L is a limit of f as x approaches α, we know by the definition
of a limit that there exists a δ1 > 0 such that if 0 < |x − α| < δ1 then
|f(x) − L| < ϵ. Similarly, since K is a limit of f as x approaches α, we
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know by the definition of a limit that there exists a δ2 > 0 such that if
0 < |x− a| < δ2 then |f(x) −K| < ϵ.

Let δ = min{δ1, δ2} > 0. By the above paragraph, we have that if x ∈ I
and 0 < |x− α| < δ then |f(x) − L| < ϵ and |f(x) −K| < ϵ. Choose x0 ∈ I
such that 0 < |x0 − α| < δ (such an x0 exists since I is an interval and α be
an element or endpoint of I). Hence by the Triangle Inequality

|L−K| ≤ |L− f(x0)| + |f(x0) −K| < ϵ+ ϵ = 2ϵ = |L−K|

which is absurd (i.e. x < x is false for all x ∈ R). Thus we have obtained a
contradiction so it must be the case that L = K.

4.1.3 Equivalent Definitions of a Limit

As with sequences, there are alternative definitions one could take for the
limit of a function. First off, recall from Proposition 2.1.14 that it is possible
to change the ‘<’ in the definition of a limit to ‘≤’.

Proposition 4.1.13. Let I be a finite interval, let α be an element or
endpoint of I, let f : I → R, let L ∈ R, and let k > 0. Then L = limx→α f(x)
if and only if for all ϵ > 0 there exists a δ > 0 such that if x ∈ I and
0 < |x− α| < δ then |f(x) − L| ≤ kϵ.

Proof. Assume that L = limx→α f(x). To see the desired result, let ϵ > 0
be arbitrary. Let ϵ0 = kϵ. Since ϵ > 0 and k > 0, ϵ0 > 0. Hence, by
the definition of the limit, there exists a δ > 0 such that if x ∈ I and
0 < |x−α| < δ then |f(x) −L| < ϵ0. Thus |f(x) −L| ≤ ϵ0 = kϵ for all x ∈ I
with 0 < |x− α| < δ. Therefore, as ϵ > 0 was arbitrary, one direction of the
proof is complete.

For the other direction, assume that f and L have the property listed
in the statement of this proposition. To see that L = limx→α f(x), let ϵ > 0
be arbitrary. Let ϵ0 = ϵ

2k . Since ϵ > 0 and k > 0, we know that ϵ0 > 0.
Therefore, by the assumptions of this direction imply that there exists a
δ > 0 such that if x ∈ I and 0 < |x− α| < δ then |f(x) − L| ≤ kϵ0. Hence
|f(x) − L| ≤ ϵ0 < 2ϵ0 = kϵ for all x ∈ I with 0 < |x− α| < δ. As ϵ > 0 was
arbitrary, L = limx→α f(x) by the definition of the limit.

Remark 4.1.14. As with sequences, in Proposition 4.1.13 it is vital that
the constant k used does not depend on ϵ. Indeed if we could choose k after
we chose ϵ, we could have chose k = 1

ϵ and thus the condition |f(x) −L| ≤ kϵ
would always equate to |f(x) − L| ≤ 1, which is very different than the
definition of the limit.
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Remark 4.1.15. By similar arguments, it is not difficult to see that one
can change the condition ‘0 < |x−α| < δ’ to the conditions ‘0 < |x−α| ≤ δ’
in Definition 4.1.2 and Proposition 4.1.13. Indeed clearly if the conclusion
|f(x) − L| < ϵ holds for ‘0 < |x− α| ≤ δ’, then it holds for ‘0 < |x− α| < δ’.
Conversely, if the conclusion |f(x) −L| < ϵ holds for ‘0 < |x−α| < δ0’, then
it holds for ‘0 < |x− α| < 1

2δ ≤ δ’ and we let δ0 = 1
2δ.

As with sequences, there is a topological definition of the limit. However,
there is also a sequential definition of the limit that is quite useful considering
our study and mastery of convergent sequences.

Theorem 4.1.16 (Characterizations of Limits). Let I be a finite interval,
let α be an element or endpoint of I, and let f : I → R. Then the following
are equivalent:

1) (ϵ-δ Definition) L = limx→α f(x).

2) (Topological Definition) If U is an open set containing L, there exists
an open set V containing α so that if x ∈ V ∩ I and x ̸= α then f(x) ∈ U .

3) (Sequential Definition) If (xn)n≥1 is a sequence such that xn ∈ I \ {α}
for all n ∈ N and limn→∞ xn = α, then limn→∞ f(xn) = L.

Proof. To see that 1) implies 2), assume that L = limx→α f(x). To see that
2) is true, let U be an open set containing L. By the definition of an open
set, there exists an ϵ > 0 so that

(L− ϵ, L+ ϵ) ⊆ U.

Since L = limx→α f(x), by the definition of the limit there exists a δ > 0
such that if x ∈ I and 0 < |x− α| < δ, then |f(x) − L| < ϵ. Let

V = (α− δ, α+ δ).

Hence V is an open set containing α. Moreover, if x ∈ V ∩ I and x ̸= α then
x ∈ I and 0 < |x− α| < δ so |f(x) − L| < ϵ and thus

f(x) ∈ (L− ϵ, L+ ϵ) ⊆ U.

Therefore, as U was arbitrary, 2) holds.
To see that 2) implies 3), assume that 2) is true. To see that 3) is true,

let (xn)n≥1 be such that xn ∈ I \ {α} for all n ∈ N and limn→∞ xn = α. We
desire to show that limn→∞ f(xn) = L.

To see that limn→∞ f(xn) = L, let ϵ > 0 be arbitrary. Let

U = (L− ϵ, L+ ϵ).
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Clearly U is an open set containing L. Hence, by the assumption of 2), there
exists an open set V containing α so that if x ∈ V ∩ I and x ̸= α then
f(x) ∈ U .

Since limn→∞ xn = α, Proposition 3.1.5 implies there exists an N ∈ N
such that xn ∈ V for all n ≥ N . Hence xn ∈ V ∩ I for all n ≥ N so

f(xn) ∈ U = (L− ϵ, L+ ϵ)

for all n ≥ N . Thus |f(xn) − L| < ϵ for all n ≥ N . Hence, as ϵ > 0 was
arbitrary, limn→∞ f(xn) = L.

To see that 3) implies 1), assume 3) is true. To see that 1) is true, suppose
for the sake of a contradiction that f does not converge to L as x tends
to α. Thus there exists an ϵ > 0 such that for all δ > 0 there exists an
x ∈ I such that 0 < |x− α| < δ yet |f(x) − L| ≥ ϵ. For each n ∈ N, choose
xn ∈ I such that 0 < |xn − α| < 1

n yet |f(xn) − L| ≥ ϵ. Then (xn)n≥1 is a
sequence with the property that xn ̸= α for all n ∈ N. Furthermore, since
0 < |xn − α| < 1

n for all n ∈ N, we obtain that limn→∞ xn = α. However,
since |f(xn) −L| ≥ ϵ for all n ∈ N, we see that (f(xn))n≥1 does not converge
to L thereby contradicting 3). Therefore 3) implies 1) as desired.

The sequential definition of the limit of a function is particularly useful
in showing that limits of functions do not exists. Indeed to show that the
limit of a function does not exist, we need only construct to two sequences
that x = α but have different limits once f is applied to them.

Example 4.1.17. The function f : R → R defined by

f(x) =

0 if x = 0
sin
(

1
x

)
if x ̸= 0

has no limit as x tends to 0. To see this, suppose for the sake of a contradiction
that limx→0 f(x) exists.

Consider the sequence (an)n≥1 where an = 2
π(4n+1) for all n ∈ N. Clearly

limn→∞ an = 0 and
lim

n→∞
f(an) = lim

n→∞
1 = 1.

Therefore Theorem 4.1.16 implies that limx→0 f(x) = 1.
Consider the sequence (bn)n≥1 where bn = 2

π(4n−1) for all n ∈ N. Clearly
limn→∞ bn = 0and

lim
n→∞

f(bn) = lim
n→∞

−1 = −1.

Therefore Theorem 4.1.16 implies that limx→0 f(x) = −1. However as
1 ̸= −1, we have a contradiction. Hence limx→0 f(x) does not exist.

Although the sequential definition of a limit will be quite useful as we
have built up our theory of limits of sequences, the ϵ-δ definition will be

©For use through and only available at pskoufra.info.yorku.ca.



4.1. LIMITS OF FUNCTIONS 101

equally useful for applications in the pages to come. In particular, consider
the following example where we can show limits exist using the ϵ-δ definition
whereas it would be quite difficult to use the sequential definition of a limit.

Example 4.1.18. Consider the function f : R → R defined by

f(x) =


0 if x is irrational
1 if x = 0
1
b if x = a

b where a ∈ Z \ {0}, b ∈ N, and gcd(a, b) = 1
.

We claim if γ ∈ R \ Q then limx→γ f(x) = 0. To see this, fix γ ∈ R \ Q and
let ϵ > 0 be arbitrary. By the Archimedean Property (Theorem 1.3.7) there
exists an N ∈ N such that 1

N < ϵ.
By the Well-Ordering Principle (Theorem 1.1.10), for each n < N there

exists an mn ∈ Z such that

mn

n
< γ <

mn + 1
n

(i.e. if γ > 0, take mn +1 to be the least natural number such that mn+1
n > γ,

and if γ < 0, repeat with −γ). Let

δ = min
(

{|γ|} ∪
{
γ − mn

n
,
mn + 1
n

− γ

}N−1

n=1

)
.

Note that δ > 0 by construction.
To see that δ works for this ϵ in the definition of the limit, let x ∈ R be

such that 0 < |x− γ| < δ. If x ∈ R \ Q, then

|f(x) − 0| = |0 − 0| = 0 < ϵ

as desired. Otherwise, if x ∈ Q, then we can write x = a
b where a ∈ Z, b ∈ N,

and gcd(a, b) = 1. Since 0 < |x− γ| < δ ≤ |γ|, we see that x ̸= 0 so z ̸= 0.
We claim since |x− γ| < δ that b ≥ N . To see this, suppose for the sake of a
contradiction that b = n < N . Notice that∣∣∣∣an − γ

∣∣∣∣ < min
(
γ − mn

n
,
mn + 1
n

)
.

However, if a ≤ mn then
∣∣ a

n − γ
∣∣ ≥ γ − mn

n whereas if a ≥ mn + 1 then∣∣ a
n − γ

∣∣ ≥ mn+1
n . Hence we have a contradiction so b ≥ N . Therefore

|f(x) − 0| =
∣∣∣∣1b − 0

∣∣∣∣ = 1
b

≤ 1
N
< ϵ.

Therefore, |f(x) − 0| < ϵ for all x ∈ R such that 0 < |x− γ| < δ. Therefore,
since ϵ > 0 was arbitrary, limx→γ f(x) = 0 by definition.
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4.1.4 Limit Theorems for Functions

Using Theorem 4.1.16, we easily import results from Chapter 2 to deal with
the limit of functions. However, we will also include the ϵ-δ proofs to aid the
reader in the comprehension of using the ϵ-δ definition.

Theorem 4.1.19. Let I be a finite interval, let α be an element or endpoint
of I, and let f, g : I → R. If L = limx→α f(x) and K = limx→α g(x), then

a) limx→α f(x) + g(x) = L+K.

b) limx→α f(x)g(x) = LK.

c) limx→α cf(x) = cL for all c ∈ R.

d) limx→α
f(x)
g(x) = L

K whenever K ̸= 0.

Proof. To see this result using the sequential definition of the limit, assume
(xn)n≥1 is a sequence such that xn ∈ I \{α} for all n ∈ N and limn→∞ xn = α.
By Theorem 4.1.16 we know that limn→∞ f(xn) = L and limn→∞ g(xn) = K.
Hence Theorem 2.3.1 implies that

• limn→∞ f(xn) + g(xn) = L+K,

• limn→∞ f(xn)g(xn) = LK,

• limn→∞ cf(xn) = cL for all c ∈ R, and

• limn→∞
f(xn)
g(xn) = L

K whenever K ̸= 0.

Therefore, Theorem 4.1.16 implies that a), b), c), and d) hold as (xn)n≥1
was arbitrary.

[Note: There is technically a caveat here in that for part d) we need to
know that 1

g(x) is well-defined on a set of the form J \ {α} where J is an
interval and α is an element or endpoint of J . That is, if K = limx→α g(x)
and K ̸= 0, then g(x) is non-zero when x is sufficiently close to α. The
formal proof is shown below.]

To prove these results using the ϵ-δ definition of the limit, we follow a
very similar patter to the proofs to show Theorem 2.3.1 where N is replaced
with δ.

a) Let ϵ > 0 be arbitrary. Since L = limx→α f(x), there exists a δ1 > 0
such that if x ∈ I and 0 < |x−α| < δ2, then |f(x) −L| < ϵ

2 . Similarly, since
K = limx→α g(x), there exists a δ2 > 0 such that if x ∈ I and 0 < |x−α| < δ2
then |f(x) −K| < ϵ

2 . Let δ = min{δ1, δ2}. Hence δ > 0. Moreover, if x ∈ I
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and 0 < |x− α| < δ, then |x− α| < δ1 and |x− α| < δ2 so

|(f(x) + g(x)) − (L+K)| = |(f(x) − L) + (g(x) −K)|
≤ |f(x) − L| + |g(x) −K|

<
ϵ

2 + ϵ

2
= ϵ.

Hence limx→α f(x) + g(x) = L+K by definition.
b) Let ϵ > 0 be arbitrary. Since L = limx→α f(x), there exists a δ1 > 0

such that if x ∈ I and 0 < |x−α| < δ1 then |f(x) −L| < ϵ
2(|K|+1) . Moreover,

there exists a δ2 > 0 such that if x ∈ I and 0 < |x−α| < δ2 then |f(x)−L| < 1.
Thus |f(x)| ≤ |L| + 1 for all x ∈ I with 0 < |x− α| < δ2. Furthermore, since
K = limx→α g(x), there exists a δ3 > 0 such that if x ∈ I and 0 < |x−α| < δ3
then |g(x) −K| < ϵ

2(|L|+1) . Let δ = min{δ1, δ2, δ3}. Hence δ > 0. Moreover,
if x ∈ I and 0 < |x− α| < δ, then

|f(x)g(x) − LK| = |(f(x)g(x) − f(x)K) + (f(x)K − LK)|
≤ |f(x)g(x) − f(x)K| + |f(x)K − LK|
≤ |f(x)||g(x) −K| + |K||f(x) − L|
≤ (|L| + 1)|bn −K| + |K||f(x) − L|

≤ (|L| + 1) ϵ

2(|L| + 1) + |K| ϵ

2(|K| + 1)
≤ ϵ

2 + ϵ

2 = ϵ.

Hence limn→∞ f(x)g(x) = LK by definition.
c) Given c ∈ R, we have that limx→α c = c by Example 4.1.5. Hence part

(c) follows from part (b) by taking g(x) = c for all x ∈ I.
d) To prove part d), it suffices by part b) to prove that limx→α

1
g(x) = 1

K
whenever K ̸= 0.

Assume K ̸= 0. First, we claim that there exists a δ0 > 0 such that
if x ∈ I and 0 < |x − α| < δ0, then |g(x)| ≥ |K|

2 > 0. To see this, let
ϵ0 = |K|

2 > 0. Since K = limx→α g(x), there exists a δ0 > 0 such that if x ∈ I

and 0 < |x− α| < δ0 then |g(x) −K| < ϵ0 = |K|
2 . Therefore, by the Triangle

Inequality, for all x ∈ I such that 0 < |x− α| < δ0 we have

|g(x)| ≥ |K| − |K|
2 = |K|

2 > 0

as desired. In particular, if x ∈ I and 0 < |x − α| < δ0, then 1
g(x) is

well-defined.
To see that limx→α

1
g(x) = 1

K , let ϵ > 0 be arbitrary. Since K =
limx→α g(x), there exists a δ1 > 0 such that if x ∈ I and 0 < |x − α| < δ1
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then |g(x) −K| < ϵ|K|2
2 (as |K|neq0). Let δ = min{δ0, δ1}. Therefore, for all

x ∈ I with 0 < |x− α| < δ, we have that g(x) ̸= 0 and∣∣∣∣ 1
g(x) − 1

K

∣∣∣∣ = |K − g(x)|
|g(x)||K|

≤ ϵ|K|2

2|g(x)||K|

≤ ϵ|K|
2

1
|g(x)|

≤ ϵ|K|
2

2
|K|

= ϵ.

Hence limx→α
1

g(x) = 1
K by definition.

Using Theorem 4.1.19 it is possible to obtain many limits from our known
limits.
Example 4.1.20. Recall from Examples 4.1.5 and 4.1.7 that for each
c, α ∈ R, we have limx→α c = c and limx→α x = α. Hence Theorem 4.1.19
implies that limx→α cx

n = cαn for all n ∈ N and all c ∈ R. Therefore
Theorem 4.1.19 again implies that limx→a p(x) = p(a) for all polynomials p.

Example 4.1.21. Let f(x) = p(x)
q(x) where p and q are polynomials where q

is not the zero polynomial. Such a function is said to be a rational function.
If α ∈ R is such that q(α) ̸= 0, then Theorem 4.1.19 again implies that
limx→α f(x) = f(α).

Remark 4.1.22. As with sequences, given two functions f and g such
that limx→a g(x) = 0, one may ask whether limx→a

f(x)
g(x) exists. Clearly

if limx→a
f(x)
g(x) = L and limx→a g(x) = 0 then Theorem 4.1.19 implies

limx→a f(x) exists and

lim
x→a

f(x) =
(

lim
x→a

f(x)
g(x)

)(
lim
x→a

g(x)
)

= L(0) = 0.

Like with sequences, if limx→a g(x) = 0 and limx→a f(x) = 0 there are many
possible behaviours, some of which we will examine in the next section.

Of course, some of our most important theorems for limits of sequences
carry forward to limits of functions. We provide the proofs using both the
sequential and ϵ-δ definitions of the limit.
Theorem 4.1.23 (Squeeze Theorem). Let I be a finite interval, let α
be an element or endpoint of I, and let f, g, h : I → R. Suppose for each
x ∈ I \ {α} that

g(x) ≤ f(x) ≤ h(x).
If limx→α g(x) and limx→α h(x) exist and L = limx→α g(x) = limx→α h(x),
then limx→α f(x) exists and limx→α f(x) = L.
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Proof. To see this result using the sequential definition of the limit, assume
(xn)n≥1 is a sequence such that xn ∈ I \{α} for all n ∈ N and limn→∞ xn = α.
By Theorem 4.1.16 we know that limn→∞ g(xn) = L and limn→∞ h(xn) = L.
Moreover, we have that

g(xn) ≤ f(xn) ≤ h(xn)

for all n ∈ N. Hence the Squeeze Theorem (Theorem 2.3.13) implies that
limn→∞ f(xn) = L. Hence, Theorem 4.1.16 implies that limx→α f(x) = L as
(xn)n≥1 was arbitrary.

To prove these results using the ϵ-δ definition of the limit, we follow a
very similar patter to the proof of the Squeeze Theorem (Theorem 2.3.13)
where N is replaced with δ.

Let ϵ > 0 be arbitrary. Since L = limx→α g(x), there exists a δ1 > 0 such
that if x ∈ I and 0 < |x− α| < δ1 then |g(x) − L| < ϵ. Hence L− ϵ < g(x)
for all x ∈ I with 0 < |x− α| < δ1. Similarly, since L = limx→α h(x), there
exists a δ2 > 0 such that if x ∈ I and 0 < |x− α| < δ2 then |h(x) − L| < ϵ.
Hence h(x) < L+ ϵ for all x ∈ I with 0 < |x− α| < δ2. Let δ = min{δ1, δ2}.
Clearly δ > 0 and if x ∈ I is such that 0 < |x− α| < δ, then

L− ϵ < g(x) ≤ f(x) ≤ h(x) ≤ L+ ϵ.

Hence L− ϵ ≤ f(x) ≤ L+ ϵ for all x ∈ I such that 0 < |x− α| < δ, which
implies −ϵ ≤ f(x) − L ≤ ϵ and thus |f(x) − L| < ϵ for all x ∈ I such that
0 < |x− α| < δ. Hence limx→α f(x) = L by definition.

Again, the Squeeze Theorem has its uses when dealing with difficult
functions that may be compared to simple ones.

Example 4.1.24. Consider the function

f(x) =

x sin
(

1
x

)
if x ̸= 0

0 if x = 0
.

In Example 4.1.17 we saw that limx→0
1
xf(x) did not exist. However, since

−|x| ≤ f(x) ≤ |x| as − 1 ≤ sin
(1
x

)
≤ 1 for all x ∈ R \ {0},

and since limx→0 |x| = limx→0 −|x| = 0, we see that limx→0 f(x) = 0 by the
Squeeze Theorem.

Finally, the Comparison Theorem is also useful when comparing limits of
functions.
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Theorem 4.1.25 (Comparison Theorem). Let I be a finite interval, let
α be an element or endpoint of I, and let f, g : I → R. Suppose for each
x ∈ I \ {α} that

g(x) ≤ f(x).

If L = limx→α f(x) and K = limx→α g(x) exist, then K ≤ L.

Proof. To see this result using the sequential definition of the limit, assume
(xn)n≥1 is a sequence such that xn ∈ I \{α} for all n ∈ N and limn→∞ xn = α.
By Theorem 4.1.16 we know that limn→∞ f(xn) = L and limn→∞ g(xn) = k.
Moreover, we have that

g(xn) ≤ f(xn)

for all n ∈ N. Hence the Comparison Theorem (Theorem 2.3.20) implies that
K ≤ L as desired.

Let L = limx→α f(x) and K = limx→α g(x). Suppose for the sake of a
contradiction that that L < K. Therefore if ϵ = K−L

2 , then ϵ > 0.
Since L = limx→α f(x), there exists a δ1 > 0 such that if x ∈ I and

0 < |x − α| < δ1 then |f(x) − L| < ϵ. Hence f(x) < L + ϵ for all x ∈ I
such that 0 < |x− α| < δ1. Similarly, since K = limx→α g(x), there exists a
δ2 > 0 such that if x ∈ I and 0 < |x − α| < δ2 then |g(x) − K| < ϵ Hence
K − ϵ < g(x) for all x ∈ I such that 0 < |x− α| < δ2.

Let δ = min{δ1, δ2}. Thus δ > 0. Moreover, since I is an interval
and α be an element or endpoint of I, there exists an x0 ∈ I such that
0 < |x− α| < δ. Thus

g(x0) − f(x0) > (K − ϵ) − (L+ ϵ) = (K − L) − 2ϵ = 0.

However, this contradicts the fact that g(x0) ≤ f(x0). Hence we have
obtained a contradiction in the case that K < L so it must be the case that
L ≤ K.

4.1.5 Limits at and to Infinity

There are many more types of limits we could examine. Much of the theory
follows along the same lines as the previous results in this section, so we will
only summarize the definitions and results, and provided a few examples.

First, instead of requiring α ∈ R, we may ask for limits as x tends to
±∞.

Definition 4.1.26. Let f be a function define on an interval (c,∞). A
number L ∈ R is said to be the limit of f as x tends to ∞ if for every
ϵ > 0 there exists an M > c (which depends on ϵ) such that if x ≥ M then
|f(x) − L| < ϵ. In this case, we say that f(x) converges to L as x tends to
∞ and write L = limx→∞ f(x).
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Definition 4.1.27. Let f be a function define on an interval (−∞, c). A
number L ∈ R is said to be the limit of f as x tends to −∞ if for every
ϵ > 0 there exists an M < c (which depends on ϵ) such that if x ≤ M then
|f(x) − L| < ϵ. In this case, we say that f(x) converges to L as x tends to
−∞ and write L = limx→−∞ f(x).

By replacing ‘x ∈ I and 0 < |x − α| < δ’ with ‘x ≥ M ’ (respectively
‘x ≤ M ’) in the proofs done in this section, we obtain the following results.

Proposition 4.1.28. Let f : (c,∞) → R (respectively f : (−∞, c) → R). If
L and K are limits of f as x tends to ∞ (respectively −∞), then L = K.

Proof. We will prove the result for limits to ∞ as the proof for limits to −∞
can be obtained by replacing all ‘≥’, ‘>’, and ‘max’ with ‘≤’, ‘<’, and ‘min’
respectively.

Suppose for the sake of a contradiction that L ̸= K. Let ϵ = |L−K|
2 . Since

L ̸= K, we know that ϵ > 0.
Since K is a limit of f as x approaches ∞, we know by definition that

there exists a M1 > c such that if x ≥ M1 then |f(x) − L| < ϵ. Similarly,
since K is a limit of f as x approaches ∞, we know by definition that there
exists a M2 > 0 such that if x ≥ M2 then |f(x) −K| < ϵ.

Let M = max{M1,M2} > c. By the above paragraph, we have that

|L−K| ≤ |L− f(M)| + |f(M) −K| < ϵ+ ϵ = 2ϵ = |L−K|

which is absurd (i.e. x < x is false for all x ∈ R). Thus we have obtained a
contradiction so it must be the case that L = K.

Moreover, by repeating the ideas of the proof of Theorem 4.1.16, we can
prove the following and reduce our study of limits to ∞ to sequences.

Proposition 4.1.29. Let f : (c,∞) → R (respectively f : (−∞, c) → R).
Then L = limx→∞ f(x) if and only if whenever (xn)n≥1 has the properties
that xn > c for all n ∈ N and limn→∞ xn = ∞, then limn→∞ f(xn) = L.

Proof. We will prove the result for limits to ∞ as the proof for limits to −∞
can be obtained by replacing all ‘≥’, ‘>’, and ‘max’ with ‘≤’, ‘<’, and ‘min’
respectively.

Assume L = limx→∞ f(x). To see the desired result, let (xn)n≥1 be such
that xn > c for all n ∈ N and limn→∞ xn = ∞. We desire to show that
limn→∞ f(xn) = L.

To see that limn→∞ f(xn) = L, let ϵ > 0 be arbitrary. Since L =
limx→∞ f(x), there exists an M > c such that if x ≥ M then |f(x) − L| < ϵ.
Since limn→∞ xn = ∞, there exists an N ∈ N such that xn ≥ M for all
n ≥ N . Hence for all n ≥ N we have that xn ≥ M and thus |f(xn) −L| < ϵ.
Hence, as ϵ > 0 was arbitrary, limn→∞ f(xn) = L.
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To prove the converse, assume if (xn)n≥1 has the properties that xn > c
for all n ∈ N and limn→∞ xn = ∞, then limn→∞ f(xn) = L. To see that
L = limx→∞ f(x), suppose for the sake of a contradiction that f does not
converge to L as x tends to ∞. Thus there exists an ϵ > 0 such that for
all M > c there exists an x ≥ M such that |f(x) − L| ≥ ϵ. For each n ∈ N
with n > c, choose xn ≥ n such that |f(xn) − L| ≥ ϵ. Then (xn)n>c is a
sequence with the property that xn ≥ n for all n > c and |f(xn) − L| ≥ ϵ
for all n >. Since xn ≥ n for all n > c implies that limn→∞ xn = ∞, the
assumptions of this direction imply that limn→∞ f(xn) = L. However, since
|f(xn) −L| ≥ ϵ for all n > c, it is impossible that limn→∞ f(xn) = L. Hence
we have a contradiction so the result follows.

By replacing sequences that converge to α with sequences that converge
to ±∞, the following result holds by using Proposition 4.1.29 instead of
Theorem 4.1.16.

Corollary 4.1.30. The conclusions of Theorems 4.1.19, 4.1.23, and 4.1.25
when a = ±∞ (under the necessary modifications to the hypotheses).

Example 4.1.31. It is not difficult to verify based on definitions that
limx→∞

1
x = 0.

Example 4.1.32. Let f(x) = 3x2−2x+1
2x2+5x−2 . Then, for sufficiently large x,

f(x) =
(x2)(3 − 2

x + 1
x2 )

(x2)(2 + 5
x − 2

x2 )
=

3 − 2
x + 1

x2

2 + 5
x − 2

x2
.

Hence
lim

x→∞
f(x) = 3 − 2(0) − (0)(0)

2 + 5(0) − 2(0)(0) = 3
2 .

Example 4.1.33. We claim that limx→∞
sin(x)

x = 0. Indeed, since −1 ≤
sin(x) ≤ 1 for all x ∈ R, we see that

− 1
x

≤ sin(x)
x

≤ 1
x

for all x > 0. Hence, since limx→∞
1
x = limx→∞ − 1

x = 0, we obtain that
limx→∞

sin(x)
x = 0 by the Squeeze Theorem

Like with sequences, we can also discuss functions diverging to ±∞ for
both limits as x tends to α ∈ R and as x tends to ±∞.

Definition 4.1.34. Let I be a finite interval, let α be an element or endpoint
of I, and let f : I → R. The function f is said to diverge to infinity (negative
infinity) as x tends to α if for every M > 0 there exists a δ > 0 (which
depends on M) such that if 0 < |x− α| < δ then f(x) ≥ M (f(x) ≤ −M).
In this case we write limx→α f(x) = ∞ (limx→α f(x) = −∞).
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Definition 4.1.35. Let f be a function define on an interval (c,∞). The
function f is said to diverge to infinity (negative infinity) as x tends to ∞ if for
every M > 0 there exists a K > c (which depends on M) such that if x ≥ K
then f(x) ≥ M (f(x) ≤ −M). In this case we write limx→∞ f(x) = ∞
(limx→∞ f(x) = −∞).

Definition 4.1.36. Let f be a function define on an interval (−∞, c).
The function f is said to diverge to infinity (negative infinity) as x tends
to −∞ if for every M > 0 there exists a K < c (which depends on M)
such that if x ≤ K then f(x) ≥ M (f(x) ≤ −M). In this case we write
limx→−∞ f(x) = ∞ (limx→−∞ f(x) = −∞).

Example 4.1.37. Notice that limx→∞ x = ∞ and limx→−∞ x = −∞.

Example 4.1.38. Notice that limx→0
1

|x| = ∞. Indeed if M > 0, and
0 < |x| < 1

M , then 1
|x| > M . However, limx→0

1
x ̸= ∞ since if x < 0, then

1
x < 0 < M .

4.2 Continuity of Functions
With our discussion of limits complete, we may move onto studying debatably
the most important concept in analysis: the notion of continuity.

4.2.1 Equivalent Definitions of Continuity

In high school mathematics courses, a function is often described to be
continuous if “the graph of the function is a single unbroken curve that you
could draw without lifting your stylus from the surface”. This definition is
incredibly heuristic and, as with all mathematics, needs to be made precise.
Using limits, the formal notion of continuity is easy to define.

Definition 4.2.1. Let I be a finite interval, let α ∈ I, and let f : I → R. It is
said that f is continuous at α if limx→α f(x) exists and limx→α f(x) = f(α).

Furthermore, it is said that f is continuous on I if f is continuous at
each point in I.

Of course, using our Characterizations of Limits (Theorem 4.1.16), there
are multiple ways of characterizing when a function is continuous at a point.
Of course this immediately characterizes functions that are continuous on an
interval by verifying continuity at each point.

Theorem 4.2.2 (Characterizations of Continuity). Let I be a finite
interval, let α ∈ I, and let f : I → R. Then the following are equivalent:

1) f is continuous at α.
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2) (ϵ-δ Definition) For all ϵ > 0 there exists a δ > 0 such that if x ∈ I
and |x− α| < δ, then |f(x) − f(α)| < ϵ.

3) (Topological Definition) If U is an open set containing f(α), there
exists an open set V containing α so that if x ∈ V ∩ I then f(x) ∈ U .

4) (Sequential Definition) If (xn)n≥1 is a sequence such that xn ∈ I for
all n ∈ N and limn→∞ xn = α, then limn→∞ f(xn) = f(α).

Proof. The proof of this result follows immediately from repeating the proof
of the Characterizations of Limits (Theorem 4.1.16) once one realizes the
condition limx→α f(x) = f(α) allows one to replace ‘0 < |x− α| < δ’ with
‘|x−α| < δ’, ‘x ∈ V ∩ I and x ≠ α’ with ‘x ∈ V ∩ I’, and ‘xn ∈ I \ {α}’ with
‘xn ∈ I’. The precise details are included below.

To see that 1) implies 2), assume f is continuous at α. Therefore
limx→α f(x) exists and limx→α f(x) = f(α). To see that 2) is true, let
ϵ > 0 be arbitrary. Since limx→α f(x) exists and limx→α f(x) = f(α), the
definition of the limit implies there exists a δ > 0 such that if x ∈ I and
0 < |x− α| < δ, then |f(x) − f(α)| < ϵ. Since |f(α) − f(α)| = 0 < ϵ, we see
that if x ∈ I and |x − α| < δ, then |f(x) − f(α)| < ϵ. Therefore, as ϵ > 0
was arbitrary, 2) holds.

To see that 2) implies 3), assume that 2) is true. To see that 3) is true,
let U be an open set containing f(α). By the definition of an open set, there
exists an ϵ > 0 so that

(f(α) − ϵ, f(α) + ϵ) ⊆ U.

By the assumption of 2), there exists a δ > 0 such that if x ∈ I and |x−α| < δ,
then |f(x) − f(α)| < ϵ. Let

V = (α− δ, α+ δ).

Hence V is an open set containing α. Moreover, if x ∈ V ∩ I then x ∈ I and
|x− α| < δ so |f(x) − f(α)| < ϵ and thus

f(x) ∈ (f(α) − ϵ, f(α) + ϵ) ⊆ U.

Therefore, as U was arbitrary, 3) holds.
To see that 3) implies 4), assume that 3) is true. To see that 4) is true,

let (xn)n≥1 be such that xn ∈ I for all n ∈ N and limn→∞ xn = α. We desire
to show that limn→∞ f(xn) = f(α).

To see that limn→∞ f(xn) = f(α), let ϵ > 0 be arbitrary. Let

U = (f(α) − ϵ, f(α) + ϵ).

Clearly U is an open set containing f(α). Hence, by the assumption of 2),
there exists an open set V containing α so that if x ∈ V ∩ I then f(x) ∈ U .
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Since limn→∞ xn = α, Proposition 3.1.5 implies there exists an N ∈ N
such that xn ∈ V for all n ≥ N . Hence xn ∈ V ∩ I for all n ≥ N so

f(xn) ∈ U = (f(α) − ϵ, f(α) + ϵ)

for all n ≥ N . Thus |f(xn) − f(α)| < ϵ for all n ≥ N . Hence, as ϵ > 0 was
arbitrary, limn→∞ f(xn) = f(α).

To see that 4) implies 1), assume 4) is true. To see that 1) is true, suppose
for the sake of a contradiction that f does not converge to f(α) as x tends
to α. Thus there exists an ϵ > 0 such that for all δ > 0 there exists an x ∈ I
such that |x− α| < δ yet |f(x) − f(α)| ≥ ϵ. For each n ∈ N, choose xn ∈ I
such that |xn − α| < 1

n yet |f(xn) − f(α)| ≥ ϵ. Then (xn)n≥1 is a sequence
with the property that limn→∞ xn = α since |xn − α| < 1

n for all n ∈ N.
However, since |f(xn) − f(α)| ≥ ϵ for all n ∈ N, we see that (f(xn))n≥1 does
not converge to f(α) thereby contradicting 4). Therefore 4) implies 1) as
desired.

Remark 4.2.3. As with Proposition 2.1.14 for sequences and Proposition
4.1.13 for limits of functions, one can modify the ϵ-δ Characterization of
Continuity (Theorem 4.2.2) to replace ‘|f(x)−f(α)| < ϵ’ with ‘|f(x)−f(α)| ≤
kϵ’ for a previously fixed constant k. Similarly, one can replace the condition
‘|x− α| < δ’ with ‘|x− α| ≤ δ’.

In addition to the above Characterizations of Continuity (Theorem 4.2.2),
there is an interesting characterization of a continuous function on R that is
the basis for continuity in future courses on topology.

Theorem 4.2.4. A function f : R → R is continuous on R if and only if
f−1(U) is open for all open subsets U ⊆ R.

Proof. Assume f is continuous. To see the desired conclusion, let U ⊆ R
be an arbitrary open set. To see that f−1(U) is open, assume α ∈ f−1(U).
Since f is continuous at α, Characterizations of Continuity (Theorem 4.2.2)
implies there exists an open set V such that α ∈ V and if x ∈ V then
f(x) ∈ U . Hence V ⊆ f−1(U). Since V is open and α ∈ V , there exists an
ϵ > 0 such that

(α− ϵ, α+ ϵ) ⊆ V ⊆ f−1(U).
Therefore, since α ∈ f−1(U) was arbitrary, f−1(U) is open by definition.
Hence, as U was an arbitrary open set, this direction of the proof is complete.

Assume f−1(U) is open for all open subsets U ⊆ R. To see that f is
continuous on R, let α ∈ R be arbitrary. To see that f is continuous at α, let
U be an open subset of R such that f(α) ∈ U . Thus V = f−1(U) is open set
by assumption. Moreover, since f(α) ∈ U , we have that α ∈ f−1(U) = V .
Therefore, since for all x ∈ V we have f(x) ∈ U , f is continuous at α by the
Characterizations of Continuity (Theorem 4.2.2). Hence, since α ∈ R was
arbitrary, f is continuous on R.
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Of course, there are many useful and natural examples of continuous
functions.

Example 4.2.5. Using Example 4.1.20, we see that if p(x) is a polynomial,
then p(x) is continuous on R Similarly, using Example 4.1.21, we see that
if p(x) and q(x) are polynomials, then p(x)

q(x) is continuous at α provided
q(α) ̸= 0.

Example 4.2.6. Let f : R → R be defined by f(x) = |x| for all x ∈ R.
Then f is continuous on R. To see this, let α ∈ R be arbitrary. To see that
f is continuous at α, let ϵ > 0 be arbitrary. Let δ = ϵ > 0. Thus, if x ∈ R is
such that |x− α| < δ, then, by the reverse triangle inequality, we have that

|f(x) − f(α)| = ||x| − |α|| ≤ |x− α| < δ = ϵ.

Therefore, as ϵ > 0 was arbitrary, f is continuous at α. Therefore, as α > 0
was arbitrary, f is continuous on R as desired.

Example 4.2.7. Consider the function f : R → R defined by

f(x) =


0 if x is irrational
1 if x = 0
1
b if x = a

b where a ∈ Z \ {0}, b ∈ N, and gcd(a, b) = 1
.

Recall from Example 4.1.18 that if γ ∈ R \ Q then limx→γ f(x) = 0 = f(γ).
Hence f is continuous at every irrational number.

We claim that f is not continuous at every rational number. To see this,
let r ∈ Q. By Proposition 1.3.9, for all n ∈ N there exists a γn ∈ R \ Q such
that

r < γn < r + 1
n
.

Hence (γn)n≥1 is a sequence of irrational numbers such that limn→∞ γn =
r. However, since f(γn) = 0 for all n ∈ N yet f(r) > 0, we see that
limn→∞ f(γn) ̸= f(r). Hence the Sequential Characterization of Continuity
(Theorem 4.2.2) implies that f is not continuous at r.

Remark 4.2.8. The best way to define and show continuity of the functions
sin(x), cos(x), and ex is via series of functions. In particular, for x ∈ R, one
defines

sin(x) =
∞∑

n=0

(−1)n

(2n+ 1)!x
2n+1

cos(x) =
∞∑

n=0

(−1)n

(2n)! x
2n

ex =
∞∑

n=0

1
n!x

n.
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It is possible to show that these series converge uniformly and thus define
continuous functions. However, the discussion of this material is more
appropriately placed in MATH 3001 (Series of Functions). Consequently, we
will assume throughout the remainder of the course that sin(x), cos(x), and
ex are continuous functions on R.

4.2.2 Operations Preserving Continuity

As the same arithmetic operations that behave well with respect to limits
immediately transfer to continuous functions, we have the following operations
that preserve continuity.

Theorem 4.2.9. Let I be a finite interval, let α ∈ I, and let f, g : I → R.
If f and g are continuous at α, then

a) f + g is continuous at α.

b) fg is continuous at α.

c) cf is continuous at α for all c ∈ R.

d) f
g is continuous at α provided g(α) ̸= 0.

Proof. Apply Theorem 4.1.19 together with the definition of continuity. For
those that want to see the direct ϵ-δ proofs, they are provided as follows.
Note the proofs are nearly identical to those used in Theorem 4.1.19.

a) Let ϵ > 0 be arbitrary. Since f(α) = limx→α f(x), there exists a δ1 > 0
such that if x ∈ I and |x − α| < δ2, then |f(x) − L| < ϵ

2 . Similarly, since
g(α) = limx→α g(x), there exists a δ2 > 0 such that if x ∈ I and |x−α| < δ2
then |f(x) −K| < ϵ

2 . Let δ = min{δ1, δ2}. Hence δ > 0. Moreover, if x ∈ I
and |x− α| < δ, then |x− α| < δ1 and |x− α| < δ2 so

|(f(x) + g(x)) − (f(α) + g(α))| = |(f(x) − L) + (g(x) −K)|
≤ |f(x) − f(α)| + |g(x) − g(α)|

<
ϵ

2 + ϵ

2
= ϵ.

Hence limx→α f(x) + g(x) = f(α) + g(α) by definition. Therefore f + g is
continuous at α.

b) Let ϵ > 0 be arbitrary. Since f(α) = limx→α f(x), there exists a
δ1 > 0 such that if x ∈ I and |x − α| < δ1 then |f(x) − L| < ϵ

2(|K|+1) .
Moreover, there exists a δ2 > 0 such that if x ∈ I and 0 < |x− α| < δ2 then
|f(x) − f(α)| < 1. Thus |f(x)| ≤ |f(α)| + 1 for all x ∈ I with |x− α| < δ2.
Furthermore, since g(α) = limx→α g(x), there exists a δ3 > 0 such that if

©For use through and only available at pskoufra.info.yorku.ca.



114 CHAPTER 4. CONTINUITY

x ∈ I and |x− α| < δ3 then |g(x) − g(α)| < ϵ
2(|L|+1) . Let δ = min{δ1, δ2, δ3}.

Hence δ > 0. Moreover, if x ∈ I and |x− α| < δ, then

|f(x)g(x) − f(α)g(α)| = |(f(x)g(x) − f(x)g(α)) + (f(x)g(α) − f(α)g(α))|
≤ |f(x)g(x) − f(x)g(α)| + |f(x)g(α) − f(α)g(α)|
≤ |f(x)||g(x) − g(α)| + |g(α)||f(x) − f(α)|
≤ (|f(α)| + 1)|bn − g(α)| + |g(α)||f(x) − f(α)|

≤ (|f(α)| + 1) ϵ

2(|f(α)| + 1) + |g(α)| ϵ

2(|g(α)| + 1)
≤ ϵ

2 + ϵ

2 = ϵ.

Hence limn→∞ f(xn)g(xn) = f(α)g(α) by definition. Therefore fg is contin-
uous at α.

c) Given c ∈ R, we have that limx→α c = c by Example 4.1.5. Hence part
(c) follows from part (b) by taking g(x) = c for all x ∈ I.

d) To prove part d), it suffices by part b) to prove that limx→α
1

g(x) = 1
g(α)

whenever g(α) ̸= 0.
Assume g(α) ̸= 0. First, we claim that there exists a δ0 > 0 such

that if x ∈ I and |x − α| < δ0, then |g(x)| ≥ |g(α)|
2 > 0. To see this, let

ϵ0 = |g(α)|
2 > 0. Since g(α) = limx→α g(x), there exists a δ0 > 0 such that if

x ∈ I and |x − α| < δ0 then |g(x) − g(α)| < ϵ0 = |g(α)|
2 . Therefore, by the

Triangle Inequality, for all x ∈ I such that |x− α| < δ0 we have

|g(x)| ≥ |g(α)| − |g(α)|
2 = |g(α)|

2 > 0

as desired. In particular, if x ∈ I and |x− α| < δ0, then 1
g(x) is well-defined.

To see that limx→α
1

g(x) = 1
g(α) , let ϵ > 0 be arbitrary. Since g(α) =

limx→α g(x), there exists a δ1 > 0 such that if x ∈ I and |x− α| < δ1 then
|g(x) − g(α)| < ϵ|g(α)|2

2 (as |g(α)| ≠ 0). Let δ = min{δ0, δ1}. Therefore, for
all x ∈ I with |x− α| < δ, we have that g(x) ̸= 0 and∣∣∣∣ 1

g(x) − 1
g(α)

∣∣∣∣ = |g(α) − g(x)|
|g(x)||g(α)|

≤ ϵ|g(α)|2

2|g(x)||g(α)|

≤ ϵ|g(α)|
2

1
|g(x)|

≤ ϵ|g(α)|
2

2
|g(α)| = ϵ.

Hence limx→α
1

g(x) = 1
g(α) by definition. Therefore 1

g is continuous at α.
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One of the nicest operation for functions not see in Theorem 4.2.9 is
the composition of functions. Indeed, if f, g : R → R are functions, we can
consider the function g ◦ f and ask whether or nor g ◦ f is continuous at a
point. Of course, we will want to extend to functions that are not defined on
all of R, so we will need to impose conditions to guarantee the composition
is well-defined.

Theorem 4.2.10. Let f be a function defined on an open interval I1 con-
taining a number α ∈ R. Let g be a function defined on an open interval I2
which contains f(I1). If f is continuous at α and g is continuous at f(α),
then g ◦ f is continuous at α.

Proof. We will provide three proofs; one for each Characterization of Conti-
nuity (Theorem 4.2.2).

ϵ-δ Proof: To see that g ◦ f is continuous at α, let ϵ > 0 be arbitrary.
Since g is continuous at f(α), there exists a δ1 > 0 such that if y ∈ I2 and
|y − f(α)| < δ1, then |g(y) − g(f(α))| < ϵ. Moreover, since δ1 > 0 and since
f is continuous at α, there exists a δ > 0 such that if x ∈ I1 and |x− α| < δ
then |f(x) − f(α)| < δ1. Hence, if x ∈ I1 and |x− α| < δ then

|f(x) − f(α)| < δ1 and f(x) ∈ f(I1) ⊆ I2

so
|g(f(x)) − g(f(α))| < ϵ

(i.e. let y = f(x) above). Therefore, as ϵ > 0 was arbitrary, g◦f is continuous
at α.

Topological Proof: To see that g ◦ f is continuous at α, let U be an open
subset containing g(f(α)). Since g is continuous at f(α), there exists an
open set V1 containing f(α) so that if y ∈ V1 ∩ I2 then g(y) ∈ U . Since f is
continuous at α and V1 is an open set containing α, there exists an open set
V containing α so that if x ∈ V ∩ I1 then f(x) ∈ V1. Hence, if x ∈ I1 ∩ V
then

f(x) ∈ V1 and f(x) ∈ f(I1) ⊆ I2

so
g(f(x)) ∈ U

(i.e. let y = f(x) above). Therefore, as U was arbitrary, g ◦ f is continuous
at α.

Sequential Proof: To see that g ◦ f is continuous at α, let (xn)n≥1 be
a sequence such that xn ∈ I1 for all n ∈ N and limn→∞ xn = α. Since f
is continuous at α, we know that limn→∞ f(xn) = f(α). However, since
f(I1) ⊆ I2, we have that f(xn) ∈ I2 for all n ∈ N. Therefore, since g is
continuous at f(α), we obtain that limn→∞ g(f(xn)) = g(f(α)). Therefore,
as (xn)n≥1 was arbitrary, g ◦ f is continuous at α.
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4.3 Uniform Continuity
Before we move onto examining the properties and importance of continuous
functions on the real numbers, there is actually a stronger form of continuity
that we desire to examine. For a function f to be continuous on an interval I,
the ϵ-δ Characterization of Continuity (Theorem 4.2.2) states that for each
α ∈ I and each ϵ > 0 there exists a δ > 0 such that if x ∈ I and |x− α| < δ,
then |f(x) − f(α)| < ϵ. Note that this a prior δ depends not only on ϵ but
the α ∈ I selected. But what if we want one δ to rule them all, one δ to
find them, one δ to bring them all, and in the darkness bind them... Umm I
mean what if we wanted to know given an ϵ > 0 there exists a δ > 0 that
worked for all α simultaneously in I?

Definition 4.3.1. A function f defined on an interval I is said to be
uniformly continuous on I if for all ϵ > 0 there exists a δ > 0 such that if
x, y ∈ I and |x− y| < δ then |f(x) − f(y)| < ϵ.

Remark 4.3.2. It is elementary by the ϵ-δ Characterization of Continuity
that if f is uniformly continuous on an interval I, then f is continuous on I.

Remark 4.3.3. As eluded to in the introduction, the benefit of having a
uniform continuous function f on an interval is that for any ϵ > 0 there exists
a δ > 0 that worked for all α simultaneously in I. This is quite useful in that
we can guarantee that f does not vary too much on any small subinterval of
I. This will be of particular importance for an essential result in Chapter 6.

Remark 4.3.4. As with Proposition 2.1.14 for sequences and Proposition
4.1.13 for limits of functions, one can modify the definition of uniform
continuity (Definition 4.3.1) to replace ‘|f(x)−f(y)| < ϵ’ with ‘|f(x)−f(y)| ≤
kϵ’ for a previously fixed constant k. Similarly, one can replace the condition
‘|x− y| < δ’ with ‘|x− y| ≤ δ’.

Of course, it is quite easy to verify that some functions are uniformly
continuous.

Example 4.3.5. Let f : R → R be defined by f(x) = x for all x ∈ R. We
claim that f is uniformly continuous. To see this, let ϵ > 0 be arbitrary. Let
δ = ϵ > 0. Thus if x, y ∈ I and |x− y| < δ, then

|f(x) − f(y)| = |x− y| < δ = ϵ.

Hence, as ϵ > 0 was arbitrary, the result follows.

However, not all continuous functions on intervals are uniformly contin-
uous. Indeed if a continuous function “grows too fast” it is possible that
the function is not uniformly continuous. Before we demonstrate such an
example, we believe it is useful to the reader to formally negate Definition
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4.3.1; that is, a function f on an interval I is not uniformly continuous if
there exists an ϵ > 0 such that for all δ > 0 there exists x, y ∈ I such that
|x− y| < δ and |f(x) − f(y)| ≥ ϵ.
Example 4.3.6. Let f : R → R be defined by f(x) = x2 for all x ∈ R.
We claim that f is not uniformly continuous. To see this, we claim that
Definition 4.3.1 fails for ϵ = 2; that is, there does not exist a δ > 0 such that
if x, y ∈ R and |x− y| < δ then |f(x) − f(y)| < 2. To see this, let δ > 0 be
arbitrary. By the Archimedian Property (Theorem 1.3.7), there exists an
n ∈ N such that 1

n < δ. Let x = n and y = n+ 1
n . Then |xn − yn| = 1

n < δ
yet

|f(xn) − f(yn)| =
∣∣∣∣∣n2 −

(
n+ 1

n

)2
∣∣∣∣∣ = 2 + 1

n2 ≥ 2.

Therefore, as δ > 0 was arbitrary, there does not exists a δ > 0 such that if
x, y ∈ R and |x − y| < δ then |f(x) − f(y)| < ϵ. Hence f is not uniformly
continuous on R by definition.

Of course, the notion of uniform continuity depends on the domain of
definition of our function.
Example 4.3.7. Let f : (−1, 1) → R be defined by f(x) = x2 for all
x ∈ (−1, 1). We claim that f is uniformly continuous. To see this, let ϵ > 0
be arbitrary. Let δ = ϵ

2 > 0. We claim that δ works. To see this, let x, y ∈ I
be such that |x− y| < δ. Since x, y ∈ I, we know that |x|, |y| ≤ 1. Thus

|f(x) − f(y)| = |x2 − y2|
= |x+ y||x− y|
≤ (|x| + |y|)|x− y|
≤ 2|x− y|

< 2 ϵ2 = ϵ.

Therefore, as ϵ > 0 was arbitrary, f is uniformly continuous.
Also, uniform continuity does not permit functions to oscillate quickly.

Example 4.3.8. Let f : (0, 1) → R be defined by f(x) = sin
(

1
x

)
for all

x ∈ (0, 1). We claim that f is not uniformly continuous on (0, 1). To see
this, we claim Definition 4.3.1 fails for ϵ = 1. To see this, for n ∈ N let
xn = 1

2πn+ π
2

∈ (0, 1) and yn = 1
2πn+ 3π

2
∈ (0, 1). Since

lim
n→∞

xn = 0 = lim
n→∞

yn,

for any δ > 0 there exists an N ∈ N such that |xN | < 1
2δ and |yN | < 1

2δ.
Hence |xN − yN | < δ yet

|f(xN ) − f(yN )| = |1 − (−1)| = 2 ≥ 1.

Hence f is not uniformly continuous on (0, 1).
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Although the above examples seem to imply that uniform continuity is
a much more difficult property to deduce and handle, it turns out that if
we only consider continuous functions on closed intervals, then something
special happens.

Theorem 4.3.9. Let a, b ∈ R be such that a < b. If f : [a, b] → R is
continuous, then f is uniformly continuous.

Proof. Let f : [a, b] → R be continuous. Suppose for the sake of a con-
tradiction that f is not uniformly continuous on [a, b]. Hence exists an
ϵ > 0 such that for all δ > 0 there exists x, y ∈ [a, b] with |x − y| < δ and
|f(x) − f(y)| ≥ ϵ. Thus for each n ∈ N we can choose xn, yn ∈ [a, b] such
that |xn − yn| < 1

n yet |f(xn) − f(yn)| ≥ ϵ.
By the Bolzano-Weierstrass Theorem (Theorem 2.4.7), there exists a

subsequence (xnk
)k≥1 of (xn)n≥1 that converges to some number L ∈ [a, b]

(i.e. [a, b] is sequentially compact). Consider the subsequence (ynk
)k≥1 of

(yn)n≥1. Notice for all k ∈ N that

|ynk
− L| ≤ |ynk

− xnk
| + |xnk

− L| ≤ 1
nk

+ |xnk
− L| ≤ 1

k
+ |xnk

− L|.

Therefore, since limk→∞ |xnk
− L| = 0 and limk→∞

1
k = 0, we obtain that

limk→∞ ynk
= L by the Squeeze Theorem.

Since L = limk→∞ xnk
and since f is continuous at L, there exists

an N1 ∈ N such that |f(xnk
) − L| < ϵ

2 for all k ≥ N1. Similarly, since
L = limk→∞ ynk

and since f is continuous at L, there exists an N2 ∈ N such
that |f(ynk

) − L| < ϵ
2 for all k ≥ N2. Therefore, if k0 = max{N1, N2}, we

obtain that

|f(xnk0
) − f(ynk0

)| ≤ |f(xnk0
) − f(L)| + |f(L) − f(ynk0

)| < ϵ

2 + ϵ

2 = ϵ

which contradicts the fact that |f(xnk0
) − f(ynk0

)| ≥ ϵ. Hence, as we have
obtained a contradiction, it must have been the case that f is uniformly
continuous on [a, b].

Remark 4.3.10. Note that the fact that [a, b] is (sequentially) compact is
essential in the proof of Theorem 4.3.9. In fact, in future courses (i.e. MATH
4011), it will be observed that continuous functions on compact sets are
automatically uniformly continuous. The proof is nearly identical in MATH
4011.

Using Theorem 4.3.9, we can demonstrate additional functions on R are
uniformly continuous.

Example 4.3.11. Let f : R → R be defined by f(x) = cos(x) for all x ∈ R.
We claim that f is uniformly continuous on R. To see this, let ϵ > 0 be
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arbitrary. Since f is uniformly continuous on [−2π, 2π], there exists a δ > 0
such that |f(x) − f(y)| < ϵ whenever x, y ∈ [−2π, 2π] and |x− y| < δ. Due
to the fact that cos(x+ 2π) = cos(x) for all x ∈ R, it is then easy to see that
if x, y ∈ R are such that |x− y| < δ, then |f(x) − f(y)| < ϵ.

The following uses Theorem 4.3.9 to show that many functions on R are
uniformly continuous. Note this does not describe all uniformly continuous
functions on R by, for example, Example 4.3.5.

Proposition 4.3.12. Let f : R → R be continuous. If limx→∞ f(x) and
limx→−∞ f(x) exist, then f is uniformly continuous on R.

Proof. Exercise.

Note Example 4.3.8 shows that the conclusions of Theorem 4.3.9 do not
extend to continuous functions on finite open intervals. It turns out that the
only reason such continuous functions are not uniformly continuous is that
the one-sided limits at the boundaries do not exist.

Proposition 4.3.13. Let f : (a, b) → R where a, b ∈ R. Then f is uniformly
continuous on (a, b) if and only if there exists a continuous function g :
[a, b] → R such that f(x) = g(x) for all x ∈ (a, b).

Proof. First assume there exists a continuous function g : [a, b] → R such
that f(x) = g(x) for all x ∈ (a, b). Thus g(x) is uniformly continuous on
[a, b] by Theorem 4.3.9. Therefore, since f(x) = g(x) for all x ∈ (a, b), the
definition of uniform continuity of g on [a, b] immediately implies the uniform
continuity of f on (a, b) (i.e. for ϵ > 0, the δ that works for g also works for
f). Hence one direction of the proof is complete.

For the other direction, assume f is uniformly continuous on (a, b). Our
goal is to find a continuous g : [a, b] → R such that f(x) = g(x) for all
x ∈ (a, b). In particular, since f is continuous on (a, b), the only way a
function g : [a, b] → R is continuous on [a, b] is if

g(a) = lim
x→a+

f(x) and g(b) = lim
x→b−

f(x).

Hence, provided the above two one-sided limits exist, we will define g(a) and
g(b) accordingly and the proof will be complete.

To see that limx→a+ f(x) exists, we will apply the Sequential Character-
ization of a Limit (Theorem 4.1.16). In particular, we must show that for
every sequence (xn)n≥1 with xn ∈ (a, b) for all n ∈ N and limn→∞ xn = a
that (f(xn))n≥1 converges AND that limx→a f(xn) are all equal for every
choice of (xn)n≥1.

For the first part of the claim, let (xn)n≥1 be an arbitrary sequence such
that a < xn < b for all n ∈ N and limn→∞ xn = a. To see that (f(xn))n≥1
converges, we claim that (f(xn))n≥1 is Cauchy. To see that (f(xn))n≥1 is
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Cauchy, let ϵ > 0 be arbitrary. Since f is uniformly continuous on (a, b) there
exists a δ > 0 such that if x, y ∈ (a, b) and |x−y| < δ, then |f(x) −f(y)| < ϵ.
Since limn→∞ xn = a, we know that (xn)n≥1 is Cauchy by Theorem 2.5.2.
Hence there exists an N ∈ N such that |xn − xm| < δ for all n,m ≥ N .
Therefore, if n,m ≥ N , we obtain that |f(xn) − f(xm)| < ϵ as desired.
Hence, as ϵ > 0 was arbitrary, (f(xn))n≥1 is Cauchy and thus converges by
Theorem 2.5.8.

For the second part of the claim, let (xn)n≥1 and (yn)n≥1 be such that
a < xn, yn < b for all n ∈ N and limn→∞ xn = limn→∞ yn = a. Thus
L = limn→∞ f(xn) and K = limn→∞ f(yn) exist by the previous paragraph.
Our goal is to show that L = K.

To see that L = K, let ϵ > 0 be arbitrary. Since f is uniformly continuous
on (a, b) there exists a δ > 0 such that x, y ∈ (a, b) and |x − y| < δ, then
|f(x) − f(y)| < ϵ

3 . Since limn→∞ xn − yn = 0, there exists an N1 ∈ N such
that |xn − yn| < δ for all n ≥ N1. Since limn→∞ f(xn) = L, there exists
an N2 ∈ N such that |f(xn) − L| < ϵ

3 for all n ≥ N2. Similarly, since
limn→∞ f(yn) = K, there exists an N3 ∈ N such that |yn − a| < ϵ

3 for all
n ≥ N3. Thus, if N = max{N1, N2, N3}, then |xN − yN | < δ so

|L−K| ≤ |L− f(xN )| + |f(xN ) − f(yN )| + |f(yN ) −K| < ϵ

3 + ϵ

3 + ϵ

3 = ϵ.

Thus, we have shown that |L−K| < ϵ for all ϵ > 0. This implies |L−K| = 0
and thus L = K as desired.

Hence we may define g(a) so that g(a) = limx→a+ f(x). Similar ar-
guments show that we may define g(b) as desired thereby completing the
proof.

Remark 4.3.14. In the proof of the second part of the claim in Theorem
4.3.13, we have used what is known as a three-ϵ argument (i.e. we needed
to make three terms small via a procedure making the middle one small
first and then we could make the other two small). Three-ϵ appear often in
analysis and are quite useful. For example, one can use a three-ϵ argument to
show that a ‘uniform limit of continuous functions is a continuous function’,
which is an essential result in MATH 3001.

4.4 The Intermediate Value Theorem
With our enhancement of continuity on closed intervals, let us return to look-
ing at the properties and importance of continuous functions. In particular,
in this section we will develop one of the three ‘value’ theorems in this course.
In particular, by combining these three pieces of the Triforce, one obtains
unlimited control over continuous functions on R.

To motivate this first theorem, consider the following scenario. Consider
a person walking on a straight path. Assume somewhere along the path is a
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waterfall that the person desires to see. If this person walks from one end of
the path to the other, will they see the waterfall? Of course, logic says they
must. But how can we mathematically prove said result.

Of course, specific assumptions must be made in the above problem. For
example, we are assuming that position is a function of time (no time travel
permitted via Delorean’s and TARDISs’). Furthermore, we must assume that
our functions are continuous at each point (i.e. no teleportation). Once these
assumptions our made, our first Triforce theorem mathematically proves the
answer. Before we obtain this piece of the Triforce, it is useful to extract a
useful lemma that has already been used in the proof of Theorem 4.2.9.

Lemma 4.4.1. Let I be an interval, let α ∈ I, and let f : I → R.

a) If f is continuous at α and f(α) > 0, then there exists a δ > 0 such that
if x ∈ I and |x− α| < δ, then f(x) > 0.

b) If f is continuous at α and f(α) < 0, then there exists a δ > 0 such that
if x ∈ I and |x− α| < δ, then f(x) < 0.

Proof. We will only prove a) as the proof of b) is nearly identical.
Let f : I → R be continuous at α with f(α) > 0. To see the desired result,

let ϵ = 1
2f(α). Since f(α) > 0, clearly ϵ > 0. Since f is continuous at α,

there exists a δ > 0 such that if x ∈ I and |x−α| < δ, then |f(x)−f(α)| < ϵ.
Therefore, for all x ∈ I with |x− α| < δ, we have that f(α) − f(x) < ϵ so

f(x) > f(α) − ϵ = f(α) − 1
2f(α) = 1

2f(α) > 0.

Hence the result is complete.

Theorem 4.4.2 (The Intermediate Value Theorem). Let I be an
interval, let a, b ∈ I be such that a < b, and let f : I → R be continuous. If
α ∈ R is such that f(a) < α < f(b) or f(b) < α < f(a), then there exists a
c ∈ (a, b) such that f(c) = α.

Proof. By the assumptions of the theorem, we can assume that f : [a, b] → R
is continuous. To prove the result, we will assume α ∈ R is such that
f(a) < α < f(b). The proof of the result when f(b) < α < f(a) is nearly
identical and left to the reader.

Our goal is to prove there exists a c ∈ (a, b) such that f(c) = α. To
do so, we will shift f so that we can assume α = 0. To do this, define
g : [a, b] → R by g(x) = f(x) −α for all x ∈ [a, b]. Clearly g is continuous on
[a, b], g(a) < 0 < g(b) and there exists a c ∈ (a, b) such that f(c) = α if and
only if there exists a c ∈ (a, b) such that g(c) = 0. Therefore, to complete
the proof it suffices to show that there exists a c ∈ (a, b) such that g(c) = 0.

Let
S = {x ∈ [a, b] | g(x) ≤ 0}.
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Since f(a) < 0, we see that a ∈ S so S is non-empty. Furthermore, since
g(b) > 0, S is bounded above by b. Hence the Least Upper Bound Prop-
erty (Theorem 1.2.35) implies that c = lub(S) exists. Note c ∈ [a, b] by
construction.

We claim that g(c) = 0. To see this, we first claim that g(c) ≥ 0. To see
this, suppose for the sake of a contradiction that g(c) < 0. Since g(c) < 0 and
g(b) > 0 we see that c ̸= b. Moreover, since g(c) < 0, Lemma 4.4.1 implies
there δ > 0 such that if x ∈ I and |x − c| < δ, then g(x) < 0. Since c ̸= b,
there exists an d ∈ (c, b) such that c < d < c+δ (e.g. d = c+ 1

2 min{b−c, δ}).
Hence g(d) < 0 so d ∈ S. However, since c < d, this contradicts the fact that
c is the least upper bound of S. Hence, it must be the case that g(c) ≥ 0.

Now that we have established g(c) ≥ 0, to see that g(c) = 0, suppose
for the sake of a contradiction that g(c) > 0. Since g(a) < 0, this implies
c ̸= a so c ∈ (a, b]. Since g(c) > 0 and g is continuous at c, Lemma 4.4.1
implies there exists a δ > 0 such that if x ∈ I and |x− c| < δ, then g(x) > 0.
Let d = max{a, c − δ}. Clearly d ∈ [a, b]. Moreover, for all x such that
d < x ≤ c, we have that g(x) > 0 so x /∈ S. However, since c = lub(S), we
have that s ≤ c for all s ∈ S. Hence, for all s ∈ S we have s ≤ c and, since
d < s ≤ c is false, it must be the case that s ≤ d. Thus d is an upper bound
of S. However, since d < c and c = lub(S), we have a contradiction. Hence
g(c) = 0.

Since g(c) = 0, g(a) < 0, and g(b) > 0, we have that c ̸= a and c ≠ b so
c ∈ (a, b) as desired.

The Intermediate Value Theorem has a wide range of applications. One
of the most useful applications of the Intermediate Value Theorem is that it
can be used to establish the solution to complicated equations.

Example 4.4.3. We claim there exists a z ∈ [0, π
2 ] such that cos(z) = z. To

see this, consider the function f(x) = x− cos(x). Since

f(0) = 0 − 1 = −1 < 0 and f

(
π

2

)
= π

2 − 0 > 0,

and since f is continuous, the Intermediate Value Theorem implies there
exists a z ∈ (0, π

2 ) such that f(z) = 0 (and thus cos(z) = z).

It is potentially useful for future studies in analysis to note that the
Intermediate Value Theorem is related to a topological notion known as
connectedness. Although not as important as compactness, connectedness
has its own uses. Thus, for the remainder of the section, we will introduce
the notion of a connected set and see an alternative proof of the Intermediate
Value Theorem using this notion.

Definition 4.4.4. A subset A ⊆ R is said to be disconnected if there exists
open sets U, V ⊆ R such that U ∩ A ̸= ∅, V ∩ A ̸= ∅, U ∩ V = ∅, and
A ⊆ U ∪ V .
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A subset A ⊆ R is said to be connected if A is not disconnected; that is,
if there does not exists open sets U, V ⊆ R such that U ∩A ̸= ∅, V ∩A ̸= ∅,
and U ∩ V = ∅.

The motivation for the above definition of a disconnected set is that
one can ‘divide up’ our set into two disjoint portions separated in a natural
topological sense with open sets. This definition is made clearer by the
following example.

Example 4.4.5. Let A = [0, 1] ∪ [3, 4]. We claim that A is a disconnected
subset of R. To see this, let U = (−∞, 2) and let V = (2,∞). Clearly U
and V are open subsets of R. Moreover, notice that U ∩ A = [0, 1] ̸= ∅,
V ∩A = [3, 4] ̸= ∅, U ∩ V = ∅, and A ⊆ U ∪ V . Hence A is disconnected by
definition.

In fact, the real numbers are quite nice in the sense that one can completely
describe all of their connected sets as the following result shows. Note the
proof of this result has the same flavour as the proof of the Intermediate
Value Theorem (and consequently, some of the technical details are illustrated
more fully in the proof of the Intermediate Value Theorem).

Theorem 4.4.6. Let A ⊆ R. Then A is connected if and only if A is an
interval (singletons count as intervals here).

Proof. First, assume that A is not an interval. To see that A is not connected,
note since A is not an interval that there exists x, y ∈ A and z ∈ R \A such
that x < z < y. Therefore, since U = (−∞, z) and V = (z,∞) are open sets
such that x ∈ U ∩A so U ∩A ̸= ∅, y ∈ V ∩A so V ∩A ̸= ∅, U ∩ V = ∅, and
A ⊆ R \ {z} ⊆ U ∪ V , A is not connected by definition.

To see the converse, let A be an interval in R. Suppose for the sake of a
contradiction that A is not connected. Hence there exists open subsets U
and V of A such that U ∩ A ≠ ∅, V ∩ A ̸= ∅, U ∩ V = ∅, and U ∪ V = A.
As U ∩ A and V ∩ A are non-empty, select a ∈ U ∩ A and b ∈ V ∩ b. As
U ∩ V ̸= ∅, it must be the case that a ̸= b. By exchanging the labelling of U
and V if necessary, we may assume that a < b. Since A is an interval, we
must have that [a, b] ⊆ A.

Since U ∩ [a, b] ̸= ∅, the scalar

α = lub(U ∩ [a, b])

is an element of [a, b]. Thus as [a, b] ⊆ A ⊆ U ∪ V , either α ∈ U or α ∈ V .
Let us show that both of these options lead to a contradiction.

Case 1: α ∈ U . If α ∈ U , then by the definition of an open subsets there
exists an ϵ > 0 such that (α−ϵ, α+ϵ) ⊆ U . If α+ϵ < b then α+ϵ ∈ U ∩ [a, b].
However, this contradicts the fact that α = lub(U ∩ [a, b]) as α + ϵ > α.
Hence it must be the case that b ∈ (α− ϵ, α+ ϵ) ⊆ U which contradicts the
fact that b ∈ V and U ∩ V = ∅.
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Case 2: α ∈ V . If α ∈ V , then by the definition of an open subsets there
exists an ϵ > 0 such that (α − ϵ, α + ϵ) ⊆ V . Therefore, as U ∩ V = ∅, it
must be the case that (α− ϵ, α] ∩ U = ∅ thereby contradicting the fact that
α = lub(U).

Therefore we have a contradiction. Hence A is connected.

Now that Theorem 4.4.6 has shown the connected subsets of R are exactly
the intervals, we move towards demonstrating how the Intermediate Value
Theorem is connected to connected sets. In particular, the following is the
true version of the Intermediate Value Theorem.

Theorem 4.4.7 (The Topological Intermediate Value Theorem). Let
f : R → R be a continuous function. If C ⊆ R is connected, then f(C) is
connected.

Proof. Let C ⊆ R be a connected set. To see that f(C) is connected, suppose
for the sake of a contradiction that f(C) is not connected. Hence there exists
open subsets U, V ⊆ R such that U ∩ f(C) ̸= ∅, V ∩ f(C) ̸= ∅, U ∩ V = ∅,
and f(C) ⊆ U ∪ V .

Let U ′ = f−1(U) and V ′ = f−1(V ). Since f is continuous, Theorem 4.2.4
implies that U ′ and V ′ are open sets. We desire to show that U ′ and V ′

cause C to be disconnected thereby yielding our contradiction.
First we claim that U ′ ∩ C ̸= ∅. To see this, note since U ∩ f(C) ̸= ∅

that there exists a x ∈ C such that f(x) ∈ U . Hence x ∈ f−1(U) and x ∈ C
so U ′ ∩ C ̸= ∅. A similar proof shows that V ′ ∩ C ̸= ∅.

Next, to see that U ′ ∩ V ′ = ∅, suppose to the contrary that there exists
an x ∈ U ′ ∩ V ′. Then x ∈ f−1(U) and x ∈ f−1(V ). Therefore f(x) ∈ U and
f(x) ∈ V so f(x) ∈ U ∩ V which contradicts the fact that U ∩ V = ∅. Hence
U ′ ∩ V ′ = ∅.

Finally, we claim that C ⊆ U ′ ∪ V ′. To see this, let x ∈ C be arbitrary.
Then f(x) ∈ f(C) ⊆ U ∪ V . Hence f(x) ∈ U or f(x) ∈ V which implies
x ∈ f−1(U) = U ′ or x ∈ f−1(V ) = V ′. Hence, as x ∈ C was arbitrary,
C ⊆ U ′ ∪ V ′.

Therefore, C is not connected by definition, which contradicts the fact
that C is connected. Hence f(C) is connected.

By combining the Topological Intermediate Value Theorem together with
the description of connected sets from Theorem 4.4.6, we can provide another
proof of the Intermediate Value Theorem.

Proof of the Intermediate Value Theorem (Theorem 4.4.2). Let I be an in-
terval, let a, b ∈ I be such that a < b, and let f : I → R be continuous. Let
α ∈ I be such that f(a) < α < f(b) or f(b) < α < f(a).
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Since f is continuous on [a, b], the function g : R → R defined by

g(x) =


f(x) if x ∈ [a, b]
f(a) if x < a

f(b) if x > b

is a continuous function on R. Therefore, since [a, b] is connected by Theorem
4.4.6 and since g : R → R is continuous, the Topological Intermediate Value
Theorem implies that

g([a, b]) = f([a, b])

is a connected set. Hence Theorem 4.4.6 implies that f([a, b]) is an interval.
Therefore, since f(a), f(b) ∈ f([a, b]), since f([a, b]) is an interval, and since
f(a) < α < f(b) or f(b) < α < f(a), it follows that α ∈ f([a, b]). Hence
there exists an c ∈ [a, b] such that f(c) = α. Since f(a) ̸= α and f(b) ̸= α, it
follows that c ̸= a and x ̸= b so c ∈ (a, b) as desired.

4.5 Continuity of Inverse Functions

There is another use of the Intermediate Value Theorem that yields a im-
portant property of continuous functions we desire to examine. Specifically,
we desire to use of the Intermediate Value Theorem to examine the inverse
(under composition) of continuous functions. This theory is particularly
useful to showing that specific operations and properties of the real numbers
are as we would expect. For example, Proposition 1.3.10 provided a direct
proof that the square root of a positive number exists. Whereas we would
need to adapt that proof to obtain the nth root of positive numbers exist,
by considering the nth root as the inverse of the nth power, the technology
of this section will not only give us that nth roots exist, it will allow us
to show that taking the nth root defines a continuous function. Of course
we could show the continuity of the nth root by hand, but this technology
applies to all invertible continuous functions, such as trigonometric functions
on restricted intervals and the exponential function. In particular, once the
exponential function is defined (see Remark 4.2.8) and shown to be invertible,
the existence of the natural logarithm follows immediately from this section.

Recall that a function f : X → Y is invertible if and only if it is bijective
(see Appendix A.2). As a function is always surjective once one replaces
the co-domain with the range of the function, surjectivity will not be an
issue for us. Thus we begin by focusing on when a function is injective. For
continuous functions on the real numbers, there are certain properties that
will aid us in determining when functions are injective. Note these properties
for functions are parallels to the similar properties of sequences discussed in
Section 2.2
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Definition 4.5.1. Let I be an interval. A function f : I → R is said to be

• increasing on I if f(x1) < f(x2) whenever x1, x2 ∈ I and x1 < x2,

• non-decreasing on I if f(x1) ≤ f(x2) whenever x1, x2 ∈ I and x1 < x2,

• decreasing on I if f(x1) > f(x2) whenever x1, x2 ∈ I and x1 < x2,

• non-increasing on I if f(x1) ≥ f(x2) whenever x1, x2 ∈ I and x1 < x2,

• monotone on I if f is non-decreasing or non-increasing.

In fact, for continuous functions, injectivity is directly characterized by
these concepts.

Proposition 4.5.2. Let I be an interval and let f : I → R be continuous.
Then f is injective if and only if f is increasing or decreasing on I.

Proof. Assume that f is increasing on I. To see that f is injective, let
x1, x2 ∈ I be such that x1 ̸= x2. Thus either x1 < x2 or x2 < x1. If
x1 < x2 then f(x1) < f(x2) as f is increasing. Similarly, if x2 < x1 then
f(x2) < f(x1) as f is increasing. Hence f(x1) ̸= f(x2) in either case so f is
injective by definition.

Assume that f is decreasing on I. To see that f is injective, let x1, x2 ∈ I
be such that x1 ̸= x2. Thus either x1 < x2 or x2 < x1. If x1 < x2 then
f(x1) > f(x2) as f is decreasing. Similarly, if x2 < x1 then f(x2) > f(x1)
as f is decreasing. Hence f(x1) ̸= f(x2) in either case so f is injective by
definition.

Finally, assume that f is not increasing nor decreasing on I. Therefore,
there must exist three points x1, x2, x3 ∈ I with x1 < x2 < x3 such that
either

• f(x1) < f(x2) and f(x3) < f(x2), or

• f(x1) > f(x2) and f(x3) > f(x2).

Thus we divide the proof into two cases.
Case 1: x1 < x2 < x3, f(x1) < f(x2), and f(x3) < f(x2). Let

β = max{f(x1), f(x3)} and α = β + f(x2)
2 .

Hence α ∈ R is such that f(x1) < α < f(x2) and f(x3) < α < f(x2). Since
f is continuous on [x1, x2], the Intermediate Value Theorem (Theorem 4.4.2)
implies there exists a c ∈ (x1, x2) such that f(c) = α. Similarly, since f
is continuous on [x2, x3], the Intermediate Value Theorem (Theorem 4.4.2)
implies there exists a d ∈ (x1, x2) such that f(d) = α. Therefore, since c < d
and f(c) = α = f(d) we see that f is not injective on I.
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Case 2: x1 < x2 < x3, f(x1) > f(x2), and f(x3) > f(x2). By repeating
the same ideas as in Case 1, we see that f is not injective on I.

Combining the above, we obtain that f is injective if and only if f is
increasing or decreasing on I as desired.

Remark 4.5.3. It is important to note that Proposition 4.5.2 is false if the
assumption that f is continuous is removed. Indeed if we define f : R → R
by

f(x) =
{
x if x ∈ Q
−x if x ∈ R \ Q

,

then f is injective on R but f is neither increasing nor decreasing.

Now that we understand injective continuous functions on the real num-
bers, we turn our attention to showing that their inverses are continuous. To
do so, we will actually prove a partial converse of the Intermediate Value
Theorem (Theorem 4.4.2). The following result is only a partial inverse as
we need to assume our functions are monotone.

Theorem 4.5.4. Let I be an interval and let f : I → R be monotone. Then
f is continuous on I if and only if whenever a, b ∈ I are such that a < b
and α ∈ R is such that f(a) < α < f(b) or f(b) < α < f(a) there exists a
c ∈ (a, b) such that f(c) = α.

Proof. If f is continuous on I, then whenever a, b ∈ I are such that a < b
and α ∈ R is such that f(a) < α < f(b) or f(b) < α < f(a) there exists a
c ∈ [a, b] such that f(c) = α by the Intermediate Value Theorem (Theorem
4.4.2).

To prove the converse, we will assume that f is non-decreasing as the
proof when f is non-increasing will follow by similar arguments. To show
that f is continuous on I, let x0 ∈ I be arbitrary. We will first deal with
the case that x0 is not an endpoint of I. In fact, the proof when x0 is an
endpoint of I will follow by similar arguments.

To see that f is continuous at x0, let ϵ > 0 be arbitrary. Our goal
is to find c1, c2 ∈ I such that x0 ∈ (c1, c2) and |f(x) − f(x0)| ≤ ϵ for all
x ∈ (c1, c2).

To find c1, recall since x0 is not the left endpoint of I that there exists
an a ∈ I such that a < x0. Let

α = max{f(a), f(x0) − ϵ}.
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In the case that α = f(a), let c1 = a. Notice then that if c1 < x ≤ x0, then

0 ≤ f(x0) − f(x) as f is non-decreasing
≤ f(x0) − f(a) as f is non-decreasing
= f(x0) − α as f(a) = α

≤ f(x0) − (f(x0) − ϵ) as f(x0) − ϵ ≤ α

= ϵ

as desired. Otherwise we are in the case that f(a) < α = f(x0) − ϵ < f(x0).
By the assumptions of this direction of the proof, there exists a c1 ∈ (a, x0)
such that f(c1) = α. Consequently, if c1 < x ≤ x0, then

0 ≤ f(x0) − f(x) as f is non-decreasing
≤ f(x0) − f(c1) as f is non-decreasing
= f(x0) − α as f(c1) = α

= f(x0) − (f(x0) − ϵ) as α = f(x0) − ϵ

= ϵ

as desired. Hence, in both case, there exists a c1 ∈ [a, x0) such that |f(x) −
f(x0)| ≤ ϵ for all x ∈ (c1, x0].

To find c2, recall since x0 is not the right endpoint of I that there exists
a b ∈ I such that x0 < b. Let

β = min{f(b), f(x0) + ϵ}.

In the case that β = f(b), let c2 = b. Notice then that if x0 ≤ x < c2, then

0 ≤ f(x) − f(x0) as f is non-decreasing
≤ f(b) − f(x0) as f is non-decreasing
= β − f(x0) as f(b) = β

≤ (f(x0) + ϵ) − f(x0) as β ≤ f(x0) + ϵ

= ϵ

as desired. Otherwise f(b) > β = f(x0) + ϵ > f(x)). By the assumptions of
this direction of the proof, there exists a c2 ∈ (x0, b) such that f(c2) = β.
Consequently, if x0 ≤ x < c2, then

0 ≤ f(x) − f(x0) as f is non-decreasing
≤ f(c2) − f(x0) as f is non-decreasing
= β − f(x0) as f(c2) = β

= (f(x0) + ϵ) − f(x0) as β = f(x0) + ϵ

= ϵ
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as desired. Hence, in both cases, there exists a c2 ∈ (x0, b] such that
|f(x) − f(x0)| ≤ ϵ for all x ∈ [x0, c2).

Therefore, if we let δ = min{x0 − c1, c2 − x0}, then δ > 0 and if x ∈ I is
such that |x− x0| < δ, then |f(x) − f(x0)| ≤ ϵ. Hence f is continuous at x0.

In the case that x0 is the right endpoint of I, the above shows that for all
ϵ > 0 there exists a c1 ∈ I such that if x ∈ (c1, x0] then |f(x) − f(x0)| ≤ ϵ.
Therefore, by letting δ = x0 − c1, we have that δ > 0 and if x ∈ I is such
that |x− x0| < δ, then |f(x) − f(x0)| ≤ ϵ. Hence f is continuous at x0.

In the case that x0 is the left endpoint of I, the above shows that for all
ϵ > 0 there exists a c2 ∈ I such that if x ∈ [x0, c2) then |f(x) − f(x0)| ≤ ϵ.
Therefore, by letting δ = c2 − x0, we have that δ > 0 and if x ∈ I is such
that |x− x0| < δ, then |f(x) − f(x0)| ≤ ϵ. Hence f is continuous at x0.

Hence, as we have show f is continuous at all x0 ∈ I, f is continuous on
I as desired.

Using Theorem 4.5.4 we can show that inverses of continuous functions
are continuous!

Corollary 4.5.5. Let I be an interval. If f : I → R is injective and
continuous, then f(I) is an interval and the inverse of f on its image,
f−1 : f(I) → I, is continuous.

Proof. Assume f : I → R is injective and continuous. Hence Proposition
4.5.2 implies that f is increasing or decreasing. We will assume that f is
increasing as the proof that f is decreasing will follow by similar arguments.

To see that f(I) is an interval, assume y1, y2 ∈ f(I) are such that
y1 < y2. Thus there exists x1, x2 ∈ I such that f(x1) = y1 and f(x2) = y2.
Since f(x1) < f(x2), it must be the case that x1 < x2 as f was increasing.
Therefore, by the Intermediate Value Theorem (Theorem 4.4.2), we obtain
that

[y1, y2] ⊆ f(I).
Therefore, since y1, y2 ∈ f(I) were arbitrary, f(I) is an interval. (If it is
not clear why this property implies f(I) is an interval, see the proof of
Proposition 3.1.9.)

Since f : I → f(I) is injective and surjective, the inverse f−1 : f(I) → I
exists. We claim that f−1 is increasing. To see this, assume y1, y2 ∈ f(I)
are such that y1 < y2. Thus there exists x1, x2 ∈ I such that f(x1) = y1 and
f(x2) = y2. Since f(x1) < f(x2), it must be the case that x1 < x2 as f was
increasing. Hence

f−1(y1) = f−1(f(x1)) = x1 < x2 = f−1(f(x2)) = f−1(y2).

Therefore, as y1, y2 ∈ f(I) were arbitrary, f−1 is increasing.
Hence f−1 : f(I) → I is an increasing function such that f−1(f(I))) = I.

Therefore f−1 is continuous by Theorem 4.5.4 as f−1 satisfies the conclusions
of the Intermediate Value Theorem.
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Example 4.5.6. Consider the functions

• for n ∈ N, the function fn : [0,∞) → [0,∞) defined by fn(x) = x2n for
all x ∈ [0,∞),

• for n ∈ N, the function gn : R → R defined by gn(x) = x2n+1 for all
x ∈ [0,∞),

• the function h : R → [0,∞) defined by h(x) = ex for all x ∈ R,

• the function c : [0, π] → [−1, 1] defined by c(x) = cos(x) for all
x ∈ [0, π],

• the function s :
[
−π

2 ,
π
2
]

→ [−1, 1] defined by s(x) = sin(x) for all
x ∈

[
−π

2 ,
π
2
]
, and

• the function t :
(
−π

2 ,
π
2
)

→ (−∞,∞) defined by t(x) = tan(x) for all
x ∈

(
−π

2 ,
π
2
)
.

It is possible to show that these functions are invertible. Hence Corollary
4.5.5 implies the following functions exists and are continuous:

• for n ∈ N, the function f−1
n : [0,∞) → [0,∞) defined by f−1

n (x) = 2n
√
x

for all x ∈ [0,∞),

• for n ∈ N, the function g−1
n : R → R defined by g−1

n (x) = 2n+1
√
x for all

x ∈ [0,∞),

• the function h−1 : [0,∞) → R defined by h−1(x) = ln(x) for all x ∈ R,

• the function c−1 : [−1, 1] → [0, π] defined by c−1(x) = arccos(x) for all
x ∈ [0, π],

• the function s−1 : [−1, 1] →
[
−π

2 ,
π
2
]

defined by s−1(x) = arcsin(x) for
all x ∈

[
−π

2 ,
π
2
]
, and

• the function t−1 : (−∞,∞) →
(
−π

2 ,
π
2
)

defined by t−1(x) = arctan(x)
for all x ∈

(
−π

2 ,
π
2
)
.

The question remains, “How do we show these functions are injective and
surjective”? Of course, once we show these functions are injective (i.e.
increasing or decreasing), then surjectivity follows from Corollary 4.5.5 and
computing limits/values. So our real question is, “How do we show a function
on an interval of R is increasing or decreasing?”

©For use through and only available at pskoufra.info.yorku.ca.



4.6. THE EXTREME VALUE THEOREM 131

4.6 The Extreme Value Theorem
Before answering the question poised at the end of the previous section, we
turn our attention to our second ‘value’ theorem and piece of the Triforce.
This result, which is really about continuous functions on compact sets, allows
for us to deduce certain continuous functions have maxima and minima. Our
endeavour to compute the locations of theses maxima and minina will also
enable us to determine when functions on intervals are increasing or decreasing
thereby answering the question poised at the previous section.

Of course, in order to have maxima and minima, our functions must have
the following property.

Definition 4.6.1. Let I be an interval. A function f : I → R is said to be
bounded if f(I) is a bounded subset of R.

By using the fact that closed intervals are compact, we can prove that
continuous functions on closed intervals are bounded and have maxima and
minima.

Theorem 4.6.2 (Extreme Value Theorem). Let a, b ∈ R be such that
a < b and let f : [a, b] → R be continuous. There exists points x1, x2 ∈ [a, b]
such that f(x1) ≤ f(x) ≤ f(x2) for all x ∈ [a, b].

Proof. Let f : [a, b] → R be continuous. First we claim that f is bounded. To
see this, suppose for the sake of a contradiction that f is not bounded. Thus
for each n ∈ N there exists an xn ∈ [a, b] such that |f(xn)| ≥ n. Consider
the sequence (xn)n≥1. By the Bolzano-Weierstrass Theorem (Theorem 2.4.7)
there exists a subsequence (xnk

)k≥1 of (xn)n≥1 that converges to some number
c ∈ [a, b] (i.e. [a, b] is sequentially compact). Since f is continuous at c,
(f(xkn))k≥1 converges to f(c). Hence (f(xkn))k≥1 is bounded by Proposition
2.2.3. However, this contradicts the fact that (f(xkn))k≥1 is not bounded
since |f(xnk

)| ≥ nk for all k ∈ N. Thus f([a, b]) is a bounded set.
To show the existence of the point x1, note since f([a, b]) is bounded that

α = glb(f([a, b])) is well-defined. By the definition of α, for each n ∈ N there
exists a yn ∈ [a, b] such that

α ≤ f(yn) < α+ 1
n
.

Hence limn→∞ f(yn) = α by the Squeeze Theorem.
By the Bolzano-Weierstrass Theorem (Theorem 2.4.7) there exists a

subsequence (ynk
)k≥1 of (yn)n≥1 that converges to some number x1 ∈ [a, b]

(i.e. [a, b] is sequentially compact). Since f is continuous on [a, b],

f(x1) = lim
k→∞

f(yxk
) = α.

Hence f(x1) ≤ f(x) for all x ∈ [a, b] by the definition of the greatest lower
bound.
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Similar arguments show that if and β = lub(f([a, b])), then there exists
an x2 ∈ [a, b] such that f(x2) = β. Hence f(x) ≤ f(x2) for all x ∈ [a, b] by
the definition of β. Thus the proof is complete.

Remark 4.6.3. Note the Extreme Value Theorem requires continuous
functions on closed, finite intervals. Indeed consider the function f : (0,∞) →
(0,∞) defined by f(x) = 1

x for all x ∈ (0,∞). Then there does not exist an
x2 ∈ (0,∞) such that f(x) ≤ f(x2) for all x ∈ (0,∞) since limx→0+ f(x) =
∞. Similarly, there does not exist an x1 ∈ (0,∞) such that f(x1) ≤ f(x) for
all x ∈ (0,∞) since limx→∞ f(x) = 0 yet there is no x ∈ (0,∞) such that
f(x) = 0.

Note the proof of the Extreme Value Theorem relied heavily on com-
pactness via sequential compactness and the Bolzano-Weierstrass Theorem
(Theorem 2.4.7). In fact, there is another proof of the Extreme Value Theo-
rem that makes more implicit use of compactness and generalizes in future
courses. In fact, the following is the true version of the Extreme Value
Theorem.

Theorem 4.6.4 (The Topological Extreme Value Theorem). Let
f : R → R be a continuous function. If K ⊆ R is compact, then f(K) is
compact.

Proof. Let K ⊆ R be a compact set. To see that f(K) is compact, let
{Ui | i ∈ I} be an open cover of f(K). By Theorem 4.2.4, {f−1(Ui) | i ∈ I}
is a collection of open sets since f is continuous. Moreover, since

f(K) ⊆
⋃
i∈I

Ui implies K ⊆
⋃
i∈I

f−1(Ui),

we have that {f−1(Ui) | i ∈ I} is an open cover of K. Therefore, since K is
compact, the definition of a compact set implies there exists an n ∈ N and
i1, . . . , in ∈ I such that

K ⊆
n⋃

k=1
f−1(Uik

).

Hence

f(K) ⊆
n⋃

k=1
Uik

.

Therefore {Uik
| k ∈ {1, . . . , n}} is a finite subcover of K. Therefore, since

{Ui | i ∈ I} was arbitrary, f(K) is compact.

Using the Topological Extreme Value Theorem, we can derive a different
(but fundamentally the same) proof of the Extreme Value Theorem.
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Proof of the Extreme Value Theorem (Theorem 4.6.2). Let f : [a, b] → R
be continuous. Consider the function g : R → R defined by

g(x) =


f(x) if x ∈ [a, b]
f(a) if x < a

f(b) if x > b

.

Since f is continuous on [a, b], it follows that g is continuous on [a, b].
Since g is continuous and [a, b] is compact by the Heine-Borel Theorem

(Theorem 3.2.9), g([a, b]) = f([a, b]) is compact by the Topological Extreme
Value Theorem. Hence f([a, b]) is closed and bounded by the Heine-Borel
Theorem (Theorem 3.2.9).

To show the existence of the point x1, note since f([a, b]) is bounded that
α = glb(f([a, b])) is well-defined. By the definition of α, for each n ∈ N there
exists a yn ∈ [a, b] such that

α ≤ f(yn) < α+ 1
n
.

Hence limn→∞ f(yn) = α by the Squeeze Theorem.
By the Bolzano-Weierstrass Theorem (Theorem 2.4.7) there exists a

subsequence (ynk
)k≥1 of (yn)n≥1 that converges to some number x1 ∈ [a, b]

(i.e. [a, b] is sequentially compact). Since f is continuous on [a, b],

f(x1) = lim
k→∞

f(yxk
) = α.

Hence f(x1) ≤ f(x) for all x ∈ [a, b] by the definition of the greatest lower
bound.

Similar arguments show that if and β = lub(f([a, b])), then there exists
an x2 ∈ [a, b] such that f(x2) = β. Hence f(x) ≤ f(x2) for all x ∈ [a, b] by
the definition of β. Thus the proof is complete.

Of course, the Extreme Value Theorem says that maximum and minimum
are obtain, but provides no method for computing them. How can we compute
these maxima and minima?
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Chapter 5

Differentiation

With the above study of continuity, we turn our attention to studying
another important concept in calculus: differentiation. Constructed to be an
approximation to the slope of the tangent line of the graph of a function at a
point, derivatives are essential to studying the rate of changes of dynamical
systems. In addition, derivatives provide answers to our outstanding questions
from Chapter 4. In particular, provided the derivatives exists, we will obtain
a method to compute the maxima and minima of continuous functions on
closed intervals and be able to show functions are increasing or decreasing
on intervals thereby obtaining that their inverse functions are continuous.
Moreover, we will be able to complete our third ‘value’ theorem thereby
assembling the full Triforce. This will enable us to prove a useful theorem to
aid in computing the limits of functions and aid in approximating functions
with polynomials.

5.1 The Derivative
To begin our study of the theory of differentiation, as always we require a
formal definition of the derivative and need to derive the basic properties of
the derivative.

5.1.1 Definition of a Derivative

Given an open interval I, an α ∈ I, and function f : I → R, we desire the
derivative of f at α to be the slope of the tangent line of the graph of f at α.
As an approximation to the slope, we can pick any point x ∈ I and compute
the slope of the line from (x, f(x)) to (α, f(α)); namely

f(x) − f(α)
x− α

.

As x gets closer and closer to α, the slope of the line from (x, f(x)) to
(α, f(α)) should better and better approximate the slope of the tangent line
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to f at α. In particular, these slopes better and better approximating the
instantaneous rate of change of f at α.

To make the definition of the derivative precise, we simply need to use
our formal definition of the limit of a function. To do so, we note the above
slope expression is not defined at x = α, which is fine in our definition of a
limit as discussed in Remark 4.1.3.

Definition 5.1.1. Let I be an open interval, let α ∈ I, and let f : I → R.
It is said that f is differentiable at α if

lim
x→α

f(x) − f(α)
x− α

exists. If f is differentiable at α, we denote the above limit by f ′(α).
If f is differentiable at each point x in I, then the function f ′ : I → R

whose value at x is f ′(x) is called the derivative of f on I.

Remark 5.1.2. There is another way to formally define the derivative of
a function f at α. Indeed, if x is tending to α, then x − α tends to 0.
Substituting h = x− α, we see x = α+ h so

lim
x→α

f(x) − f(α)
x− α

= lim
h→0

f(α+ h) − f(α)
h

.

This alternate formulation of the derivative is often useful for computations.

Luckily many of the functions we naturally consider on the real line are
differentiable.

Example 5.1.3. Let c ∈ R and let f : R → R be defined by f(x) = c for all
x ∈ R. We claim that f is differentiable on R and f ′(x) = 0 for all x ∈ R.
To see this, notice for all α ∈ R that

lim
x→α

f(x) − f(α)
x− α

= lim
x→α

c− c

x− α
= lim

x→α
0 = 0.

Hence f ′(α) exists for all α ∈ R and f ′(α) = 0 as desired.

Example 5.1.4. Let n ∈ N and let f : R → R be defined by f(x) = xn for
all x ∈ R. We claim that f is differentiable on R and f ′(x) = nxn−1 for all
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x ∈ R. To see this, notice for all α ∈ R that

lim
h→0

f(α+ h) − f(α)
h

= lim
h→0

(h+ α)n − αn

h

= lim
h→0

1
h

(
n∑

k=0

(
n

k

)
hkαn−k − αn

)
by the Binomial Theorem

(Theorem 1.1.8)

= lim
h→0

1
h

(
n∑

k=1

(
n

k

)
hkαn−k

)

= lim
h→0

n∑
k=1

(
n

k

)
hk−1αn−k

=
(
n

1

)
αn−1 as lim

h→0
hk−1 = 0 for all k > 1

= nαn−1.

Hence f ′(α) exists for all α ∈ R and f ′(α) = nαn−1 as desired.

Of course, not all nice functions are differentiable at every point.

Example 5.1.5. Let f : R → R be defined by f(x) = |x| for all x ∈ R.
Since f(x) = x for all x > 0, it follows that f ′(x) = 1 if x > 0. Similarly,
since f(x) = −x if x < 0, it follows that f ′(x) = −1 if x < 0.

However f is not differentiable at 0. Indeed

lim
h→0+

f(h) − f(0)
h

= lim
h→0+

h

h
= 1

whereas

lim
h→0−

f(h) − f(0)
h

= lim
h→0−

−h
h

= −1.

Thus limh→0
f(h)−f(0)

h does not exist. Hence f is not differentiable at 0.

Remark 5.1.6. Of course, students will recall from their previous calculus
courses that if we define f, g, h : R → R by f(x) = sin(x), g(x) = cos(x),
and h(x) = ex for all x ∈ R, then f, g, and h are all differentiable on R with

f ′(x) = cos(x), g′(x) = − sin(x), and h′(x) = ex.

The question is, how do we show this?
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Recall the best way to define the above functions is with series

sin(x) =
∞∑

n=0

(−1)n

(2n+ 1)!x
2n+1

cos(x) =
∞∑

n=0

(−1)n

(2n)! x
2n

ex =
∞∑

n=0

1
n!x

n.

If one verifies we can “take the derivative term by term" in the above series,
then we will have the above formulae for the derivatives. However, the
discussion why this can be done is more appropriately placed in MATH
3001 (Series of Functions). Consequently, we will assume throughout the
remainder of the course that sin(x), cos(x), and ex are differentiable on R
with the above derivatives.

Of course, the reason we have discussed differentiable functions after
continuous functions is that the differentiable functions are a subset of the
continuous functions.

Theorem 5.1.7. Let I be an open interval, let α ∈ I, and let f : I → R. If
f is differentiable at α, then f is continuous at α.

Proof. Assume that f ′(α) exists. Therefore limx→α
f(x)−f(α)

x−α exists. Since
limx→α x− α = 0 and since

f(x) − f(α) =
(
f(x) − f(α)

x− α

)
(x− α),

we obtain that limx→α f(x) − f(α) exists by Theorem 4.1.19 and

lim
x→α

f(x) − f(α) =
(

lim
x→α

f(x) − f(α)
x− α

)(
lim
x→α

x− α
)

= f ′(α)0 = 0.

Hence limx→α f(x) = f(α) so f is continuous at α.

Remark 5.1.8. Consequently, as Chapter 4 demonstrated a plethora of
functions that were not continuous at points, there are many examples of
functions that are not differentiable at points. However, note that continuity
does not imply differentiability. Indeed the absolute value function is con-
tinuous on R but not differentiable at 0 by Example 5.1.5. In fact, there
a collection of functions that are continuous on R but not differentiable at
any point in the real numbers! Said functions are constructed via series of
functions and thus are more naturally examined in MATH 3001 (Series of
Functions).
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5.1.2 Rules of Differentiation

With our formal definition of the derivative of a function, we can again
build up knowledge of how differentiability behaves with respect to various
operations. We begin with the

Proposition 5.1.9. Let I be an open interval, let α ∈ I, and let f : I → R
be differentiable at α. For each constant c ∈ R the function cf : I → R
defined via (cf)(x) = cf(x) for all x ∈ I is differentiable at α and

(cf)′(α) = cf ′(α).

Proof. Since

lim
x→α

(cf)(x) − (cf)(α)
x− α

= lim
x→α

c(f(x) − f(α))
x− α

= c lim
x→α

f(x) − f(α)
x− α

by Theorem 4.1.19

= cf ′(α),

the proof is complete.

Proposition 5.1.10. Let I be an open interval, let α ∈ I, and let f, g :
I → R be differentiable at α. The function f + g : I → R defined via
(f + g)(x) = f(x) + g(x) for all x ∈ I is differentiable at α and

(f + g)′(α) = f ′(α) + g′(α).

Proof. Since

lim
x→α

(f + g)(x) − (f + g)(α)
x− α

= lim
x→α

f(x) − f(α)
x− α

+ g(x) − g(α)
x− α

= f ′(α) + g′(α)

by by Theorem 4.1.19, the proof is complete.

Example 5.1.11. For n ∈ N and a0, a1, . . . , an ∈ R, let p : R → R be
defined by

p(x) = anx
n + an−1x

n−1 + · · · + a1x+ a0

for all x ∈ R. By Examples 5.1.3 and 5.1.4 together with Propositions 5.1.9
and 5.1.10, it follows that p is differentiable on R and

p′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · · + a1 + 0

for all x ∈ R.

The ability to take derivatives of products is slightly more delicate.
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Proposition 5.1.12 (Product Rule). Let I be an open interval, let α ∈ I,
and let f, g : I → R be differentiable at α. The function fg : I → R defined
via (fg)(x) = f(x)g(x) for all x ∈ I is differentiable at α and

(fg)′(α) = f ′(α)g(α) + f(α)g′(α).

Proof. To begin, notice for x ∈ R \ {α} that

(fg)(x) − (fg)(α)
x− α

= f(x)g(x) − f(α)g(α)
x− α

= f(x)g(x) − f(x)g(α)
x− α

+ f(x)g(α) − f(α)g(α)
x− α

= f(x)g(x) − g(α)
x− α

+ g(α)f(x) − f(α)
x− α

.

Since f ′(α) exists, f is continuous at α by Theorem 5.1.7. Therefore
limx→α f(x) = f(α). Since g′(α) = limx→α

g(x)−g(α)
x−α , we obtain by The-

orem 4.1.19 that

lim
x→α

f(x)g(x) − g(α)
x− α

=
(

lim
x→α

f(x)
)(

lim
x→α

g(x) − g(α)
x− α

)
= f(α)g′(α).

Since Theorem 4.1.19 also implies that

lim
x→α

g(α)f(x) − f(α)
x− α

= g(α) lim
x→α

f(x) − f(α)
x− α

= g(α)f ′(α),

we obtain by Theorem 4.1.19 that

lim
x→α

(fg)(x) − (fg)(α)
x− α

= f(α)g′(α) + g(α)f ′(α)

thereby completing the proof.

Example 5.1.13. Using the Product Rule, it follows that the function
f : R → R defined by f(x) = x sin(x) for all x ∈ R is differentiable on R and

f ′(x) = (1) sin(x) + x(cos(x)) = sin(x) + x cos(x)

for all x ∈ R.

Remark 5.1.14. Note the product rule can be extended to an product
of a finite number of differentiable functions. Indeed if f , g, and h are all
differentiable at α, then

(fgh)′(α) = f ′(α)(gh)(α) + f(α)(gh)′(α)
= f ′(α)g(α)h(α) + f(α)(g′(α)h(α) + g(α)h′(α))
= f ′(α)g(α)h(α) + f(α)g′(α)h(α) + f(α)g(α)h′(α).
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More generally, by the Principle of Mathematical Induction, it can be shown
that if f1, . . . , fn are all differentiable at α, then f1 · · · fn is differentiable at
α with

(f1 · · · fn)′(α) =
n∑

j=1
f1(α) · · · fj−1(α)f ′

j(α)fj+1(α) · · · fn(α).

In particular, since the derivative of x is easily seen to be 1, we can use this
generalized product rule to obtain that the derivative of xn is nxn−1 thereby
bypassing the need to know the Binomial Theorem in Example 5.1.4.

To derive our next rule invoking quotients of functions, we begin with a
subcase.

Lemma 5.1.15. Let I be an open interval, let α ∈ I, and let f : I → R
be differentiable at α. If f(α) ̸= 0, the function h : I → R defined via
h(x) = 1

f(x) is differentiable at α and

h′(α) = − f ′(α)
(f(α))2 .

Proof. To begin, first note that the assumption that f(α) ̸= 0 does not imply
that h is well-defined on all of I. However, since f ′(α) exists, f is continuous
at α by Theorem 5.1.7. Hence Lemma 4.4.1 implies there exists an open
interval J such that α ∈ J and f(x) ̸= 0 for all x ∈ J . Therefore h : J → R
is well-defined so it makes sense to discuss whether h′(α) exists (i.e. see
Definition 5.1.1).

To show that h is differentiable at α, note for all x ∈ J that

h(x) − h(α)
x− α

=
1

f(x) − 1
f(α)

x− α

=
f(α)−f(x)
f(α)f(x)
x− α

= − f(x) − f(α)
f(x)f(α)(x− α) .

Since f ′(α) exists, f is continuous at α by Theorem 5.1.7. Therefore
limx→α f(x) = f(α). Moreover, since f(α) ̸= 0, we have that limx→α

1
f(x) =

1
f(α) by Theorem 4.1.19. Hence Theorem 4.1.19 implies that

lim
x→α

h(x) − h(α)
x− α

= − 1
f(α)

(
lim
x→α

1
f(x)

)(
lim
x→α

f(x) − f(α)
x− α

)
= − 1

f(α)

( 1
f(α)

) (
f ′(α)

)
= − f ′(α)

(f(α))2

as desired.
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Combining Lemma 5.1.15 with the Product Rule, we obtain the following.

Proposition 5.1.16 (Quotient Rule). Let I be an open interval, let α ∈ I,
and let f, g : I → R be differentiable at α. If g(α) ̸= 0, the function h defined
via h(x) = f(x)

g(x) is differentiable at α and

h′(α) = f ′(α)g(α) − f(α)g′(α)
(g(α))2 .

Proof. By the same argument as used in Lemma 5.1.15, h is well-defined on
an open interval containing α so it makes sense to discuss the derivative of h
at α. Moreover, by Lemma 5.1.15 and Proposition 5.1.12, we obtain that
h(x) is differentiable at α and

h′(α) = f ′(α) 1
g(α) + f(α)

(
− g′(α)

(g(α))2

)
= f ′(α)g(α) − f(α)g′(α)

(g(α))2

as desired.

Example 5.1.17. Recall the tangent function h :
(
−π

2 ,
π
2
)

→ R is defined
by

h(x) = tan(x) = sin(x)
cos(x)

for all x ∈
(
−π

2 ,
π
2
)
. By the Quotient Rule, it follows that h is differentiable

on
(
−π

2 ,
π
2
)

and

h′(x) =
( sin(x)

cos(x)

)′

= cos(x) cos(x) − sin(x)(− sin(x))
cos2(x)

= 1
cos2(x) = sec2(x)

The final differentiation rule of this section, the Chain Rule, is likely
very familiar to those that have studied Calculus. The Chain Rule allows
one to compute the derivative of the composition of functions, provided
the composition makes sense and derivatives exist. However, many “proofs"
of the Chain Rule seen in elementary calculus have a large flaw in them.
Specifically, to show that g ◦ f is differentiable at α, these flawed proofs write

g(f(x)) − g(f(α))
x− α

= g(f(x)) − g(f(α))
f(x) − f(α)

f(x) − f(α)
x− α

.

Of course, this does not make sense or work if there does not exists an open
interval containing α for which f(x) ̸= f(α) as we cannot divide by 0. Even
if one attempts to say that if f(x) = f(α) then g(f(x)) − g(f(α)) = 0, one
runs into issues. To demonstrate that such problematic f exist, we note the
following example.
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Example 5.1.18. Let f : R → R be defined by

f(x) =

0 if x = 0
x2 sin

(
1
x

)
if x ̸= 0

.

Notice that limn→∞
1

πn = 0 and f
(

1
πn

)
= 0 for all n ∈ N. Hence f has

a sequence of zeros that tend to 0. Even with this, we claim that f is
differentiable at 0. To see this, notice for all x ∈ R \ {0} that

f(x) − f(0)
x− 0 =

x2 sin
(

1
x

)
− 0

x− 0 = x sin
(1
x

)
.

Since ∣∣∣∣sin(1
x

)∣∣∣∣ ≤ 1

for all x ∈ R \ {0}, it follows that

−|x| ≤
∣∣∣∣f(x) − f(0)

x− 0

∣∣∣∣ ≤ |x|

for all x ∈ R \ {0}. Therefore, since limx→0 |x| = 0 by Example 5.1.5, the
Squeeze Theorem for Functions (Theorem 4.1.23) implies that

lim
x→0

f(x) − f(0)
x− 0 = 0.

Hence f is differentiable at 0 with f ′(0) = 0.

In order to rigorously prove the Chain Rule, we begin with the following
which yields an alternate definition for the derivative of a function.

Theorem 5.1.19 (Carathéodory’s Theorem). Let I be an open interval,
let α ∈ I, and let f : I → R. Then f is differentiable at α if and only if
there exists a function φ : I → R such that φ is continuous at α and

f(x) = f(α) + φ(x)(x− α)

for all x ∈ I. Moreover f ′(α) = φ(α).

Proof. To begin, assume φ : I → R is continuous at α and

f(x) = f(α) + φ(x)(x− α)

for all x ∈ I. To see that f is differentiable at α, notice if x ∈ I \ {α} then

f(x) − f(α)
x− α

= φ(x)(x− α)
x− α

= φ(x).
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Therefore since φ is continuous at α, we obtain that

lim
x→α

f(x) − f(α)
x− α

= lim
x→α

φ(x) = φ(α).

Hence f is differentiable at α with f ′(α) = φ(α).
To prove the other direction, assume that f is differentiable at α. Define

φ : I → R by

φ(x) =
{
f ′(α) if x = α
f(x)−f(α)

x−α if x ̸= α

for all x ∈ I. Clearly f(x) = f(α) + φ(x)(x − α) for all x ∈ I. Moreover,
since

lim
x→α

φ(x) = lim
x→α

f(x) − f(α)
x− α

= f ′(α) = φ(α),

φ is continuous at α as desired.

Using Carathéodory’s Theorem, the Chain Rule follows without much
issue.

Theorem 5.1.20 (Chain Rule). Let I and J be open intervals, let g :
J → R, and let f : I → R be such that f(I) ⊆ J . Suppose that α ∈ I, f is
differentiable at α, and g is differentiable at f(α). Then g ◦ f : I → R is
differentiable at α and

(g ◦ f)′(α) = g′(f(α))f ′(α).

Proof. By Carathéodory’s Theorem (Theorem 5.1.19) there exists functions
φ : I → R and ψ : J → R such that

• φ is continuous at α,

• f(x) = f(α) + φ(x)(x− α) for all x ∈ I,

• f ′(α) = φ(α),

• ψ is continuous at f(α),

• g(x) = g(f(α)) + ψ(x)(x− f(α)) for all x ∈ J , and

• g′(f(α)) = ψ(f(α)).

Therefore

g(f(x)) − g(f(α)) = ψ(f(x))(f(x) − f(α)) = ψ(f(x))φ(x)(x− α).

Since f is differentiable at α and thus continuous at α by Theorem 5.1.7,
and since ψ is continuous at f(α), ψ ◦ f is continuous at α by Theorem
4.2.10. Therefore, since φ is continuous at α, the function h : I → R
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defined by h(x) = ψ(f(x))φ(x) for all x ∈ I is continuous at α. Since
g(f(x)) = g(f(α)) + h(x)(x− α), Carathéodory’s Theorem (Theorem 5.1.19)
implies that that g ◦ f is differentiable at α with derivative

h(α) = ψ(f(α))φ(α) = g′(f(α))f ′(α)

as desired.

Example 5.1.21. Define f : R → R by f(x) = cos(x3). By the Chain Rule,
f is differentiable on R with

f ′(x) = (− sin(x3))(3x2).

5.2 Derivatives and Extreme Values of Functions

With the above study of the differentiation, we can turn our attention to
resolving some outstanding questions from Chapter 4. In this section we will
focus on a method for locating the extreme values of a continuous functions,
whose existence is guaranteed by the Extreme Value Theorem (Theorem
4.6.2). Of course, the results of this section only apply to differentiable
functions, but most functions one wants to compute the extreme values of
are differentiable.

Of course, since students have already taken MATH 1300 and know how
to compute extreme values via derivatives, we will focus on verifying the
results students have already been using oppose to repeating the common
examples and procedures.

To discuss the computation of extreme values, it is first useful to identify
various types of extreme values.

Definition 5.2.1. Let I be an interval and let f : I → R. It is said that f
has a

• global maximum at c if f(x) ≤ f(c) for all x ∈ I.

• global minimum at c if f(x) ≥ f(c) for all x ∈ I.

• local maximum at c if there exists an open interval J ⊆ I such that
c ∈ J and f(x) ≤ f(c) for all x ∈ J .

• local minimum at c if there exists an open interval J ⊆ I such that
c ∈ J and f(x) ≥ f(c) for all x ∈ J .

Recall continuous functions on closed intervals automatically have a
global maximum and a global minimum by the Extreme Value Theorem
(Theorem 4.6.2). In order to locate these points, there is a simple method if
the function is differentiable.
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Proposition 5.2.2. Let I be an interval and let f : I → R. If f has a local
maximum or local minimum at c ∈ I and if f ′(c) exists, then f ′(c) = 0.

Proof. Assume that f has a local maximum or local minimum at c ∈ I and
if f ′(c) exists. We will only prove that f ′(c) = 0 in the case that f has a
local maximum at c as the proof when f has a local minimum at c is similar.

Since f has a local maximum at c, there exists an open interval J ⊆ I
such that c ∈ J and f(x) ≤ f(c) for all x ∈ J . If x ∈ J and x > c, then

f(x) − f(c)
x− c

≥ 0

as both the numerator and denominator are positive. Therefore, as J is an
open interval containing c,

f ′(c) = lim
x→c+

f(x) − f(c)
x− c

≥ 0.

Similarly, if x ∈ J and x < c, then

f(x) − f(c)
x− c

≤ 0

as the numerator is positive whereas the denominator is negative. Therefore,
as J is an open interval containing c,

f ′(c) = lim
x→c−

f(x) − f(c)
x− c

≤ 0.

Hence the above inequalities show 0 ≤ f ′(c) ≤ 0 and thus f ′(c) = 0 as
desired.

Of course, students learned in MATH 1300 various tests for determining
whether a critical point c where f ′(c) = 0 is a local maxima, minima, or
neither. To demonstrate the validity of such tests, we need another theoretical
tool.

5.3 The Mean Value Theorem
The main theoretical tool to obtain not only the extreme value differentiation
tests and many other results in this chapter is our third and final piece of
the Triforce (i.e. our third ‘value’ theorem). This final essential theorem is
motivated by the following problem: Suppose one drove from York University
to the University of Waterloo in 45 minutes. Note said drive is 66 miles.
Thus this person averaged 88 miles per hour. How can we prove that at
some point in the journey the driver hit 88 miles per hour (and thus saw
some serious shit)?
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Of course there are some natural assumptions we must make. For example,
we must assume that distance is a function of time (no time travel) and that
distance is a continuous function of time (no teleporters). Moreover, to be
able to measure the speed of the vehicle at any instant in time, we must
make the assumption that the distance function must be differentiable.

Our theorem (Theorem 5.3.3) will demonstrate that there must be a
point where the instantaneous speed of the vehicle is the average (or mean)
value of the speed; namely 88 miles per hour in this case. Consequently, at
some point in the journey, the driver saw some serious shit.

To prove the said theorem, we start with a lemma that is easier to prove
and will enable us to prove the desired theorem via a simple translation.
Moreover, we introduce the following terminology to simplify our assumptions.

Definition 5.3.1. Let a, b ∈ R be such that a < b. A function f : (a, b) → R
is said to be differentiable on (a, b) if f is differentiable at each point in (a, b).
A function f : [a, b] → R is said to be differentiable on [a, b] if f is continuous
on [a, b] and differentiable on (a, b).

Lemma 5.3.2 (Rolle’s Theorem). If f : [a, b] → R is differentiable on
[a, b] and f(a) = f(b) = 0, then there exists a c ∈ (a, b) such that f ′(c) = 0.

Proof. Let f : [a, b] → R be differentiable on [a, b] with the property that
f(a) = f(b) = 0. To demonstrate that there exists a c ∈ (a, b) so that
f ′(c) = 0, we divide the proof into three cases.

Case 1: f(x) = 0 for all x ∈ (a, b). Clearly f ′(x) = 0 for all x ∈ (a, b) by
Example 5.1.3. Hence any c ∈ (a, b) has the property that f ′(c) = 0.

Case 2: There is an x0 ∈ (a, b) with f(x0) > 0. By the Extreme Value
Theorem (Theorem 4.6.2) there exists an c ∈ [a, b] such that f(c) ≥ f(x) for
all x ∈ [a, b]. Thus f(c) ≥ f(x0) > 0 so c ≠ a, b. Since f(c) ≥ f(x) for all
x ∈ [a, b], c must be a local maximum of f on (a, b) and thus f ′(c) = 0 by
Proposition 5.2.2.

Case 3: There is an x0 ∈ (a, b) with f(x0) < 0. By the Extreme Value
Theorem 4.6.2 there exists an c ∈ [a, b] such that f(c) ≤ f(x) for all x ∈ [a, b].
Thus f(c) ≤ f(x0) < 0 so c ̸= a, b. Since f(c) ≤ f(x) for all x ∈ [a, b], c must
be a local minimum of f on (a, b) and thus f ′(c) = 0 by Proposition 5.2.2.

As the above three cases cover all possibilities, the result follows.

Using a simple translation trick together with Rolle’s Theorem, we obtain
the full Triforce.

Theorem 5.3.3 (Mean Value Theorem). If f : [a, b] → R is differentiable
on [a, b], then there exists a c ∈ (a, b) such that

f ′(c) = f(b) − f(a)
b− a

.
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Proof. Let f : [a, b] → R be differentiable on [a, b]. Define g : [a, b] → R by

g(x) = f(x) − f(a) − f(b) − f(a)
b− a

(x− a)

for all x ∈ [a, b]. Clearly g is continuous on [a, b] and differentiable on (a, b)
with

g′(x) = f ′(x) − f(b) − f(a)
b− a

.

Notice that

g(a) = f(a) − f(a) − f(b) − f(a)
b− a

(a− a) = 0

and
g(b) = f(b) − f(a) − f(b) − f(a)

b− a
(b− a) = 0.

Hence Rolle’s Theorem (Lemma 5.3.2) implies that there exists a c ∈ (a, b)
such that g′(c) = 0. Therefore

0 = f ′(c) − f(b) − f(a)
b− a

so the result follows.

Now that our Triforce is complete, any result we wish to prove is ours!
Kidding aside, the remainder of this chapter will consist of using the

Mean Value Theorem to obtain additional powerful results.

Remark 5.3.4. Note that the conclusions of the Mean Value Theorem can
fail even if f is not differentiable at a single point. Indeed if f : [−1, 1] → R
is defined by f(x) = |x|, then f is continuous on [−1, 1] and differentiable
on (−1, 1) \ {0}. However there is no point c ∈ (−1, 1) such that f ′(c) =
f(1)−f(−1)

1−(−1) = 1−1
−2 = 0.

5.4 The First Derivative Test
Returning to the discussion of maxima and minima of functions, our first
application of the Mean Value Theorem is the proof of the elementary result
from calculus that enables one to determine whether a critical point of a
differentiable function is a local maxima or a local minima.

Theorem 5.4.1 (First Derivative Test). Let f : (a, b) → R be differen-
tiable on (a, b). Suppose c ∈ (a, b) has the property that there exists a δ > 0
such that

• f ′(x) exists and f ′(x) > 0 for all x ∈ (c, c+ δ) ⊆ (a, b), and
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• f ′(x) exists and f ′(x) < 0 for all x ∈ (c− δ, c) ⊆ (a, b).

Then f has a local minimum at c.
Similarly, suppose c ∈ (a, b) has the property that there exists a δ > 0

such that

• f ′(x) exists and f ′(x) < 0 for all x ∈ (c, c+ δ) ⊆ (a, b), and

• f ′(x) exists and f ′(x) > 0 for all x ∈ (c− δ, c) ⊆ (a, b).

Then f has a local maximum at c.

Proof. Let f : (a, b) → R be differentiable on (a, b). Assume c ∈ (a, b) has
the property that there exists a δ > 0 such that

• f ′(x) exists and f ′(x) > 0 for all x ∈ (c, c+ δ), and

• f ′(x) exists and f ′(x) < 0 for all x ∈ (c− δ, c).

To see that f has a local minimum at c, first let x ∈ (c, c + δ) ⊆ (a, b) be
arbitrary. Since f is continuous on [c, x] and differentiable on (c, x), the
Mean Value Theorem (Theorem 5.3.3) implies there exists a d ∈ (c, x) such
that

f ′(d) = f(x) − f(c)
x− c

.

Since d ∈ (c, c + δ), we have by assumption that f ′(d) > 0. Hence the
above equation implies f(x) > f(c) for all x ∈ (c, c + δ). Similarly, let
x ∈ (c − δ, c) ⊆ (a, b) be arbitrary. Since f is continuous on [x, c] and
differentiable on (x, c), the Mean Value Theorem (Theorem 5.3.3) implies
there exists a d ∈ (x, c) such that

f ′(d) = f(c) − f(x)
c− x

.

Since d ∈ (c− δ, c), we have by assumption that f ′(d) < 0. Hence the above
equation implies f(x) > f(c) for all x ∈ (c− δ, c). Therefore, f has a local
minimum at c by definition.

The proof of the second portion of this result is similar to the first.

5.5 The Inverse Function Theorem
For our next application of the Mean Value Theorem, we can return to our
question of demonstrating the functions from Example 4.5.6 are increasing
or decreasing on the intervals of definition and thus are invertible with
continuous inverses. To do so, we will demonstrate a connection between
increasing and decreasing differentiable functions and the values of their
derivatives. We will also prove the Inverse Function Theorem which will show
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that the inverse of differentiable functions are differentiable and permit the
computation of their derivatives. Although the proof of the Inverse Function
Theorem does not require the Mean Value Theorem, it is included here being
its most natural place in the course.

To use the Mean Value Theorem to determine when functions are increas-
ing or decreasing via their derivatives is an easy task.

Theorem 5.5.1 (Increasing Function Theorem). Let f : [a, b] → R be
differentiable on [a, b]. If f ′(x) ≥ 0 for all x ∈ (a, b), then f is non-decreasing
on [a, b]. Similarly, if f ′(x) > 0 for all x ∈ (a, b), then f is increasing on
[a, b]

Proof. Let f : [a, b] → R be differentiable on [a, b]. Assume f ′(x) ≥ 0 for
all x ∈ (a, b). To see that f is non-decreasing on [a, b], let x1, x2 ∈ [a, b] be
such that x1 < x2. Since f is continuous on [x1, x2] and differentiable on
(x1, x2), the Mean Value Theorem (Theorem 5.3.3) implies that there exists
a c ∈ (x1, x2) such that

f ′(c) = f(x2) − f(x1)
x2 − x1

.

By the assumptions on f , f ′(c) ≥ 0. Therefore, since x1 < x2, we must have
that

f(x2) − f(x1) = f ′(c)(x2 − x1) ≥ 0

Hence f must be non-decreasing on [a, b] as desired.
The proof in the case that f ′(x) > 0 for all x ∈ (a, b) follows by replacing

‘≥’ with ‘>’ in the above proof.

A similar proof shows the following.

Theorem 5.5.2 (Decreasing Function Theorem). Let f : [a, b] → R be
differentiable on [a, b]. If f ′(x) ≤ 0 for all x ∈ (a, b), then f is non-increasing
on [a, b]. Similarly, if f ′(x) < 0 for all x ∈ (a, b), then f is decreasing on
[a, b].

Before we return to the functions in Example 4.5.6 to show the functions
are indeed increasing or decreasing on their domains and thus define invertible
functions with continuous inverses, we will demonstrate the following useful
theorem which both implies the inverse functions are differentiable and
enables the computation of their derivatives.

Theorem 5.5.3 (Inverse Function Theorem). Let I be an interval, let
f : I → R be injective and continuous, and let g : f(I) → I be the inverse of
f on its image. If c ∈ I is not an endpoint of I and f is differentiable at c
with f ′(c) ̸= 0, then g is differentiable at f(c) and

g′(f(c)) = 1
f ′(c) .
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Proof. First, since f is injective and continuous, f(I) is an interval and g is
continuous on f(I) by Corollary 4.5.5. Moreover, Proposition 4.5.2 implies
f is increasing or decreasing on I so that f(c) is not an endpoint of f(I).
Hence it makes sense to consider the derivative of g at f(c).

To see that g is differentiable at f(c) and that g′(f(c)) = 1
f ′(c) , we must

show that
lim

x→f(c)

g(x) − g(f(c))
x− f(c) = 1

f ′(c) .

To see this, we will invoke the Sequential Characterization of the Limit
(Theorem 4.1.16).

Assume (xn)n≥1 is a sequence such that xn ∈ f(I) \ {f(c)} for all n ∈ N
and limn→∞ xn = f(c). Let yn = g(xn) ∈ I for all n ∈ N. Since limn→∞ xn =
f(c) and since g is continuous at f(c), we obtain that

lim
n→∞

yn = lim
n→∞

g(xn) = g(f(c)) = c.

Since f(yn) = xn ̸= f(c) and since f is injective, yn ̸= c for all n ∈ N.
Therefore

g(xn) − g(f(c))
xn − f(c) = yn − c

f(yn) − f(c) = 1
f(yn)−f(c)

yn−c

for all n ∈ N. Hence, since f ′(c) exists and f ′(c) ̸= 0, we have that

lim
n→∞

g(xn) − g(f(c))
xn − f(c) = lim

n→∞
1

f(yn)−f(c)
yn−c

= 1
f ′(c)

by Theorem 4.1.19. Therefore, since (xn)n≥1 was arbitrary, we obtain that
g′(f(c)) exists and equals 1

f ′(c) by Sequential Characterization of the Limit
(Theorem 4.1.16).

With the Inverse Function Theorem in hand, we can return to Example
4.5.6 to demonstrate said functions are invertible, with continuous differ-
entiable inverses. In particular, the following examples show the plethora
of results we required to demonstrate these inverse functions exist, are
continuous, and are differentiable!

Example 5.5.4. For each n ∈ N, let fn : [0,∞) → [0,∞) be defined by
fn(x) = x2n for all x ∈ [0,∞). Since fn is a polynomial, fn is continuous on
[0,∞) and differentiable on (0,∞).

Notice by Example 5.1.4 that

f ′
n(x) = 2nx2n−1 > 0

for all x ∈ (0,∞). Hence the Increasing Function Theorem (Theorem 5.5.1)
implies that fn is increasing on [0, b] for all b > 0 and thus fn is increasing on
[0,∞). Therefore, since fn(0) = 0 and limx→∞ fn(x) = ∞, the Intermediate
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Value Theorem implies that the range of fn is [0,∞). Moreover fn is injective
by Proposition 4.5.2 and thus f−1

n : [0,∞) → [0,∞) exists and is continuous
by Corollary 4.5.5.

Since f ′
n(x) ̸= 0 for all x ∈ (0,∞), the Inverse Function Theorem (Theo-

rem 5.5.3) implies that f−1
n is differentiable on (0,∞) and

(f−1
n )′(c2n) = 1

f ′
n(c) = 1

2nc2n−1 = c

2nc2n

for all c ∈ (0,∞). Therefore, by letting x = c2n = fn(c), we see that

(f−1
n )′(x) = c

2nc2n
= f−1

n (x)
2nx

for all x ∈ (0,∞).
For x ∈ [0,∞), we call f−1

n (x) the 2nth-root of x and write f−1
n (x) = 2n

√
x.

Thus the derivative of the 2nth-root functions is

(f−1
n )′(x) = 1

2n
2n
√
x

x
= 1

2n
2n
√
x

( 2n
√
x)2n = 1

2n
1

( 2n
√
x)2n−1

(just as one would expect from Calculus).

Example 5.5.5. For each n ∈ N, let gn : R → R be defined by gn(x) = x2n+1

for all x ∈ R. Since gn is a polynomial, gn is continuous on R and differentiable
on R.

Notice by Example 5.1.4 that

g′
n(x) = (2n+ 1)x2n

for all x ∈ R. Since g′
n(x) > 0 for all x ∈ R \ {0}, the Increasing Function

Theorem (Theorem 5.5.1) implies that gn is increasing on [0, b] and [−b, 0] for
all b > 0 and thus gn is increasing on R. Therefore, since limx→∞ gn(x) = ∞
and limx→−∞ gn(x) = −∞, the Intermediate Value Theorem implies that
the range of gn is R. Moreover gn is injective by Proposition 4.5.2 and thus
g−1

n : R → R exists and is continuous by Corollary 4.5.5.
Since g′

n(x) ̸= 0 for all x ∈ R \ {0}, the Inverse Function Theorem
(Theorem 5.5.3) implies that g−1

n is differentiable on R \ {0} and

(g−1
n )′(c2n+1) = 1

g′
n(c) = 1

(2n+ 1)c2n
= c

(2n+ 1)c2n+1

for all c ∈ R \ {0}. Therefore, by letting x = c2n+1 = gn(c), we see that

(fg−1
n )′(x) = c

(2n+ 1)c2n+1 = g−1
n (x)

(2n+ 1)x

for all x ∈ R \ {0}.
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For x ∈ R, we call g−1
n (x) the (2n + 1)st-root of x and write g−1

n (x) =
2n+1

√
x. Thus the derivative of the (2n+ 1)st-root functions is

(g−1
n )′(x) = 1

2n+ 1
2n+1

√
x

x
= 1

2n+ 1
2n+1

√
x

( 2n+1
√
x)2n+1 = 1

2n+ 1
1

( 2n+1
√
x)2n

(just as one would expect from Calculus).

Example 5.5.6. Let h : R → R be defined by h(x) = ex for all x ∈ R. In
MATH 3001, it will be show that ex > 0 for all x ∈ R, e−x = 1

ex for all x ∈ R,
h is continuous, and h is differentiable on R with

h′(x) = ex > 0

for all x ∈ R.
By the Increasing Function Theorem (Theorem 5.5.1), h is increasing

on [−b, b] for all b > 0 and thus h is increasing on R. Therefore, since it
can be shown in MATH 3001 that limx→∞ h(x) = ∞ and since e−x = 1

ex for
all x ∈ R implies that limx→−∞ h(x) = 0, the Intermediate Value Theorem
implies that the range of h is (0,∞). Moreover h is injective by Proposition
4.5.2 and thus h−1 : (0,∞) → (0,∞) exists and is continuous by Corollary
4.5.5.

Since h′(x) ̸= 0 for all x ∈ R, the Inverse Function Theorem (Theorem
5.5.3) implies that h−1 is differentiable on (0,∞) and

(h−1)′(ec) = 1
h′(c) = 1

ec

for all c ∈ R. Therefore, by letting x = ec, we see that

(h−1)′(x) = 1
x

for all x ∈ (0,∞).
For x ∈ (0,∞), we call h−1(x) the natural logarithm of x and write

h−1(x) = ln(x). Thus
(ln)′(x) = 1

x

(just as one would expect from Calculus).

Example 5.5.7. Let c : [0, π] → [−1, 1] be defined by c(x) = cos(x) for all
x ∈ [0, π]. In MATH 3001, it will be show that c is differentiable on [0, π]
with

c′(x) = − sin(x) < 0

for all x ∈ (0, π).
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By the Decreasing Function Theorem (Theorem 5.5.2), c is decreasing
on (0, π). Therefore, since c(0) = 1 and c(π) = −1, the Intermediate Value
Theorem implies that the range of c is [−1, 1]. Moreover c is injective by
Proposition 4.5.2 and thus c−1 : [−1, 1] → [0, π] exists and is continuous by
Corollary 4.5.5.

Since c′(x) ̸= 0 for all x ∈ (0, π), the Inverse Function Theorem (Theorem
5.5.3) implies that c−1 is differentiable on (−1, 1) and

(c−1)′(cos(y)) = 1
c′(y) = 1

− sin(y)

for all y ∈ (0, π). Therefore, by letting x = cos(y),

(c−1)′(x) = − 1√
1 − x2

where we have used the following triangle:

y

1 √
1 − x2

x

For x ∈ [−1, 1], we call c−1(x) the arccosine of x and write c−1(x) =
arccos(x). Thus

(arccos)′(x) = − 1√
1 − x2

(just as one would expect from Calculus).

Example 5.5.8. Let s :
[
−π

2 ,
π
2
]

→ [−1, 1] be defined by s(x) = sin(x) for
all x ∈

[
−π

2 ,
π
2
]
. In MATH 3001, it will be show that s is differentiable on[

−π
2 ,

π
2
]

with
s′(x) = cos(x) > 0

for all x ∈
(
−π

2 ,
π
2
)
.

By the Increasing Function Theorem (Theorem 5.5.1), s is increasing on[
−π

2 ,
π
2
]
. Therefore, since s

(
−π

2
)

= −1 and s
(

π
2
)

= 1, the Intermediate Value
Theorem implies that the range of s is [−1, 1]. Moreover s is injective by
Proposition 4.5.2 and thus s−1 : [−1, 1] →

[
−π

2 ,
π
2
]

exists and is continuous
by Corollary 4.5.5.

Since s′(x) ̸= 0 for all x ∈
(
−π

2 ,
π
2
)
, the Inverse Function Theorem

(Theorem 5.5.3) implies that s−1 is differentiable on (−1, 1) and

(s−1)′(sin(y)) = 1
s′(y) = 1

cos(y)
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for all y ∈
(
−π

2 ,
π
2
)
. Therefore, by letting x = sin(y),

(s−1)′(x) = 1√
1 − x2

where we have used the following triangle:

y

1
x

√
1 − x2

For x ∈ [−1, 1], we call s−1(x) the arcsine of x and write s−1(x) =
arcsin(x). Thus

(arcsin)′(x) = 1√
1 − x2

(just as one would expect from Calculus).

Example 5.5.9. Let t :
(
−π

2 ,
π
2
)

→ R be defined by t(x) = tan(x) for all
x ∈

(
−π

2 ,
π
2
)
. Since t(x) = sin(x)

cos(x) and cos(x) ̸= 0 for all x ∈
(
−π

2 ,
π
2
)
, we see

by the Quotient Rule (Proposition 5.1.16) that t is differentiable on
(
−π

2 ,
π
2
)

with
t′(x) = cos2(x) − sin(x)(− sin(x)

cos2(x) = 1
cos2(x) > 0

for all x ∈
(
−π

2 ,
π
2
)
.

By the Increasing Function Theorem (Theorem 5.5.1), t is increasing on(
−π

2 ,
π
2
)
. Therefore, since limx→ π

2
t(x) = ∞ and limx→− π

2
t(x) = −∞, the

Intermediate Value Theorem implies that the range of t is R. Moreover t
is injective by Proposition 4.5.2 and thus t−1 : R →

(
−π

2 ,
π
2
)

exists and is
continuous by Corollary 4.5.5.

Since t′(x) ̸= 0 for all x ∈
(
−π

2 ,
π
2
)
, the Inverse Function Theorem

(Theorem 5.5.3) implies that t−1 is differentiable on R and

(t−1)′(tan(y)) = 1
t′(y) = cos2(y)

for all y ∈
(
−π

2 ,
π
2
)
. Therefore, by letting x = tan(y),

(t−1)′(x) = 1
1 + x2

where we have used the following triangle:

y

√
1 + x2 x

1
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For x ∈ R, we call t−1(x) the arctangent of x and write t−1(x) = arctan(x).
Thus

(arctan)′(x) = 1
1 + x2

(just as one would expect from Calculus).

5.6 L’Hôpital’s Rule

For our next application of the Mean Value Theorem (Theorem 5.3.3), we
will establish one of the most important techniques in Calculus for computing
limits of certain indeterminate forms: L’Hôpital’s Rule. As students have
seen L’Hôpital’s Rule in previous calculus courses, this section will focus on
its formal proof. To prove L’Hôpital’s Rule, we need an enhancement of the
Mean Value Theorem (Theorem 5.3.3).

Theorem 5.6.1 (Cauchy’s Mean Value Theorem). If f, g : [a, b] → R
are differentiable on [a, b] with g′(x) ̸= 0 for all x ∈ (a, b), then there exists a
c ∈ (a, b) such that

f(b) − f(a)
g(b) − g(a) = f ′(c)

g′(c) .

(Note: When g(x) = x for all x ∈ [a, b], this is precisely the Mean Value
Theorem.)

Proof. Similar to how the Mean Value Theorem (Theorem 5.3.3) was proved
using Rolle’s Theorem (Lemma 5.3.2) via the use of a particular function,
Cauchy’s Mean Value Theorem will be proved via Rolle’s Theorem (Lemma
5.3.2) via the use of a particular function.

To begin, note by the Mean Value Theorem (Theorem 5.3.3) that there
exists a d ∈ (a, b) such that

g′(d) = g(b) − g(a)
b− a

.

Therefore, since g′(d) ̸= 0, we obtain that g(b) − g(a) ̸= 0.
Define h : [a, b] → R by

h(x) = f(b) − f(a)
g(b) − g(a) (g(x) − g(a)) − f(x) + f(a)

for all x ∈ [a, b]. Note that h makes sense as g(b) − g(a) ̸= 0. Furthermore,
since f and g are differentiable on [a, b], we obtain that h is differentiable on
[a, b] with

h′(x) = f(b) − f(a)
g(b) − g(a) g

′(x) − f ′(x)
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for all x ∈ (a, b). Moreover, notice that

h(a) = f(b) − f(a)
g(b) − g(a) (g(a) − g(a)) − f(a) + f(a) = 0

whereas

h(b) = f(b) − f(a)
g(b) − g(a) (g(b)−g(a))−f(b)+f(a) = (f(b)−f(a))−f(b)+f(a) = 0.

Hence by Rolle’s Theorem (Lemma 5.3.2) or, alternatively, by the Mean
Value Theorem, there exists a c ∈ (a, b) such that h′(c) = 0. Hence

0 = f(b) − f(a)
g(b) − g(a) g

′(c) − f ′(c).

Therefore, since g′(c) ̸= 0, we obtain that

f(b) − f(a)
g(b) − g(a) = f ′(c)

g′(c)

as desired.

Using Cauchy’s Mean Value Theorem, we can present a formal proof
of L’Hôspital’s Rule (which is commonly believed to be first proved by
Bernoulli).

Theorem 5.6.2 (L’Hôpital’s Rule). Let a, b ∈ R and let f, g : (a, b) → R
be differentiable on (a, b). Suppose g′(x) ̸= 0 for all x ∈ (a, b) and either

i) limx→a+ f(x) = limx→a+ g(x) = 0, or

ii) limx→a+ f(x) = limx→a+ g(x) = ±∞.

Then the following hold:

a) If limx→a+
f ′(x)
g′(x) = L ∈ R, then limx→a+

f(x)
g(x) = L.

b) If limx→a+
f ′(x)
g′(x) = ±∞, then limx→a+

f(x)
g(x) = ±∞.

Similarly, the result holds with a+ exchanged with b−, ∞, or −∞.

Proof. To begin the proof, we claim in all cases that there exists at most
one point x in (a, b) such that g(x) = 0. To see this, notice for all x1, x2 ∈
(a, b) with x1 < x2 that g is continuous on [x1, x2] (by Theorem 5.1.7) and
differentiable on (x1, x2). Hence the Mean Value Theorem (Theorem 5.3.3)
implies there exists a d ∈ (x1, x2) such that

g′(d) = g(x2) − g(x1)
x2 − x1

.
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As g′(d) ̸= 0, we obtain that g(x2) − g(x1) ̸= 0. As this holds for all
x1, x2 ∈ (a, b) with x1 < x2, there exists at most one point, say γ, in (a, b)
such that g(γ) = 0.

To begin proving this result, we will begin with parts (a) and (b) in the
x → a+ setting.

Proof of (a); x → a+: To begin the proof of part (a), assume (i) or (ii)
holds and assume limx→a+

f ′(x)
g′(x) = L. Let ϵ > 0 be arbitrary. By the

definition of the limit, there exists a b′ ∈ (a, b) such that∣∣∣∣f ′(x)
g′(x) − L

∣∣∣∣ < ϵ

for all x ∈ (a, b′). If γ is the unique zero of g, we may assume that b′ < γ by
decreasing b′ if necessary.

Let α and β be arbitrary numbers such that a < α < β < b′. Since f
and g are continuous on [α, β], differentiable on (α, β), and g′(x) ̸= 0 for all
x ∈ (α, β), Cauchy’s Mean Value Theorem (Theorem 5.6.1) implies there
exists a cα,β ∈ (α, β) such that

f ′(cα,β)
g′(cα,β) = f(β) − f(α)

g(β) − g(α) .

Hence, as cα,β ∈ (α, β) ⊆ (a, b′), we obtain that∣∣∣∣f(β) − f(α)
g(β) − g(α) − L

∣∣∣∣ =
∣∣∣∣∣f ′(cα,β)
g′(cα,β) − L

∣∣∣∣∣ < ϵ

for all α and β such that a < α < β < b′.
To proceed, we will now need to divide the proof depending on whether

we have assumption (i) or assumption (ii)
Case 1: (i) holds. Since (i) holds, we know that limα→a+ f(α) = 0 =

limα→a+ g(α). Therefore, by fixing a β ∈ (a, b′) and taking the limit of
α ∈ (a, β) as α tends to a, we obtain since g(β) ̸= 0 that

f(β)
g(β) = lim

α→a+

f(β) − f(α)
g(β) − g(α) .

Hence for all β ∈ (a, b′) we have that∣∣∣∣f(β)
g(β) − L

∣∣∣∣ ≤ ϵ

Since ϵ > 0 was arbitrary, we obtain that

lim
x→a+

f(x)
g(x) = L
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as desired.
Case 2: (ii) holds. Since (ii) holds, we know that limx→a+ g(x) = ±∞.

Since

f(β)
g(α) − f(α)

g(α) = 1
g(α)(f(β) − f(α))

= 1
g(α)(g(β) − g(α))f

′(cα,β)
g′(cα,β)

= g(β)
g(α)

f ′(cα,β)
g′(cα,β) − f ′(cα,β)

g′(cα,β)

we obtain that

f(α)
g(α) = f ′(cα,β)

g′(cα,β) + f(β)
g(α) − g(β)

g(α)
f ′(cα,β)
g′(cα,β) .

Hence ∣∣∣∣f(α)
g(α) − L

∣∣∣∣ ≤
∣∣∣∣∣f ′(cα,β)
g′(cα,β) − L

∣∣∣∣∣+
∣∣∣∣f(β)
g(α)

∣∣∣∣+
∣∣∣∣∣g(β)
g(α)

f ′(cα,β)
g′(cα,β)

∣∣∣∣∣
≤ ϵ+

∣∣∣∣f(β)
g(α)

∣∣∣∣+ ∣∣∣∣g(β)
g(α)

∣∣∣∣ (L+ ϵ)

for all β ∈ (a, b′) and for all α ∈ (a, β). However, for any fixed β, we know
since limα→a+ g(α) = ±∞ that

lim
α→a+

∣∣∣∣f(β)
g(α)

∣∣∣∣+ ∣∣∣∣g(β)
g(α)

∣∣∣∣ (L+ ϵ) = 0.

Hence there exists a δ > 0 such that if a < α < a+ δ, then

0 ≤
∣∣∣∣f(β)
g(α)

∣∣∣∣+ ∣∣∣∣g(β)
g(α)

∣∣∣∣ (L+ ϵ) < ϵ.

Therefore, if a < α < a+ δ, we have that∣∣∣∣f(α)
g(α) − L

∣∣∣∣ < 2ϵ.

Since ϵ > 0 was arbitrary, we obtain that

lim
x→a+

f(x)
g(x) = L

as desired. (Note the assumption that limx→a+ f(x) = ∞ was not needed
for this case to work.)

Hence, as the above two cases cover all possible cases, part (a) has been
demonstrated in the case that x → a+.
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Proof of (b); x → a+: To begin the proof of part (b), assume (i) or (ii)
holds and assume limx→a+

f ′(x)
g′(x) = ∞ as the proof when the limit is −∞ is

similar. Let M > 0 be arbitrary. By the definition of the limit, there exists
a b′ ∈ (a, b) such that

f ′(x)
g′(x) > M

for all x ∈ (a, b′). If γ is the unique zero of g, we may assume that b′ < γ by
decreasing b′ if necessary.

Let α and β be arbitrary numbers such that a < α < β < b′. Since f
and g are continuous on [α, β], differentiable on (α, β), and g′(x) ̸= 0 for all
x ∈ (α, β), Cauchy’s Mean Value Theorem (Theorem 5.6.1) implies there
exists a cα,β ∈ (α, β) such that

f ′(cα,β)
g′(cα,β) = f(β) − f(α)

g(β) − g(α) .

Hence, as cα,β ∈ (α, β) ⊆ (a, b′), we obtain that

f ′(cα,β)
g′(cα,β) = f(β) − f(α)

g(β) − g(α) > M.

To proceed, we will now need to divide the proof depending on whether
we have assumption (i) or assumption (ii)

Case 1: (i) holds. Since (i) holds, we know that limα→a+ f(α) = 0 =
limα→a+ g(α). Therefore, by fixing a β ∈ (a, b′) and taking the limit of
α ∈ (a, β) as α tends to a, we obtain since g(β) ̸= 0 that

f(β)
g(β) = lim

α→a+

f(β) − f(α)
g(β) − g(α) .

Hence, for all β ∈ (a, b′), we have that

f(β)
g(β) ≥ M.

Since M > 0 was arbitrary, we obtain that

lim
x→a+

f(x)
g(x) = ∞

as desired.
Case 2: (ii) holds. Since (ii) holds, we know that

lim
x→a+

f(x) = lim
x→a+

g(x) = ±∞.

In addition, we may repeat the computation in part (a) to obtain that

f(α)
g(α) = f ′(cα,β)

g′(cα,β) + f(β)
g(α) − g(β)

g(α)
f ′(cα,β)
g′(cα,β) .
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Thus
f(α)
g(α) = f(β)

g(α) + f ′(cα,β)
g′(cα,β)

(
1 − g(β)

g(α)

)
.

Notice that as limx→a+ f(x) = limx→a+ g(x) = ±∞, we obtain there exists
a δ1 > 0 such that

f(β)
g(α) > 0 and g(β)

g(α) > 0

whenever a < α < β < a+δ1 (i.e. f(β), g(α), and g(β) must eventually all by
the same sign). Notice for all fixed β < a+δ1 that since limx→a+ g(x) = ±∞
we have that

lim
α→a+

f(β)
g(α) = 0 and lim

α→a+

(
1 − g(β)

g(α)

)
= 1.

Hence there exists a 0 < δ < δ1 such that if a < α < a+ δ, then

f(β)
g(α) ≥ −M

4 and
(

1 − g(β)
g(α)

)
>

1
2 .

Therefore, if a < α < a+ δ, we have that

f(α)
g(α) = f(β)

g(α) + f ′(cα,β)
g′(cα,β)

(
1 − g(β)

g(α)

)
≥ −M

4 +M
1
2 = M

4 .

Since M > 0 was arbitrary, we obtain that

lim
x→a+

f(x)
g(x) = ∞

as desired.
The proof is nearly identical when we replace a+ with b− (change the role

of α and β). To demonstrate what occurs when a+ is replaced with −∞ and
b− is replaced with ∞, we will demonstrate how the proof of part (a), case
(i) can be adapted when when we replace a+ with −∞ as the adaptation to
all other parts/cases are similar.

Assume limx→−∞ f(x) = limx→−∞ g(x) = 0 and limx→−∞
f ′(x)
g′(x) = L ∈ R.

Let h(x) = f
(

1
x

)
and k(x) = g

(
1
x

)
for all x ∈ (−∞, b). Notice

lim
x→0−

h(x) = lim
x→−∞

f(x) = 0 = lim
x→−∞

g(x) = lim
x→0−

k(x).

Also notice that h and k are differentiable on (−∞, b) \ {0} via the Chain
Rule (Theorem 5.1.20) with

h′(x) = − 1
x2 f

′
(1
x

)
and k′(x) = − 1

x2 g
′
(1
x

)
.
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Therefore

lim
x→0−

h′(x)
k′(x) = lim

x→0−

f ′
(

1
x

)
g′
(

1
x

) = lim
x→−∞

f ′ (x)
g′ (x) = L.

Hence, by our previous proofs, we obtain that

lim
x→0−

h(x)
k(x) = L.

Since the existence of the above limit implies limx→−∞
f(x)
g(x) exists and since

limx→−∞
f(x)
g(x) = limx→0−

h(x)
k(x) , the result follows.

To demonstrate some uses of L’Hôspital’s rule, consider the following
examples.

Example 5.6.3. Using L’Hôspital’s rule we can compute limx→∞
x
ex . Indeed,

since (x)′ = 1 and (ex)′ = ex, and since

lim
x→∞

1
ex

= 0,

we obtain by L’Hôspital’s rule that limx→∞
x
ex = 0. Similarly, using induction,

we can use L’Hôspital’s rule to show that

lim
x→∞

xn

ex
= 0

for all n ∈ N; that is, ex grows substantially faster than any power of x!

Example 5.6.4. Using L’Hôspital’s rule, we can compute

lim
x→0+

x ln(x).

Although it does not appear that we may apply L’Hôspital’s rule, notice that
x ln(x) = ln(x)

1
x

. Therefore, since limx→0+ − ln(x) = ∞ whereas limx→0+
1
x =

∞, the hypotheses of L’Hôspital’s rule may apply to compute limx→0+
− ln(x)

1
x

,
so, upto multiplying by −1, we may be able to compute the desired limit.
Since (ln(x))′ = 1

x and
(

1
x

)′
= − 1

x2 , and since

lim
x→0+

1
x

− 1
x2

= lim
x→0+

−x = 0

we obtain that limx→0+ x ln(x) = 0 by L’Hôspital’s rule.
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Example 5.6.5. Using similar techniques, we may compute

lim
x→∞

(
1 + 1

x

)x

.

First, note that for a, x > 0, a natural way to define ax is by ax = ex ln(a). If
so, notice that ln(ax) = ln(ex ln(a)) = x ln(a) by definition. Moreover

axay = ex ln(a)ey ln(a) = ex ln(a)+y ln(a) = e(x+y) ln(a) = ax+y

where the second equality comes from properties of the exponential function
that will be developed in MATH 3001.

To compute the desired limit, we will instead first compute

lim
x→∞

ln
((

1 + 1
x

)x)
= lim

x→∞
x ln

(
1 + 1

x

)
= lim

x→∞

ln
(
1 + 1

x

)
1
x

.

Notice that limx→∞
1
x = 0 and limx→∞ ln

(
1 + 1

x

)
= ln(1) = 0. Furthermore,

since
(

1
x

)′
= − 1

x2 and
(
ln
(
1 + 1

x

))′
= 1

1+ 1
x

(
− 1

x2

)
, and since

lim
x→∞

1
1+ 1

x

(
− 1

x2

)
− 1

x2
= lim

x→∞
1

1 + 1
x

= 1,

we obtain that limx→∞ ln
((

1 + 1
x

)x)
= 1 by L’Hôspital’s rule. Therefore,

as ex is continuous,

lim
x→∞

(
1 + 1

x

)x

= lim
x→∞

eln((1+ 1
x )x) = e1 = e.

Hence, using the sequential definition of limits, we obtain the well-known
limit

lim
n→∞

(
1 + 1

n

)n

= e.

5.7 Taylor’s Theorem
Another application of the Mean Value Theorem is the ability to approximate
a differentiable function f pointwise using polynomials. To go beyond a
first-order (i.e. linear) approximation, we will need more than just one
derivative of f .

Definition 5.7.1. Let I be an open interval and let f : I → R be differen-
tiable. If f ′ is differentiable at α ∈ I, the derivative of f ′ at α is called the
second derivative of f and is denoted f ′′(α). In particular

f ′′(α) = lim
x→α

f ′(x) − f ′(α)
x− α

.
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In general, for any n ∈ N, the (n+ 1)st-derivative of f is

f (n+1)(α) = lim
x→α

f (n)(x) − f (n)(α)
x− α

provided f (n) exists on an open interval containing α and the above limit
exists. For convenience, f (0) = f .

When a functions f is has n + 1 derivatives at a point, our goal is to
approximate f with the following polynomials.

Definition 5.7.2. Assuming that f is n-times differentiable at α (which
means it is (n− 1)-times differentiable in an open interval containing α), the
nth-degree Taylor polynomial of f centred at α is

Pf,α,n(x) =
n∑

k=0

f (k)(α)
k! (x− α)k.

Example 5.7.3. If f : R → R is defined by f(x) = x2 for all x ∈ R, then
Pf,0,n(x) = x2 for all n ≥ 2.

Example 5.7.4. If f : R → R is defined by f(x) = ex for all x ∈ R, then

Pf,0,n(x) =
n∑

k=0

1
k!x

k,

which are the polynomials that define ex up to a limit in Remark 4.2.8.

The following shows the use of the Taylor polynomials: provided x is
close to α and the (n + 1)st derivative of f is not too large, then f(x) is
almost Pf,α,n(x).

Theorem 5.7.5 (Taylor’s Theorem). Let I be an open interval, let α ∈ I,
and let f : I → R be n + 1 times differentiable on I. If x ∈ I \ {α}, then
there exists a cx ∈ (α, x) ∪ (x, α) such that

f(x) = Pf,α,n(x) + f (n+1)(cx)
(n+ 1)! (x− α)n+1.

Proof. To prove this result, we will again follow the proof of the Mean Value
Theorem (Theorem 5.3.3) by constructing a specific function and then use
Rolle’s Theorem (Lemma 5.3.2) to obtain the desired result

To begin, fix x ∈ I \ {α}. Consider the function g : I → R defined by

g(t) = f(x) − f(t) −
n∑

k=1

f (k)(t)
k! (x− t)k
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for all t ∈ R. Notice that

g(α) = f(x) − Pf,α,n(x) and g(x) = 0.

Moreover, since f is (n + 1)-times differentiable on I, we see that g is
continuous and differentiable on I. Since x is fixed, differentiating with
respect to t yields

1
k

!f (k)(t)(x− t)k 7−→ d
dt

1
k!f

(k+1)(t)(x− t)k + 1
(k − 1)!f

(k)(t)(x− t)k−1

for all 0 ≤ k ≤ n. Therefore

g′(t) = −f (n+1)(t)
n! (x− t)n.

Unfortunately, g is not the function we are looking for. The function we
are looking for is h : I → R which is defined by

h(t) = g(t) −
(
x− t

x− α

)n+1
g(α)

for all t ∈ I. Notice that

h(α) = g(α) − g(α) = 0 and h(x) = g(x) − 0 = 0.

Since g is differentiable on I, h is continuous on [a, x]∪[x, a] and differentiable
on (a, x) ∪ (x, a). Hence Rolle’s Theorem (Lemma 5.3.2) implies that there
exists a c ∈ (a, x) ∪ (x, a) such that h′(c) = 0. Since

h′(t) = f (n+1)(t)
n! (x− t)n + (n+ 1) −1

x− α

(
x− t

x− α

)n

g(α),

we obtain that
f (n+1)(c)

n! (x− c)n = (n+ 1) 1
x− α

(
x− c

x− α

)n

g(α).

Therefore, since c ̸= x, we obtain that
f (n+1)(c)
(n+ 1)! (x− α)n+1 = g(α) = f(x) − Pf,α,n(x)

as desired.

Remark 5.7.6. The most important use of Taylor’s Theorem is when one
knows bounds for f (n+1)(cx). Indeed, if one knows that |f (n+1)(c)| ≤ M for
all c ∈ (α− δ, α+ δ) for some M > 0, then we have that

|f(x) − Pf,α,n(x)| ≤ M

(n+ 1)!(x− α)n+1

for all x ∈ (α − δ, α + δ). Consequently, provided we can approximate M
well, we can approximate f(x) with Pf,α,n(x) on this interval! This can be
quite useful as dealing with polynomials is substantially easier than dealing
with an arbitrary function.
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5.8 Anti-Derivatives
For our final application of the Mean Value Theorem, we will demonstrate
that functions with the same derivative on an open interval must differ by a
constant. To obtain this result, we begin with a lemma.

Corollary 5.8.1. If I is an open interval and if f : I → R is differentiable
on I with f ′(x) = 0 for all x ∈ I, then there exists an α ∈ R such that
f(x) = α for all x ∈ I.

Proof. Let a, b ∈ I be arbitrary points such that a < b. Since f is continuous
on [a, b] (by Theorem 5.1.7) and differentiable on (a, b), the Mean Value
Theorem (Theorem 5.3.3) implies there exists a c ∈ (a, b) such that

f(b) − f(a)
b− a

= f ′(c).

However, since f ′(x) = 0 for all x ∈ I, we see that f ′(c) = 0 and thus
f(b) = f(a).

Fix a point x0 ∈ I and let α = f(x0). If x ∈ I and x ̸= x0, then either
x > x0 or x < x0. In either case the above shows that f(x) = f(x0) = α.
Hence f(x) = α for all x ∈ I.

Corollary 5.8.2. If I is an open interval and f, g : I → R are differentiable
on I with f ′(x) = g′(x) for all x ∈ I, then there exists an α ∈ R such that
f(x) = g(x) + α for all x ∈ I.

Proof. Let h : I → R be defined by h(x) = f(x) − g(x). Then h is differen-
tiable on I and

h′(x) = f ′(x) − g′(x) = 0

for all x ∈ I. Hence there exists an α ∈ R such that h(x) = α for all x ∈ I.
Hence f(x) = g(x) + α for all x ∈ I.

Based on the above, we make the following definition.

Definition 5.8.3. Let I be an open interval and let f : I → R. A function
F : I → R is said to be an anti-derivative of f on I if F is differentiable on
I and F ′(x) = f(x) for all x ∈ I.

Thus Corollary 5.8.2 implies that if F is an anti-derivative of f , then all
anti-derivatives of f are of the form F (x) + c for some fixed constant c ∈ R.
Anti-derivative are important tools for our next chapter.
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Chapter 6

Integration

For our final chapter, we will study what will be shown to be the opposite of
differentiation; namely integration. Integration has a wide variety of uses in
calculus as it allows the computation of the area under a curve and permits
the averaging of the values obtained by a function over an integral. However,
as students have taken MATH 1310 and know how to integrate, the purpose
of this chapter is to formal defined the Riemann integral, develop and prove
the basic properties of the Riemann integral, and demonstrate and prove the
connections between differentiation and integration through the Fundamental
Theorems of Calculus (Theorems 6.2.2 and 6.2.4) to further enhance students’
repertoire of analysis arguments.

6.1 The Riemann Integral

The formal definition of the Riemann integral is modelled on trying to ap-
proximate the area under the graph of a function. The idea of approximating
this area is to divide up the interval one wants to integrate over into small
bits and approximate the area under the graph via rectangles. Thus we must
make such constructions formal. Once this is done, we must decide whether
or not these approximations are good approximations to the area. If they
are, the resulting limit will be the Riemann integral.

6.1.1 Partitions and Riemann Sums

In order to ‘divide up the interval into small bits’, we will use the following
notion.

Definition 6.1.1. A partition of a closed interval [a, b] is a finite list of real
numbers {tk}n

k=0 such that

a = t0 < t1 < t2 < · · · < tn−1 < tn = b.
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Eventually, we will want to ensure that |tk − tk−1| is small for all k in
order to obtain better and better approximations to the area under a graph.
To obtain a lower bound for the area under a graph, we can choose our
approximating rectangles to have the largest possible height while remaining
completely under the graph. This leads us to the following notion.

Definition 6.1.2. Let P = {tk}n
k=0 be a partition of [a, b] and let f :

[a, b] → R be bounded. The lower Riemann sum of f associated to P,
denoted L(f,P), is

L(f,P) =
n∑

k=1
mk(tk − tk−1)

where, for all k ∈ {1, . . . , n},

mk = inf{f(x) | x ∈ [tk−1, tk]}.

Example 6.1.3. If f : [0, 1] → R is defined by f(x) = x for all x ∈ [0, 1]
and if P = {tk}n

k=0 is a partition of [0, 1], it is easy to see that

L(f,P) =
n∑

k=1
tk−1(tk − tk−1)

as f obtains its minimum on [tk−1, tk] at tk−1.
If it so happens that tk = k

n for all k ∈ {0, 1, . . . , n}, we see that

L(f,P) =
n∑

k=1

k − 1
n

(
k

n
− k − 1

n

)

=
n∑

k=1

1
n2 (k − 1)

= 1
n2

n−1∑
j=1

j


= 1
n2
n(n− 1)

2 =
1 − 1

n

2

where the fact that
∑n−1

j=1 j = n(n−1)
2 follows by an induction argument.

Clearly, as n tends to infinity, L(f,P) tends to 1
2 for this particular partitions,

which happens to be the area under the graph of f on [0, 1].

Although lower Riemann sums accurately estimate the area under the
graph of the function in the previous example, perhaps we also need an upper
bound for the area under the graph. By choose our approximating rectangles
to have the smallest possible height while remaining completely above the
graph, we obtain the following notion.
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Definition 6.1.4. Let P = {tk}n
k=0 be a partition of [a, b] and let f :

[a, b] → R be bounded. The upper Riemann sum of f associated to P,
denoted U(f,P), is

U(f,P) =
n∑

k=1
Mk(tk − tk−1)

where, for all k ∈ {1, . . . , n},

Mk = sup{f(x) | x ∈ [tk−1, tk]}.

Example 6.1.5. If f : [0, 1] → R is defined by f(x) = x for all x ∈ [0, 1]
and if P = {tk}n

k=0 is a partition of [0, 1], it is easy to see that

U(f,P) =
n∑

k=1
tk(tk − tk−1)

as f obtains its maximum on [tk−1, tk] at tk.
If it so happens that tk = k

n for all k ∈ {0, 1, . . . , n}, we see that

U(f,P) =
n∑

k=1

k

n

(
k

n
− k − 1

n

)

=
n∑

k=1

1
n2k

= 1
n2

(
n∑

k=1
k

)

= 1
n2
n(n+ 1)

2 =
1 + 1

n

2

where the fact that
∑n

k=1 k = n(n+1)
2 follows by an induction argument.

Clearly, as n tends to infinity, U(f,P) tends to 1
2 for this particular partitions,

which happens to be the area under the graph of f on [0, 1].

Although we have been able to approximate the area under the graph of
f(x) = x using upper and lower Riemann sums, how do we know whether
we can accurate do so for other functions? To analyze this question, we must
first decide whether we can compare the upper and lower Riemann sums of a
function. Clearly we have that L(f,P) ≤ U(f,P) for any bounded function
f : [a, b] → R and any partition P of [a, b]. However, if Q is another partition
of [a, b], is it the case that L(f,Q) ≤ U(f,P)? Of course our intuition using
‘areas under a graph’ says this should be so, but how do we prove it?

To answer the above question and provide some ‘sequence-like’ structure
to partitions, we define an ordering on the set of partitions.
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Definition 6.1.6. Let P and Q be partitions of [a, b]. It is said that Q is a
refinement of P, denoted P ≤ Q, if P ⊆ Q; that is Q has all of the points
that P has, and possibly more.

It is not difficult to check that refinement defines a partial ordering
(Definition 1.2.8) on the set of all partitions of [a, b] (see Example 1.2.10).
Furthermore, the following says that if Q is a refinement of P, then we
should have better upper and lower bounds for the area under the graph of
a function if we use Q instead of P.

Lemma 6.1.7. Let P and Q be partitions of [a, b] and let f : [a, b] → R be
bounded. If Q is a refinement of P, then

L(f,P) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f,P).

Proof. Note the inequality L(f,Q) ≤ U(f,Q) is clear. Thus it remains only
to show that L(f,P) ≤ L(f,Q) and U(f,Q) ≤ U(f,P). Write P = {tk}n

k=0
where

a = t0 < t1 < t2 < · · · < tn−1 < tn = b.

To show the desired inequalities, we will first show that adding a single point
to P does not decrease the lower Riemann sum and does not increase the
upper Riemann sum. As there are only a finite number of points one needs
to add to P to obtain Q, the proof will follow.

To implement the above strategy, assume Q = P ∪ {t′} where t′ ∈ [a, b]
is such that tq−1 < t′ < tq for some q ∈ {1, . . . , n}. For all k ∈ {1, . . . , n}, let

mk = inf{f(x) | x ∈ [tk−1, tk]} and Mk = sup{f(x) | x ∈ [tk−1, tk]}.

Therefore

L(f,P) =
n∑

k=1
mk(tk − tk−1) and U(f,P) =

n∑
k=1

Mk(tk − tk−1).

Moreover, if we define

m′
q = inf{f(x) | x ∈ [tq−1, t

′]},
m′′

q = inf{f(x) | x ∈ [t′, tq]},
M ′

q = sup{f(x) | x ∈ [tq−1, t
′]}, and

M ′′
q = sup{f(x) | x ∈ [t′, tq]},

then we easily see that mq ≤ m′
q,m

′′
q , that M ′

q,M
′′
q ≤ Mq, and that

L(f,Q) = m′
q(t′ − tq−1) +m′′

q (tq − t′) +
n∑

k=1
k ̸=q

mk(tk − tk−1), and

U(f,Q) = M ′
q(t′ − tq−1) +M ′′

q (tq − t′) +
n∑

k=1
k ̸=q

Mk(tk − tk−1).
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Therefore
L(f,Q) − L(f,P) = m′

q(t′ − tq−1) +m′′
q (tq − t′) −mq(tq − tq−1)

≥ mq(t′ − tq−1) +mq(tq − t′) −mq(tq − tq−1) = 0
so L(f,P) ≤ L(f,Q). Similarly

U(f,Q) − U(f,P) = M ′
q(t′ − tq−1) +M ′′

q (tq − t′) −Mq(tq − tq−1)
≤ Mq(t′ − tq−1) +Mq(tq − t′) −Mq(tq − tq−1) = 0

so U(f,Q) ≤ U(f,P). Hence the result follows when Q = P ∪ {t′}.
To complete the proof, let Q be an arbitrary refinement of P. Hence we

can write Q = P ∪ {t′k}m
k=1 for some {t′k}m

k=1 ⊆ (a, b). Thus, by adding a
single point at a time, we obtain that

L(f,P) ≤ L(f,P ∪ {t′1}) ≤ L(f,P ∪ {t′1, t′2}) ≤ · · · ≤ L(f,Q)
and

U(f,P) ≥ U(f,P ∪ {t′1}) ≥ U(f,P ∪ {t′1, t′2}) ≥ · · · ≥ U(f,Q),
which completes the proof.

In order to answer our question of whether L(f,Q) ≤ U(f,P) for all
partitions P and Q, we can use Lemma 6.1.7 provided we have a partition
that is a refinement of both P and Q: that is, there is a least upper bound
of P and Q.
Definition 6.1.8. Given two partitions P and Q of [a, b], the common
refinement of P and Q is the partition P ∪ Q of [a, b].
Remark 6.1.9. Clearly, given two partitions P and Q, P ∪ Q is a partition
that is a refinement of both P and Q. Consequently, if f : [a, b] → R is
bounded, then Lemma 6.1.7 implies that

L(f,P) ≤ L(f,P ∪ Q) ≤ U(f,P ∪ Q) ≤ U(f,Q).
Hence any lower bound for the area under a curve is smaller than any upper
bound for the area under a curve.
Remark 6.1.10. Before moving on, we note the above shows that the
partially ordered set of partitions of a closed interval [a, b] is a direct set (that
is, a partially ordered set with the property that if P and Q are elements of
the partially ordered set, then there exists an element R such that P ≤ R and
Q ≤ R). A set of real numbers indexed by a direct set is called a net and one
can discuss the convergences of nets in R as we did with sequences. It turns
out nothing new is gained by using nets instead of sequences and we can avoid
the discussion of nets in our discussion of integrals (although they exist in
the background). However, in later courses (e.g. MATH 4081 - Topology) it
is necessary to replace sequences with nets. Thus Riemann integration serves
the additional purpose of giving students their first fundamental example of
convergence of a net.
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6.1.2 Definition of the Riemann Integral

In order to define the Riemann integral of a bounded function on a closed
interval, we desire that the upper and lower Riemann sums both better and
better approximate a single number. Using the above observations, we notice
that if f : [a, b] → R is bounded, then

sup{L(f,P) | P a partition of [a, b]}
≤ inf{U(f,P) | P a partition of [a, b]}.

Therefore, in order for there to be no reasonable discrepancy between our
approximations, we will like an equality in the above inequality, in which
case the value obtained should be the area under the graph. Unfortunately,
this is not always the case.

Example 6.1.11. Let f : [0, 1] → R be defined by

f(x) =
{

1 if x ∈ Q
0 if x ∈ R \ Q

for all x ∈ [0, 1]. Since each open interval always contains at least one element
from each of Q and R \ Q by Propositions 1.3.8 and 1.3.9, we easily see that
L(f,P) = 0 and U(f,P) = 1 for all partitions P of [0, 1]. Hence

sup{L(f,P) | P a partition of [0, 1]}
̸= inf{U(f,P) | P a partition of [0, 1]}.

So what should be the area under the graph of this function?

Instead of focusing on correcting our notion of the integral to remove
Example 6.1.11 (something that will be done in MATH 4012), we will instead
simply just restrict our attention to the following type of functions.

Definition 6.1.12. Let f : [a, b] → R be bounded. It is said that f is
Riemann integrable on [a, b] if

sup{L(f,P) | P a partition of [a, b]}
= inf{U(f,P) | P a partition of [a, b]}.

If f is Riemann integrable on [a, b], the Riemann integral of f from a to b,
denoted

∫ b
a f(x) dx, is defined to be
∫ b

a
f(x) dx = sup{L(f,P) | P a partition of [a, b]}

= inf{U(f,P) | P a partition of [a, b]}.
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Remark 6.1.13. Notice that if f is Riemann integrable on [a, b], then

L(f,P) ≤
∫ a

b
f(x) dx ≤ U(f,P)

for every partition P of [a, b] by the definition of the Riemann integral.

Clearly the function f in Example 6.1.11 is not Riemann integrable.
However, which types of function are Riemann integrable and how can we
compute the value of the integral? To illustrate the definition, we note the
following simple examples (note if the first example did not work out the
way it does, we clearly would not have a well-defined notion of area under a
graph using Riemann integrals).

Example 6.1.14. Let c ∈ R and let f : [a, b] → R be defined by f(x) = c
for all x ∈ [a, b]. If P = {tk}n

k=0 is a partition of [a, b], we see that

L(f,P) = U(f,P) =
n∑

k=1
c(tk − tk−1) = c

n∑
k=1

tk − tk−1 = c(tn − t0) = c(b−a).

Hence f is Riemann integrable and
∫ b

a f(x) dx = c(b − a). (Was there any
doubt?)

Example 6.1.15. Let f : [0, 1] → R be defined by f(x) = x for all x ∈ [0, 1].
For each n ∈ N, note Example 6.1.3 demonstrates the existence of a partition
Pn such that L(f,Pn) = 1− 1

n
2 . Hence

sup{L(f,P) | P a partition of [a, b]} ≥ lim sup
n→∞

1 − 1
n

2 = 1
2 .

Similarly, for each n ∈ N, Example 6.1.5 demonstrates the existence of a
partition Qn such that U(f,Qn) = 1+ 1

n
2 . Hence

inf{U(f,P) | P a partition of [a, b]} ≤ lim inf
n→∞

1 + 1
n

2 = 1
2 .

Therefore, since

sup{L(f,P) | P a partition of [a, b]}
≤ inf{U(f,P) | P a partition of [a, b]},

the above computations show both the inf and sup must be 1
2 . Hence f is

Riemann integrable on [0, 1] and
∫ 1

0 x dx = 1
2 .
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Example 6.1.16. Let f : [0, 1] → R be defined by f(x) = x2 for all x ∈ [0, 1].
We claim that f is Riemann integrable on [0, 1] and

∫ 1
0 x

2 dx = 1
3 . To see this,

let n ∈ N and let Pn = {tk}n
k=1 be the partition of [0, 1] such that tk = k

n
for all n ∈ N. Then, by an induction argument to compute the value of the
sums,

L(f,P) =
n∑

k=1

(k − 1)2

n2

(
k

n
− k − 1

n

)

=
n∑

k=1

1
n3 (k − 1)2

= 1
n3

n−1∑
j=1

j2


= 1
n3

(n− 1)(n)(2(n− 1) + 1)
6 = 2n3 − 3n2 + n

6n3

and

U(f,P) =
n∑

k=1

k2

n2

(
k

n
− k − 1

n

)

=
n∑

k=1

1
n3k

2

= 1
n3

(
n∑

k=1
k2
)

= 1
n3
n(n+ 1)(2n+ 1)

2 = 2n3 + 3n2 + n

6n3 .

Hence, since limn→∞
2n3−3n2+1

6n3 = limn→∞
2n3+3n2+1

6n3 = 1
3 , we see that

1
3 ≤ sup{L(f,P) | P a partition of [a, b]}

≤ inf{U(f,P) | P a partition of [a, b]} ≤ 1
3 .

Hence the inequalities must be equalities so f is Riemann integrable on [0, 1]
by definition with

∫ 1
0 x

2 dx = 1
3

Note in the previous two examples, the functions were demonstrated
to be Riemann integrable on [0, 1] via partitions P such that L(f,P) and
U(f,P) were as closes as one would like. Coincidence, I think not!

Theorem 6.1.17. Let f : [a, b] → R be bounded. Then f is Riemann
integrable if and only if for every ϵ > 0 there exists a partition P of [a, b]
such that

0 ≤ U(f,P) − L(f,P) < ϵ.
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Proof. Note we must have that 0 ≤ U(f,P) − L(f,P) for any partition P
by earlier discussions.

First assume that f is Riemann integrable. Hence, with I =
∫ b

a f(x) dx,
we have by the definition of the integral that

I = sup{L(f,P) | P a partition of [a, b]}
= inf{U(f,P) | P a partition of [a, b]}.

Let ϵ > 0 be arbitrary. By the definition of the supremum, there exists a
partition P1 of [a, b] such that

I − ϵ

2 < L(f,P1).

Similarly, by the definition of the infimum, there exists a partition P2 of
[a, b] such that

U(f,P2) < I + ϵ

2 .

Let P = P1 ∪ P2 which is a partition of [a, b]. Since P is a refinement of
both P1 and P2, we obtain that

L(f,P1) ≤ L(f,P) ≤ U(f,P) ≤ U(f,P2)

by Lemma 6.1.7. Hence

U(f,P) − L(f,P) ≤ U(f,P2) − L(f,P1)
= (U(f,P2) − I) + (I − L(f,P1))

<
ϵ

2 + ϵ

2 = ϵ.

Therefore, since ϵ > 0 was arbitrary, this direction of the proof is complete.
For the other direction, assume for every ϵ > 0 there exists a partition P

of [a, b] such that
0 ≤ U(f,P) − L(f,P) < ϵ.

In particular, for each n ∈ N there exists a partition Pn of [a, b] such that

0 ≤ U(f,Pn) − L(f,Pn) < 1
n
.

Let

L = sup{L(f,P) | P a partition of [a, b]} and
U = inf{U(f,P) | P a partition of [a, b]}.

Then L,U ∈ R are such that L ≤ U . Moreover, for each n ∈ N

0 ≤ U − L ≤ U(f,Pn) − L(f,Pn) < 1
n
.

Therefore, by the Archimedian Property (Theorem 1.3.7), it follows that
U = L. Hence f is Riemann integrable on [a, b] by definition.
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Remark 6.1.18. Using Theorem 6.1.17, there is an easier method for
approximating the Riemann integral of a Riemann integrable function. Indeed
suppose P = {tk}n

k=0 is a partition of [a, b] with

a = t0 < t1 < t2 < · · · < tn−1 < tn = b

and let f : [a, b] → R be bounded. For each k, let xk ∈ [tk−1, tk] and let

R(f,P, {xk}n
k=1) =

n∑
k=1

f(xk)(tk − tk−1).

The sum R(f,P, {xk}n
k=1) is called a Riemann sum.

Clearly
L(f,P) ≤ R(f,P, {xk}n

k=1) ≤ U(f,P)

by definitions. Hence, if f is Riemann integrable, we obtain via Theorem
6.1.17 that for any ϵ > 0 there exists a partition P ′ of [a, b] such that

L(f,P ′) ≤
∫ a

b
f(x) dx ≤ U(f,P ′) ≤ L(f,P)′ + ϵ

and thus ∣∣∣∣∣
∫ b

a
f(x) dx−R(f,P ′, {xk}n

k=1)
∣∣∣∣∣ < ϵ

for any choice of {xk}n
k=1. Consequently, if one knows that f is Riemann

integrable, one may approximate
∫ b

a f(x) dx using Riemann sums oppose to
lower/upper Riemann sums. This is occasionally useful as convenient choices
of {xn}n

k=1 may make computing the sum much easier.

Of course, our next question is, “Which types of functions are Riemann
integrable?”

6.1.3 Some Integrable Functions

If the theory of Riemann integration will be of use to us, we must have a
wide variety of functions that are Riemann integrable. It is easy to show
some functions are Riemann integrable.

Proposition 6.1.19. If f : [a, b] → R is monotonic and bounded, then f is
Riemann integrable on [a, b].

Proof. Assume f : [a, b] → R is monotone and bounded. In addition, we will
assume that f is non-decreasing as the proof when f is non-increasing is
similar.

Let ϵ > 0. Since

lim
n→∞

1
n

(b− a)(f(b) − f(a)) = 0,
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there exists an N ∈ N such that

0 ≤ 1
N

(b− a)(f(b) − f(a)) < ϵ.

Let PN = {tk}N
k=0 be the partition such that

tk = a+ k

N
(b− a)

for all k ∈ {0, . . . , N}. Notice tk − tk−1 = 1
n(b− a) for all k (and thus we call

PN the uniform partition of [a, b] into N intervals). Since f is non-decreasing,
if for all k ∈ {1, . . . , N}

mk = inf{f(x) | x ∈ [tk−1, tk]} and Mk = sup{f(x) | x ∈ [tk−1, tk]},

then
mk = f(tk−1) and Mk = f(tk).

Hence

0 ≤ U(f,Pn) − L(f,Pn)

=
N∑

k=1
Mk(tk − tk−1) −

N∑
k=1

mk(tk − tk−1)

=
N∑

k=1
f(tk) 1

N
(b− a) −

N∑
k=1

f(tk−1) 1
N

(b− a)

= f(tN ) 1
N

(b− a) − f(t0) 1
N

(b− a)

= 1
N

(b− a)(f(b) − f(a)) < ϵ.

Therefore, since ϵ > 0 was arbitrary, Theorem 6.1.17 implies that f is
Riemann integrable on [a, b].

Of course, if continuous functions were not Riemann integrable, Riemann
integration would be worthless to us. The fact that continuous functions on
closed intervals are uniformly continuous is vital int he following proof.

Theorem 6.1.20. If f : [a, b] → R is continuous, then f is Riemann
integrable on [a, b].

Proof. Assume f : [a, b] → R is continuous. Therefore f is bounded by the
Extreme Value Theorem (Theorem 4.6.2). Hence it makes sense to discuss
whether f is Riemann integrable.

In order to invoke Theorem 6.1.17 to show that f is Riemann integrable,
let ϵ > 0 be arbitrary. Since f : [a, b] → R is continuous, f is uniformly
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continuous on [a, b] by Theorem 4.3.9. Hence there exists a δ > 0 such that
if x, y ∈ [a, b] and |x− y| < δ then |f(x) − f(y)| < ϵ

b−a .
By the Archimedean Property (Theorem 1.3.7), there exists an n ∈ N

such that 1
n < δ. Let P be the uniform partition of [a, b] into n intervals;

that is, let P = {tk}n
k=0 be the partition such that

tk = a+ k

n
(b− a)

for all k ∈ {0, . . . , n}. For all k ∈ {0, . . . , n}, let

mk = inf{f(x) | x ∈ [tk−1, tk]} and Mk = sup{f(x) | x ∈ [tk−1, tk]}.

Since |tk − tk−1| = 1
n < δ so |x − y| < δ for all x, y ∈ [tk−1, tk], it must

be the case that Mk −mk = |Mk −mk| ≤ ϵ
b−a for all k ∈ {1, . . . , n}. Hence

0 ≤ U(f,P) − L(f,P) =
n∑

k=1
(Mk −mk)(tk − tk−1)

≤
n∑

k=1

ϵ

b− a
(tk − tk−1)

= ϵ

b− a

n∑
k=1

tk − tk−1 = ϵ

b− a
(b− a) = ϵ.

Thus, as ϵ > 0 was arbitrary, f is Riemann integrable on [a, b] by Theorem
6.1.17.

Of course, not all functions we desire to integrate are continuous. How-
ever, many functions one sees and deals with in real-world applications are
continuous at almost every point. In particular, the following shows that if
our functions are piecewise continuous, then they are Riemann integrable.

Corollary 6.1.21. If f : [a, b] → R is continuous on [a, b] except at a finite
number of points and f is bounded on [a, b], then f is Riemann integrable on
[a, b].

Proof. Assume f : [a, b] → R is continuous except at a finite number of
points and f([a, b]) is bounded. Let {ak}q

k=0 contain all of the points for
which f is not continuous at and be such that

a = a0 < a1 < a2 < · · · < aq = b.

The idea of the proof is to construct a partition such that each interval of the
partition contains at most one ak, and if an interval of the partition contains
an ak, then its length is really small.
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Let ϵ > 0 be arbitrary. Since f([a, b]) is bounded, there exists a K > 0
such that |f(x)| ≤ K for all x ∈ [a, b]. Therefore, if

L = sup{f(x) − f(y) | x, y ∈ [a, b]},

then 0 ≤ L ≤ 2K < ∞.
Let

δ = ϵ

2(q + 1)(L+ 1) > 0.

By taking a and b together with endpoints of intervals centred at each ak of
radius less than δ

2 , there exists a partition P ′ = {tk}2q+1
k=0 with

a = t0 < t1 < t2 < · · · < t2q+1 = b

such that t2k+1 − t2k < δ for all k ∈ {0, . . . , q} and t2k < ak < t2k+1 for all
k ∈ {1, . . . , q − 1}. For all k ∈ {1, . . . , 2q + 1}, let

mk = inf{f(x) | x ∈ [tk−1, tk]} and Mk = sup{f(x) | x ∈ [tk−1, tk]}.

Thus Mk −mk ≤ L for all k ∈ {1, . . . , 2q + 1}.
Since f is continuous on [t2k−1, t2k] for all k ∈ {1, . . . , q}, f is Riemann

integrable on [t2k−1, t2k] by Theorem 6.1.20. Hence, by the definition of
Riemann integration, there exist partitions Pk of [t2k−1, t2k] such that

0 ≤ U(f,Pk) − L(f,Pk) < ϵ

2q .

Let P = P ′ ∪
(⋃q

k=1 Pk

)
. Then P is a partition of [a, b] such that

0 ≤ U(f,P) − L(f,P)

=
q∑

k=1
(U(f,Pk) − L(f,Pk)) +

q∑
k=0

(M2k+1 −m2k+1)(t2k+1 − t2k).

(that is, on each [t2k−1, t2k] the partition behaves like Pk and thus so do the
sums, and the parts of the partition remaining are of the form [t2k, t2k+1]
each of which contains at most one aj). Hence

0 ≤ U(f,P) − L(f,P)

≤
q∑

k=1

ϵ

2q +
q∑

k=0
Lδ

≤ ϵ

2 + (q + 1)Lδ

≤ ϵ

2 + (q + 1)L ϵ

2(q + 1)(L+ 1) ≤ ϵ

2 + ϵ

2 = ϵ.

Thus, as ϵ > 0 was arbitrary, f is Riemann integrable on [a, b] by Theorem
6.1.17.
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Using the similar ideas to those used to prove Corollary 6.1.21, it is
possible to show that some truly bizarre functions are Riemann integrable.

Example 6.1.22. Let f : [0, 1] → R defined by

f(x) =


0 if x is irrational
1 if x = 0
1
b if x = a

b where a ∈ Z \ {0}, b ∈ N, and gcd(a, b) = 1
.

Clearly f is bounded.
We claim that f is Riemann integrable on [0, 1]. To see this, let ϵ > 0 be

arbitrary. By the Archimedian Property (Theorem 1.3.7), there exists an
N ∈ N such that 1

N < ϵ
2 .

By the definition of f , let {ak}q
k=0 be the finite set of x ∈ [0, 1] such that

f(x) ≤ 1
N and

0 = a0 < a1 < a2 < · · · < aq = 1.

Let

δ = ϵ

2(q + 1) > 0.

By taking 0 and 1 together with endpoints of intervals centred at each ak of
radius less than δ

2 , there exists a partition P = {tk}2q+1
k=0 with

0 = t0 < t1 < t2 < · · · < t2q+1 = 1

such that t2k+1 − t2k < δ for all k ∈ {0, . . . , q} and t2k < ak < t2k+1 for all
k ∈ {1, . . . , q − 1}.

For all k ∈ {1, . . . , 2q + 1}, let

mk = inf{f(x) | x ∈ [tk−1, tk]} and Mk = sup{f(x) | x ∈ [tk−1, tk]}.

Since 0 ≤ f(x) ≤ 1 for all x ∈ [0, 1], we see that Mk − mk ≤ 1 for all
k ∈ {1, . . . , 2q+1}. Moreover, since t2k < ak < t2k+1 for all k ∈ {1, . . . , q−1},
we have that

M2k −m2k ≤ 1
N

− 0 < ϵ

2
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for all k ∈ {1, . . . , q}. Therefore

0 ≤ U(f,P) − L(f,P)

=
q∑

k=1
(M2k −m2k)(t2k − t2k−1) +

q∑
k=0

(M2k+1 −m2k+1)(t2k+1 − t2k)

≤
q∑

k=1

ϵ

2(t2k − t2k−1) +
q∑

k=0
1δ

≤ ϵ

2

( q∑
k=1

(t2k − t2k−1)
)

+ (q + 1)δ

≤ ϵ

2(1 − 0) + (q + 1)δ

≤ ϵ

2 + (q + 1) ϵ

2(q + 1) ≤ ϵ

2 + ϵ

2 = ϵ.

Thus, as ϵ > 0 was arbitrary, f is Riemann integrable on [0, 1] by Theorem
6.1.17.

Remark 6.1.23. Notice the main idea in the proofs of Corollary 6.1.21 and
Example 6.1.22 is to construct a finite number of open intervals which contain
all of the ‘bad’ points such that the sum of the lengths of the open intervals
is as small as possible. In fact, similar arguments along with the knowledge
that the set of discontinuities of a function can be used to show a bounded
function on is Riemann integrable if and only if its set of discontinuities has
“zero length”. However, this discussion is better considered in MATH 4012
(Lebesgue Measure Theory).

6.1.4 Properties of the Riemann Integral

Now that we know several functions are Riemann integrable, we desire to
derive the basic properties of the Riemann integral just as we did for limits
of sequences and functions. We begin with the following that enables us to
divide up a closed interval into a finite number of closed subintervals when
considering Riemann integration.

Proposition 6.1.24. Let f : [a, b] → R be bounded and let c ∈ (a, b). Then
f is Riemann integrable on [a, b] if and only if f is Riemann integrable on
[a, c] and [c, b]. Moreover, when f is Riemann integrable on [a, b], we have
that ∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

Proof. To begin, assume that f is Riemann integrable on [a, b]. To see that
f is Riemann integrable on [a, c] and [c, b], let ϵ > 0 be arbitrary. Since f
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is Riemann integrable on [a, b], Theorem 6.1.17 implies that there exists a
partition P of [a, b] such that

L(f,P) ≤ U(f,P) ≤ L(f,P) + ϵ.

Therefore, if P0 = P ∪ {c}, then P0 is a partition of [a, b] containing c that
is a refinement of P. Therefore, by Remark 6.1.13 and Lemma 6.1.7

L(f,P0) ≤ U(f,P0)
≤ U(f,P)
≤ L(f,P) + ϵ

≤ L(f,P0) + ϵ.

Let
P1 = P0 ∩ [a, c] and P2 = P0 ∩ [c, b].

Then P1 is a partition of [a, c] and P2 is a partition of [c, b]. Furthermore,
due to the nature of these partitions and the definitions of the upper and
lower Riemann sums, we easily see that

L(f,P0) = L(f,P1) + L(f,P2) and U(f,P0) = U(f,P1) + U(f,P2).

Hence

0 ≤ (U(f,P1) −L(f,P1)) + (U(f,P2) −L(f,P2)) = U(f,P0) −L(f,P0) ≤ ϵ.

Therefore, since 0 ≤ U(f,P1)−L(f,P1) and 0 ≤ U(f,P2)−L(f,P2), it must
be the case that

0 ≤ U(f,P1) − L(f,P1) ≤ ϵ and 0 ≤ U(f,P2) − L(f,P2) ≤ ϵ.

Hence f is integrable on both [a, c] and [c, b] by Theorem 6.1.17.
To prove the converse and demonstrate the desired integral equation,

assume that f is Riemann integrable on [a, c] and [c, b]. To see that f is
Riemann integrable on [a, b], let ϵ > 0 be arbitrary. Since f is Riemann
integrable on [a, c] and [c, b], Remark 6.1.13 together with Theorem 6.1.17
imply that there exists partitions P1 and P2 of [a, c] and [c, b] respectively
such that

L(f,P1) ≤
∫ c

a
f(x) dx ≤ U(f,P1) ≤ L(f,P1) + ϵ

2 and

L(f,P2) ≤
∫ b

c
f(x) dx ≤ U(f,P2) ≤ L(f,P2) + ϵ

2 .

Let P = P1 ∪ P2. It is elementary to see that P is a partition of [a, b].
Moreover, due to the nature of these partitions and the definitions of the
upper and lower Riemann sums, we easily see that

L(f,P) = L(f,P1) + L(f,P2) and U(f,P) = U(f,P1) + U(f,P2).
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Hence

0 ≤ U(f,P) − L(f,P)
= (U(f,P1) + U(f,P2)) + (L(f,P1) + L(f,P2))
= (U(f,P1) − L(f,P1)) + (U(f,P2) − L(f,P2))

<
ϵ

2 + ϵ

2 = ϵ.

Therefore, since ϵ > 0 was arbitrary, f is Riemann integrable on [a, b] by
Theorem 6.1.17. Moreover, we have for all ϵ > 0 that∫ c

a
f(x) dx+

∫ b

c
f(x) dx− ϵ ≤ L(f,P1) + L(f,P2)

= L(f,P)

≤
∫ b

a
f(x) dx

≤ U(f,P)
= U(f,P1) + U(f,P2)

≤
∫ c

a
f(x) dx+

∫ b

c
f(x) dx+ ϵ.

Hence ∣∣∣∣∣
∫ c

a
f(x) dx+

∫ b

c
f(x) dx−

∫ b

a
f(x) dx

∣∣∣∣∣ < ϵ.

Therefore, since ϵ > 0 was arbitrary, we obtain that∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx

as desired.

Of course, integrals behave well with respect to many of the same arith-
metic properties that limits satisfy as the following result shows. Unfortu-
nately, notice that multiplication is absent from this result.

Proposition 6.1.25. Let f, g : [a, b] → R be Riemann integrable functions
on [a, b]. The following are true:

a) If α ∈ R, then αf is Riemann integrable on [a, b] and∫ b

a
(αf)(x) dx = α

∫ b

a
f(x) dx.

b) f + g is Riemann integrable on [a, b] and∫ b

a
(f + g)(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx.
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c) If f(x) ≤ g(x) for all x ∈ [a, b], then∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

d) If m ≤ f(x) ≤ M for all x ∈ [a, b], then

m(b− a) ≤
∫ b

a
f(x) dx ≤ M(b− a).

Proof. a) Assume f : [a, b] → R is a Riemann integrable function and α ∈ R.
To see that αf is Riemann integrable, consider an arbitrary partition P of
[a, b].

Notice if α ≥ 0 then Lemma 1.3.4 implies that sup(αA) = α sup(A) and
inf(αA) = α inf(A) for all subsets A ⊆ R. Therefore, if α > 0, we have that

L(αf,P) = αL(f,P) and U(αf,P) = αU(f,P)

Furthermore, since if A is a bounded subset of R then inf(−A) = − sup(A)
by Lemma 1.3.1, it follows that if α < 0 then

L(αf,P) = αU(f,P) and U(αf,P) = αL(f,P)

Since f is Riemann integrable on [a, b], we obtain by the definition of the
Riemann integral that∫ b

a
f(x) dx = sup{L(f,P) | P a partition of [a, b]}

= inf{U(f,P) | P a partition of [a, b]}.

Therefore, the previous above computations along with Lemmas 1.3.1 and
1.3.4, we obtain that

α

∫ b

a
f(x) dx = sup{L(αf,P) | P a partition of [a, b]}

= inf{U(αf,P) | P a partition of [a, b]}.

Hence αf is Riemann integrable on [a, b] with∫ b

a
(αf)(x) dx = α

∫ b

a
f(x) dx.

b) Let f, g : [a, b] → R be Riemann integrable. To begin the proof,
consider an arbitrary partition P of [a, b]. Since

sup{f(x)+g(x) | x ∈ [c, d]} ≤ sup{f(x) | x ∈ [c, d]}+sup{g(x) | x ∈ [c, d]}
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and

inf{f(x) + g(x) | x ∈ [c, d]} ≥ inf{f(x) | x ∈ [c, d]} + inf{g(x) | x ∈ [c, d]}

for all c, d ∈ [a, b] with c < d, we obtain that

L(f,P) + L(g,P) ≤ L(f + g,P) ≤ U(f + g,P) ≤ U(f,P) + U(g,P)

by the definition of the Riemann sums.
To prove that f + g is Riemann integrable and obtain the desired integral

equation, let ϵ > 0 be arbitrary. Since f is Riemann integrable on [a, b],
Remark 6.1.13 together with Theorem 6.1.17 imply that there exists a
partition P1 of [a, b] such that

L(f,P1) ≤
∫ b

a
f(x) dx ≤ U(f,P1) ≤ L(f,P1) + ϵ

2 .

Similarly, since g is Riemann integrable on [a, b], Remark 6.1.13 together
with Theorem 6.1.17 imply that there exists a partition P2 of [a, b] such that

L(g,P2) ≤
∫ b

a
g(x) dx ≤ U(g,P2) ≤ L(g,P2) + ϵ

2 .

Let P = P1 ∪ P2. Then P is a partition of [a, b] that is a refinement of both
P1 and P2. Therefore, Remark 6.1.13 together with Lemma 6.1.7 imply that

L(f,P) ≤
∫ b

a
f(x) dx ≤ U(f,P)

≤ U(f,P1)
≤ L(f,P1)

≤ L(f,P) + ϵ

2

and similarly

L(g,P) ≤
∫ b

a
g(x) dx ≤ U(g,P) ≤ L(g,P) + ϵ

2 .

Hence, since we know that

L(f,P) + L(g,P) ≤ L(f + g,P) ≤ U(f + g,P) ≤ U(f,P) + U(g,P)

we obtain that

L(f,P) + L(g,P) ≤ L(f + g,P) ≤ U(f + g,P) ≤ L(f,P) + L(g,P) + ϵ.

Hence 0 ≤ U(f + g,P) − L(f + g,P) < ϵ. Therefore, since ϵ was arbitrary,
Theorem 6.1.17 implies that f + g is Riemann integrable on [a, b]. Moreover,
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by repeating the above now knowing that f + g is Riemann integrable on
[a, b], we obtain that for all ϵ > 0 there exists a partition P such that∫ b

a
f(x) dx+

∫ b

a
g(x) dx− ϵ ≤ L(f,P) + L(g,P)

≤ L(f + g,P)∫ b

a
(f + g)(x) dx

≤ U(f + g,P)
≤ U(f,P) + U(g,P)

≤
∫ b

a
f(x) dx+

∫ b

a
g(x) dx+ ϵ.

Hence ∣∣∣∣∣
∫ b

a
f(x) dx+

∫ b

a
g(x) dx−

∫ b

a
(f + g)(x) dx

∣∣∣∣∣ ≤ ϵ.

Therefore, as ϵ > 0 was arbitrary, we obtain that∫ b

a
(f + g)(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx

as desired.
c) Let f, g : [a, b] → R be Riemann integrable and assume f(x) ≤ g(x)

for all x ∈ [a, b]. To see the desired result, let ϵ > 0 be arbitrary. Remark
6.1.13 together with Theorem 6.1.17 imply that there exists a partition P of
[a, b] such that

L(f,P) ≤
∫ b

a
f(x) dx ≤ U(f,P) ≤ L(f,P) + ϵ.

However, since f(x) ≤ g(x) for all x ∈ [a, b], we know that

inf{f(x) | x ∈ [c, d]} ≤ inf{g(x) | x ∈ [c, d]}

for all c, d ∈ [a, b] with c < d. Therefore L(f,P) ≤ L(g,P). Hence∫ b

a
f(x) dx− ϵ ≤ L(f,P) ≤ L(g,P) ≤

∫ b

a
g(x) dx.

Hence, for all ϵ > 0, we have that∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx+ ϵ.

Therefore, we have (“by sending ϵ to 0”) that∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx
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as desired.
d) By part c) and Example 6.1.14, we have that

m(b− a) =
∫ b

a
mdx ≤

∫ b

a
f(x) dx ≤

∫ b

a
M dx = M(b− a)

as desired.

Remark 6.1.26. Note that Proposition 6.1.25 does not produce a formula for
the Riemann integral of the product of Riemann integrable functions. Indeed
it is almost always the case that

∫ b
a (fg)(x) dx ̸=

(∫ b
a f(x) dx

) (∫ b
a g(x) dx

)
.

For example, using Examples 6.1.15 and 6.1.16, we see that

∫ 1

0
x2 dx = 1

3 whereas
(∫ 1

0
x dx

)2
= 1

4 .

In lieu of the above remark, it is still possible to show that if f and g
are Riemann integrable on [a, b], then fg is Riemann integrable on [a, b]. To
begin this proof, we first must deal with the case that f = g.

Lemma 6.1.27. Let f : [a, b] → R be a Riemann integrable function on [a, b].
The function f2 : [a, b] → R defined by f2(x) = (f(x))2 for all x ∈ [a, b] is
Riemann integrable on [a, b].

Proof. Since f is bounded by the definition of Riemann integrable,

K = sup{|f(x)| | x ∈ [a, b]} < ∞.

To see that f2 is Riemann integrable, let ϵ > 0 be arbitrary. Since f
is Riemann integrable on [a, b], Theorem 6.1.17 implies that there exists a
partition P of [a, b] such that

0 ≤ U(f,P) − L(f,P) < 1
2(K + 1)ϵ.

Write P = {tk}n
k=0 where

a = t0 < t1 < t2 < · · · < tn−1 < tn = b.

For each k ∈ {1, . . . , n} let

mk(f) = inf{f(x) | x ∈ [tk−1, tk]},
Mk(f) = sup{f(x) | x ∈ [tk−1, tk]},
mk(f2) = inf{(f(x))2 | x ∈ [tk−1, tk]}, and
Mk(f2) = sup{(f(x))2 | x ∈ [tk−1, tk]}.
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Notice for all x, y ∈ [a, b] we have that

|(f(x))2 − (f(y))2| = |f(x) + f(y)||f(x) − f(y)|
≤ (|f(x)| + |f(y)|)|f(x) − f(y)|
≤ (K +K)|f(x) − f(y)| = 2K|f(x) − f(y)|.

Hence we obtain that

Mk(f2) −mk(f2) ≤ 2K(Mk(f) −mk(f))

for all k ∈ {1, . . . , n}. Therefore

0 ≤ U(f2,P) − L(f2,P) ≤ 2K(U(f,P) − L(f,P)) ≤ 2K 1
2(K + 1)ϵ < ϵ.

Hence f2 is Riemann integrable by Proposition 6.1.29.

Using the above and a clever decomposition of functions, we obtain the
product of Riemann integrable functions is Riemann integrable.

Proposition 6.1.28. Let f, g : [a, b] → R be Riemann integrable functions
on [a, b]. Then fg : [a, b] → R is Riemann integrable on [a, b].

Proof. Since

f(x)g(x) = 1
2
(
(f(x) + g(x))2 − f(x)2 − g(x)2

)
and since f + g, f2, g2, and (f + g)2 are Riemann integrable by Proposition
6.1.25 and Lemma 6.1.27, it follows by Proposition 6.1.25 that fg is Riemann
integrable.

To complete our section on the properties of the Riemann integral, we
have one more useful result. The main reason why this result is useful in
analysis is that it plays the same role for integrals as the triangle inequality
plays for sums.

Proposition 6.1.29. Let f : [a, b] → R a Riemann integrable function on
[a, b]. Then the function |f | : [a, b] → R defined by |f |(x) = |f(x)| for all
x ∈ [a, b] is Riemann integrable on [a, b] and∣∣∣∣∣

∫ b

a
f(x) dx

∣∣∣∣∣ ≤
∫ b

a
|f(x)| dx.

Proof. Let ϵ > 0 be arbitrary. By Theorem 6.1.17, there exists a partition P
of [a, b] such that

0 ≤ U(f,P) − L(f,P) < ϵ.
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Write P = {tk}n
k=0 where

a = t0 < t1 < t2 < · · · < tn−1 < tn = b.

For each k ∈ {1, . . . , n} let

mk(f) = inf{f(x) | x ∈ [tk−1, tk]},
Mk(f) = sup{f(x) | x ∈ [tk−1, tk]},
mk(|f |) = inf{|f(x)| | x ∈ [tk−1, tk]}, and
Mk(|f |) = sup{|f(x)| | x ∈ [tk−1, tk]}.

We claim that
Mk(|f |) −mk(|f |) ≤ Mk(f) −mk(f)

for all k ∈ {1, . . . , n}. Indeed notice if x, y ∈ [tk−1, tk] are such that:

• f(x), f(y) ≥ 0, then

|f(x)| − |f(y)| = f(x) − f(y) ≤ Mk(f) −mk(f).

• f(x) ≥ 0 ≥ f(y), then

|f(x)| − |f(y)| ≤ f(x) − f(y) ≤ Mk(f) −mk(f).

• f(y) ≥ 0 ≥ f(x), then

|f(x)| − |f(y)| ≤ f(y) − f(x) ≤ Mk(f) −mk(f).

• f(x), f(y) ≤ 0, then

|f(x)| − |f(y)| = f(y) − f(x) ≤ Mk(f) −mk(f).

Using Lemma 1.3.5, by considering the supreme of the above equations over
x followed by the infimum of the above equations over y, we obtain that

Mk(|f |) −mk(|f |) ≤ Mk(f) −mk(f).

Hence

U(|f |,P) − L(|f |,P) =
n∑

k=1
(Mk(|f |) −mk(|f |))(tk − tk−1)

≤
n∑

k=1
(Mk(f) −mk(f))(tk − tk−1)

= U(f,P) − L(f,P) < ϵ.
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Therefore, since ϵ > 0 was arbitrary, |f | is Riemann integrable on [a, b] by
Theorem 6.1.17.

Since |f | is Riemann integrable, Proposition 6.1.25 implies that −|f | is
Riemann integrable. Moreover, since

−|f(x)| ≤ f(x) ≤ |f(x)|

for all x ∈ [a, b], Proposition 6.1.25 also implies that

−
∫ b

a
|f(x)| dx ≤

∫ b

a
f(x) dx ≤

∫ b

a
|f(x)| dx.

Hence ∣∣∣∣∣
∫ b

a
f(x) dx

∣∣∣∣∣ ≤
∫ b

a
|f(x)| dx.

which completes the proof.

6.2 The Fundamental Theorems of Calculus
For our final section of the course, note that although we have developed the
Riemann integral and its properties, we still lack a simple way to compute the
integral of even some of the most basic functions. Indeed the only integrals
we have actually computed were Examples 6.1.15 and 6.1.16 where specific
sums were used.

The goal of this final section is to prove what is know as the Fundamental
Theorems of Calculus. Said theorems are named as such since they provide
the ultimate connection between integration and differentiation via anti-
derivatives as introduced in Section 5.8. To study these theorems, we will
need to define some functions based on integrals.

To begin, assume f : [a, b] → R is Riemann integrable on [a, b]. For
simplicity, let us define ∫ a

a
f(x) dx = 0.

Therefore, if we define F : [a, b] → R by

F (x) =
∫ x

a
f(t) dt

for all x ∈ [a, b], we see that F is a well-defined since f is Riemann integrable
on [a, x] by Proposition 6.1.24.

Lemma 6.2.1. Let f : [a, b] → R be Riemann integrable on [a, b] and let
F : [a, b] → R be defined by

F (x) =
∫ x

a
f(t) dt

for all x ∈ [a, b]. Then F is continuous on [a, b].
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Proof. To show that F is continuous on [a, b], we will show that F is uniformly
continuous on [a, b]. To do this, let ϵ > 0 be arbitrary.

Since f is bounded,

0 ≤ M = max{|f(x)| | x ∈ [a, b]} < ∞.

Let δ = ϵ
M+1 . Clearly δ > 0.

To see that δ works for ϵ in the definition of uniform continuity, notice if
x1, x2 ∈ [a, b] are such that x1 < x2, then f is Riemann integrable on [x1, x2]
by Proposition 6.1.24 and by Proposition 6.1.25 we have that∣∣∣∣∫ x2

x1
f(t) dt

∣∣∣∣ ≤
∫ x2

x1
|f(t)| dt ≤ M |x2 − x1|.

Therefore, since for all x1 < x2

F (x2) − F (x1) =
∫ x2

a
f(t) dt−

∫ x1

a
f(t) dt

=
(∫ x1

a
f(t) dt+

∫ x2

x1
f(t) dt

)
−
∫ x1

a
f(t) dt

=
∫ x2

x1
f(t) dt

by Proposition 6.1.24, it easily follows

|F (x2) − F (x1)| ≤ M |x2 − x1|

for all x1, x2 ∈ [a, b] with x1 < x2. Hence, if x1, x2 ∈ [a, b] are such that
x1 < x2 and |x2 − x1| < δ, then

|F (x2) − F (x1)| ≤ M |x2 − x1| ≤ M
ϵ

M + 1 ≤ ϵ.

Therefore, as ϵ > 0 was arbitrary, F is uniformly continuous on [a, b].

Since the function F from Lemma 6.2.1 is continuous, it is possible that
F is differentiable. The First Fundamental Theorem of Calculus shows this
is indeed the case provided f is continuous and enables us to compute the
derivative. In fact, the following shows that if we integrate a function f to
obtain F , then F is an anti-derivative of f . Hence differentiation undoes
integration!

Theorem 6.2.2 (The Fundamental Theorem of Calculus, I). Let
f : [a, b] → R be continuous on [a, b] and let F : [a, b] → R be defined by

F (x) =
∫ x

a
f(t) dt

for all x ∈ [a, b]. Then F is differentiable on (a, b) and F ′(x) = f(x) for all
x ∈ (a, b).
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Proof. Let f : [a, b] → R be continuous and fix an x ∈ (a, b). To see that F
is differentiable at x and F ′(x) = f(x), we must show that

lim
h→0

F (x+ h) − F (x)
h

= f(x).

To see this, let ϵ > 0 be arbitrary. Since f is continuous at x, there exists a
δ > 0 such that if t ∈ [a, b] and |t− x| < δ, then |f(t) − f(x)| < ϵ. Notice if
0 < h < δ then∣∣∣∣F (x+ h) − F (x)

h
− f(x)

∣∣∣∣
=
∣∣∣∣∣1h
∫ x+h

x
f(t) dt− f(x)1

∣∣∣∣∣ by Proposition 6.1.24

=
∣∣∣∣∣1h
∫ x+h

x
f(t) dt− f(x)

(
1
h

∫ x+h

x
1 dt

)∣∣∣∣∣ since 1
h

∫ x+h

x
1 dt = 1

=
∣∣∣∣∣1h
∫ x+h

x
f(t) dt− 1

h

∫ x+h

x
f(x) dt

∣∣∣∣∣ by Propostion 6.1.25

=
∣∣∣∣∣1h
∫ x+h

x
f(t) − f(x) dt

∣∣∣∣∣ by Propostion 6.1.25

≤ 1
h

∫ x+h

x
|f(t) − f(x)| dt by Propostion 6.1.29

≤ 1
h

∫ x+h

x
ϵ dt since |t−x|≤δ

for all t∈[x,x+h]

= 1
h

(hϵ) = ϵ.

Similarly, notice if −δ < h < 0, then∣∣∣∣F (x+ h) − F (x)
h

− f(x)
∣∣∣∣

=
∣∣∣∣− 1
h

∫ x

x+h
f(t) dt− f(x)1

∣∣∣∣ by Proposition 6.1.24

=
∣∣∣∣− 1
h

∫ x

x+h
f(t) dt− f(x)

(
− 1
h

∫ x

x+h
1 dt

)∣∣∣∣ since − 1
h

∫ ∫ x

x+h
1 dt = 1

=
∣∣∣∣1h
∫ x

x+h
f(t) dt+ 1

h

∫ x

x+h
f(x) dt

∣∣∣∣ by Propostion 6.1.25

=
∣∣∣∣− 1
h

∫ x

x+h
f(t) − f(x) dt

∣∣∣∣ by Propostion 6.1.25

≤ − 1
h

∫ x

x+h
|f(t) − f(x)| dt by Propostion 6.1.29

≤ − 1
h

∫ x

x+h
ϵ dt since |t−x|≤δ

for all t∈[x+h,x]

= 1
h

(hϵ) = ϵ.
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Hence, for all h with 0 < |h| < δ,∣∣∣∣F (x+ h) − F (x)
h

− f(x)
∣∣∣∣ ≤ ϵ.

Therefore, as ϵ was arbitrary, the definition of the limit implies that

lim
h→0

F (x+ h) − F (x)
h

= f(x).

Hence F ′(x) exists and F ′(x) = f(x) as desired.

Remark 6.2.3. It is important to note that we cannot replace “f is contin-
uous” with “f is Riemann integrable” in the statement of the First Funda-
mental Theorem of Calculus. Indeed if we define f : [−1, 1] → R by

f(x) =
{

−1 if x < 0
1 if x ≥ 0

,

then f is Riemann integral by Corollary 6.1.21. However, we see that if
F : [−1, 1] → R is defined by

F (x) =
∫ x

−1
f(t) dt,

then

F (x) =
{

−x− 1 if x < 0
x− 1 if x ≥ 0

= |x| − 1

so F is not differentiable at 0.

In contrast to how the First Fundamental Theorem of Calculus shows
that derivatives undo integration, the Second Fundamental Theorem of
Calculus shows that integration undoes derivatives. In particular, the Second
Fundamental Theorem of Calculus shows us that if we know the antiderivative
of a function f , then we can compute the Riemann integral of f . Note we
will provide two proofs of the Second Fundamental Theorem of Calculus;
one that assumes f is continuous and is simpler, and one that makes no
assumptions on f other than that f is Riemann integrable.

Theorem 6.2.4 (The Fundamental Theorem of Calculus, II). Let f, g :
[a, b] → R be such that f is Riemann integrable on [a, b], g is differentiable
on [a, b], and g′(x) = f(x) for all x ∈ (a, b). Then∫ b

a
f(t) dt = g(b) − g(a).
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Proof of Theorem 6.2.4 when f is continuous. Assume f is continuous. De-
fine F : [a, b] → R by

F (x) =
∫ x

a
f(t) dt

for all x ∈ [a, b]. Since f is Riemann integrable, F is well-defined by
Proposition 6.1.24.

Since f is continuous, the First Fundamental Theorem of Calculus (The-
orem 6.2.2) implies that F is differentiable on (a, b) with

F ′(x) = f(x) = g′(x)

for all x ∈ (a, b). Hence Corollary 5.8.2 implies that there exists a constant
α ∈ R such that F (x) = g(x) + α for all x ∈ (a, b). Since F is continuous on
[a, b] by Lemma 6.2.1 and since g is continuous on [a, b] by assumption, we
have that F (x) = g(x) + α for all x ∈ [a, b]. Hence∫ b

a
f(t) dt = F (b) − 0

= F (b) − F (a)
= (g(b) + α) − (g(a) + α) = g(b) − g(a).

Proof of Theorem 6.2.4, no additional assumptions. Let f, g : [a, b] → R be
such that f is Riemann integrable on [a, b], g is differentiable on [a, b], and
g′(x) = f(x) for all x ∈ (a, b). Note g is continuous on [a, b] by definition.

Let ϵ > 0 be arbitrary. By Remark 6.1.13 and Theorem 6.1.17 there
exists a partition P of [a, b] such that

L(f,P) ≤
∫ b

a
f(t) dt ≤ U(f,P) ≤ L(f,P) + ϵ.

Write P = {tk}n
k=0 where

a = t0 < t1 < t2 < · · · < tn−1 < tn = b.

Since g is differentiable on [a, b], the Mean Value Theorem (Theorem
5.3.3) implies for each k ∈ {1, . . . , n} that there exists a xk ∈ (tk−1, tk) such
that

g(tk) − g(tk−1)
tk − tk−1

= g′(xk) = f(xk).

Thus
g(tk) − g(tk−1) = f(xk)(tk − tk−1)

for all k ∈ {1, . . . , n}.
Notice that

n∑
k=1

f(xk)(tk − tk−1) =
n∑

k=1
g(tk) − g(tk−1) = g(tn) − g(t0) = g(b) − g(a).
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Moreover, by the definition of the upper and lower Riemann sums, we know
that

L(f,P) ≤
n∑

k=1
f(xk)(tk − tk−1) ≤ U(f,P) ≤ L(f,P) + ϵ.

Hence, we obtain that

L(f,P) ≤ g(b) − g(a) ≤ L(f,P) + ϵ.

Since
L(f,P) ≤

∫ b

a
f(t) dt ≤ U(f,P) ≤ L(f,P) + ϵ,

we obtain that ∣∣∣∣∣g(b) − g(a) −
∫ b

a
f(t) dt

∣∣∣∣∣ ≤ ϵ.

Therefore, as ϵ > 0 was arbitrary,∫ b

a
f(t) dt = g(b) − g(a)

as desired.

Before discussing the uses of the second Fundamental Theorem of Calculus,
it is useful to have an example on why we cannot simply assume f is
continuous in order to use the easier proof.

Example 6.2.5. Let f, g : [−1, 1] → R be defined by

g(x) =

x2 cos
(

1
x

)
if x ̸= 0

0 if x = 0
and f(x) =

2x cos
(

1
x

)
− sin

(
1
x

)
if x ̸= 0

0 if x = 0

for all x ∈ [−1, 1].
Note ∣∣∣∣2x cos

(1
x

)
− sin

(1
x

)∣∣∣∣ ≤ 2|x|
∣∣∣∣cos

(1
x

)∣∣∣∣+ ∣∣∣∣sin(1
x

)∣∣∣∣ ≤ 3

for all x ∈ [−1, 1]. Therefore f is bounded on [−1, 1]. Moreover, f is
continuous on [−1, 0) ∪ (0, 1] since x, 1

x , cos, and sin are continuous functions.
However, f is not continuous at 0 since

lim
x→0

2x cos
(1
x

)
= 0

by the Squeeze Theorem (Theorem 4.1.23), but limx→0 sin
(

1
x

)
does not

exist. Hence f is not continuous on [−1, 1]. However, since f is bounded and
continuous except at x = 0, f is Riemann integrable on [−1, 1] by Corollary
6.1.21.
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It follows by the Chain Rule (Theorem 5.1.20) that

g′(x) = 2x cos
(1
x

)
− sin

(1
x

)
= f(x)

for all x ∈ (−1, 0) ∪ (0, 1). Moreover, notice

lim
x→0

g(x) − g(0)
x− 0 = lim

x→0
x cos

(1
x

)
= 0 = f(0)

by the Squeeze Theorem (Theorem 4.1.23). Therefore, since g is continuous
at x = 1 and x = −1, we obtain that g is differentiable on [−1, 1] with
g′(x) = f(x) for all x ∈ (−1, 1). Therefore∫ 1

−1
f(x) dx = g(1) − g(−1)

by the second Fundamental Theorem of Calculus, even though f is not
continuous.

Remark 6.2.6. Using the second Fundamental Theorem of Calculus, our
knowledge of derivatives from Subsection 5.1.2 and derivatives of inverse
functions from Section 5.5, we easily can compute some integrals:∫ x

0
tn dt = xn+1

n+ 1 − 0n+1

n+ 1 = xn+1

n+ 1∫ x

0
et dt = ex − e0 = ex − 1∫ x

0
sin(t) dt = − cos(x) − (− cos(0)) = − cos(x) + 1∫ x

0
cos(t) dt = sin(x) − (sin(0)) = sin(x)∫ x

0
sec2(t) dt = tan(x) − tan(0) = tan(x)∫ x

1

1
t
dt = ln(x) − ln(1) = ln(x)∫ x

0

1√
1 − t2

dt = arcsin(x) − arcsin(0) = arcsin(x)∫ x

0
− 1√

1 − t2
dt = arccos(x) − arccos(0) = arccos(x) − π

2∫ x

0

1
1 + t2

dt = arctan(x) − arctan(0) = arctan(x).

To complete our course, we demonstrate that the Fundamental Theorems
of Calculus immediately give us two common methods used to compute the
value of an integral from calculus: Integration by Substitution and Integration
by Parts. To prove the Integration by Substitution result, we first need a
lemma.
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Lemma 6.2.7. Let a, b ∈ R be such that a < b and let f : [a, b] → R be
continuous. Then f([a, b]) is a closed interval.

Proof. Since f : [a, b] → R is continuous, the Extreme Value Theorem (Theo-
rem 4.6.2) implies there exists x1, x2 ∈ [a, b] such that f(x1) ≤ f(x) ≤ f(x2).
Hence f([a, b]) ⊆ [f(x1), f(x2)]. Since x1, x2 ∈ [a, b], the Intermediate
Value Theorem (Theorem 4.4.2) implies that for all c ∈ (f(x1), f(x2))
there exists an x ∈ (x1, x2) ∪ (x2, x1) such that f(x) = c. Therefore, since
f(x1), f(x2) ∈ f([a, b]), we obtain that [f(x1), f(x2)] ⊆ f([a, b]). Therefore
f([a, b]) = [f(x1), f(x2)] so f([a, b]) is a closed interval.

Corollary 6.2.8 (Integration by Substitution). Let a, b, c, d ∈ R be such
that c < a < b < d so that [a, b] ⊆ (c, d). Let g : (c, d) → R be differentiable
at each point in [a, b] so that g′ is continuous on [a, b]. Note I = g([a, b]) is
an interval by Lemma 6.2.7. If f : I → R be continuous, then (f ◦ g)g′ is
Riemann integrable on [a, b] with∫ b

a
f(g(x))g′(x) dx =

∫ g(b)

g(a)
f(u) du.

(Note if g(b) ≤ g(a) then
∫ g(b)

g(a) f(u) du is defined to equal −
∫ g(a)

g(b) f(u) du.)

Proof. To begin, we must check that the functions we are considering are
Riemann integrable. Since f is continuous on I, f is Riemann integrable on
I by Theorem 6.1.20. Since g′ is continuous on [a, b], g is continuous on [a, b].
Therefore f ◦ g is continuous on [a, b] by Theorem 4.2.10. Hence (f ◦ g)g′ is
continuous on [a, b] and thus Riemann integrable on [a, b] by Theorem 6.1.20.

Thus it remains only to show the desired integral equation. To see this,
first note that I = [α, β] for some α, β ∈ R with α < β so we can extend f
to a continuous function h on R by

h(x) =


f(x) if x ∈ [α, β]
f(α) if x ≤ α

f(β) if x ≥ β

.

Therefore, by the First Fundamental Theorem of Calculus (Theorem 6.2.2),
if F : [α− 1, β + 1] → R is defined by

F (x) =
∫ x

α−1
h(t) dt,

then F is differentiable on (α − 1, β + 1) with F ′(x) = h(x) = f(x) for all
x ∈ [α, β] = I.

Since g : (c, d) → I is continuous on [a, b] so that g((a − δ, b + δ)) ⊆
(α− 1, β + 1) for some δ > 0, the Chain Rule (Theorem 5.1.20) implies that
F ◦ g is differentiable on [a, b] with

(F ◦ g)′(x) = F ′(g(x))g′(x) = f(g(x))g′(x)
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for all x ∈ [a, b]. Therefore, we obtain that∫ b

a
f(g(x))g′(x) dx =

∫ b

a
(F ◦ g)′(x) dx

= (F ◦ g)(b) − (F ◦ g)(a) by the Second Fundamental
Theorem of Calculus

= F (g(b)) − F (g(a))

=
∫ g(b)

g(a)
f(x) dx by the Second Fundamental

Theorem of Calculus

as desired.

Corollary 6.2.9 (Integration by Parts). Let a, b, c, d ∈ R be such that
c < a < b < d so that [a, b] ⊆ (c, d). If f, g : (c, d) → R are continuous
and differentiable at each point in [a, b] and f ′, g′ : [a, b] → R are Riemann
integrable, then f ′g and fg′ are Riemann integrable on [a, b] with∫ b

a
f(x)g′(x) dx = f(b)g(g) − f(a)g(a) −

∫ b

a
f ′(x)g(x) dx.

Proof. Let h : [a, b] → R be defined by

h(x) = f ′(x)g(x) + f(x)g′(x).

Since f ′g, fg′, and h are Riemann integrable on [a, b] by Theorem 6.1.20 and
Propositions 6.1.25 and 6.1.28, and since fg is differentiable on (c, d) with
(fg)′(x) = h(x) for all x ∈ [a, b] by the Product Rule (Proposition 5.1.12),
we obtain by the Second Fundamental Theorem of Calculus (Theorem 6.2.4),
and by Propositions 6.1.25 and 6.1.28 that

f(b)g(b) − f(a)g(a) =
∫ b

a
h(x) dx

=
∫ b

a
f ′(x)g(x) + f(x)g′(x) dx

=
∫ b

a
f ′(x)g(x) dx+

∫ b

a
f(x)g′(x) dx

as desired.
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Appendix A

MATH 1200 Background

In this appendix chapter, we will quickly review the basic background material
from MATH 1200 that students should be familiar with when entering this
course.

A.1 Set Notation
All mathematics must contain some notation in order for one to adequately
describe the objects of study. As such, we begin by developing the notation
surrounding one of the most basic objects in mathematics.

Heuristic Definition. A set is a collection of distinct objects.

To utilize sets, we must first develop notation to adequately describe sets
and symbols to adequetly describe operations on sets. First we begin with
how to write an explicit set.

Notation A.1.1. There are two notations commonly used to describe a set:
namely

{objects}

and
{objects | conditions on the objects}.

The following are some examples of how one can use set notation to
describe a set.

Example A.1.2. The set of natural numbers, denoted N, is the set

N = {1, 2, 3, 4, . . .}.

Example A.1.3. The set of integers, denoted Z, is the set

Z = {0, 1,−1, 2,−2, 3,−3, . . .}.
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Example A.1.4. The set of rational numbers, denoted Q, is the set

Q =
{
a

b

∣∣∣∣ a, b are integers with b ̸= 0
}
.

Considering the above, it is useful to have some terminology and notation
to determine when an object is in a given set.

Definition A.1.5. Given a set X and an object x, we say that x is an
element of X if x is one of the objects that make up X. We denote that “x
is an element of X” by x ∈ X and we use x /∈ X to denoted when x is not
an element of X.

Example A.1.6. It is clear based on the above definitions that 1
2 ∈ Q yet

1
2 /∈ Z. Similarly 0 ∈ Z but 0 /∈ N.

It is also useful to have terminology and notation to describe when one
set contains another.

Definition A.1.7. Given a set A, a subset of A is any set B such that if
b ∈ B then b ∈ A. We denote “B is a subset of A” by B ⊆ A and we use
B ⊈ A when B is not a subset of A.

Example A.1.8. It is clear based on the above definitions that N ⊆ Z ⊆ Q,
Q ⊈ Z, and Z ⊈ N.

There is one special set that is a subset of every set and is quite useful
to describe.

Definition A.1.9. The empty set, denoted ∅, is the set with no elements.

Remark A.1.10. If A is any set, then it is vacuously true that if x ∈ ∅ then
x ∈ A since there are no objects x so that x ∈ ∅. Hence ∅ ⊆ A for all sets A.

Of course, the notion of when two sets are equal should be obvious.

Definition A.1.11. Two sets A and B are said to be equal if A and B have
precisely the same elements. We write A = B to denote that A and B are
equal.

Remark A.1.12. If one is trying to prove two sets A and B are equal, one
needs to demonstrate that x ∈ A if and only if x ∈ B. If we divide this
bi-conditional statement into its two components, we need to prove “if x ∈ A
then x ∈ B” and “if x ∈ B then x ∈ A”. Theses conditional statements are
asking us to prove A ⊆ B and B ⊆ A. Hence A = B if and only if A ⊆ B
and B ⊆ A.

When trying to prove two sets are equal, keep the above in mind as these
ideas are the most common techniques to show that two sets are equal.
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Now that the basics of sets have been established, we can start to
construct new, larger sets from other sets. The following is a generalization
of something students have seen in high school.

Definition A.1.13. Given an n ∈ N and sets A1, A2, . . . , An, the Cartesian
Product of A1, A2, . . . , An is the set

A1 ×A2 × · · · ×An = {(a1, a2, . . . , an) | ak ∈ Ak for all k ∈ {1, 2, . . . , n}}.

Remark A.1.14. The most common Cartesian Product students have seen
and are familiar with is Rn (where R denotes the set of real numbers). Indeed
Rn = R×R× · · · ×R where we have taken the Cartesian Product of n copies
of R. For example

R2 = {(x, y) | x, y ∈ R}

and
R3 = {(x, y, z) | x, y, z ∈ R}.

More generally,

Rn = {(x1, . . . , xn) | x1, . . . , xn ∈ R}

is one of the main objects of study in MATH 1021.

Instead of combining sets in pairs or, more generally, n-tuples, there is
another common way to combine sets.

Definition A.1.15. Let I be a non-empty set and for each α ∈ I, let Aα be
a set. The union of {Aα | α ∈ I}, denoted

⋃
α∈I Aα, is the set⋃

α∈I

Aα = {x | x ∈ Aα for some α ∈ I}.

Example A.1.16. For two examples, if A denotes the set of all odd natural
numbers and B denotes the set of all even natural numbers, then N = A∪B.
Furthermore

N =
∞⋃

n=1
{2n− 1, 2n}.

Instead of taking the set that contains all of the elements of a collection
of sets, we can take the set of elements that are common to each set.

Definition A.1.17. Let I be a non-empty set and for each α ∈ I, let Aα be
a set. The intersection of {Aα | α ∈ I}, denoted

⋂
α∈I Aα, is the set⋂

α∈I

Aα = {x | x ∈ Aα for all α ∈ I}.

Example A.1.18. For example, {1} =
⋂∞

n=1{1, n, n+ 1, . . .} as the number
1 is the only element of each set.
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Furthermore, it is possible to ‘take away’ one set from another.

Definition A.1.19. Given two sets A and B, the set difference of A by B,
denoted A \B, is the set

A \B = {x | x ∈ A and x /∈ B}.

To summarize the above set operations, consider the following example.

Example A.1.20. If X = {1, 2, 3} and Y = {2, 4, 6}, then

X ∪ Y = {1, 2, 3, 4, 6}, X ∩ Y = {2}, and X \ Y = {1, 3}.

Remark A.1.21. In this course, we will often have a set X (usually R) and
will be considering subsets of X. Consequently, given a subset Y of X, the
set difference X \ Y will be called the complement of Y (in X) and will be
denoted Y c for convenience.

It turns out that the operation of taking the complement of a set turns
unions into complements and vice versa as the following result shows.

Theorem A.1.22 (De Morgan’s Laws). Let X and I be non-empty sets
and for each α ∈ I let Xα be a subset of X. Then(⋃

α∈I

Xα

)c

=
⋂
α∈I

Xc
α and

(⋂
α∈I

Xα

)c

=
⋃
α∈I

Xc
α.

Proof. Notice that

x ∈
(⋃

α∈I

Xα

)c

if and only if x /∈
⋃
α∈I

Xα

if and only if x /∈ Xα for all α ∈ I

if and only if x ∈ Xc
i for all α ∈ I

if and only if x ∈
⋂
α∈I

Xc
α

which completes the proof of the first equation.
It is possible to repeat the same proof technique to show that the other

equation holds. Alternatively, it is possible to use the first result to prove
the second. To do this, we must first claim that that if Y ⊆ X and Z = Y c,
then Zc = Y ; that is, the complement of the complement is the original set.
Indeed notice x ∈ Zc if and only if x /∈ X if and only if x /∈ Y c if and only if
x ∈ Y . Hence Zc = Y .

To prove the second equality using the first, for each α ∈ I let Yα = Xc
α.

By applying the first equation using the Yα’s instead of the Xα’s, we obtain
that (⋃

α∈I

Yα

)c

=
⋂
α∈I

Y c
α .
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Since Yα = Xc
α so Y c

α = Xα for all α ∈ I, we have that(⋃
α∈I

Y c
α

)c

=
⋂
α∈I

Yα.

Hence ⋃
α∈I

Y c
α =

(⋂
α∈I

Yα

)c

by taking the complement of both sides.

Sets will play an important role in this course. However, one important
question that has not been addressed is, “What exactly is a set?” This
questions must be asked as we have not provided a rigorous definition of a
set. This leads to some interesting questions, such as, “Does the collection
of all sets form a set?”

To consider these questions, let us assume that there is a set of all sets;
that is the set

Z = {X | X is a set}

makes sense. Note Z has the interesting property that Z ∈ Z. Since Z is a
set, we would think that

Y = {X | X is a set and X /∈ X}

is a valid subset of Z and thus a set. Considering Y , there are two disjoint
possibilities: either Y ∈ Y or Y /∈ Y .

If it were the case that Y ∈ Y , then the definition of Y implies Y /∈ Y
which is a contradiction since we cannot have both Y ∈ Y and Y /∈ Y . Thus,
as Y ∈ Y must be false, then it must be the case that Y /∈ Y .

However, Y /∈ Y implies by the definition of Y that Y ∈ Y . Again this is
a contradiction since we cannot have both Y /∈ Y and Y ∈ Y . Therefore, if
Y is a set, we would have reached a logical inconsistency in mathematics.

The above argument is known as Russell’s Paradox and demonstrates that
there cannot be a set of all sets. Russell’s Paradox illustrates the necessity
of a rigorous definition of a set. However, said definition takes us beyond
the study of this class.

A.2 Functions

With our knowledge of sets, we turn next to the morphisms between sets:
functions. In order to formally define what a function is and for future use
in the next section, we begin with the following more general object.
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Definition A.2.1. Let X and Y be sets. A relation from X to Y is any
subset R of X×Y . For x ∈ X and y ∈ Y , we write xRy if (x, y) ∈ R and we
write x��Ry if (x, y) /∈ R. In the case that Y = X, we say that R is a relation
on X.

For a natural example of a relation and to see where the notation xRy
comes from, consider the following.

Example A.2.2. For example

R = {(x, y) ∈ R2 | x ≤ y}

is a relation on R that we normally denote as ≤. Consequently, one sees that
the notation ‘xRy’ for ‘(x, y) ∈ R’ makes sense for this relation since x ≤ y
exactly when (x, y) ∈ R.

The most formal definition of a function is that functions are specific
types of relations.

Definition A.2.3. Let X and Y be sets. A function f from X to Y is a
relation from X to Y such that if x ∈ X then there exists a unique y ∈ Y
such that (x, y) ∈ f . We write f : X → Y to denote that f is a function
from X to Y and for x ∈ X we write f(x) for the unique y ∈ Y such that
(x, y) ∈ f . The set X is called the domain of f and the set Y is called the
codomain of f .

Functions go far beyond what one considers in calculus. For example,
consider the following.

Example A.2.4. Let (an)n≥1 be a sequence of real numbers. Define f :
N → R by f(n) = an for all n ∈ N. Then f is a function with domain N and
range R.

Remark A.2.5. Given f : X → Y , it is important to remember that f
is the function whereas f(x) is not the function; f(x) is the value of the
function f at the point x ∈ X and thus f(x) is a single element of Y .

As functions are really subsets of a Cartesian Product and we have a
notion for when two sets are equal, we have a notion for when two functions
are equal.

Definition A.2.6. Let f : X → Y and let g : A → B. We say that f equals
g, denoted f = g, if

• X = A, and

• f(x) = g(x) for all x ∈ X.

That is, two functions are equal if they have the same domain and the same
value on each element of the domain.
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There are many ways to construct new functions from other functions
depending on the circumstances. The following is one common and useful
way to construct new functions.

Definition A.2.7. Let X,Y , and Z be sets and let f : X → Y and let
g : Y → Z. The composition of f and g is the function g ◦ f : X → Z such
that

(g ◦ f)(x) = g(f(x))

for all x ∈ X.

Example A.2.8. Consider the functions g : R → R and f : [0,∞) → R
defined by g(x) = x2 + 2x − 1 for all x ∈ R and f(x) =

√
x + 1 for all

x ∈ [0,∞). The function g ◦ f : [0,∞) → R is well-defined. Moreover, for all
x ∈ [0,∞), we have that

(g ◦ f)(x) = g(f(x))
= g(

√
x+ 1)

= (
√
x+ 1)2 + 2(

√
x+ 1) − 1

= x+ 4
√
x− 1

for all x ∈ [0,∞).

There are many properties and information one may want to describe
about a function. We begin with the following.

Definition A.2.9. Let f : X → Y and let Z ⊆ X. The image of Z under
f , denoted f(Z), is the set

f(Z) = {f(z) | z ∈ Z} ⊆ Y.

The range (or image) of f is the set

Range(f) = f(X) = {f(x) | x ∈ X}.

Example A.2.10. Let f : [0,∞) → R be defined by f(x) =
√
x + 1

for all x ∈ [0,∞). Assuming a knowledge of calculus, we can show that
Range(f) = [1,∞). Furthermore f([4, 9]) = [3, 4].

Definition A.2.11. A function f : X → Y is said to be surjective (or onto)
if f(X) = Y ; that is, for all y ∈ Y there exists an x ∈ X such that f(x) = y.

Example A.2.12. Clearly the function f : [0,∞) → R defined by f(x) =√
x+ 1 for all x ∈ [0,∞) is not surjective since Range(f) = [1,∞) ̸= R.

However, the function g : [0,∞) → [1,∞) defined by g(x) =
√
x+ 1 for

all x ∈ [0,∞) is surjective since Range(g) = [1,∞). Thus the notion of when
a function is surjective or not is really a consideration of what one is thinking
of for the codomain of the function. We can always decrease the codomain
of a function to be equal to its range thereby making the function surjective.
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One way to think of a surjective function is that it is a function that
obtains all possible outputs. There is another property one might want to
consider of a function: when does the function yield unique outputs given
distinct inputs.

Definition A.2.13. A function f : X → Y is said to be injective (or
one-to-one) if for all x1, x2 ∈ X with x1 ̸= x2, we have that f(x1) ̸= f(x2).

Remark A.2.14. Note by taking the contrapositive of the definition of an
injective function, we immediately see that a function f : X → Y is injective
if whenever x1, x2 ∈ X are such that f(x1) = f(x2), then x1 = x2.

Example A.2.15. The function f : R → R defined by f(x) = x2 − 2x+ 1 =
(x−1)2 for all x ∈ R is not injective since 0 ̸= 2 yet f(0) = (0−1)2 = (−1)2 = 1
and f(2) = (2 − 1)2 = 12 = 1 = f(0).

However, it is possible using calculus to show that the function g :
[1,∞) → R defined by g(x) = (x− 1)2 for all x ∈ [1,∞) is injective. Thus
the notion of when a function is injective or not depends on the domain of
the function.

Of course, we can combine the notions of injective and surjective.

Definition A.2.16. A function f : X → Y is said to be bijective if f is
injective and surjective.

Example A.2.17. The function f : [0,∞) → [1,∞) defined by f(x) =
√
x+1

for all x ∈ [0,∞) has already been seen to be surjective. As it is possible
using calculus to show that f is injective, we obtain that f is a bijective
function.

Similarly, the function g : [1,∞) → [0,∞) defined by g(x) = (x − 1)2

for all x ∈ [1,∞) has already be seen to be injective with the given domain.
With the codomain written, it is possible using calculus to show that g is
surjective. Hence g is a bijective function.

With f and g as in the above example, notice for all x ∈ [0,∞) that

g(f(x)) = g
(√
x+ 1

)
=
((√

x+ 1
)

− 1
)2 =

√
x

2 = x

and for all y ∈ [1,∞) that

f(g(y)) = f
(
(y − 1)2

)
=
√

(y − 1)2 + 1 = (y − 1) + 1 = y.

Thus perhaps there is a connection between bijective functions and the
following type of function.

Definition A.2.18. A function f : X → Y is said to be invertible if there
exists a function g : Y → X such that
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• (g ◦ f)(x) = g(f(x)) = x for all x ∈ X, and

• (f ◦ g)(y) = f(g(y)) = y for all y ∈ Y .

The function g is called an inverse of f .

Remark A.2.19. Note the two conditions required for f to be an invertible
function make this a ‘two-sided inverse’. This is similar to how wants to be
able to multiple the inverse of a matrix A on either side of A and still get
the identity.

Notice in Definition A.2.18 that we called g ‘a’ inverse of f and not ‘the’
inverse of f . This is because, for all we know, it might be possible that f
has multiple inverses. The following shows this is not the case.

Lemma A.2.20. Let f : X → Y be invertible. If g1 and g2 are inverse of f ,
then g1 = g2.

Proof. Assume g1 and g2 are both inverses of f . Then for all y ∈ Y , we see
by the defining properties of an inverse that

g1(y) = (g2 ◦ f)(g1(y))
= g2(f(g1(y))
= g2((f ◦ g1)(y))
= g2(y).

Hence g1 = g2 as desired.

As Lemma A.2.20 demonstrates that there can be at most one inverse of
an invertible function, we desire some notation to denote this function.

Notation A.2.21. If f : X → Y is an invertible function, the inverse of f
is denoted by f−1.

To culminate our exploration of bijective and invertible functions, we
prove the following.

Theorem A.2.22. Let f : X → Y . Then f is invertible if and only if f is
bijective.

Proof. First, assume f is invertible. Thus f−1 exists. To see that f is
bijective, we must show that f is injective and surjective.

f is injective. To see that f is injective, let x1, x2 ∈ X be such that
f(x1) = f(x2). Then

x1 = g(f(x1)) = g(f(x2)) = x2

where the middle equality follows since f(x1) = f(x2). Therefore f is
injective by definition.
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f is surjective. To see that f is surjective, let y ∈ Y be arbitrary. Let
x = g(y) ∈ X. Then

f(x) = f(g(y)) = y.

Hence y ∈ f(X). Therefore, since y ∈ Y was arbitrary, f(X) = Y . Hence f
is surjective by definition.

Since f is injective and surjective, f is bijective as desired.
To see the converse direction, assume f : X → Y is bijective. To show

that f is invertible, we must construct an inverse of f . To do this, let y ∈ Y
be arbitrary. Since f is surjective, we know that there exists an x1 ∈ X such
that f(x1) = y. Moreover, since f is injective, we know that if x2 ∈ X such
that f(x2) = y, then f(x2) = f(x1) so that x2 = x1. Hence, for each y ∈ Y
there exists a unique element of x, which we will denoted by xy, such that
f(xy) = y.

Consider the function g : Y → X defined by g(y) = xy for. Note g is
well-defined by the above paragraph. We claim that g is an inverse of f . To
see this, first note for all y ∈ Y that

f(g(y)) = f(xy) = y

as desired. To see that g(f(x)) = x for all x ∈ X, let x ∈ X be arbitrary.
Since f(x) = y, we have that x = xy by the definition of xy being the unique
element of X that f sends to y. Hence

g(f(x)) = g(y) = xy = x

as desired. Thus g is the inverse of f thereby completing the proof.

To complete our introduction to functions, there is one more set based
on functions we desire to study.

Definition A.2.23. Given f : X → Y and a subset Z ⊆ Y , the preimage
of Z under f (or inverse image), denoted f−1(Z), is the set

f−1(Z) = {x ∈ X | f(x) ∈ Z}.

Example A.2.24. Let f : R → R be defined by f(x) = x2 for all x ∈ R.
Then

f−1({1}) = {1,−1}
f−1([4,∞)) = (−∞,−2] ∪ [2,∞)

f−1((−∞, 0)) = ∅.

Remark A.2.25. It is important to note that although the notation f−1(Z)
is used for the preimage of a set Z under f , the preimage of a set has nothing
to do with invertibility and one does not need a function to be invertible to
consider the preimage.

©For use through and only available at pskoufra.info.yorku.ca.



A.2. FUNCTIONS 209

However, when f : X → Y is invertible and Z ⊆ Y , then, because f is
bijective, it is possible to show that the preimage of Z under f is the equal to
the image of Z under f−1. To see this, assume f : X → Y is invertible and
let Z ⊆ Y . As we normally use f−1(Z) to denote both sets we are interested
in, let

A = {x ∈ X | f(x) ∈ Z} (i.e. the preimage of Z under f)
B = {f−1(z) | z ∈ Z} (i.e. the image of Z under f−1).

To see that A = B, we will show that A ⊆ B and B ⊆ A.
To see that A ⊆ B, let a ∈ A be arbitrary. By the definition of A, this

implies f(a) ∈ Z. Therefore, by the definition of B, f−1(f(a)) ∈ B. Since
a = f−1(f(a)), we obtain that a ∈ B. Therefore, since a ∈ A was arbitrary,
A ⊆ B.

To see that B ⊆ A, let b ∈ B be arbitrary. By the definition of B, there
exists a z ∈ Z such that f−1(z) = b. Hence

f(b) = f(f−1(z)) = z ∈ Z.

Therefore b ∈ A by the definition of A. Hence, as b ∈ B was arbitrary,
B ⊆ A.

Hence A = B so, when f is invertible, the preimage of Z under f is the
equal to the image of Z under f−1.

To prove some results in this course, it is helpful to know how the preimage
of sets behave under unions and intersections.

Proposition A.2.26. Let f : X → Y , let I be a non-empty set, and for
each α ∈ I let Zα ⊆ Y . Then

f−1
(⋃

α∈I

Zα

)
=
⋃
α∈I

f−1 (Zα) and f−1
(⋂

α∈I

Zα

)
=
⋂
α∈I

f−1 (Zα) .

Proof. The proof of this result is very similar to the proof of De Morgan’s
Laws.

Notice that

x ∈ f−1
(⋃

α∈I

Zα

)
if and only if f(x) ∈

⋃
α∈I

Zα

if and only if f(x) ∈ Zα for at least one α ∈ I

if and only if x ∈ f−1(Zα) for at least one α ∈ I

if and only if x ∈
⋃
α∈I

f−1 (Zα)

which completes the proof of the first equation.
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Similarly, notice that

x ∈ f−1
(⋂

α∈I

Zα

)
if and only if f(x) ∈

⋂
α∈I

Zα

if and only if f(x) ∈ Zα for all α ∈ I

if and only if x ∈ f−1(Zα) for all α ∈ I

if and only if x ∈
⋂
α∈I

f−1 (Zα)

which completes the proof of the second equation.

A.3 Equivalence Relations

Functions, although the most prevalent type of relation, are not the only
special type of relation that is useful in analysis. Specifically, this section
will focus on another type of relation that mimics the basic properties of
equality.

Definition A.3.1. A relation R on a set X is said to be an equivalence
relation if R has the following three properties:

• (reflexive) xRx for all x ∈ X.

• (symmetric) If x, y ∈ X are such that xRy, then yRx.

• (transitive) If x, y, z ∈ X are such that xRy and yRz, then xRz.

Remark A.3.2. It is common in mathematics to denote an equivalence
relation by ∼.

Example A.3.3. Let R = {(x, y) ∈ R2 | x = y}. We claim that R is an
equivalence relation. To see this, we must show that the three properties of
an equivalence relation hold.

Reflexivity. To see that R is reflexive, let x ∈ R be arbitrary. Since x = x,
we have by the definition of R that xRx. Hence, since x ∈ R was arbitrary,
R is reflexive.

Symmetry. To see that R is symmetric, let x, y ∈ R be such that xRy.
Thus the definition of R implies that x = y. Hence y = x so that yRx.
Therefore, since x, y ∈ R were arbitrary, R is symmetric.

Transitivity. To see that R is transitive, let x, y, z ∈ R be such that xRy
and yRz. Therefore x = y and y = z by definition. Hence x = z so xRz.
Therefore, since x, y, z ∈ R were arbitrary, R is transitive.

Therefore, since R is reflexive, symmetric, and transitive, R is an equiva-
lence relation.
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Example A.3.4. Let R = {(x, y) ∈ R2 | x ≤ y}. To determine whether R
is an equivalence relation, we will examine whether the three properties of an
equivalence relation hold. If all three hold, then R is an equivalence relation.
However, if at least one property fails, then R is not an equivalence relation.

Reflexivity. We claim that R is reflexive. To see this, let x ∈ R be
arbitrary. Since x ≤ x, we have that xRx. Therefore, since x ∈ R was
arbitrary, R is reflexive.

Symmetry. We claim that R is not symmetric. To see this, note that 2R3
since 2 ≤ 3, but 3��R2 since 2 ≰ 3. Hence R is not symmetric.

Transitivity. We claim that R is transitive. To see this, let x, y, z ∈ R be
such that xRy and yRz. Therefore x ≤ y and y ≤ z by definition. Hence
x ≤ z so xRz. Therefore, since x, y, z ∈ R were arbitrary, R is transitive.

Since R is not symmetric, R is not an equivalence relation.

Example A.3.5. Recall given m,n ∈ Z, it is said that n divides m, denoted
n|m if there exists a d ∈ Z such that dn = m.

Fix n ∈ N and consider the relation

R = {(m, k) ∈ Z2 | n|(m− k)}.

We claim that R is an equivalence relation on Z. To see this, we must show
that the three properties of an equivalence relation hold.

Reflexivity. To see that R is reflexive, let m ∈ Z be arbitrary. Since
0n = 0 and 0 ∈ Z, we have by definition that n|0. Hence, since m−m = 0,
we have that n|(m−m) so mRm by definition. Therefore, since m ∈ Z was
arbitrary, R is reflexive.

Symmetry. To see that R is symmetric, let m, k ∈ Z be such that mRk.
Hence n|(m − k) by the definition of R. By the definition of divides, this
implies there exists a d ∈ Z such that dn = m− k. Therefore, since

(−d)n = −dn = −(m− k) = k −m

and since −d ∈ Z, we have that n|(k −m) by the definition of divides and
thus kRm. Hence, since m, k ∈ Z was arbitrary, R is symmetric.

Transitivity. To see that R is transitive, let m, k, ℓ ∈ Z be such that mRk
and kRℓ. Hence n|(m− k) and n|(k − ℓ) by definition. By the definition of
divides, this implies there exist d, b ∈ Z such that dn = m−k and bn = k− ℓ.
Therefore, since

(d+ b)n = dn+ bn = (m− k) + (k − ℓ) = m− ℓ

and since d+ b ∈ Z, we have that n|(m− ℓ) by the definition of divides and
thus mRℓ. Hence, since m, k, ℓ ∈ Z was arbitrary, R is transitive.

Since R is reflexive, symmetric, and transitive, R is an equivalence relation.
The equivalence relation R is called the equivalence modulo n equivalence
relation. Moreover, if mRk, we say that m is equivalent to k modulo n and
write m ≡ k mod n.
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Equivalence relations related to analysis can be seen in Sections B.1
and B.2, and in Lemma 3.1.8. For now, we turn to trying to think of
equivalence relations as a form of equality. Of course there can exist objects
that are equivalent with respect to an equivalence relation that are not equal.
However, if we combine all elements that are equivalence to a given element,
we get sets that are quite useful. These sets are some form of ‘modding out
by the equivalence relation’ to construct objects that are equal based on the
equivalence relation. To begin, let’s be formal about these sets of equivalent
elements.

Definition A.3.6. Let ∼ be an equivalence relation on a set X. For each
a ∈ X, the equivalence class of a with respect to ∼ is

[a] = {x ∈ X | x ∼ a}.

Example A.3.7. Consider the equivalence modulo 2 equivalence relation.
Then

[1] = {odd integers} and [0] = {even integers}.

To show that elements being equivalent under an equivalence relation
relates to equality of the equivalence classes, we prove the following.

Lemma A.3.8. Let ∼ be an equivalence relation on a set X and let a, b ∈ X.
Then a ∼ b if and only if [a] = [b].

Proof. To begin, assume that a ∼ b. To show that [a] = [b], we will show
that [a] ⊆ [b] and [b] ⊆ [a].

To see that [a] ⊆ [b], let x ∈ [a] be arbitrary. Hence x ∼ a by the
definition of an equivalence class. Since equivalence relations are transitive,
x ∼ a and a ∼ b implies that x ∼ b. Hence x ∈ [b] by the definition of an
equivalence class. Therefore, since x ∈ [a] was arbitrary, [a] ⊆ [b].

To see that [b] ⊆ [a], note since equivalence relations are symmetric that
a ∼ b implies b ∼ a. Therefore by interchanging a and b in the previous
paragraph, we obtain that [b] ⊆ [a]. Hence [a] = [b] as desired.

To see the converse direction, assume [a] = [b]. Since equivalence relations
are reflexive, we know that a ∼ a so a ∈ [a] by the definition of an equivalence
class. Therefore a ∈ [a] = [b]. Since a ∈ [b], the definition of an equivalence
class implies that a ∼ b as desired.

The main benefit of considering equivalence classes is that they provide
a partition of the entire space into sets of equivalent elements. The following
result formalize this.

Proposition A.3.9. Let ∼ be an equivalence relation on a set X and let

C = {[a] | a ∈ X}.

Then
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a) for all A ∈ C, A ̸= ∅,

b) for all x ∈ X there exists an A ∈ C such that x ∈ A, and

c) if A,B ∈ C and A ̸= B, then A ∩B = ∅.

Proof. a) Let A ∈ C be arbitrary. By the definition of C, A = [a] for some
a ∈ X. Since equivalence relations are reflexive, we know that a ∼ a so
a ∈ [a] = A by the definition of an equivalence class. Since a ∈ A, A ̸= ∅.
Therefore, since A ∈ C was arbitrary, the result holds.

b) Let x ∈ X be arbitrary. Let A = [x] so that A ∈ C. Since equivalence
relations are reflexive, we know that x ∼ x so x ∈ [x] = A by the definition
of an equivalence class. Therefore, since x ∈ X was arbitrary, the result
follows.

c) Let A,B ∈ C be such that A ̸= B. Since A,B ∈ C, the definition of C
implies that there exists a, b ∈ X such that A = [a] and B = [b].

Suppose for the sake of a contradiction that A ∩ B ̸= ∅. Hence there
exists an x ∈ X such that x ∈ A ∩ B. Thus x ∈ A = [a] and x ∈ B = [b].
Since x ∈ [a] and x ∈ [b], we have by the definition of an equivalence class
that x ∼ a and x ∼ b. Since equivalence relations are symmetric, x ∼ a
implies a ∼ b. Therefore, since equivalence relations are transitive and since
a ∼ x and x ∼ b, we obtain that a ∼ b. Hence Lemma A.3.8 implies that
A = [a] = [b] = B. Hence we have a contradiction to the fact that A ̸= B so
A ∩B ̸= ∅ as desired.

One reason equivalence classes are important will be see in Sections B.1
and B.2 where equivalence classes are used to construct the integers and
rational numbers from the natural numbers. Moreover, equivalence classes
are used in Proposition 3.1.9 to describe all of the open subsets of the real
numbers.
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Appendix B

Constructing Number
Systems

This appendix chapter is completely devoted to proving the existence and
uniqueness of a totally ordered field with the Least Upper Bound Property;
that is, the existence and uniqueness of the real numbers.

To begin, Section B.1 will construct and verifying the necessary properties
of the integers from the natural numbers and Peaon’s Axioms (Definition
1.1.1). Of course, since the existence and properties of the integers may seem
elementary to the reader, so it possible to skip this section. However, we
have included it to be completely formal in our axiomatic construction of
the real numbers, to demonstrate the techniques that will be used in the
subsequent section, and as it will simplify one argument in Section B.5.

Section B.2 will construct the rational numbers from the integers. In
particular, it will be demonstrated that the rational numbers are a totally
ordered field. From the rational numbers, we will then construct the real
numbers in two ways.

Section B.3 will derive the real numbers from the rational numbers in
a set theoretic way. In particular, the real numbers will be defined to be
certain subsets of the rational numbers known as Dedekind cuts. It will be
demonstrated that there are operations on Dedekind cuts that turn the real
numbers into a field, although this is a colossal pain. The benefits of this
approach are that it requires absolutely no knowledge of real analysis and
that the total ordering and Least Upper Bound Property of the real numbers
is very natural and are easily proved.

Section B.4 will derive the real numbers from the rational numbers in
a more analytic way. Specifically, the real numbers will be defined to be
equivalence classes of Cauchy sequences of rational numbers. It will easily
follow that there are operations on these equivalence classes that turn the
real numbers into a field. However, with this approach, the total ordering
and Least Upper Bound Property are more complicated. The benefits of this
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approach are that it is generally viewed to be as an easier approach, it can be
generalized to other objects (see MATH 4011), and it is much more thematic
with this course on real analysis as it utilizes many of the techniques and
ideas learnt throughout the course.

Section B.5 will demonstrate that every totally ordered field with the
Least Upper Bound Property must be the real numbers. By this we mean any
two ordered fields with the Least Upper Bound Property must be ‘isomorphic’
in the appropriate sense. In particular, the two objects that were constructed
in Section B.3 and Section B.4 are the same even though they look different.
To prove the desired result, we will first show that every totally ordered field
with the Least Upper Bound Property contain the rational numbers (with
the same ordering). Then the Least Upper Bound Property to show that
any two totally ordered field with the Least Upper Bound Property must be
isomorphic and thus equal to the real numbers.

B.1 Integers

In this section, we will construct the integers from the natural numbers.
To do this, we will be assuming the existence of the natural numbers, the
operations of addition and multiplication on the natural numbers, the total
ordering on the natural numbers, and that the total ordering on the natural
numbers has the additive property. All of these assumptions follow from
Peaon’s Axioms (Definition 1.1.1) once think about them for long enough.

To construct the integers, the idea is that we want to close the natural
numbers under subtraction; that is, for all m,n ∈ N we want m− n to make
sense. Of course we can consider the set of all pairs (m,n) and think of this
pair as representing m− n. However, as 3 − 1 = 5 − 3, we want to be able
to identify two pairs (m1, n1) and (m2, n2) as equal via a property of the
natural numbers. Note that m1 − n1 = m2 − n2 in what we think of as the
integers if and only if m1 + n2 = m2 + n1. Since the latter only involves
natural numbers, we can define an equivalence relation on pairs of natural
numbers that will lead to the integers:

Lemma B.1.1. Let XZ = {(m,n) | m,n ∈ N} and define a relation ∼Z on
XZ by (m1, n1) ∼Z (m2, n2) if and only if m1 + n2 = m2 + n1. Then ∼Z is
an equivalent relation.

Proof. To see that ∼Z is an equivalence relation, we need to show that ∼Z
is reflexive, symmetric, and transitive.

Reflexive: To see that ∼Z is reflexive, let (m,n) ∈ XZ. Since m + n =
m+ n, we see that (m,n) ∼Z (m,n) by the definition of ∼Z as desired.

Symmetric: To see that ∼Z is symmetric, let (m1, n1), (m2, n2) ∈ XZ
be such that (m1, n1) ∼Z (m2, n2). Hence m1 + n2 = m2 + n1. Thus
m2 + n1 = m1 + n2 so that (m2, n2) ∼Z (m1, n1). Hence ∼Z is symmetric.
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Transitive: To see that ∼Z is transitive, let (m1, n1), (m2, n2), (m3, n3) ∈
XZ be such that (m1, n1) ∼Z (m2, n2) and (m2, n2) ∼Z (m3, n3). Hence
m1 + n2 = m2 + n1 and m2 + n3 = m3 + n2. By adding these two equations,
we obtain that

m1 + n2 +m2 + n3 = m2 + n1 +m3 + n2.

Hence
m1 + n3 + (n2 +m2) = m3 + n1 + (n2 +m2).

Therefore, by the properties of the natural numbers, we obtain that m1+n3 =
m3 + n1. Hence (m1, n1) ∼Z (m3, n3). Thus ∼Z is transitive.

Therefore, since all three properties have been verified, ∼Z is an equiva-
lence relation.

By taking the equivalence class of the equivalence relation in Lemma
B.1.1, we have constructed the integers.

Definition B.1.2. Let XZ and ∼Z be as in Lemma B.1.1. The integers,
denoted Z, are the set of equivalence classes of ∼Z; that is,

Z = {[(m,n)] | m,n ∈ N}

where [x] denotes the equivalence class of x with respect to ∼Z.

Now that the integers have been constructed, we desire to extend the
notions of addition and multiplication from the natural numbers to the
integers. Later we will extend the partial ordering on the natural numbers
to the integers.

Clearly if (m,n) represents m− n, we want to define (m1, n1) + (m2, n2)
and (m1, n1) · (m2, n2) as we would expect; namely

(m1 − n1) + (m2 − n2) = (m1 +m2) − (n1 + n2)
(m1 − n1) · (m2 − n2) = (m1m2 + n1n2) − (m1n2 +m2n1).

The only possible problem with this is that the integers have been constructed
as a set of equivalence classes. This means that there are more than one
representative for each equivalence class. Therefore, to make sure that we
have a well-defined definition for addition and multiplication that we can use
without worrying whether it depends on the representative of the equivalence
class, we prove the following.

Lemma B.1.3. Let (m1, n1), (m2, n2), (m′
1, n

′
1), (m′

2, n
′
2) ∈ XZ be such that

(m1, n1) ∼Z (m′
1, n

′
1) and (m2, n2) ∼Z (m′

2, n
′
2). Then

a) (m1 +m2, n1 + n2) ∼Z (m′
1 +m′

2, n
′
1 + n′

2).

b) (m1m2 + n1n2,m1n2 +m2n1) ∼Z (m′
1m

′
2 + n′

1n
′
2,m

′
1n

′
2 +m′

2n
′
1).
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Proof. Since (m1, n1) ∼Z (m′
1, n

′
1) and (m2, n2) ∼Z (m′

2, n
′
2), we know that

m1 + n′
1 = m′

1 + n1 and m2 + n′
2 = m′

2 + n2.
a) To see that (m1 +m2, n1 +n2) ∼Z (m′

1 +m′
2, n

′
1 +n′

2), notice by adding
the two equations above that we obtain

(m1 +m2) + (n′
1 + n′

2) = (m′
1 +m′

2) + (n1 + n2).

Hence (m1 +m2, n1 + n2) ∼Z (m′
1 +m′

2, n
′
1 + n′

2) by definition.
b) To see that

(m1m2 + n1n2,m1n2 +m2n1) ∼Z (m′
1m

′
2 + n′

1n
′
2,m

′
1n

′
2 +m′

2n
′
1),

notice by multiplying m1 + n′
1 = m′

1 + n1 by m2 and n2, we obtain that

m1m2 +m2n
′
1 = m′

1m2 +m2n1 and
m1n2 + n′

1n2 = m′
1n2 + n1n2.

Hence

(m1m2 +m2n
′
1) + (m′

1n2 + n1n2) = (m′
1m2 +m2n1) + (m1n2 + n′

1n2).

Similarly, by multiplying m2 + n′
2 = m′

2 + n2 by m′
1 and n′

1, we obtain that

m2m
′
1 +m′

1n
′
2 = m′

1m
′
2 +m′

1n2 and
m2n

′
1 + n′

1n
′
2 = m′

2n
′
1 + n′

1n2.

Hence

(m2m
′
1 +m′

1n
′
2) + (m′

2n
′
1 + n′

1n2) = (m′
1m

′
2 +m′

1n2) + (m2n
′
1 + n′

1n
′
2).

By adding these two large equations together, we obtain that(
(m1m2 + n1n2) + (m′

1n
′
2 +m′

2n
′
1)
)

+
(
m2n

′
1 +m′

1n2 +m2m
′
1 + n′

1n2
)

=
(
(m′

1m
′
2 + n′

1n
′
2) + (m1n2 +m2n1)

)
+
(
m′

1m2 + n′
1n2 +m′

1n2 +m2n
′
1
)
.

Hence, by the properties of the natural numbers, we obtain that

(m1m2 + n1n2) + (m′
1n

′
2 +m′

2n
′
1) = (m′

1m
′
2 + n′

1n
′
2) + (m1n2 +m2n1).

Thus

(m1m2 + n1n2,m1n2 +m2n1) ∼Z (m′
1m

′
2 + n′

1n
′
2,m

′
1n

′
2 +m′

2n
′
1),

by definition.

Due to Lemma B.1.3, the following operations on Z are now well-defined.
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Definition B.1.4. The operations of + and · on Z are defined by

[(m1, n1)] + [(m2, n2)] = [(m1 +m2, n1 + n2)]
[(m1, n1)] · [(m2, n2)] = [(m1m2 + n1n2,m1n2 +m2n1)].

Since we have just constructed Z from N, we must verify that addition
and multiplication on Z satisfy the natural desired properties.

Theorem B.1.5. For all [(m1, n1)], [(m2, n2)], [(m3, n3)] ∈ Z, the following
hold:

a) (Commutativity of +) [(m1, n1)] + [(m2, n2)] = [(m2, n2)] + [(m1, n1)].

b) (Commutativity of ·) [(m1, n1)] · [(m2, n2)] = [(m2, n2)] · [(m1, n1)].

c) (Associativity of +)

([(m1, n1)]+[(m2, n2)])+[(m3, n3)] = [(m1, n1)]+([(m2, n2)]+[(m3, n3)]).

d) (Associativity of ·)

([(m1, n1)] · [(m2, n2)]) · [(m3, n3)] = [(m1, n1)] · ([(m2, n2)] · [(m3, n3)]).

e) (Distributivity)

[(m1, n1)]·([(m2, n2)]+[(m3, n3)]) = ([(m1, n1)]·[(m2, n2)])+([(m1, n1)]·[(m3, n3)]).

f) (Additive Unit) [(m1, n1)] + [(1, 1)] = [(m1, n1)].

g) (Multiplicative Unit) [(m1, n1)] · [(2, 1)] = [(m1, n1)] and [(2, 1)] ̸= [(1, 1)].

h) (Additive Unit) [(m1, n1)] + [(n1,m1)] = [(1, 1)]

Proof. a) Notice that

[(m1, n1)] + [(m2, n2)] = [(m1 +m2, n1 + n2)]
= [(m2 +m1, n2 + n1)]
= [(m2, n2)] + [(m1, n1)]

as desired.
b) Notice that

[(m1, n1)] · [(m2, n2)] = [(m1m2 + n1n2,m1n2 +m2n1)]
= [(m2m1 + n2n1,m2n1 +m1n2)]
= [(m2, n2)] · [(m1, n1)]

as desired.
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c) Notice that

([(m1, n1)] + [(m2, n2)]) + [(m3, n3)]
= [(m1 +m2, n1 + n2)] + [(m3, n3)]
= [((m1 +m2) +m3, (n1 + n2) + n2)]
= [(m+ 1 + (m2 +m3), n1 + (n2 + n3)]
= [(m1, n1)] + [(m2 +m3, n2 + n3)]
= [(m1, n1)] + ([(m2, n2)] + [(m3, n3)])

as desired.
d) Notice that

([(m1, n1)] · [(m2, n2)]) · [(m3, n3)]
= [(m1m2 + n1n2,m1n2 +m2n1)] · [(m3, n3)]
= [((m1m2 + n1n2)m3 + (m1n2 +m2n1)n3, (m1m2 + n1n2)n3 +m3(m1n2 +m2n1))]
= [(m1m2m3 + n1n2m3 +m1n2n3 + n1m2n3,m1m2n3 + n1n2n3 +m1n2m3 + n1m2m3)]
= [(m1(m2m3 + n2n3) + n1(m2n3 +m3n2),m1(m2n3 +m3n2) + (m2m3 + n2n3)n1)]
= [(m1, n1)] · ([(m2m3 + n2n3,m2n3 +m3n2)])
= [(m1, n1)] · ([(m2, n2)] · [(m3, n3)])

as desired.
e) Notice that

[(m1, n1)] · ([(m2, n2)] + [(m3, n3)])
= [(m1, n1)] · [(m2 +m3, n2 + n3)]
= [(m1(m2 +m3) + n1(n2 + n3),m1(n2 + n3) + (m2 +m3)n1)]
= [((m1m2 + n1n2) + (m1m3 + n1n3), (m1n2 +m2n1) + (m1n3 +m3n1))]
= [(m1m2 + n1n2,m1n2 +m2n1)] + [(m1m3 + n1n3,m1n3 +m3n1)]
= ([(m1, n1)] · [(m2, n2)]) + ([(m1, n1)] · [(m3, n3)])

as desired.
f) First note that 2 + 1 = 3 ̸= 2 = 1 + 1 so (2, 1) ≁Z (1, 1) so [(2, 1)] ̸=

[(1, 1)]. Next notice that

[(m1, n1)] + [(1, 1)] = [(m1 + 1, n1 + 1)]

Since
(m1 + 1) + n1 = m1 + (n1 + 1),

we see that
(m1 + 1, n1 + 1) ∼Z (m1, n1)

and thus

[(m1, n1)] + [(1, 1)] = [(m1 + 1, n1 + 1)] = [(m1, n1)]
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as desired.
g) Notice that

[(m1, n1)] · [(2, 1)] = [(2m1 + n1,m1 + 2n1)].

Since
(2m1 + n1) + n1 = m1 + (m1 + 2n1),

we see that
(2m1 + n1,m1 + 2n1) ∼Z (m1, n1)

and thus

[(m1, n1)] · [(2, 1)] = [(2m1 + n1,m1 + 2n1)] = [(m1, n1)]

as desired.
h) Finally, notice that

[(m1, n1)] + [(n1,m1)] = [(m1 + n1,m1 + n1)].

Since
(m1 + n1) + 1 = 1 + (m1 + n1),

we see that
(m1 + n1,m1 + n1) ∼Z (1, 1)

and thus

[(m1, n1)] + [(n1,m1)] = [(m1 + n1,m1 + n1)] = [(1, 1)]

as desired.

Remark B.1.6. Note Theorem B.1.5 shows some important properties when
it comes to viewing Z via these equivalence classes. First, Theorem B.1.5
shows that [(1, 1)] is the additive unit of Z (after all 1 − 1 = 0). Thus we will
use 0 to denote [(1, 1)]. Moreover, for all [(m,n)] ∈ Z, we see that −[(m,n)]
(the additive inverse of [(m,n)]) is [(n,m)] (after all −(m − n) = n − m).
Furthermore Theorem B.1.5 shows that [(2, 1)] is the multiplicative unit of
Z (after all 2 − 1 = 1). Thus we will use 1 to denote [(2, 1)]. Notice that
−1 = [(1, 2)] by these discussions. Moreover we see from part f) that 0 ̸= 1.

Before extending the partial order on N to Z, we will note some properties
of the integers relating to addition and multiplication that are required in
Section B.2. We begin with the following.

Lemma B.1.7. For all [(m,n)] ∈ Z, [(m,n)] = 0 if and only if m = n.

Proof. Notice that [(m,n)] = 0 = [(1, 1)] if and only if (m,n) ∼Z (1, 1) if
and only if m+ 1 = n+ 1 if and only if m = n as desired.
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It will be useful for us to know that the additive inverse of an element is
equal to −1 times the element. This is not immediate from the properties
demonstrated for Z and needs to be proved.

Lemma B.1.8. For all [(m,n)] ∈ Z, −[(m,n)] = (−1) · [(m,n)].

Proof. Notice that

(−1) · [(m,n)] = [(1, 2)] · [(m,n)]
= [(1(m) + 2(n), 1(n) + 2(m))]
= [(m+ 2n, n+ 2m)]
= [(m+ n,m+ n)] + [(n,m)]
= 0 + [(n,m)] by Lemma B.1.7
= [(n,m)] = −[(m,n)]

as desired.

The following shows that our natural view that

Z = {n | n ∈ N} ∪ {−n | n ∈ N} ∪ {0}

can give a nice representation of the equivalence relations.

Lemma B.1.9. For all [(m,n)] ∈ Z there exists a k ∈ N such that [(m,n)] =
[(k, 1)] or [(m,n)] = [(1, k)].

Proof. Let [(m,n)] ∈ Z. To prove that there exists a k ∈ N such that
[(m,n)] = [(k, 1)] or [(m,n)] = [(1, k)], we divide the proof into three cases.

Case 1: m = n. In this case, we claim that [(m,n)] = [(1, 1)]. To see this,
notice since m = n that

m+ 1 = n+ 1.
Hence (m,n) ∼Z (1, 1) so that [(m,n)] = [(1, 1)] as desired.

Case 2: m > n. In this case, there exists a ℓ ∈ N such that n + ℓ = m.
Let k = ℓ+ 1 so that k ∈ N and k ≠ 1. We claim that [(m,n)] = [(k, 1)]. To
see this, notice that

m+ 1 = (n+ ℓ) + 1 = n+ k.

Hence (m,n) ∼Z (k, 1) so that [(m,n)] = [(k, 1)] as desired.
Case 3: m < n. In this case, there exists a ℓ ∈ N such that m + ℓ = n.

Let k = ℓ+ 1 so that k ∈ N and k ≠ 1. We claim that [(m,n)] = [(1, k)]. To
see this, notice that

m+ k = (m+ ℓ) + 1 = n+ 1.

Hence (m,n) ∼Z (1, k) so that [(m,n)] = [(1, k)] as desired.
As the three cases cover all possibilities for (m,n) ∈ XZ, the proof is

complete.
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The next property we desire is to know what elements of Z when multiplied
together can yield zero. Of course this is obvious to us considering out
knowledge of the integers, but it needs to be verified based on our definition.

Lemma B.1.10. Let [(m1, n1)], [(m2, n2)] ∈ Z. Then [(m1, n1)] · [(m2, n2)] =
0 if and only if [(m1, n1)] = 0 or [(m2, n2)] = 0.

Proof. To begin, assume [(m1, n1)] = 0. Thus Lemma B.1.7 implies that
m1 = n1. Therefore, Lemma B.1.7 implies that

[(m1, n1)] · [(m2, n2)] = [(m1m2 + n1n2,m1n2 +m2n1)]
= [(m1m2 +m1n2,m1n2 +m2m1)] = 0

as desired.
Similarly if [(m2, n2)] = 0 then [(m1, n1)] · [(m2, n2)] = 0.
To complete the proof, assume [(m1, n1)], [(m2, n2)] ∈ Z are such that

[(m1, n1)] ̸= 0 and [(m2, n2)] ̸= 0. Our goal is to show that [(m1, n1)] ·
[(m2, n2)] ̸= 0. By Lemma B.1.9, we can divide the proof into four cases.

Case 1: [(m1, n1)] = [(k1, 1)], [(m2, n2)] = [(k2, 1)] for k1, k2 ∈ N \ {1}. No-
tice in this case that

[(m1, n1)] · [(m2, n2)] = [(k1k2 + 1, k1 + k2)].

Notice since k1, k2 ∈ N \ {1} that

k1k2 ≥ 2 max{k1, k2} ≥ k1 + k2.

Hence k1k2 + 1 > k1 + k2 so Lemma B.1.7 implies that

[(m1, n1)] · [(m2, n2)] = [(k1k2 + 1, k1 + k2)] ̸= 0

as desired.
Case 2: [(m1, n1)] = [(1, k1)], [(m2, n2)] = [(k2, 1)] for k1, k2 ∈ N \ {1}. No-

tice in this case that

[(m1, n1)] · [(m2, n2)] = [(k1 + k2, 1 + k1k2)].

Notice since k1, k2 ∈ N \ {1} that

k1k2 ≥ 2 max{k1, k2} ≥ k1 + k2.

Hence 1 + k1k2 > k1 + k2 so Lemma B.1.7 implies that

[(m1, n1)] · [(m2, n2)] = [(k1 + k2, 1 + k1k2)] ̸= 0

as desired.
Case 3: [(m1, n1)] = [(k1, 1)], [(m2, n2)] = [(1, k2)] for k1, k2 ∈ N \ {1}. This

follows by Case 2 and commutativity of ·.
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Case 4: [(m1, n1)] = [(1, k1)], [(m2, n2)] = [(1, k2)] for k1, k2 ∈ N \ {1}. No-
tice in this case that

[(m1, n1)] · [(m2, n2)] = [(1 + k1k2, k1 + k2)].

Notice since k1, k2 ∈ N \ {1} that

k1k2 ≥ 2 max{k1, k2} ≥ k1 + k2.

Hence 1 + k1k2 > k1 + k2 so Lemma B.1.7 implies that

[(m1, n1)] · [(m2, n2)] = [(k1 + k2, 1 + k1k2)] ̸= 0

as desired.
Hence the proof is complete.

The benefit of Lemma B.1.10 is that it enables one to cancel off multipli-
cation as the following result shows.

Corollary B.1.11. If [(m1, n1)], [(m2, n2)], [(m3, n3)] ∈ Z are such that
[(m1, n1)] ̸= 0 and [(m1, n1)] · [(m2, n2)] = [(m1, n1)] · [(m3, n3)], then
[(m2, n2)] = [(m3, n3)]

Proof. Suppose [(m1, n1)], [(m2, n2)], [(m3, n3)] ∈ Z are such that [(m1, n1)] ̸=
0 and [(m1, n1)] · [(m2, n2)] = [(m1, n1)] · [(m3, n3)]. To begin, we claim that

([(m1, n1)] · [(m3, n3)]) + ([(m1, n1)] · [(n3,m3)]) = 0.

To see this, notice that

([(m1, n1)] · [(m3, n3)]) + ([(m1, n1)] · [(n3,m3)])
= [(m1m3 + n1n3,m1n3 +m3n1)] + [(m1n3 + n1m3,m1m3 + n1n3)]
= [((m1m3 + n1n3) + (m1n3 + n1m3), (m1n3 +m3n1) + (m1m3 + n1n3))]
= 0

by Lemma B.1.7. Therefore

0 = ([(m1, n1)] · [(m3, n3)]) + ([(m1, n1)] · [(n3,m3)])
= ([(m1, n1)] · [(m2, n2)]) + ([(m1, n1)] · [(n3,m3)])
= [(m1, n1)] · ([(m2, n2)] + [(n3,m3)]).

Hence, since [(m1, n1)] ̸= 0, Lemma B.1.10 implies that

[(m2, n2)] + [(n3,m3)] = 0.

©For use through and only available at pskoufra.info.yorku.ca.



B.1. INTEGERS 225

Therefore, since [(m3, n3)] + [(n3,m3)] = 0 by Theorem B.1.5 part h), we
obtain that

[(m3, n3)] = [(m3, n3)] + 0 Theorem B.1.5 part f)
= [(m3, n3)] + ([(m2, n2)] + [(n3,m3)])
= [(m2, n2)] + ([(m3, n3)] + [(n3,m3)]) by associativity

and commutivity

= [(m2, n2)] + 0
= [(m2, n2)] Theorem B.1.5 part f)

as desired.

With the above technical details out of the way, we can turn our attention
to defining the partial ordering on Z. Clearly if (m,n) represents m− n, we
want to define (m1, n1) ≤ (m2, n2) so that m1 − n1 ≤ m2 − n2. Thinking of
how we want the order on Z to behave, we can reduce this to the equivalent
characterization m1 + n2 ≤ m2 + n1 which only the ordering on N. As
with addition and multiplication, the only possible problem with this is that
the integers have been constructed as a set of equivalence classes. This
means that there are more than one representative for each equivalence
class. Therefore, to make sure that we have a well-defined definition for the
partial ordering that we can use without worrying whether it depends on
the representative of the equivalence class, we prove the following.

Lemma B.1.12. Let (m1, n1), (m2, n2), (m′
1, n

′
1), (m′

2, n
′
2) ∈ XZ be such that

(m1, n1) ∼Z (m′
1, n

′
1) and (m2, n2) ∼Z (m′

2, n
′
2). Then m1 + n2 ≤ m2 + n1 if

and only if m′
1 + n′

2 ≤ m′
2 + n′

1.

Proof. Since (m1, n1) ∼Z (m′
1, n

′
1) and (m2, n2) ∼Z (m′

2, n
′
2), we know that

m1 + n′
1 = m′

1 + n1 and m2 + n′
2 = m′

2 + n2. Therefore, by the properties of
the natural numbers,

m1 + n2 ≤ m2 + n1 if and only if
(m1 + n2) + (n′

1 + n′
2) ≤ (m2 + n1) + (n′

1 + n′
2) if and only if

(m1 + n′
1) + n2 + n′

2 ≤ (m2 + n′
2) + n1 + n′

1 if and only if
(m′

1 + n1) + n2 + n′
2 ≤ (m′

2 + n2) + n1 + n′
1 if and only if

(m′
1 + n′

2) + (n1 + n2) ≤ (m′
2 + n′

1) + (n1 + n2) if and only if
m′

1 + n′
2 ≤ m′

2 + n′
1

as desired.

By Lemma B.1.12, the following is well-defined.

Definition B.1.13. The relation of ≤ in Z is defined by [(m1, n1)] ≤
[(m2, n2)] if and only if m1 + n2 ≤ m2 + n1.
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Of course it is necessary to prove that Definition B.1.13 does yield a
partial ordering.

Theorem B.1.14. The relation of ≤ on Z is a partial ordering on Z. That
is, for all [(m1, n1)], [(m2, n2)], [(m3, n3)] ∈ Z,

a) (Reflexivity) [(m1, n1)] ≤ [(m1, n1)].

b) (Antisymmetry) If [(m1, n1)] ≤ [(m2, n2)] and [(m2, n2)] ≤ [(m1, n1)], then
[(m1, n1)] = [(m2, n2)].

c) (Transitivity) If [(m1, n1)] ≤ [(m2, n2)] and [(m2, n2)] ≤ [(m3, n3)], then
[(m1, n1)] ≤ [(m3, n3)].

Proof. a) To see that [(m1, n1)] ≤ [(m1, n1)], notice that m1 + n1 ≤ m1 + n1
and thus [(m1, n1)] ≤ [(m1, n1)] by definition.

b) Assume that [(m1, n1)] ≤ [(m2, n2)] and [(m2, n2)] ≤ [(m1, n1)]. There-
fore m1 +n2 ≤ m2 +n1 and m2 +n1 ≤ m1 +n2. Therefore, by the properties
of ≤ on N, m1 + n2 = m2 + n1. Thus (m1, n1) ∼Z (m2, n2) by definition so
that [(m1, n1)] = [(m2, n2)] as desired.

c) Assume that [(m1, n1)] ≤ [(m2, n2)] and [(m2, n2)] ≤ [(m3, n3)]. There-
fore m1 + n2 ≤ m2 + n1 and m2 + n3 ≤ m3 + n2. Notice that

(m1 + n3) + n2 = (m1 + n2) + n3

≤ (m2 + n1) + n3

= (m2 + n3) + n1

≤ (m3 + n2) + n1

= (m3 + n1) + n2.

Therefore, by the properties of ≤ on N, we obtain that m1 + n3 ≤ m3 + n1.
Hence [(m1, n1)] ≤ [(m3, n3)] as desired.

Since we will want to show that the ordering on the real numbers is a
total ordering with the additive and multiplicative properties, it is important
for us to prove the following as a first step.

Lemma B.1.15. The partial ordering ≤ on Z has the following additional
properties:

a) ≤ is a total ordering; that is, if [(m1, n1)], [(m2, n2)] ∈ Z, then [(m1, n1)] ≤
[(m2, n2)] or [(m2, n2)] ≤ [(m1, n1)].

b) ≤ has the additive property; that is, if [(m1, n1)], [(m2, n2)], [(m3, n3)] ∈ Z
and [(m1, n1)] ≤ [(m2, n2)] then [(m1, n1)] + [(m3, n3)] ≤ [(m2, n2)] +
[(m3, n3)].

c) ≤ has the multiplicative property; that is, if [(m1, n1)], [(m2, n2)] ∈ Z are
such that 0 ≤ [(m1, n1)] and 0 ≤ [(m2, n2)], then 0 ≤ [(m1, n1)] · [(m2, n2)].
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Proof. a) To see that ≤ is a total ordering, let [(m1, n1)], [(m2, n2)] ∈ Z be
arbitrary. Note by the properties of the ordering on the natural numbers
that m1 +n2 ≤ m2 +n1 or m2 +n1 ≤ m1 +n2. Hence [(m1, n1)] ≤ [(m2, n2)]
or [(m2, n2)] ≤ [(m1, n1)] as desired.

b) Assume [(m1, n1)], [(m2, n2)], [(m3, n3)] ∈ Z are such that [(m1, n1)] ≤
[(m2, n2)]. To see that [(m1, n1)] + [(m3, n3)] ≤ [(m2, n2)] + [(m3, n3)], note
[(m1, n1)] ≤ [(m2, n2)] implies that m1 + n2 ≤ m2 + n1. Therefore

(m1 +m3) + (n2 + n3) = (m1 + n2) + (m3 + n3)
≤ (m2 + n1) + (m3 + n3)
= (m2 +m3) + (n1 + n3).

Hence

[(m1, n1)] + [(m3, n3)] = [(m1 +m3, n1 + n3)]
≤ [(m2 +m3, n2 + n3)]
= [(m2, n2)] + [(m3, n3)]

as desired.
c) Assume [(m1, n1)], [(m2, n2)] ∈ Z are such that 0 ≤ [(m1, n1)] and 0 ≤

[(m2, n2)]. By Lemma B.1.9, there exists k, ℓ ∈ N so that [(m1, n1)] = [(k, 1)]
or [(m1, n1)] = [(1, k)], and [(m2, n2)] = [(ℓ, 1)] or [(m2, n2)] = [(1, ℓ)]. Notice
if [(m1, n1)] = [(1, k)], then the facts that 0 ≤ [(m1, n1)] and 0 = [(1, 1)]
imply that 1 + k ≤ 1 + 1 so that k = 1 by the properties of the ordering
on the natural numbers and thus [(m,n)] = [(1, 1)]. Therefore, without loss
of generality [(m1, n1)] = [(k, 1)]. Similarly we can assume without loss of
generality that [(m2, n2)] = [(ℓ, 1)].

To complete the proof, we consider three cases.
Case 1: k = 1. Assume k = 1. Then [(m1, n1)] = [(1, 1)]. Therefore, since

≤ is a partial ordering,

[(1, 1)] ≤ [(1, 1)] = [(m2 + n2, n2 +m2)] = [(m1, n1)] · [(m2, n2)]

as desired.
Case 2: ℓ = 1. Assume ℓ = 1. Then [(m2, n2)] = [(1, 1)]. Therefore, since

≤ is a partial ordering,

[(1, 1)] ≤ [(1, 1)] = [(m1 + n1, n1 +m1)] = [(m1, n1)] · [(m2, n2)]

as desired.
Case 2: k ̸= 1 and ℓ ̸= 1. Assume k ̸= 1 and ℓ ̸= 1. Therefore, by the

properties of the ordering on the natural numbers, we know that k + ℓ ≤ kℓ.
Hence 1 + (k+ ℓ) ≤ (kℓ+ 1) + 1. Therefore, by the definition of ≤, we obtain
that

0 = [(1, 1)] ≤ [(kℓ+ 1, k + ℓ)] = [(k, 1)] · [(ℓ, 1)] = [(m1, n1)] · [(m2, n2)]

©For use through and only available at pskoufra.info.yorku.ca.



228 APPENDIX B. CONSTRUCTING NUMBER SYSTEMS

as desired.
Therefore, as the above three cases cover all possibilities, the result

follows.

To conclude this section, it is useful to note that the integers are indeed
an extension of the natural numbers. After all, because of the way we defined
the integers as equivalence relations of pairs of natural numbers, this is by
no means clear. However, there is a natural way the natural numbers embed
into the integers. Of course, since (n + 1) − 1 = n, we should be able to
represent n as [(n+ 1, 1)] for all n ∈ N.

Lemma B.1.16. There exists a map f : N → Z such that

• f is injective,

• f(1) is the multiplicative unit of Z,

• f(n+m) = f(n) + f(m) for all n,m ∈ N,

• f(nm) = f(n) · f(m) for all n,m ∈ N, and

• for n,m ∈ N, n ≤ m if and only if f(n) ≤ f(m).

Proof. Define f : N → Z by

f(n) = [(n+ 1, 1)]

for all n ∈ N. We claim that f is the map we are looking for.
To see that f is injective, assume n,m ∈ N are such that f(n) = f(m).

Therefore [(n+ 1, 1)] = [(m+ 1, 1)] so that (n+ 1, 1) ∼Z (m+ 1, 1) and thus
(n+ 1) + 1 = (m+ 1) + 1. Thus n+ 2 = m+ 2 so, by the properties of the
natural numbers, we have that n = m. Therefore, as n and m were arbitrary,
f is injective.

Clearly f(1) = [(2, 1)] is the multiplicative unit of Z. Next, assume
n,m ∈ N. Then

f(n) + f(m) = [(n+ 1, 1)] + [(m+ 1, 1)] = [(n+m+ 2, 2)].

Therefore, since (n+m+2)+1 = (n+m+1)+2, we have that (n+m+2, 2) ∼Z
(n+m+ 1, 1) so that

f(n) + f(m) = [(n+m+ 2, 2)] = [(n+m+ 1, 1)] = f(n+m)

as desired.
Next, assume n,m ∈ N. Then

f(n) · f(m) = [(n+ 1, 1)] · [(m+ 1, 1)]
= [((n+ 1)(m+ 1) + (1)(1), (n+ 1)(1) + (m+ 1)(1)]
= [(nm+ n+m+ 2, n+m+ 2)].
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Therefore since

(nm+ n+m+ 2) + 1 = (nm+ 1) + (n+m+ 2),

we have that

(nm+ n+m+ 2, n+m+ 2) ∼Z (nm+ 1, 1)

and thus

f(n) · f(m) = [(nm+ n+m+ 2, n+m+ 2)] = [(nm+ 1, 1)] = f(nm)

as desired.
Finally, for n,m ∈ N, we notice that

f(n) ≤ f(m) if and only if
[(n+ 1, 1)] ≤ [(m+ 1, 1)] if and only if
(n+ 1) + 1 ≤ (m+ 1) + 1 if and only if

n+ 2 ≤ m2 if and only if
n ≤ m

as desired.
Hence f has all of the desired properties so N naturally lies inside of

Z.

B.2 Rational Numbers
With the construction of the integers complete, we will turn to constructing
the rational numbers. Due to Section B.1, we know that Z has all the
necessary properties to prove the results in this section. Moreover, we will
be reverting to our usual notation for the integers.

To construct the rational, the idea is that we want to close the integers
under division by non-zero numbers; that is, for all a, b ∈ Z with b ̸= 0 we
want a

b to make sense. Of course we can consider the set of all pairs (a, b)
and think of this pair as representing a

b . However, as 3
6 = 2

4 , we want to be
able to identify two pairs (a1, b1) and (a2, b2) as equal via a property of the
integers. Note that a1

b1
= a2

b2
in what we think of as the rational numbers if

and only if a1b2 = a2b1. Since the latter only involves integers, we can define
an equivalence relation on pairs of integers that will lead to the rational
number:

Lemma B.2.1. Let

XQ = {(a, b) | a, b ∈ Z, b ̸= 0}

and define a relation ∼Q on XQ by (a1, b1) ∼Q (a2, b2) if and only if a1b2 =
a2b1. Then ∼Q is an equivalent relation.
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Proof. Exercise.

By taking the equivalence class of the equivalence relation in Lemma
B.2.1, we have constructed the integers.

Definition B.2.2. Let XQ and ∼Q be as in Lemma B.2.1. The rational
numbers, denoted Q, are the set of equivalence classes of ∼Q; that is,

Q = {[(a, b)] | a, b ∈ Z, b ̸= 0}

where [x] denotes the equivalence class of x with respect to ∼Q.

Now that the rational numbers have been constructed, we desire to extend
the notions of addition and multiplication from the integers to the rational
numbers. Later we will extend the partial ordering on the integers to the
rational numbers.

Clearly if (a, b) represents a
b , we want to define (a1, b1) + (a2, b2) and

(a1, b1) · (a2, b2) as we would expect; namely

a1
b1

+ a2
b2

= a1b2 + a2b1
b1b2

a1
b1

· a2
b2

= a1a2
b1b2

.

The only possible problem with this is that the rational numbers have been
constructed as a set of equivalence classes. This means that there are more
than one representative for each equivalence class. Therefore, to make sure
that we have a well-defined definition for addition and multiplication that
we can use without worrying whether it depends on the representative of
the equivalence class, we prove the following. (Note Lemma B.1.10 implies
if b1, b2 ∈ Z \ {0}, then b1b2 ̸= 0 so all of the objects in the following are
well-defined.)

Lemma B.2.3. Let (a1, b1), (a2, b2), (a′
1, b

′
1), (a′

2, b
′
2) ∈ XQ be such that

(a1, b1) ∼Q (a′
1, b

′
1) and (a2, b2) ∼Q (a′

2, b
′
2). Then

a) (a1b2 + a2b1, b1b2) ∼Q (a′
1b

′
2 + a′

2b
′
1, b

′
1b

′
2) and

b) (a1a2, b1b2) ∼Q (a′
1a

′
2, b

′
1b

′
2)

Proof. Exercise.

Due to Lemma B.2.3, the following operations on Q are now well-defined.

Definition B.2.4. The operations of + and · on Q are defined by

[(a1, b1)] + [(a2, b2)] = [(a1b2 + a2b1, b1b2)]
[(a1, b1)] · [(a2, b2)] = [(a1a2, b1b2)].
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Since we have just constructed Q from Z, we must verify that addition
and multiplication on Q satisfy the natural desired properties. In particular,
we desire to show that Q is a field.

Theorem B.2.5. The rational numbers Q together with the operations + and
· are a field. That is, for all [(a1, b1)], [(a2, b2)], [(a3, b3)] ∈ Q, the following
hold:

a) (Commutativity of +) [(a1, b1)] + [(a2, b2)] = [(a2, b2)] + [(a1, b1)].

b) (Commutativity of ·) [(a1, b1)] · [(a2, b2)] = [(a2, b2)] · [(a1, b1)].

c) (Associativity of +) ([(a1, b1)]+[(a2, b2)])+[(a3, b3)] = [(a1, b1)]+([(a2, b2)]+
[(a3, b3)]).

d) (Associativity of ·) ([(a1, b1)] · [(a2, b2)]) · [(a3, b3)] = [(a1, b1)] · ([(a2, b2)] ·
[(a3, b3)]).

e) (Additive Unit) [(a1, b1)] + [(0, 1)] = [(a1, b1)].

f) (Multiplicative Unit) [(a1, b1)] · [(1, 1)] = [(a1, b1)] with [(1, 1)] ̸= [(0, 1)].

g) (Distributivity) [(a1, b1)] · ([(a2, b2)] + [(a3, b3)]) = ([(a1, b1)] · [(a2, b2)]) +
([(a1, b1)] · [(a3, b3)]).

h) (Additive Inverse) [(a1, b1)] + [(−a1, b1)] = [(0, 1)].

i) (Multiplicative Inverse) if [(a1, b1)] ̸= [(0, 1)], then (b1, a1) ∈ XQ and
[(b1, a1)] · [(a1, b1)] = [(1, 1)].

Proof. a) Notice that

[(a1, b1)] + [(a2, b2)] = [(a1b2 + a2b1, b1b2)]
= [(a2b1 + a1b2, b2b1)]
= [(a2, b2)] + [(a1, b1)]

as desired.
b) Notice that

[(a1, b1)] · [(a2, b2)] = [(a1a2, b1b2)]
= [(a2a1, b2b1)]
= [(a2, b2)] · [(a1, b1)]

as desired.
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c) Notice that

([(a1, b1)] + [(a2, b2)]) + [(a3, b3)]
= [(a1b2 + a2b1, b1b2)] + [(a3, b3)]
= [((a1b2 + a2b1)b3 + a3(b1b2), (b1b2)b3)]
= [(a1(b2b3) + (a2b3 + a3b2)b1, b1(b2b3))]
= [(a1, b1)] + [(a2b3 + a3b2, b2b3)]
= [(a1, b1)] + ([(a2, b2)] + [(a3, b3)])

as desired.
d) Notice that

([(a1, b1)] · [(a2, b2)]) · [(a3, b3)] = [(a1a2, b1b2)] · [(a3, b3)]
= [((a1a2)a3, (b1b2))b3]
= [(a1(a2a3), b1(b2b3))]
= [(a1, b1)] · [(a2a3, b2b3)]
= [(a1, b1)] · ([(a2, b2)] · [(a3, b3)])

as desired.
e) Notice that

[(a1, b1)] + [(0, 1)] = [(a1(1) + 0(b1), b11)] = [(a1 + 0, b1)] = [(a1, b1)]

f) Notice that

[(a1, b1)] · [(1, 1)] = [(a1(1), b1(1))] = [(a1, b1)].

Moreover, since 1(1) = 1 ̸= 0 = 0(1), we see that (1, 1) ≁Q (0, 1) so
[(1, 1)] ̸= [(0, 1)].

g) To begin, first notice if b ∈ Z \ {0}, then b(1) = 1(b) so that (b, b) ∼Q
(1, 1) and thus [(b, b)] = [(1, 1)]. Therefore, by using part f), we obtain that

[(a1, b1)] · ([(a2, b2)] + [(a3, b3)])
= [(a1, b1)] · [(a2b3 + a3b2, b2b3)]
= [(a1(a2b3 + a3b2), b1(b2b3)]
= [((a1a2)b3 + (a1a3)b2, b1b2b3)]
= [((a1a2)b3 + (a1a3)b2, b1b2b3)] · [(1, 1)]
= [((a1a2)b3 + (a1a3)b2, b1b2b3)] · [(b1, b1)]
= [(((a1a2)b3 + (a1a3)b2)b1, (b1b2b3)b1)]
= [((a1a2)(b1b3) + (a1a3)(b1b2), (b1b2)(b1b3)]
= [(a1a2, b1b2)] + [(a1a3, b1b3)]
= ([(a1, b1)] · [(a2, b2)]) + ([(a1, b1)] · [(a3, b3)])

©For use through and only available at pskoufra.info.yorku.ca.



B.2. RATIONAL NUMBERS 233

as desired.
h) First notice since b1 ∈ Z \ {0} that 0(1) = 0b2

1 so that (0, b2
1) ∼Q (0, 1)

and thus [(0, b2
1)] = [(0, 1)]. Therefore

[(a1, b1)] + [(−a1, b1)] = [(a1b1 + (−a1)b1, b
2
1)]

= [((a1 + (−a1)b1, b
2
1)]

= [(0b1, b
2
1)]

= [(0, b2
1)]

= [(0, 1)]

as desired.
i) To complete this proof, assume [(a1, b1)] ̸= [(0, 1)]. We claim that this

implies a1 ̸= 0. To see this, suppose for the sake of a contradiction that
a1 = 0. Then a1(1) = 0(1) = 0 = 0(b1). Therefore (a1, b1) ∼Q (0, 1) so that
[(a1, b1)] ̸= [(0, 1)]. As this is a contradiction, we obtain that a1 ̸= 0. Hence
(b1, a1) ∈ XQ.

Finally, notice that (b1a1)(1) = (1)(a1b1) so that (b1a1, a1b1) ∼Q (1, 1)
and thus [(a1b1, a1b1)] = [(1, 1)]. Hence

[(b1, a1)] · [(a1, b1)] = [(b1a1, a1b1)] = [(1, 1)]

as desired.

Remark B.2.6. Note Theorem B.2.5 shows some important properties when
it comes to viewing Q via these equivalence classes. First, Theorem B.2.5
shows that [(0, 1)] is the additive unit of Q (after all 0

1 = 0). Thus we will
use 0 to denote [(0, 1)]. Moreover, for all [(a, b)] ∈ Q, we see that −[(a, b)]
(the additive inverse of [(a, b)]) is [(−a, b)] (after all −a

b = −a
b ). Furthermore

Theorem B.2.5 shows that [(1, 1)] is the multiplicative unit of Q (after all
1
1 = 1). Thus we will use 1 to denote [(1, 1)]. Finally, for all [(a, b)] ∈ Q with
[(a, b)] ̸= [(0, 1)], we see that [(a, b)]−1 = [(b, a)] (after all

(
a
b

)−1 = b
a).

It is also useful to note since Q is a field that all the field properties from
Lemma 1.2.1 hold. Specifically, we know that 0 is the unique additive unit, 1
is the unique multiplicative unit, −x = (−1) · x for all x ∈ Q, and 0 · x = 0
for all x ∈ Q. This immediately implies which element of Q can multiple to
give 0.

Lemma B.2.7. Let [(a1, b1)], [(a2, b2)] ∈ Q. Then [(a1, b1)] · [(a2, b2)] = 0 if
and only if [(a1, b1)] = 0 or [(a2, b2)] = 0.

Proof. By Lemma 1.2.1, if [(a1, b1)] = 0 or [(a2, b2)] = 0 then [(a1, b1)] ·
[(a2, b2)] = 0.
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To complete the proof, assume [(a1, b1)], [(a2, b2)] ∈ Q are such that
[(a1, b1)] ̸= 0 and [(a2, b2)] ̸= 0. Suppose for the sake of a contradiction that
[(a1, b1)] · [(a2, b2)] = 0. Therefore

0 = [(a1, b1)]−1 · 0
= [(a1, b1)]−1 · ([(a1, b1)] · [(a2, b2)])

=
(
[(a1, b1)]−1 · [(a1, b1)]

)
· [(a2, b2)]

= 1 · [(a2, b2)]
= [(a2, b2)].

Since this contradicts the fact that [(a2, b2)] ̸= 0, we have a contradiction.
Thus the result follows.

Before moving on to constructing the partial ordering on Q, we note the
following descriptions of the additive and multiplicative identities in Q.
Lemma B.2.8. For all [(a, b)] ∈ Q, [(a, b)] = 0 if and only if a = 0.
Proof. Notice that [(a, b)] = 0 if and only if (a, b) ∼Q (0, 1) if and only if
a(1) = 0(b) if and only if a = 0 as desired.

Lemma B.2.9. For all [(a, b)] ∈ Q, [(a, b)] = 1 if and only if a = b.
Proof. Notice that [(a, b)] = 1 if and only if (a, b) ∼Q (1, 1) if and only if
a(1) = 1(b) if and only if a = b as desired.

To construct the partial ordering on Q, it is first useful to have a better
representation of the equivalence class defining Q. In particular, thinking
about Q as we normally would, if we are given a

b for a, b ∈ Z with b ̸= 0
then we can always force b > 0 by multiplying the top and bottom by −1 if
needed. To make this formal with the actual definition of Q, we prove the
following.
Lemma B.2.10. For all [(a, b)] ∈ Q, there exists a′, b′ ∈ Z such that b′ > 0
and [(a, b)] = [(a′, b′)].
Proof. Let [(a, b)] ∈ Q. Since this implies b ∈ Z \ {0}, we know that b > 0 or
b < 0. Thus we divide the proof into two case.

Case 1: b > 0. In this case, we simply let a′ = a and b′ = b. Clearly
b′ > 0 and [(a, b)] = [(a′, b′)] as desired.

Case 2: b < 0. In this case, let a′ = −a and b′ = −b. Since b < 0, we
know by Lemma B.1.15 that b+ (−b) < 0 + (−b) and thus 0 < b′. Moreover,
since −a = (−1)a and −b = (−1)b by Lemma B.1.8, we see that

a′b = (−a)b = (−1)(ab) = a(−1)(b) = a(−b) = ab′.

Hence (a′, b′) ∼Z (a, b) so [(a, b)] = [(a′, b′)] as desired.
Therefore, as the above two cases cover all possibilities, the result follows.
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When constructing the partial order on Q, by Lemma B.2.10 we only
need consider elements [(a, b)] ∈ Q with b > 0. This enables us to greatly
simplify the definition of the partial ordering.

With the above technical details out of the way, we can turn our attention
to defining the partial ordering on Q. Clearly if (a, b) represents a

b , we want
to define (a1, b1) ≤ (a2, b2) so that a1

b1
≤ a2

b2
. Thinking of how we want the

order on Q to behave and by assuming b1, b2 > 0, we can reduce this to the
equivalent characterization a1b2 ≤ a− 2b1 which only the ordering on Z. As
with addition and multiplication, the only possible problem with this is that
the rational numbers have been constructed as a set of equivalence classes.
This means that there are more than one representative for each equivalence
class. Therefore, to make sure that we have a well-defined definition for the
partial ordering that we can use without worrying whether it depends on
the representative of the equivalence class, we prove the following.

Lemma B.2.11. Let (a1, b1), (a2, b2), (a′
1, b

′
1), (a′

1, b
′
2) ∈ XQ be such that

b1, b2, b
′
1, b

′
2 > 0, (a1, b1) ∼Q (a′

1, b
′
1), and (a2, b2) ∼Q (a′

2, b
′
2). Then a1b2 ≤

a2b1 if and only if a′
1b

′
2 ≤ a′

2b
′
1.

Proof. Since (a1, b1) ∼Q (a′
1, b

′
1), and (a2, b2) ∼Q (a′

2, b
′
2), we know that

a1b
′
1 = a′

1b1 and a2b
′
2 = a′

2b2. Note by the properties of the ordering of the
integers, we have by the same proof of Lemma 1.2.18 that if a, b, c ∈ Z are
such that b ≥ 0 then a ≤ c if and only if ab ≤ cb. Therefore, we have that

a1b2 ≤ a2b1 if and only if
(a1b2)(b′

1b
′
2) ≤ (a2b1)(b′

1b
′
2) if and only if

(a1b
′
1)(b2b

′
2) ≤ (b1b

′
1)(a2b

′
2) if and only if

(a′
1b1)(b2b

′
2) ≤ (b1b

′
1)(a′

2b2) if and only if
(b1b2)(a′

1b
′
2) ≤ (b1b2)(a′

2b
′
1) if and only if

a′
1b

′
2 ≤ a′

2b
′
1

as desired.

Using Lemmata B.2.10 and B.2.11, the following relation on Q is well-
defined.

Definition B.2.12. The relation of ≤ in Q is defined for all [(a1, b1)], [(a2, b2)] ∈
Q with b1, b2 > 0 by [(a1, b1)] ≤ [(a2, b2)] if and only if a1b2 ≤ a2b1.

Of course it is necessary to prove that Definition B.2.12 does yield a
partial ordering.

Lemma B.2.13. The relation of ≤ on Q is a partial ordering on Q. That
is, for all [(a1, b1)], [(a2, b2)], [(a3, b3)] ∈ Q with b1, b2, b3 > 0,

a) (Reflexivity) [(a1, b1)] ≤ [(a1, b1)].

©For use through and only available at pskoufra.info.yorku.ca.



236 APPENDIX B. CONSTRUCTING NUMBER SYSTEMS

b) (Antisymmetry) If [(a1, b1)] ≤ [(a2, b2)] and [(a2, b2)] ≤ [(a1, b1)], then
[(a1, b1)] = [(a2, b2)].

c) (Transitivity) If [(a1, b1)] ≤ [(a2, b2)] and [(a2, b2)] ≤ [(a3, b3)], then
[(a1, b1)] ≤ [(a3, b3)].

Proof. a) To see that [(a1, b1)] ≤ [(a1, b1)], notice that a1b1 ≤ a1b1 and thus
[(a1, b1)] ≤ [(a1, b1)] by definition.

b) Assume that [(a1, b1)] ≤ [(a2, b2)] and [(a2, b2)] ≤ [(a1, b1)]. Therefore
a1b2 ≤ a2b1 and a2b1 ≤ a1b2. Therefore, by the properties of ≤ on Q, a1b2 =
a2b1. Thus (a1, b1) ∼Q (a2, b2) by definition so that [(a1, b1)] = [(a2, b2)] as
desired.

c) Assume that [(a1, b1)] ≤ [(a2, b2)] and [(a2, b2)] ≤ [(a3, b3)]. Therefore
a1b2 ≤ a2b1 and a2b3 ≤ a3b2. Recall by the properties of the ordering of the
integers, we have by the same proof of Lemma 1.2.18 that if a, b, c ∈ Z are
such that b ≥ 0 then a ≤ c if and only if ab ≤ cb. Therefore

(a1b3)b2 = (a1b2)b3

≤ (a2b1)b3

= (a2b3)b1

≤ (a3b2)b1

= (a3b1)b2

and thus a1b3 ≤ a3b1. Hence [(a1, b1)] ≤ [(a3, b3)] as desired.

Since we will want to show that the ordering on the real numbers is a
total ordering with the additive and multiplicative properties, it is important
for us to prove the following as a first step.

Lemma B.2.14. The partial ordering ≤ on Q has the following additional
properties:

a) ≤ is a total ordering; that is, if [(a1, b1)], [(a2, b2)] ∈ Q with b1, b2 > 0,
then [(a1, b1)] ≤ [(a2, b2)] or [(a2, b2)] ≤ [(a1, b1)].

b) ≤ has the additive property; that is, if [(a1, b1)], [(a2, b2)], [(a3, b3)] ∈ Q
with b1, b2, b3 > 0 and [(a1, b1)] ≤ [(a2, b2)] then [(a1, b1)] + [(a3, b3)] ≤
[(a2, b2)] + [(a3, b3)].

c) ≤ has the multiplicative property; that is, if [(a1, b1)], [(a2, b2)] ∈ Q with
b1, b2 > 0 are such that 0 ≤ [(a1, b1)] and 0 ≤ [(a2, b2)], then 0 ≤ [(a1, b1)] ·
[(a2, b2)].

Proof. a) To see that ≤ is a total ordering, let [(a1, b1)], [(a2, b2)] ∈ Q with
b1, b2 > 0 be arbitrary. Since the ordering on Z is a total ordering, we
know that a1b2 ≤ a2b1 or a2b1 ≤ a1b2. Hence [(a1, b1)] ≤ [(a2, b2)] or
[(a2, b2)] ≤ [(a1, b1)] as desired.
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b) Assume [(a1, b1)], [(a2, b2)], [(a3, b3)] ∈ Q with b1, b2, b3 > 0 are such
that [(a1, b1)] ≤ [(a2, b2)]. To see that [(a1, b1)] + [(a3, b3)] ≤ [(a2, b2)] +
[(a3, b3)], note [(a1, b1)] ≤ [(a2, b2)] implies that a1b2 ≤ a2b1. Therefore, since
the ordering on Z has both the additive and multiplicative properties, we
have by the same proof of Lemma 1.2.18 that if a, b, c ∈ Z are such that
b ≥ 0 then a ≤ c if and only if ab ≤ cb and that

(a1b3 + a3b1)b2b3 = (a1b2)b2
3 + a3b1b2b3

≤ (a2b1)b2
3 + a3b1b2b3

= (a2b3 + a3b2)(b1b3).

Hence

[(a1, b1)] + [(a3, b3)] = [(a1b3 + a3b1, b1b3)]
≤ [(a2b3 + a3b2, b2b3)]
= [(a2, b2)] + [(a3, b3)]

as desired.
c) Assume [(a1, b1)], [(a2, b2)] ∈ Q with b1, b2 > 0 are such that 0 ≤

[(a1, b1)] and 0 ≤ [(a2, b2)]. Since 0 = [(0, 1)], this implies that 0b1 ≤ a1(1)
and 0b2 ≤ a2(1) so that 0 ≤ a1 and 0 ≤ a2. Therefore 0 ≤ a1a2 by the
multiplicative property of the ordering on Z. Therefore 0(b1b2) = 0 ≤
a1a2 = (a1a2)(1) so that 0 = [(0, 1)] ≤ [(a1a2, b1b2)] = [(a1, b1)] · [(a2, b2)] as
desired.

In particular, we have now proved the following.

Corollary B.2.15. The rational numbers Q with the operations + and ·
and the total ordering ≤ are a total ordered field.

Proof. This follows immediately from Theorem B.2.5 and Lemmata B.2.13,
and B.2.14

In particular, Q has all of the properties we want R to have except for
the Least Upper Bound Property. These properties will be quite useful in
Sections B.3 and B.4 which construct the real numbers in two different ways.

To conclude this section, it is useful to note that the rational numbers are
indeed an extension of the integers. After all, because of the way we defined
the rational numbers as equivalence relations of pairs of integers, this is by
no means clear. However, there is a natural way the integers embed into the
rational numbers. Of course, since n

1 = n, we should be able to represent n
as [(n, 1)] for all n ∈ Z.

Lemma B.2.16. There exists a map f : Z → Q such that

• f is injective,
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• f(0) is the additive unit of Q,

• f(1) is the multiplicative unit of Q,

• f(n+m) = f(n) + f(m) for all n,m ∈ Z,

• f(nm) = f(n)f(m) for all n,m ∈ Z, and

• for n,m ∈ N, n < m if and only if f(n) < f(m).

Proof. Define f : Z → Q by

f(n) = [(n, 1)]

for all n ∈ Z. We claim that f is the map we are looking for.
To see that f is injective, assume n,m ∈ Z are such that f(n) = f(m).

Therefore [(n, 1)] = [(m, 1)] so that (n, 1) ∼Q (m, 1) and thus n(1) = m(1)
so n = m. Therefore, as n and m were arbitrary, f is injective.

Clearly f(0) = [(0, 1)] is the additive unit of Q and f(1) = [(1, 1)] is the
multiplicative unit of Q.

Next, assume n,m ∈ Z. Then

f(n) + f(m) = [(n, 1)] + [(m, 1)] = [(n(1) +m(1), 1(1))] = [(n+m, 1)] = f(n+m)

as desired. Moreover

f(n) · f(m) = [(n, 1)] · [(1, 1)] = [(nm, 1(1))] = [(nm, 1)] = f(nm)

as desired.
Finally, for n,m ∈ N, we notice that

f(n) ≤ f(m) if and only if
[(n, 1)] ≤ [(m, 1)] if and only if
n(1) ≤ m(1) if and only if
n ≤ m

as desired.
Hence f has all of the desired properties so Z naturally lies inside of

Q.

B.3 Real Numbers via Dedekind Cuts

With the construction of the rational numbers complete, we turn to the first
of two ways we will construct the real numbers. By Section B.2, we know the
rational numbers have all the necessary properties required in this section.
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The idea of the construction this first construction is that each real
number α should be uniquely identified by the set

{q ∈ Q | q < α}.

Consequently, we will construct the real numbers by taking the collection of
subsets of the rational numbers with certain properties that the above set has.
The real challenge (and pain in the ...) is to define the operations of addition
and multiplication on these sets in order to obtain that the real numbers are
a field. It turns out that this approach makes demonstrating that the real
numbers are totally ordered with the Least Upper Bound Property quite
easy. In addition, one needs just mathematical logic and properties of sets
to complete this construction.

To begin, we define the type of sets we will be working with in this
section.

Definition B.3.1. A Dedekind cut of Q is any subset A ⊆ Q that has all of
the following four properties:

• A ̸= ∅,

• A ̸= Q,

• A is downward closed; that is, if a ∈ A and q ∈ Q are such that q ≤ a,
then q ∈ A, and

• no element of A is an upper bound for A; that is, if a ∈ A there exists
a q ∈ A such that a < q.

One fact that will be useful in the arguments to come is that the comple-
ment of a Dedekind cut is upward closed as the following result shows.

Lemma B.3.2. Let A be a Dedekind cut of Q and let q ∈ Q \A. If r ∈ Q
and r > q, then r /∈ A.

Proof. Let A be a Dedekind cut of Q and let q ∈ Q \A. To see the desired
result, let r ∈ Q be such that r > q. To see that r /∈ A, suppose for the sake
of a contradiction that r ∈ A. Since q < r and since A is a Dedekind cut
and thus downward closed, this implies that q ∈ A. Since this contradicts
the fact that x ∈ Q \A, we have a contradiction. Hence r /∈ A as desired.

We are finally ready to provide our first definition of the real numbers!
Throughout this section, we will be using lower case letters for elements of
Q and upper case letters for subsets of Q. Therefore, since the following
defines the real numbers to be certain subsets of Q, the elements of the real
numbers will be denoted by capital letters in this section.
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Definition B.3.3. The real numbers , denoted R, is the set

R = {A ⊆ Q | A is a Dedekind cut of Q}.

Although the operations of addition and multiplication on R are by no
means clear, the partial ordering ≤ on R is quite easy to define.

Definition B.3.4. For A,B ∈ R, we define A ≤ B if A ⊆ B.

It is elementary to see that ≤ is a partial ordering on R (see Example
1.2.10). In fact, proving ≤ is a total ordering on R is fairly straightforward.

Lemma B.3.5. The partial ordering ≤ on R is a total ordering.

Proof. To see that ≤ is a total order, suppose for the sake of a contradiction
that ≤ is not a total ordering. Therefore there exists A,B ∈ R such that
A ≰ B and B ≰ A. Hence A ⊈ B and B ⊈ A. Therefore there exists a ∈ A
and b ∈ B such that a /∈ B and b /∈ A. As clearly these conditions imply
a ̸= b, we divide the proof into two cases:

Case 1: a < b. Since a /∈ B, a ∈ Q \ B. Therefore, since b > a in this
case, Lemma B.3.2 implies that b /∈ B. Since this contradicts the fact that
b ∈ B, we have a contradiction in this case.

Case 2: b < a. Since b /∈ A, b ∈ Q \A. Therefore, since a > b in this case,
Lemma B.3.2 implies that a /∈ A. Since this contradicts the fact that a ∈ A,
we have a contradiction in this case.

Since the above two cases cover all possibilities, we have a contradiction.
Hence ≤ is a total ordering as desired.

Perhaps more surprisingly considering how difficult determining what
the real numbers are has been, it is quite easy to show that R has the Least
Upper Bound Property.

Theorem B.3.6. The real numbers have the Least Upper Bound Property;
that is, every non-empty subset of R that is bounded above has a least upper
bound with respect to ≤.

Proof. Let X be a non-empty subset of R that is bounded above. To see
that X has a least upper bound, consider the set

L =
⋃

A∈X
A.

Since A ⊆ Q for all A ∈ X , it follows that L ⊆ Q.
We claim that L ∈ R. To prove this, we will show that L is a Dededkind

cut by showing that L has the defining four properties of a Dedekind cut
from Definition B.3.1.

L ̸= ∅. To see that L ̸= ∅, notice since X is non-empty there exists an
A ∈ X . Since A is a Dedekind cut, we know that A ̸= ∅. Therefore, there
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exists an a ∈ A. By the construction of L, we see that a ∈ A ⊆ L. Hence
L ̸= ∅ as desired.

L ̸= Q. To see that L ̸= Q, recall that X is bounded above so there exists
a B ∈ R such that A ≤ B for all A ∈ X . Since B is a Dedekind cut, B ̸= Q
so there exists a b ∈ Q \ B. Since A ≤ B and thus A ⊆ B for all A ∈ X ,
we see that b /∈ A for all A ∈ X . Therefore b /∈ L by the construction of L.
Hence L ̸= Q as desired.

L is downward closed. To see that L is downward closed, assume y ∈ L
and q ∈ Q are such that q ≤ y. Since y ∈ L, the construction of L implies
there exists an A ∈ X such that y ∈ A. Since A is a Dedekind cut, A is
downward closed. Hence y ∈ A and q ≤ y implies that q ∈ A ⊆ L as desired.
Hence L is downward closed as desired.

No element of L is an upper bound for L. To see this, suppose for the
sake of a contradiction that there exists an q ∈ L such that q is an upper
bound for L. By the construction of L, there exists an A ∈ X such that
q ∈ A. Since A ⊆ L and y ≤ q for all y ∈ L, it follows that a ≤ q for all
a ∈ A. Hence q is an upper bound for A in Q that is in A. However, since
A is a Dedekind cut, we have a contradiction. Hence no element of L is an
upper bound of L as desired.

Therefore L is a Dedekind cut by Definition B.3.1 so L ∈ R. Moreover, it
is clear by the construction of L that A ⊆ L and thus A ≤ L for all A ∈ X .
Hence L is an upper bound for X .

We claim that L is the least upper bound for X . To see this, let B ∈ R be
an arbitrary upper bound for X . Therefore A ≤ B so A ⊆ B for all A ∈ X .
Hence, by the construction of L, we have that L ⊆ B so L ≤ B. Therefore,
since B was arbitrary, L is a least upper bound for X . Hence X has a least
upper bound as desired.

To demonstrate that R is a field, we must define the addition and
multiplication operations on R. Luckily addition is not too bad as there
is a natural way to add two subsets of Q together. Of course, to have a
well-defined operation on R, we need to ensure that adding two Dedekind
cuts together produces a Dedekind cut.

Lemma B.3.7. If A and B are Dedekind cuts of Q, then

X = {a+ b | a ∈ A and b ∈ B}

is a Dedekind cut of Q.

Proof. Let A and B be Dedekind cuts of Q. To see that X is a Dededkind cut,
we will verify the defining four properties of a Dedekind cut from Definition
B.3.1.

X ̸= ∅. To see that X ̸= ∅, recall since A and B are Dedekind cuts that
A ̸= ∅ and B ̸= ∅. Therefore, there exists an a ∈ A and a b ∈ B. Hence
a+ b ∈ X by definition so X ̸= ∅ as desired.
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X ̸= Q. To see that X ̸= Q, recall since A and B are Dedekind cuts that
A ̸= Q and B ≠ Q. Therefore there exists a y ∈ Q \A and a z ∈ Q \B. By
Lemma B.3.2 it follows that a ≤ y for all a ∈ A and b ≤ z for all b ∈ B.
Thus, as y ∈ Q \ A and a z ∈ Q \ B, we have that a < y for all a ∈ A and
b < z for all b ∈ B. Hence a+ b < y + z for all a ∈ A and b ∈ B. Therefore
x < y + z for all x ∈ X so y + z /∈ X. Hence X ̸= Q as desired.

X is downward closed. To see that X is downward closed, assume x ∈ X
and q ∈ Q are such that q ≤ x. By the definition of X there exists an a ∈ A
and a b ∈ B such that x = a + b. Since q ≤ x = a + b, we obtain that
q − b ≤ a. Therefore, since A is a Dedekind cut and thus downward closed,
q − b ∈ A. Hence, with a′ = q − b ∈ A, we have that q = a′ + b ∈ X by
definition. Therefore X is downward closed as desired.

No element of X is an upper bound for X. To see this, suppose for the
sake of a contradiction that there exists an q ∈ X such that q is an upper
bound for X. By the definition of X there exists an a′ ∈ A and a b′ ∈ B
such that q = a′ + b′. Since x ≤ q for all x ∈ X, it follows that a+ b ≤ a′ + b′

for all a ∈ A and b ∈ B. Thus, since a′ ∈ A, a′ + b ≤ a′ + b′ for all b ∈ B
so b ≤ b′ for all b ∈ B. Therefore b′ is an upper bound for B in Q such that
b′ ∈ B. However, since B is a Dedekind cut, we have a contradiction. Hence
no element of X is an upper bound of X as desired.

Therefore X is a Dedekind cut by Definition B.3.1.

By Lemma B.3.7, the following addition operation on R is well-defined.

Definition B.3.8. The operation + is define on R by

A+B = {a+ b | a ∈ A and b ∈ B}

for all A,B ∈ R.

Before we demonstrate that the addition operation on R has the desired
field properties, we note that ≤ has the additive property as we desire.

Lemma B.3.9. The total ordering ≤ on R has the additive property. That
is, if A,B,C ∈ R are such that A ≤ B, then A+ C ≤ B + C.

Proof. Assume A,B,C ∈ R are such that A ≤ B. Hence A ⊆ B. Therefore

A+ C = {a+ c | a ∈ A and c ∈ C}
⊆ {b+ c | b ∈ B and c ∈ C}
= B + C

so A+ C ≤ B + C by definition as desired.

Returning to showing that R is a field, we note that three of the four
defining field properties that depend only on addition hold without much
difficulty.
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Lemma B.3.10. The addition operator on the real numbers R has the
following properties:

a) (Commutativity of +) A+B = B +A for all A,B ∈ R.

b) (Associativity of +) (A+B) + C = A+ (B + C) for all A,B,C ∈ R.

c) (Additive Unit) If O = {q ∈ Q | q < 0}, then O ∈ R and O +A = A for
all A ∈ R.

Proof. a) Notice that

A+B = {a+ b | a ∈ A and b ∈ B}
= {b+ a | b ∈ B and a ∈ B}
= B +A

as desired.
b) Notice that

(A+B) + C = {a+ b | a ∈ A and b ∈ B} + C

= {(a+ b) + c | (a ∈ A and b ∈ B) and c ∈ C}
= {a+ (b+ c) | a ∈ A and (b ∈ B and c ∈ C)}
= A+ {b+ c | b ∈ B and c ∈ C}
= A+ (B + C)

as desired.
c) To begin, to show that O ∈ R we must show that O is a Dedekind cut.

Clearly O ̸= ∅ and O ̸= Q by construction.
To see that O is downward closed let q ∈ Q and r ∈ O be such that q ≤ r.

Since r ∈ O, we have that r < 0. Hence q ≤ r < 0 so q < 0. Thus q ∈ O as
desired.

To see that O does not contain any of its upper bounds, suppose for the
sake of a contradiction that there exists a q ∈ O such that r ≤ q for all r ∈ O.
Since q ∈ O, we know that q < 0. Therefore 1

2q < 0 so 1
2q ∈ O. However

since q < 0 and since 1
2q ≰ q, we have a contradiction to the fact that r ≤ q

for all r ∈ O. Hence O does not contain any of its upper bounds. Hence O
is a Dedekind cut by Definition B.3.1 so O ∈ R.

To complete the proof, let A ∈ R be arbitrary. To see that O +A = A,
we will demonstrate that O +A ⊆ A and A ⊆ O +A.

To see that O +A ⊆ A, let x ∈ O +A be arbitrary. Hence there exists
a q ∈ O and an a ∈ A such that x = q + a. Since q ∈ O, we know that
q < 0 so x = q + a < a. Therefore, since A is a Dedekind cut and thus
downward closed, this implies that x ∈ A. Hence, since x ∈ O + A was
arbitrary, O +A ⊆ A.
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To see that A ⊆ O + A, let a ∈ A be arbitrary. Since A is a Dedekind
cut, a is not an upper bound for A so there exists an a′ ∈ A such that a < a′.
Therefore q = a−a′ < 0 so q ∈ O. Since a = q+a′, we obtain that a ∈ O+A
by definition. Hence, since a ∈ A was arbitrary, A ⊆ O +A.

Hence O ∈ R and O +A = A as desired.

Remark B.3.11. For clarification, we will use O = {q ∈ Q | q < 0} for the
additive unit (i.e. zero element) for R throughout this section whereas we
will reserve 0 for the zero element of Q.

The remaining field property depending only on addition is to show that
every element of R has an additive inverse. This turns out to be a non-trivial
task. Before we proceed with this task, we will prove the following result for
latter use. Note the proof of this result only requires the field properties we
have already demonstrated.

Corollary B.3.12. If X ∈ R is such that A+X = A for all A ∈ R, then
X = O.

Proof. Assume X ∈ R is such that A+X = A for all A ∈ R. Then

X = X +O by Lemma B.3.10, part c)
= O +X by Lemma B.3.10, part a)
= O by assumption

as desired.

In order to prove that every element of R has an additive inverse, we will
require the following technical result that states if we have a Dedekind cut
A, there are elements of A and Q \A that are as close together as we want.

Lemma B.3.13. Let A ∈ R, let a ∈ A, and let ϵ ∈ Q be such that ϵ > 0.
Then there exists an a′ ∈ A and a δ ∈ Q such that a′ + δ ∈ Q \ A, a ≤ a′,
and 0 < δ < ϵ.

Proof. To begin, recall since A is a Dedekind cut that A ̸= Q. Therefore
there exists a b1 ∈ Q \ A. Let a1 = a. Since A is a Dedekind cut and thus
downward closed, b1 > a1. Therefore if δ1 = b1 − a1 ∈ Q, then δ1 > 0.

Let c1 = 1
2(a1 + b1). Notice that c1 ∈ A or c1 ∈ Q \ A. If c1 ∈ A, let

a2 = c1 ∈ A and let b2 = b1 ∈ Q \ A, and if c1 ∈ Q \ A, let a2 = a1 ∈ A
and let b2 = c1 ∈ Q \ A. Thus a2 ∈ A, b2 ∈ B, and a ≤ a2. Moreover, if
δ2 = b2 − a2 = 1

2δ1 ∈ Q, then δ2 > 0.
By repeating the above recursively, we obtain a sequence (an)n≥ of

elements of of A, a sequence (bn)n≥1 of elements of Q \ A, and a sequence
(δn)n≥1 of elements of Q such that a ≤ an for all n ∈ N and δn = bn − an =

1
2n−1 δ1 > 0 for all n ∈ N.
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Since ϵ, δ1 ∈ Q and ϵ, δ1 > 0, there exists m, k, ℓ, d ∈ N such that ϵ = k
m

and δ1 = ℓ
d . Notice, for n ∈ N, 1

2n−1 δ1 < ϵ if and only if mℓ < 2n−1kd.
Moreover, since mℓ ∈ N, there exists an N ∈ N such that mℓ < 2N−1

and thus mℓ < 2N1kd by Peano’s Axioms (Definition 1.1.1). Hence, with
a′ = aN ∈ A and δ = 1

2N−1 δ1 ∈ Q, we see that a′ ∈ A, a′ + δ = bN ∈ Q \ A,
a ≤ a′, and 0 < δ < ϵ as desired.

To demonstrate that every element of R has an additive inverse, consider
a Dedekind cut A. Our goal is to find a Dedekind cut B such that A+B = O.
In particular, we want B to have exactly the elements that yield a number
less than 0 when added to an element of A. Since elements of Q \ A are
upper bounds for A, the following turns out to be the correct set to consider.

Lemma B.3.14. Let A ∈ R. If

X = {q − r | r ∈ Q \A, q ∈ Q, and q < 0},

then X ∈ R and A+X = O.
Hence X is the additive inverse of A so every element of R has an additive

inverse.

Proof. To see that X ∈ R, we will show that X is a Dededkind cut by verify
the defining four properties of a Dedekind cut from Definition B.3.1.

X ̸= ∅. To see that X ̸= ∅, recall since A is a Dedekind cut that A ≠ Q.
Therefore, there exists an r ∈ Q \A. Since −1 ∈ Q and −1 < 0, we obtain
that (−1) − r ∈ X by definition so X ̸= ∅ as desired.

X ̸= Q. To see that X ̸= Q, recall since A is a Dedekind cut that A ̸= ∅.
Therefore there exists a a ∈ A. Moreover, since A is a Dedekind cut, A is
downward closed so r > a for all r ∈ Q \ A. Therefore for all q ∈ Q with
q < 0 and for all r ∈ Q \A, we have that

q − r < q − a < −a.

Hence, by the definition of X, we have that x < −a for all x ∈ X. Therefore
−a /∈ X so X ̸= Q as desired.

X is downward closed. To see that X is downward closed, assume x ∈ X
and q ∈ Q are such that q ≤ x. By the definition of X there exists a r ∈ Q\A
and a q′ ∈ Q such that q < 0 and x = q′ − r. Since q ≤ x = q′ − r, we obtain
that r ≤ q′ + q. Therefore, since A is a Dedekind cut, Lemma B.3.2 implies
that q′ + q ∈ Q \ A. Hence there exists an r′ ∈ Q \ A so that r′ = q′ + q.
Therefore q = q′ − r′ with r′ ∈ Q \ A and q′ ∈ Q with q′ < 0 so q ∈ X as
desired.

No element of X is an upper bound for X. To see this, suppose for the
sake of a contradiction that there exists an y ∈ X such that y is an upper
bound for X. By the definition of X there exists an r′ ∈ Q \A and a q′ ∈ Q
such that q′ < 0 and y = q′ − r′. Since x ≤ q′ − r′ for all x ∈ X, it follows
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that q − r ≤ q′ − r′ for all r ∈ Q \ A and q ∈ Q with q < 0. Thus, since
r′ ∈ Q \ A, it follows that q − r′ ≤ q′ − r′ for all q ∈ Q with q < 0 so that
q ≤ q′ for all q ∈ Q with q < 0. Therefore, since q′ < 0, see that if q = 1

2q
′,

then q ∈ Q, q < 0, but q > q′. Hence we have a contradiction. Therefore no
element of X is an upper bound of X as desired.

Hence X is a Dedekind cut by Definition B.3.1 so X ∈ R. To see that
A+X = O, we will demonstrate that A+X ⊆ O and O ⊆ A+X.

To see that A+X ⊆ O, let z ∈ A+X be arbitrary. Hence there exists a
q ∈ O and an r ∈ Q \A such that x = q − r and there exists an a ∈ A such
that z = a + x = a + q − r. Since a ∈ A, since r ∈ Q \ A, and since A is
a Dedekind cut and thus downward closed, we have that a < r. Therefore,
since q ∈ O so that q < 0, we have that

z = q + (a− r) < 0 + 0 = 0

and thus z ∈ O. Hence, since z ∈ X +A was arbitrary, X +A ⊆ O.
To see that O ⊆ A+X, let z ∈ O be arbitrary. Thus z < 0 so if ϵ = −1

2z,
then ϵ > 0. Since is a Dedekind cut and thus A ̸= ∅, Lemma B.3.13 implies
that there exists an a′ ∈ A and a δ ∈ Q such that a′ +δ ∈ Q\A and 0 < δ < ϵ.
Let r = a′ + δ ∈ Q \A. Notice that

z + r − a′ < z + δ < z + ϵ = 1
2z < 0.

Therefore, if q = z + r − a′ ∈ Q, then q < 0 so q ∈ O. Moreover, we see that

z = q − (r − a′) = a′ + (q − r) ∈ A+X

as desired. Therefore, since z ∈ O was arbitrary, O ⊆ A+X.
Hence X ∈ R and A+X = O as desired.

Remark B.3.15. By Lemma B.3.14, we know that if A ∈ R, then −A, the
additive inverse of A, is the set

−A = {q − r | r ∈ Q \A, q ∈ Q, and q < 0}.

It is important to know that this is different that what one might consider
−A in the remainder of the course. Specially, if c ∈ Q and A ⊆ Q, one
normally defines

cA = {ca | a ∈ A}.

So, in this context, −A (the additive inverse of A) is not (−1)A (multiplying
elements of the set A by −1).

Before we proceed to define the multiplication operation on R, we note
the following properties of the additive inverse we will require. Note the proof
of this result only requires the field properties we have already demonstrated.
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Corollary B.3.16. The following properties of the additive inverse hold:

a) If A ∈ R and X ∈ R is such that A+X = O, then X = −A.

b) For all A ∈ R, −(−A) = A.

c) For all A,B ∈ R, −(A+B) = (−A) + (−B).

Proof. a) Notice that

X = X +O by Lemma B.3.10, part c)
= X + (A+ (−A)) by Lemma B.3.14
= (X +A) + (−A) by Lemma B.3.10, part b)
= (A+X) + (−A) by Lemma B.3.10, part a)
= O + (−A) by assumption
= (−A) +O by Lemma B.3.10, part a)
= −A by Lemma B.3.10, part c)

as desired.
b) Notice by Lemma B.3.10, part c) that

O = A+ (−A) = (−A) +A.

Hence A = −(−A) by part a) of this proof.
c) Notice by using Lemma B.3.10 parts a) and b) multiple times that

(A+B) + ((−A) + (−B)) = (A+ (−A)) + (B + (−B)) = O +O = O.

Hence −(A+B) = (−A) + (−B) by part a) of this proof.

To define the multiplication operator on R and demonstrate it has the
desired properties if highly non-trivial and technical. Given A,B ∈ R, one
may simply want to multiply all the elements of A by all the elements of B
together to get A ·B. However, this clearly does not work since A and B are
Dedekind cuts and thus contain very negative numbers that when multiplied
together give very large positive numbers.

To proceed, we first begin with the case that O ≤ A and O ≤ B so that
either A = O, B = O, or A and B have positive numbers. In the latter case,
we simply need to include the products of these positive numbers and add in
all the negative numbers.

Lemma B.3.17. Let A,B ∈ R be such that O ≤ A and O ≤ B. If

X = {ab | a ∈ A, b ∈ B, and a, b ≥ 0} ∪ {q ∈ Q | q < 0},

then X ∈ R.
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Proof. Let A and B be Dedekind cuts of Q such that O ≤ A and O ≤ B.
Hence O ⊆ A ∩B so if q ∈ Q and q < 0 then q ∈ A ∩B.

To see that X is a Dededkind cut, we will verify the defining four
properties of a Dedekind cut from Definition B.3.1.

X ̸= ∅. To see that X ̸= ∅, note −1 ∈ X by construction. Hence X ̸= ∅
as desired.

X ̸= Q. To see that X ̸= Q, recall since A and B are Dedekind cuts that
A ̸= Q and B ̸= Q. Therefore there exists a y ∈ Q \ A and a z ∈ Q \ B.
Moreover, since A and B are Dedekind cuts and O ⊆ A ∩B, it follows that
y ≥ 0 and z ≥ 0. Since y + 1 > y and z + 1 > z, we have by Lemma B.3.2
that y′ = y + 1 and z′ = z + 1 are such that y′ ∈ Q \ A, z′ ∈ Q \ B, and
y′, z′ ≥ 1.

We claim that yz /∈ X. To see this, note for all a ∈ A and b ∈ B such
that a ≥ 0 and b ≥ 0 that a < y and b < z by Lemma B.3.2 and thus
ab ≤ az′ < y′z′. Therefore, since y′z′ > 0, we obtain that yz /∈ X. Hence
X ̸= Q as desired.

X is downward closed. To see that X is downward closed, assume x ∈ X
and q ∈ Q are such that q ≤ x. Clearly if q < 0 then q ∈ X by construction.
Therefore, we may assume without loss of generality that q ≥ 0. Hence, by
considering the elements of X, there must exists a ∈ A and b ∈ B such that
a ≥ 0, b ≥ 0, and q ≤ ab. At this point, we need to divide the proof into two
cases.

Case 1: q = 0. Since a ∈ A and b ∈ B such that a ≥ 0 and b ≥ 0, and
since A and B are Dedekind cuts and thus downward closed, 0 ∈ A ∩ B.
Hence q = 0 = 0(0) ∈ X as desired.

Case 2: q > 0. Since a ≥ 0, b ≥ 0, and q ≤ ab, it follows that a > 0 and
b > 0. Therefore have that 0 < q

b ≤ a. Therefore, since A is a Dedekind
cut and thus downward closed, there exists an a′ ∈ A such that a′ = q

b > 0.
Hence q = a′b where a′ ∈ A and b ∈ B are such that a′ > 0 and b′ > 0.
Hence q ∈ X.

Therefore, as we have covered all possible cases, X is downward closed
as desired.

No element of X is an upper bound for X. To see this, suppose for the
sake of a contradiction that there exists an y ∈ X such that y is an upper
bound for X. To obtain our contradiction, we will divide the proof into three
cases.

Case 1: y < 0. Assume y < 0. Let q = 1
2y. Clearly q < 0 so q ∈ X.

However, since y < q < 0, we have a contradiction to the fact that y is an
upper bound for X.

Case 2: y > 0. Assume y > 0. By the description of X, it follows that
y = ab for some a ∈ A and b ∈ B with a ≥ 0 and b ≥ 0. Since y > 0, it
follows that a > 0 and b > 0. Since A and B are Dedekind cuts and thus
contain none of their upper bounds, it follows that a and b are not upper
bounds for A and B respectively. Hence there exists a′ ∈ A and b′ ∈ B with
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a′ > a and b′ > b. Therefore a′b′ ∈ X and yab < a′b′, which contradicts the
fact that y is an upper bound for X.

Case 3: y = 0. Assume y = 0. By the description of X, it follows that
y = ab for some a ∈ A and b ∈ B with a ≥ 0, b ≥ 0, and either a = 0 or
b = 0. Since A and B are Dedekind cuts and thus contain none of their
upper bounds, by the same idea as used in Case 2 it follows that there exists
a′ ∈ A and b ∈ B with a′, b′ > 0. Therefore a′b′ ∈ X and y = 0 < a′b′, which
contradicts the fact that y is an upper bound for X.

Therefore, as we have covered all possible cases, we have obtained our
contradiction. Hence no element of X is an upper bound of X as desired.

Therefore X is a Dedekind cut by Definition B.3.1.

Given A,B ∈ R, we are now ready to define A ·B based on whether A
and B are individually larger or smaller than zero. Note in the following
we have included overlapping cases as it will ease future arguments in this
section. Note the overlapping cases in this definition occur when A = O or
B = O. Since in Lemma B.3.17 one can see that if A = O or B = O then
X = O, and since O = −O by Corollary B.3.16, in all of the overlapping
cases one obtains A ·B = O.

Definition B.3.18. The operation · on R is defined as follows: for A,B ∈ R,

(I) if O ≤ A and O ≤ B, then

A ·B = {ab | a ∈ A, b ∈ B, and a, b ≥ 0} ∪ {q ∈ Q | q < 0}

(II) If O ≤ A and B ≤ O, then A ·B is defined to be −(A · (−B)) via (I).

(III) If A ≤ O and O ≤ B, then A ·B is defined to be −((−A) ·B) via (I).

(IV) If A ≤ O and B ≤ O, then A ·B is defined to be (−A) · (−B) via (I).

Now that the multiplication operation on R has been defined, we need
only verify the remaining properties to ensure that R is a totally ordered
field. However, this is by far the most incredibly technical thing in this notes
and astonishingly annoying. The only nice thing is that the multiplicative
property of ≤ is quite simple.

Lemma B.3.19. The total ordering ≤ on R has the multiplicative property.
That is, if A,B ∈ R are such that O ≤ A and O ≤ B, then O ≤ A ·B.

Proof. Assume O ≤ A and O ≤ B. Then, by definition,

A ·B = {ab | a ∈ A, b ∈ B, and a, b > 0} ∪O.

Hence O ⊆ A ·B so O ≤ A ·B as desired.
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We now move onto demonstrating the multiplication operation on R has
the necessary field properties. We begin with commutativity. Luckily this is
not too bad although it involves four case. In general, the proofs that the
multiplication operation on R has the necessary field properties will proceed
by first checking the properties for non-negative elements and then extending
them to all elements using Definition B.3.18.

Lemma B.3.20. The multiplication operator on the real numbers R is
commutative. That is A ·B = B ·A for all A,B ∈ R.

Proof. Let A,B ∈ R. Based on the definition of multiplication in R, we
divide the proof into four cases.

Case 1: O ≤ A and O ≤ B. In this case, we see that

A ·B = {ab | a ∈ A, b ∈ B, and a, b ≥ 0} ∪ {q ∈ Q | q < 0}
= {ba | b ∈ B, a ∈ A, and b, a ≥ 0} ∪ {q ∈ Q | q < 0}
= B ·A

as desired.
Case 2: O ≤ A and B ≤ O. In this case, we see that

A ·B = −(A · (−B))
= −((−B) ·A) by Case 1 as A,−B ≥ O

= B ·A

as desired.
Case 3: A ≤ O and O ≤ B. In this case, we see that

A ·B = −((−A) ·B)
= −(B · (−A)) by Case 1 as −A,B ≥ O

= B ·A

as desired.
Case 4: A ≤ O and B ≤ O. In this case, we see that

A ·B = (−A) · (−B)
= (−B) · (−A) by Case 1 as −A,−B ≥ O

= B ·A

as desired.
Since we have covered all possible cases, the result follows.

Next we move onto associativity. However, since we need to divide the
argument based on when each of the three elements involved are non-negative
or negative, there are 23 = 8 cases. Yes... eight.... In addition, one also
needs to keep careful track of Definition B.3.18 in each of these cases. It is
useful to note that if A ∈ R and O ≤ A, then O + (−A) ≤ A+ (−A) by the
additive property of ≤ (Lemma B.3.9) and thus −A ≤ O.

©For use through and only available at pskoufra.info.yorku.ca.



B.3. REAL NUMBERS VIA DEDEKIND CUTS 251

Lemma B.3.21. The multiplication operator on the real numbers R is
associative. That is (A ·B) · C = A · (B · C) for all A,B,C ∈ R.

Proof. Let A,B,C ∈ R. Based on the definition of multiplication in R, we
need to divide the proof into eight cases.

Case 1: O ≤ A, O ≤ B, O ≤ C. In this case, we see that

(A ·B) · C = ({ab | a ∈ A, b ∈ B, and a, b ≥ 0} ∪ {q ∈ Q | q < 0}) · C
= {(ab)c | a ∈ A, b ∈ B, c ∈ C and a, b, c ≥ 0} ∪ {q ∈ Q | q < 0}
= {a(bc) | a ∈ A, b ∈ B, c ∈ C and a, b, c ≥ 0} ∪ {q ∈ Q | q < 0}
= A · ({bc | b ∈ B, c ∈ C, and b, c ≥ 0} ∪ {q ∈ Q | q < 0})
= A · (B · C)

as desired.
Case 2: O ≤ A, O ≤ B, C ≤ O. In this case, we see that

(A ·B) · C = −((A ·B) · (−C))
= −(A · (B · (−C))) by Case 1
= A · (−(B · (−C)))
= A · (B · C)

as desired.
Case 3: O ≤ A, B ≤ O, O ≤ C. In this case, we see that

(A ·B) · C = (−(A · (−B)) · C
= −((−(−(A · (−B)))) · C)
= −((A · (−B)) · C) by Corollary B.3.16
= −(A · ((−B) · C)) by Case 1
= A · (−((−B) · C))
= A · (B · C)

as desired.
Case 4: O ≤ A, B ≤ O, C ≤ O. In this case, we see that

(A ·B) · C = (−(A · (−B)) · C
= (−(−(A · (−B)))) · (−C)
= (A · (−B)) · (−C) by Corollary B.3.16
= A · ((−B) · (−C)) by Case 1
= A · (B · C)

as desired.
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Case 5: A ≤ O, O ≤ B, O ≤ C. In this case, we see that

(A ·B) · C = (−((−A) ·B)) · C
= −((−(−((−A) ·B)))) · C)
= −(((−A) ·B) · C by Corollary B.3.16
= −((−A) · (B · C) by Case 1
= A · (B · C)

as desired.
Case 6: A ≤ O, O ≤ B, C ≤ O. In this case, we see that

(A ·B) · C = (−((−A) ·B)) · C
= (−(−((−A) ·B))) · (−C)
= ((−A) ·B) · (−C) by Corollary B.3.16
= (−A) · (B · (−C)) by Case 1
= (−A) · (−(−(B · (−C)))) by Corollary B.3.16
= A · (−(B · (−C)))
= A · (B · C)

as desired.
Case 7: A ≤ O, B ≤ O, O ≤ C. In this case, we see that

(A ·B) · C = ((−A) · (−B)) · C
= (−A) · ((−B) · C) by Case 1
= (−A) · (−(−((−B) · C))) by Corollary B.3.16
= A · (−((−B) · C))
= A · (B · C)

as desired.
Case 8: A ≤ O, B ≤ O, C ≤ O. In this case, we see that

(A ·B) · C = ((−A) · (−B)) · C
= −(((−A) · (−B)) · (−C)
= −((−A) · ((−B) · (−C))) by Case 1
= A · ((−B) · (−C))
= A · (B · C)

as desired.
Since we have exhaustively covered all possible cases, the result follows.

Next we move onto obtaining the multiplicative unit for R. Based on the
additive unit in R, the description of the multiplicative unit is not surprising.
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Lemma B.3.22. The multiplication operator on the real numbers R has a
multiplicative unit. That is, if I = {q ∈ Q | q < 1}, then I ∈ R, I ̸= O, and
I ·A = A for all A ∈ R.

Proof. To begin, to show that I ∈ R we must show that I is a Dedekind cut.
Clearly I ≠ ∅ and I ̸= Q by construction. Specifically, 1

2 ∈ I and 1
2 /∈ O so

I ̸= O.
To see that I is downward closed let q ∈ Q and r ∈ I be such that q ≤ r.

Since r ∈ I, we have that r < 1. Hence q ≤ r < 1 so q < 1. Thus q ∈ I as
desired.

To see that I does not contain any of its upper bounds, suppose for the
sake of a contradiction that there exists a q ∈ I such that q is an upper
bound for I. Since q ∈ I, we know that q < 1. Therefore 1+q

2 < 1 so 1+q
2 ∈ I.

However since q < I and since 1+q
2 ≰ q as q < 1, we have a contradiction to

the fact that q is an upper bound for I. Hence I does not contain any of its
upper bounds. Hence I is a Dedekind cut by Definition B.3.1 so I ∈ R.

To complete the proof, let A ∈ R be arbitrary. To see that I ·A = A, we
will divide the proof into two cases.

Case 1: O ≤ A. Assume O ≤ A. Hence

I ·A = {ab | a ∈ A, b ∈ Q, a ≥ 0, 0 ≤ b < 1} ∪ {q ∈ Q | q < 0}.

To see that I ·A = A, we will demonstrate that I ·A ⊆ A and A ⊆ I ·A.
To see that I · A ⊆ A, let x ∈ I · A be arbitrary. If x < 0 then note

since O ≤ A that x ∈ O ⊆ A as desired. Otherwise, by the description of
I · A, there exists an a ∈ A and a b ∈ Q such that a ≥ 0, 0 ≤ b < 1, and
x = ab. Since 0 ≤ b < 1, it follows that x = ab ≤ a. Therefore, since A is
a Dedekind cut and thus downward closed, this implies that x ∈ A. Hence,
since x ∈ I ·A was arbitrary, I ·A ⊆ A.

To see that A ⊆ I ·A, let a ∈ A be arbitrary. If a < 0, then a ∈ I ·A by
definition. Therefore, we may assume without loss of generality that a ≥ 0.
Since A is a Dedekind cut and thus does not contain any of its upper bounds,
a is not an upper bound of A. Therefore, there exists an a′ ∈ A such that
0 ≤ a < a′. Thus b = a

a′ ∈ Q is such that 0 ≤ b < 1 and a = a′b. Hence
a ∈ I ·A as desired. Therefore, since a ∈ A was arbitrary, A ⊆ I ·A.

Therefore I ·A = A in this case.
Case 2: A < O. Assume A < O. Therefore, since O ≤ I, we have that

I ·A = −(I · (−A))
= −(−A) by Case 1
= A by Corollary B.3.16, part b)

as desired.
Therefore, since the above cover all possible case, we obtain that I ∈ R

and I ·A = A as desired.
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Remark B.3.23. For clarification, we will use I = {q ∈ Q | q < 1} for the
multiplicative unit (i.e. one element) for R throughout this section whereas
we will reserve 1 for the unit of Q.

To demonstrate every non-zero element of R has a multiplicative unit, we
will focus on A ∈ R with A > O as the case A < O will follow similar to how
we have been handling such cases. To show that A has a multiplicative inverse,
we need to construct a Dedekind cut X such that A ·X = I. Recalling that
since A > O, we would expect X > O in which case we need only multiply
the non-negative elements of A and X together and add in the negative
elements of Q afterwards. So we want the non-negative elements of X to be
precise the elements of Q that when multiplied by non-negative elements of
A yield exactly the elements of Q between 0 and 1. Since each element of
Q \A is an upper bound of A, the following is the correct set.

Lemma B.3.24. Let A ∈ R be such that O < A. If

X =
{
q

r

∣∣∣∣ r ∈ Q \A, q ∈ Q, q < 1
}
,

then X ∈ R, X > 0, and A ·X = I.
Hence X is the multiplicative inverse of A so every element of R that is

larger than O has an multiplicative inverse.

Proof. Assume A ∈ R is such that O < A. Thus O ⊊ A so A contains a
positive element a0 of Q and contains all negative elements of Q. Therefore,
since A is a Dedekind cut and thus downward closed, we know that if r ∈ Q\A
then 0 < a0 < r. Therefore r ̸= 0 for all r ∈ Q\A so that X is a well-defined
set.

To see that X ∈ R, we will show that X is a Dededkind cut by verify the
defining four properties of a Dedekind cut from Definition B.3.1.

X ̸= ∅. To see that X ̸= ∅, recall since A is a Dedekind cut that A ̸= Q.
Therefore, there exists an r ∈ Q \ A. By the start of this proof, we know
that r > 0. Therefore, 0 ∈ Q and 0 < 1, we obtain that 0

r ∈ X by definition
so X ̸= ∅ as desired.

X ̸= Q. To see that X ̸= Q, recall from the start of this proof that there
exists an a0 ∈ A such that 0 < a0 < r for all r ∈ Q \ A. Therefore, for all
r ∈ Q \A, we have that

q

r
≤ 1
a0
.

Therefore 2
a0
/∈ X so X ̸= Q as desired.

X is downward closed. To see that X is downward closed, assume x ∈ X
and y ∈ Q are such that y ≤ x. By the definition of X there exists a r ∈ Q\A
and a q ∈ Q such that q < 2 and x = q

r . Therefore y ≤ q
r . Recall by start

of this proof that r > 0. Therefore we have that yr ≤ q < 1. Let q′ = yr.
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Therefore q′ ∈ Q, q′ < 1, and y = q′

r where r ∈ Q \A. Hence y ∈ X by the
definition of X as desired.

No element of X is an upper bound for X. To see this, suppose for the
sake of a contradiction that there exists an y ∈ X such that y is an upper
bound for X. By the definition of X there exists an r ∈ Q \A and a q ∈ Q
such that q < 1 and y = q

r . Let q′ = 1+q
2 and let x = q′

r . Then q′ ∈ Q and
q < q′ < 1 so x ∈ X. Moreover, since we know that r > 0 by the start of
this proof, we obtain that

y = q

r
<
q′

r
= x.

Since this contradicts the fact that y was an upper bound for X, we have a
contradiction. Therefore no element of X is an upper bound of X as desired.

Hence X is a Dedekind cut by Definition B.3.1 so X ∈ R.
To see that O < X, note by the proof that X ≠ Q that there exists an

a0 > 0 such that 2
a0

∈ X. Therefore, since 2
a0

/∈ O, and since X ≤ O or
X > O by Lemma B.3.5 so X ⊆ O or O ⊊ X, it follows that O ⊊ X so
O < X.

To see that A ·X = I, first note since A > O and X > O that

A ·X = {ax | a ∈ A, x ∈ X, and a, x ≥ 0} ∪ {q ∈ Q | q < 0}

To see that A ·X = I, we will demonstrate that A ·X ⊆ I and I ⊆ A ·X.
To see that A ·X ⊆ I, let z ∈ A ·X be arbitrary. If z < 0, then z ∈ I by

definition. Therefore, without loss of generality, we may assume that z ≥ 0.
By the definition of A ·X, there exists an a ∈ A and a x ∈ X such that a ≥ 0,
x ≥ 0, and z = ax. By the definition of X, there exists a r ∈ Q \ A and a
q ∈ Q such that q < 1 and x = q

r . Hence z = q a
r . Since A is a Dedekind cut

and thus downward closed, r ∈ Q \ A and a ∈ A imply that a < r. Since
r > 0 by the start of this proof, and since a ≥ 0, we have that 0 ≤ a

r < 1.
Therefore, since q < 1, we obtain that z = q a

r < 1. Hence z ∈ I by the
definition of I. Therefore, since z ∈ A ·X was arbitrary, A ·X ⊆ I.

To see that I ⊆ A · X, let z ∈ I be arbitrary. Hence z < 1. Since
A > O and X > O, there exist a ∈ A and x ∈ X such that a, x > 0. Hence
ax ∈ A ·X. Therefore, since ax > 0 and since A ·X is a Dedekind cut and
thus downward closed, we have that

{q ∈ Q | q ≤ 0} ⊆ A ·X.

Therefore, if z ≤ 0 then z ∈ A · X. Hence we may assume without loss of
generality that 0 < z < 1.

Recall from the start of this proof that there exists an a0 ∈ A such that
0 < a0. Since 0 < z < 1, we have that ϵ = a0

z (1 − z) ∈ Q is well-defined.
Moreover, since 0 < z < 1 and a0 > 0, we have that ϵ > 0.
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By Lemma B.3.13 there exists an a′ ∈ A and a δ ∈ Q such that a+ δ ∈
Q \A, 0 < a0 ≤ a′, and 0 < δ < ϵ. Let r′ = a′ + δ ∈ Q \A. Therefore r′ > 0
and we have that

z
r′

a′ = z
a′ + δ

a′

= z + z
δ

a′

< z + z
ϵ

a0

= z + z

a0
ϵ

= z + z

a0

(
a0
z

(1 − z)
)

= z + (1 − z) = 1.

Therefore q = z r′

a′ ∈ Q is such that 0 < q < 1. Moreover, we have that
z = a′ q

r′ since a′, r′ > 0. Let x = q
r′ so that z = a′x. Since 0 < q < 1,

r′ ∈ Q \ A, and r′ > 0, we have that x ∈ X and x > 0. Therefore, since
z = a′x, a′ ∈ A, x ∈ X, and a′, x > 0, obtain that z ∈ A · X. Therefore,
since z ∈ I was arbitrary, I ⊆ A ·X.

Hence X ∈ R and A ·X = I as desired.

When A ∈ R and A > O, we will use A−1 to denote the multiplicative
inverse of A from Lemma B.3.24. Using this, we can demonstrate that
negative elements of R have multiplicative inverses.

Lemma B.3.25. Let A ∈ R be such that A < O. Then O < −A so if
X = −((−A)−1), then X is a well-defined element of R. Moreover X < O
and A ·X = I.

Hence X is the multiplicative inverse of A so every element of R that is
less than O has an multiplicative inverse.

Proof. Assume A < O. Thus Lemma B.3.9 implies that A+(−A) < O+(−A)
and thus O < −A. Therefore, Lemma B.3.24 implies that (−A)−1 is well-
defined and thus X = −((−A)−1) is well-defined.

To see that X < O, notice since −A > O that (−A)−1 > O by Lemma
B.3.24. Therefore, by applying Lemma B.3.9 again, we obtain that X =
−(−A)−1 < O as desired.

Finally since X < O and A < O, we have that

A ·X = (−A) · (−X) by definition
= (−A) · (−(−((−A)−1)))
= (−A) · (−A)−1 by Lemma B.3.10
= I by Lemma B.3.24

as desired.
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Corollary B.3.26. Every element of R \ {O} has a multiplicative inverse.

Proof. This result immediately follows from Lemmata B.3.24 and B.3.25.

The only remaining property of R that we need to demonstrate is that
addition and multiplication satisfy the distributive property. This is a colossal
pain. Indeed, given A,B,C ∈ R, we desire to prove an equation involving
A · (B + C), A · B, and A · C. Since the definition of the multiplication
operation depends on whether the elements are non-negative or non-positive,
this could be a lot of complicated case work. The following lemma will aid
us in bypassing a lot of this casework.

Lemma B.3.27. For all A ∈ R, −A = A · (−I).

Proof. Notice since O ⊆ I that O ≤ I. Therefore Lemma B.3.9 implies that
O + (−I) ≤ I + (−I) and thus −I ≤ O.

Let A ∈ R. To see that −A = A · (−I), we will divide the proof into two
cases.

Case 1: A ≥ O. Notice that

A · (−I) = −(A · (−(−I))) by definition
= −(A · I) by Corollary B.3.16
= −A

as desired.
Case 2: A < O. Notice that

A · (−I) = (−A) · (−(−I)) by definition
= (−A) · I by Corollary B.3.16
= −A

as desired.

Onto the proof of the distributive property.

Lemma B.3.28. The addition and multiplication operations on R are dis-
tributive. That is, if A,B,C ∈ R, then

A · (B + C) = (A ·B) + (A · C).

Proof. Let A,B,C ∈ R. To prove this result, we are required to divide the
proof into several cases.
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Case 1: A ≥ O, B ≥ O, C ≥ O. Since B ≥ O and C ≥ O, we know that
B + C ≥ O. Notice that

A · (B + C)
= A · ({b+ c | b ∈ B, c ∈ C})
= {a(b+ c) | a ∈ A, b ∈ B, c ∈ C, a, b+ c ≥ 0} ∪ {q ∈ Q | q < 0}
= {a(b+ c) | a ∈ A, b ∈ B, c ∈ C, a, b, c ≥ 0}

∪ {a(b+ q) | a ∈ A, b ∈ B, q ∈ Q, a, b ≥ 0, q < 0}
∪ {a(q + c) | a ∈ A, q ∈ Q, c ∈ C, a, c ≥ 0, q < 0}
∪ {q ∈ Q | q < 0}

whereas

(A ·B) + (A · C) = ({ab | a ∈ A, b ∈ B, a, b ≥ 0} ∪ {q ∈ Q | q < 0})
+ ({ac | a ∈ A, c ∈ C, a, c ≥ 0} ∪ {q ∈ Q | q < 0})

= {ab+ ac | a ∈ A, b ∈ B, c ∈ C, a, b, c ≥ 0}
∪ {ab+ q | a ∈ A, b ∈ B, q ∈ Q, a, b ≥ 0, q < 0}
∪ {q + ac | a ∈ A, q ∈ Q, c ∈ C, a, c ≥ 0, q < 0}
∪ {q1 + q2 ∈ Q | q1, q2 < 0}.

If one looks hard enough at these sets and notes the first of the four sets in
each of these two decompositions contains 0, one can observe that these sets
are the same. Hence the result holds in this case.

Case 2: A ≥ O, B < O, C < O. Since B < O and C < O, we know that
B + C < O + C < O +O = O. Therefore

A · (B + C) = −(A · (−(B + C)))
= −(A · ((−B) + (−C))) by Corollary B.3.16
= −((A · (−B)) + (A · (−C))) by Case 1
= (−(A · (−B))) + (−(A · (−C))) by Corollary B.3.16
= (A ·B) + (A · C) by definition

as desired.
Case 3: A ≥ O, B ≥ O, C < O, B + C > 0. Since C < O, Lemma B.3.9

implies that C + (−C) < O + (−C) and thus O < −C. Therefore

(A · (B + C)) + (A · (−C)) = A · ((B + C) + (−C)) by Case 1
= A · (B + (C + (−C)))
= A · (B +O) = A ·B.
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Hence

A · (B + C) = (A · (B + C)) +O

= (A · (B + C)) + ((A · (−C)) + (−(A · (−C)))
= ((A · (B + C)) + (A · (−C))) + (−(A · (−C)))
= (A ·B) + (−(A · (−C)))
= (A ·B) + (A · C)

as desired.
Case 4: A ≥ O, B ≥ O, C < O, B + C < 0. Since B + C < O, Lemma

B.3.9 implies that (B + C) + (−(B + C)) < O + (−(B + C)) and thus
O < −(B + C). Therefore by Case 1 we have that

(A · (−(B + C))) + (A ·B) = A · ((−(B + C)) +B) by Case 1
= A · (((−B) + (−C)) +B)
= A · (((−C) + (−B)) +B)
= A · ((−C) + ((−B) +B))
= A · ((−C) + (B + (−B)))
= A · ((−C) +O)
= A · (−C).

Therefore,

A · (−(B + C)) = (A · (−(B + C))) +O

= (A · (−(B + C))) + ((A ·B) + (−(A ·B)))
= ((A · (−(B + C))) + (A ·B)) + (−(A ·B))
= (A · (−C)) + (−(A ·B))
= (−(A ·B)) + (A · (−C)).

Therefore

A · (B + C) = −(A · (−(B + C))) by definition
= −((−(A ·B)) + (A · (−C)))
= (−(−(A ·B))) + (−(A · (−C))) by Corollary B.3.16
= (A ·B) + (A · C) by Corollary B.3.16 and definition

as desired.
Case 5: A ≥ O, B < O, C ≥ O, B + C > 0. This case follows from Case

3 by interchaning B and C and using the commutativity of addition from
Lemma B.3.10.

Case 6: A ≥ O, B < O, C ≥ O, B + C < 0. This case follows from Case
4 by interchaning B and C and using the commutativity of addition from
Lemma B.3.10.
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Notice that we obtain the result holds when A ≥ O by combining the
above six cases. Therefore, there is only one additional case we need to
consider.

Case 7: A < O. Since −(−A) = A by Corollary B.3.16, Lemma B.3.27
that A = (−A) · (−I). Therefore, we have that

A · (B + C) = ((−A) · (−I)) · (B + C)
= (−A) · ((−I) · (B + C))
= (−A) · ((B + C) · (−I))
= (−A) · (−(B + C)) by Lemma B.3.27
= (−A) · ((−B) + (−C)) by Corollary B.3.16

and

(A ·B) + (A · C)
= (((−A) · (−I)) ·B) + (((−A) · (−I)) · C)
= ((−A) · ((−I) ·B)) + ((−A) · ((−I) · C))
= ((−A) · (B · (−I))) + ((−A) · (C · (−I)))
= ((−A) · (−B)) + ((−A) · (−C)) by Corollary B.3.16.

Note that A < O implies A+ (−A) < O + (−A) by Lemma B.3.9 and thus
−A > O. Therefore, by applying one of the first six cases, we obtain that

A · (B + C) = (A ·B) + (A · C).

Therefore, as we have covered all possible cases, the result holds.

Theorem B.3.29. The real numbers R are a totally ordered field with the
Least Upper Bound Property.

Proof. First, note that Lemma B.3.10, Lemma B.3.14, Lemma B.3.20, Lemma
B.3.21, Lemma B.3.22, Corollary B.3.26, and Lemma B.3.28 together imply
that R is a field with the operations + and ·. Subsequently Lemma B.3.5,
Lemma B.3.9, and Lemma B.3.19 imply that ≤ is a total ordering on R
with the additive and multiplicative properties. Therefore R is a totally
ordered field. Finally Theorem B.3.6 implies that R has the least upper
bound property as desired.

B.4 Real Numbers via Cauchy Sequences

We now turn to our second method for constructing the real numbers. By
Section B.2, we know the rational numbers have all the necessary properties
required in this section. In addition, we will use the absolute value function
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on Q. Note parts (a), (a), and (a) of Lemma 1.3.12 and the triangle inequality
(Proposition 1.3.13) hold in Q by the same proofs.

The technique for constructing the real numbers from the rational num-
bers in this section is analytic in nature. Specifically, we had constructed the
real numbers and thus had Proposition 1.3.8, then every real number would
be the limit of a sequence of rational numbers. Thus, we can describe the
real numbers as limits of sequences of rational numbers. However, the issue
with this lies in that we cannot discuss convergence of a sequence without
knowing that the limit of the sequence. To bypass this, we turn to the ideas
of Section 2.5; namely Cauchy sequences. By considering Cauchy sequences
of rational numbers, we can complete the rational numbers and obtain the
real numbers. The benefits of this approach are that it is generally viewed to
be as an easier approach, it can be generalized to other objects (see MATH
4011), and it is much more thematic with this course on real analysis as
it utilizes many of the techniques and ideas learnt throughout the course.
However, verifying the Least Upper Bound Property is a bit of a challenge.

Thus we being by discussion Cauchy sequences of rational numbers. Since
we do not have the real numbers, we cannot use the definition and properties
in Section 2.5 as the definition requires ‘for all ϵ > 0’ meaning all real
numbers ϵ greater than 0. To bypass this, we simply need to restrict our ϵ to
be rational numbers. Thus, for notational purposes, throughout this section
we will denote the positive rational numbers by Q+; that is,

Q+ = {q ∈ Q | q > 0}.

Definition B.4.1. A sequence (qn)n≥1 of rational numbers is said to be
Cauchy in Q if for all ϵ ∈ Q+ there exists an N ∈ N such that |qn − qm| ≤ ϵ
for all n,m ≥ N . The set of all Cauchy sequences in Q is will be denoted R.

Example B.4.2. For each q ∈ Q, the constant sequence (q)n≥1 is a Cauchy
sequence in Q. Indeed, for all ϵ ∈ Q+ we have that |qn −qm| = |q−q| = 0 ≤ ϵ
for all n,m ∈ N.

In fact, the constant sequences of rational numbers will be how the
rational numbers embed into the real numbers.

Before we proceed to defining the real numbers via R, we will use several of
the analytic techniques from the course, plus a few additional ones. Moreover,
we will need to know that Cauchy sequences of rational numbers are bounded.
This does not directly follow from Section 2.5 due to the change of definition
of what it means to be Cauchy, but the proof remains the same.

Lemma B.4.3. If (qn)n≥1 ∈ R, then (qn)n≥1 is bounded; that is, there exists
an M ∈ Q+ such that |qn| ≤ M for all n ∈ N.

Proof. Let (qn)n≥1 ∈ R. Since (qn)n≥1 is Cauchy, there exists an N ∈ N
such that |qn − qm| ≤ 1 for all n,m ≥ N . Hence, by letting m = N , we
obtain that |qn| ≤ |qN | + 1 for all n ≥ N by the Triangle Inequality.
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Let M = max{|q1|, |q2|, . . . , |qN−1|, |qN |+1}. Since |qn| ∈ Q for all n ∈ N,
we obtain that M ∈ Q. Moreover, if n ≤ N then |qn| ≤ M whereas if n ≥ N
then |qn| ≤ |qN | + 1 ≤ M by the above paragraph. Hence |qn| ≤ M for all
n ∈ N so (qn)n≥1 is bounded as desired.

To construct the real numbers, recall our motivation was that each real
number could be described as the limit of rational numbers. However, there
could be many sequences of rational numbers that converge to the same real
number. Therefore, to distinguish real numbers via sequences of rational
numbers, we need an equivalence relation on R.

Lemma B.4.4. Consider the relation ∼ on R defined as follows: for all
(qn)n≥1, (rn)n≥1 ∈ R, (qn)n≥1 ∼ (rn)n≥1 if and only if for all ϵ ∈ Q+, there
exists an N ∈ N such that |qn − rn| ≤ ϵ for all n ≥ N . Then ∼ is an
equivalence relation.

Proof. To see that ∼ is an equivalence relation, we need to show that ∼Q is
reflexive, symmetric, and transitive.

Reflexive: To see that ∼ is reflexive, let (qn)n≥1 ∈ R. Since for all ϵ ∈ Q+
we have that |qn − qn| = 0 ≤ ϵ for all n ∈ N, we see that (qn)n≥1 ∼ (qn)n≥1
by the definition of ∼ as desired.

Symmetric: To see that ∼ is symmetric, let (qn)n≥1, (rn)n≥1 ∈ R be such
that (qn)n≥1 ∼ (rn)n≥1. Hence for all ϵ ∈ Q+, there exists an N ∈ N such
that |qn − rn| ≤ ϵ for all n ≥ N . Therefore, since |rn − qn| = |qn − rn| for
all n ∈ N, it follows that for all ϵ ∈ Q+, there exists an N ∈ N such that
|rn − qn| ≤ ϵ for all n ≥ N . Hence (rn)n≥1 ∼ (qn)n≥1 by the definition of ∼.
Thus ∼ is symmetric.

Transitive: To see that ∼ is transitive, let (qn)n≥1, (rn)n≥1, (sn)n≥1 ∈
R be such that (qn)n≥1 ∼ (rn)n≥1 and (rn)n≥1 ∼ (sn)n≥1. To see that
(qn)n≥1 ∼ (sn)n≥1, let ϵ ∈ Q+ be arbitrary. Since (qn)n≥1 ∼ (rn)n≥1 and
since 1

2ϵ ∈ Q+, there exists an N1 ∈ N such that |qn − rn| ≤ 1
2ϵ for all

n,m ≥ N1. Similarly, since (rn)n≥1 ∼ (sn)n≥1, there exists an N2 ∈ N such
that |rn − sn| ≤ 1

2ϵ for all n,m ≥ N2.
Let N = max{N1, N2}. Therefore, N ∈ N and we have for all n,m ≥ N

that
|qn − sn| ≤ |qn − rn| + |rn − sn| ≤ 1

2ϵ+ 1
2ϵ = ϵ.

Therefore, since ϵ > 0 was arbitrary, (qn)n≥1 ∼ (sn)n≥1 by the definition of
∼. Hence ∼ is transitive.

Therefore, since all three properties have been verified, ∼ is an equivalence
relation.

Thus, using equivalence classes, we obtain the following definition of the
real numbers.
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Definition B.4.5. The real numbers, denoted R, is the set

R = {[(qn)n≥1] | (qn)n≥1 ∈ R}.

That is, R is the set of all equivalent classes of Cauchy sequences in Q.

Luckily, unlike with Dedekind cuts, defining the operations of addition
and multiplication via R is much simpler. To being, we must show that if
we add and multiply elements of R term-wise then we obtain elements of R.
The proofs of these facts are very similar to those used in Theorem 2.3.1.

Lemma B.4.6. If (qn)n≥1, (rn)n≥1 ∈ R, then the following hold:

a) (qn + rn)n≥1 ∈ R.

b) (qnrn)n≥1 ∈ R.

Proof. a) To see that (qn+rn)n≥1 ∈ R, let ϵ ∈ Q+ be arbitrary. Since 1
2ϵ ∈ Q+

and since (qn)n≥1 ∈ R, there exists an N1 ∈ N such that |qn − qm| ≤ 1
2ϵ

for all n,m ≥ N1. Similarly (rn)n≥1 ∈ R, there exists an N2 ∈ N such that
|rn − rm| ≤ 1

2ϵ for all n,m ≥ N2.
Let N = max{N1, N2}. Therefore, N ∈ N and we have for all n,m ≥ N

that

|(qn + rn) − (qm + rm)| = |(qn − qm) + (rn − rm)|
≤ |qn − qm| + |rn − rm|
1
2ϵ+ 1

2ϵ = ϵ.

Therefore, since ϵ > 0 was arbitrary, (qn + rn)n≥1 ∈ R by definition as
desired.

b) To see that (qnrn)n≥1 ∈ R, let ϵ ∈ Q+ be arbitrary. Since (qn)n≥1 ∈ R,
Lemma B.4.3 implies that there exists an M1 ∈ Q with M1 > 0 such that
|qn| ≤ M1 for all n ∈ N. Similarly, (rn)n≥1 ∈ R, Lemma B.4.3 implies that
there exists an M2 ∈ Q with M2 > 0 such that |rn| ≤ M2 for all n ∈ N.

Since ϵ
2M2

∈ Q+ and since (qn)n≥1 ∈ R, there exists an N1 ∈ N such
that |qn − qm| ≤ ϵ

2M2
for all n,m ≥ N1. Similarly, since ϵ

2M1
∈ Q+ and

since (rn)n≥1 ∈ R, there exists an N2 ∈ N such that |rn − rm| ≤ ϵ
2M1

for all
n,m ≥ N2.

Let N = max{N1, N2}. Therefore, N ∈ N and we have for all n,m ≥ N
that

|qnrn − qmrm| = |(qnrn − qmrn) + (qmrn − qmrm)|
≤ |qn − qm||rn| + |qm||rn − rm|

≤ ϵ

2M1
M1 +M2

ϵ

2M2

= ϵ

2 + ϵ

2 = ϵ.
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Therefore, since ϵ > 0 was arbitrary, (qnrn)n≥1 ∈ R by definition as desired.

Although Lemma B.4.6 shows that the term-wise sum and product of
elements of R are elements of R, we must deal with the issue of different
representatives of equivalence classes before we can define the operations of
addition and multiplication on R. The following lemma is all we need.

Lemma B.4.7. Let (qn)n≥1, (rn)n≥1, (q′
n)n≥1, (r′

n)n≥1 ∈ R be such that

(qn)n≥1 ∼ (q′
n)n≥1 and (rn)n≥1 ∼ (r′

n)n≥1.

Then the following hold:

a) (qn + rn)n≥1 ∼ (q′
n + r′

n)n≥1.

b) (qnrn)n≥1 ∼ (q′
nr

′
n)n≥1.

Proof. a) To see that (qn + rn)n≥1 ∼ (q′
n + r′

n)n≥1, let ϵ ∈ Q+ be arbitrary.
Since 1

2ϵ ∈ Q+ and since (qn)n≥1 ∼ (q′
n)n≥1, there exists an N1 ∈ N such

that |qn − q′
n| ≤ 1

2ϵ for all n,m ≥ N1. Similarly (rn)n≥1 ∼ (r′
n)n≥1, there

exists an N2 ∈ N such that |rn − r′
n| ≤ 1

2ϵ for all n,m ≥ N2.
Let N = max{N1, N2}. Therefore, N ∈ N and we have for all n,m ≥ N

that

|(qn + rn) − (q′
n + r′

n)| = |(qn − q′
n) + (rn − r′

n)|
≤ |qn − q′

n| + |rn − r′
n|

1
2ϵ+ 1

2ϵ = ϵ.

Therefore, since ϵ > 0 was arbitrary, (qn +rn)n≥1 ∼ (q′
n +r′

n)n≥1 by definition
as desired.

b) To see that (qnrn)n≥1 ∼ (q′
nr

′
n)n≥1 let ϵ ∈ Q+ be arbitrary. Since

(q′
n)n≥1 ∈ R, Lemma B.4.3 implies that there exists an M1 ∈ Q+ such that

|q′
n| ≤ M1 for all n ∈ N. Similarly, (rn)n≥1 ∈ R, Lemma B.4.3 implies that

there exists an M2 ∈ Q+ such that |rn| ≤ M2 for all n ∈ N.
Since ϵ

2M2
∈ Q+ and since (qn)n≥1 ∼ (q′

n)n≥1, there exists an N1 ∈ N
such that |qn − q′

n| ≤ ϵ
2M2

for all n,m ≥ N1. Similarly, since ϵ
2M1

∈ Q+ and
since (rn)n≥1 ∼ (r′

n)n≥1, there exists an N2 ∈ N such that |rn − r′
n| ≤ ϵ

2M1
for all n,m ≥ N2.

Let N = max{N1, N2}. Therefore, N ∈ N and we have for all n,m ≥ N
that

|qnrn − q′
nr

′
n| = |(qnrn − q′

nrn) + (q′
nrn − q′

nr
′
n)|

≤ |qn − q′
n||rn| + |q′

n||rn − r′
n|

≤ ϵ

2M1
M1 +M2

ϵ

2M2

= ϵ

2 + ϵ

2 = ϵ.
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Therefore, since ϵ > 0 was arbitrary, (qnrn)n≥1 ∼ (q′
nr

′
n)n≥1 ∈ R by definition

as desired.

By Lemmata B.4.6 and B.4.7, the following operations on R are well-
defined.

Definition B.4.8. The operations of + and · on R are defined as follows:
for all (qn)n≥1, (rn)n≥1 ∈ R,

[(qn)n≥1] + [(rn)n≥1] = [(qn + rn)n≥1]
[(qn)n≥1] · [(rn)n≥1] = [(qnrn)n≥1].

Luckily proving that these operations on this definition of R yields a field
is much simpler than it was for Dedekind cuts. Before we get to the proof,
we demonstrate the following technical result that is needed to prove the
existence of multiplicative inverses.

Lemma B.4.9. If (qn)n≥1 ∈ R is such that (qn)n≥1 ≁ (0)n≥1, then there
exists a K ∈ Q+ and a N ∈ N such that |qn| ≥ K for all n ≥ N .

Proof. Assume (qn)n≥1 ≁ (0)n≥1. Thus there exists an ϵ ∈ Q+ such that
for all N ∈ N there exists an nN ≥ N such that |qnN | = |qnN − 0| > ϵ. Let
K = 1

2ϵ. Clearly K ∈ Q+ by construction.
To see that K has the desired property, note since (qn)n≥1 ∈ R that there

exists an N ∈ N such that |qn − qm| ≤ K for all n,m ≥ N . Therefore, since
nN ≥ N , by letting m = N we obtain that |qn − qnN | ≤ K for all n ≥ N .
Hence for all n ≥ N we have by the reverse triangle inequality that

|qn| = |qnN + (qn − qnN )| ≥ |qnN | − |qn − qnN | > ϵ0 −K = 2K −K = K

as desired.

With Lemma B.4.9 complete, demonstrating most of the field properties
hold for this definition of R simply follow by applying the field properties of
Q term-wise.

Lemma B.4.10. The real numbers R are a field with the above operations.
That is, for all [(qn)n≥1], [(rn)n≥1], [(sn)n≥1] ∈ R,

a) (Commutativity of +) [(qn)n≥1] + [(rn)n≥1] = [(rn)n≥1] + [(qn)n≥1].

b) (Commutativity of ·) [(qn)n≥1] · [(rn)n≥1] = [(rn)n≥1] · [(qn)n≥1].

c) (Associativity of +) ([(qn)n≥1] + [(rn)n≥1]) + [(sn)n≥1] = [(qn)n≥1] +
([(rn)n≥1] + [(sn)n≥1]).

d) (Associativity of ·) ([(qn)n≥1] · [(rn)n≥1]) · [(sn)n≥1] = [(qn)n≥1] · ([(rn)n≥1] ·
[(sn)n≥1]).
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e) (Distributivity) [(qn)n≥1] · ([(rn)n≥1] + [(sn)n≥1]) = ([(qn)n≥1] · [(rn)n≥1]) +
(([qn)n≥1] · [(sn)n≥1]).

f) (Additive Unit) O = [(0)n≥1] ∈ R and [(qn)n≥1] +O = [(qn)n≥1].

g) (Multiplicative Unit) I = [(1)n≥1] ∈ R, I ≠ O, and [(qn)n≥1]·I = [(qn)n≥1].

h) (Additive Inverse) [(−qn)n≥1] ∈ R and [(qn)n≥1] + [(−qn)n≥1] = [(0, 1)].

i) (Multiplicative Inverse) if [(qn)n≥1] ̸= O, then there exists a [(tn)n≥1] ∈ R
such that [(qn)n≥1] · [(tn)n≥1] = I.

Proof. a) Notice that

[(qn)n≥1] + [(rn)n≥1] = [(qn + rn)n≥1]
= [(rn + qn)n≥1]
= [(rn)n≥1] + [(qn)n≥1]

as desired.
b) Notice that

[(qn)n≥1] · [(rn)n≥1] = [(qnrn)n≥1]
= [(rqrn)n≥1]
= [(rn)n≥1] · [(qn)n≥1]

as desired.
c) Notice that

([(qn)n≥1] + [(rn)n≥1]) + [(sn)n≥1] = [(qn + rn)n≥1] + [(sn)n≥1]
= [((qn + rn) + sn)n≥1]
= [(qn + (rn + sn)n≥1]
= [(qn)n≥1] + [(rn + sn)n≥1]
= [(qn)n≥1] + ([(rn)n≥1] + [(sn)n≥1])

as desired.
d) Notice that

([(qn)n≥1] · [(rn)n≥1]) + [(sn)n≥1] = [(qnrn)n≥1] · [(sn)n≥1]
= [((qnrn)sn)n≥1]
= [(qn(rnsn)n≥1]
= [(qn)n≥1] · [(rnsn)n≥1]
= [(qn)n≥1] · ([(rn)n≥1] · [(sn)n≥1])

as desired.
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e) Notice that

[(qn)n≥1] · ([(rn)n≥1] + [(sn)n≥1])
= [(qn)n≥1] · [(rn + sn)n≥1]
= [(qn(rn + sn))n≥1]
= [((qnrn) + (qnsn))n≥1]
= [(qnrn)n≥1] + [(qnsn)n≥1]
= ([(qn)n≥1] · [(rn)n≥1]) + (([qn)n≥1] · [(sn)n≥1])

as desired.
f) Clearly (0)n≥1 ∈ R by Example B.4.2 so O ∈ R. Moreover, since

|1 − 0| = 1 > 1
2 , we see that (1)n≥1 ≁ (0)n≥1 so I ̸= O. Finally, notice that

[(qn)n≥1] +O = [(qn + 0)n≥1] = [(qn)n≥1]

as desired
g) Clearly (1)n≥1 ∈ R by Example B.4.2 so I ∈ R. Moreover

[(qn)n≥1] · I = [(qn(1))n≥1] = [(qn)n≥1]

as desired.
h) Since the constant sequence (−1)n≥1 ∈ R by Example B.4.2, we have

that
[(−qn)n≥1] = [(−1)n≥1] · [(qn)n≥1] ∈ R.

Moreover, notice that

[(qn)n≥1] + [(−qn)n≥1] = [(qn + (−qn))n≥1] = [(0)n≥1] = O

as desired.
i) Note the proof of this part is very similar to a corresponding part of

Lemma 2.3.1.
Assume [(qn)n≥1] ̸= O. By Lemma B.4.9 there exists a K ∈ Q+ and an

N1 ∈ N such that |qn| ≥ K for all n ≥ N1. For each n ∈ N, let

tn =
{

0 if n < N1
1

qn
if n ≥ N1

.

Since |qn| ≥ K > 0 for all n ≥ N1, we see that tn is well-defined and tn ∈ Q
for all n ∈ N.

We claim that (tn)n≥1 ∈ R. To see this, let ϵ ∈ Q+ be arbitrary.
Since (qn)n≥1 ∈ R and since ϵK2 ∈ Q+, there exists an N2 ∈ N such that
|qn − qm| ≤ ϵK2 for all n,m ≥ N2.
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Let N max{N1, N2}. Therefore, N ∈ N and we have for all n,m ≥ N
that

|tn − tm| =
∣∣∣∣ 1
qn

− 1
qm

∣∣∣∣
= |qm − qn|

|qn||qm|

≤ ϵK2

|qn||qm|

≤ ϵK2

K(K)
= ϵ.

Therefore, since ϵ > 0 was arbitrary, (tn)n≥1 ∈ R by definition.
Finally, notice since for all ϵ ∈ Q+ we have for all n ≥ N1 that

|qntn − 1| = |1 − 1| = 0 ≤ ϵ,

we have that (qntn)n≥1 ∼ I and thus

[(qn)n≥1] · [(tn)n≥1] = [(qntn)n≥1] = I

as desired.

Now that R has been demonstrated to be a field, we must define the
partial ordering on R. Since we are dealing with equivalence relations, the
following is exactly what we need to ensure the partial order is well-defined.

Lemma B.4.11. Let (qn)n≥1, (rn)n≥1, (q′
n)n≥1, (r′

n)n≥1 ∈ R be such that

(qn)n≥1 ∼ (q′
n)n≥1 and (rn)n≥1 ∼ (r′

n)n≥1.

Then the following statements are equivalent:

(i) For all ϵ ∈ Q+ there exists an N ∈ N such that qn ≤ rn + ϵ for all
n ≥ N .

(ii) For all ϵ ∈ Q+ there exists an N ∈ N such that q′
n ≤ r′

n + ϵ for all
n ≥ N .

Proof. We will only demonstrate that (i) implies (ii) as the proof that (ii)
implies (i) will follow by symmetry of the argument and symmetry of the
equivalence relation.

Assume (i) holds. To see that (ii) holds, let ϵ ∈ Q+ be arbitrary. We
note three things:

• Since 1
3ϵ ∈ Q+, by the assumption that (i) holds there exists an N1 ∈ N

such that qn ≤ rn + ϵ for all n ≥ N1.
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• Since (qn)n≥1 ∼ (q′
n)n≥1 and since 1

3ϵ ∈ Q+, there exists an N2 ∈ N
such that |qn − q′

n| ≤ 1
3ϵ for all n ≥ N2. Hence the triangle inequality

implies q′
n ≤ qn + 1

3ϵ for all n ≥ N2.

• Since (rn)n≥1 ∼ (r′
n)n≥1 and since 1

3ϵ ∈ Q+ , there exists an N3 ∈ N
such that |rn − r′

n| ≤ 1
3ϵ for all n ≥ N3. Hence the triangle inequality

implies rn ≤ r′
n + 1

3ϵ for all n ≥ N3.

Let N = max{N1, N2, N3}. Hence N ∈ N and we have for all n ≥ N
that

q′
n ≤ qn + 1

3ϵ

≤
(
rn + 1

3ϵ
)

+ 1
3ϵ

= rn + 2
3ϵ

≤
(
r′

n + 1
3ϵ
)

+ 2
3ϵ

= r′
n + ϵ.

Therefore, since ϵ > 0 was arbitrary, (ii) holds as desired.

By Lemma B.4.11, the following is well-defined.

Definition B.4.12. The relation ≤ on R is defined as follows: for all
(qn)n≥1, (rn)n≥1 ∈ R, (qn)n≥1 ≤ (qn)n≥1 if and only if for all ϵ ∈ Q+ there
exists an N ∈ N such that qn ≤ rn + ϵ for all n ≥ N .

Showing that ≤ is a partial ordering on R is a fairly straightforward task
once one is comfortable enough with the type of analytic arguments used in
this course.

Lemma B.4.13. The relation of ≤ on R is a partial ordering on R. For all
[(qn)n≥1], [(rn)n≥1], [(sn)n≥1] ∈ R,

a) (Reflexivity) [(qn)n≥1] ≤ [(qn)n≥1].

b) (Antisymmetry) If [(qn)n≥1] ≤ [(rn)n≥1] and [(rn)n≥1] ≤ [(qn)n≥1], then
[(qn)n≥1] = [(rn)n≥1].

c) (Transitivity) If [(qn)n≥1] ≤ [(rn)n≥1] and [(rn)n≥1] ≤ [(sn)n≥1], then
[(qn)n≥1] ≤ [(sn)n≥1].

Proof. a) Let ϵ ∈ Q+ be arbitrary. Since qn ≤ qn + ϵ for all n ∈ N, it follows
that [(qn)n≥1] ≤ [(qn)n≥1] by definition. Hence ≤ is reflexive.

b) Assume [(qn)n≥1] ≤ [(rn)n≥1] and [(rn)n≥1] ≤ [(qn)n≥1]. To see that
[(qn)n≥1] = [(rn)n≥1], let ϵ ∈ Q+ be arbitrary. Since [(qn)n≥1] ≤ [(rn)n≥1]
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and since ϵ ∈ Q+, there exists an N1 ∈ N such that qn ≤ rn + ϵ for all
n ≥ N1. Similarly, since [(rn)n≥1] ≤ [(qn)n≥1] and since ϵ ∈ Q+, there exists
an N2 ∈ N such that rn ≤ qn + ϵ for all n ≥ N2.

Let N = max{N1, N2}. Hence N ∈ N and we have for all n ≥ N that

qn ≤ rn + ϵ and rn ≤ qn + ϵ

so that
qn − rn ≤ ϵ and rn − qn ≤ ϵ

and thus |qn − rn| ≤ ϵ. Therefore, since ϵ > 0 was arbitrary, [(qn)n≥1] =
[(rn)n≥1] by definition. Hence ≤ is antisymmetric.

c) Assume [(qn)n≥1] ≤ [(rn)n≥1] and [(rn)n≥1] ≤ [(sn)n≥1]. To see that
[(qn)n≥1] ≤ [(sn)n≥1], let ϵ ∈ Q+ be arbitrary. Since [(qn)n≥1] ≤ [(rn)n≥1]
and since 1

2ϵ ∈ Q+, there exists an N1 ∈ N such that qn ≤ rn + 1
2ϵ for all

n ≥ N1. Similarly, since [(rn)n≥1] ≤ [(sn)n≥1] and since 1
2ϵ ∈ Q+, there

exists an N2 ∈ N such that rn ≤ sn + 1
2ϵ for all n ≥ N2.

Let N = max{N1, N2}. Hence N ∈ N and we have for all n ≥ N that

qn ≤ rn + 1
2ϵ ≤ sn + ϵ.

Therefore, since ϵ > 0 was arbitrary, [(qn)n≥1] =≤ [(sn)n≥1] by definition.
Hence ≤ is transitive.

Showing that the partial ordering on this definition of R is a total ordering
is a little delicate.

Lemma B.4.14. The partial ordering ≤ on R is a total ordering.

Proof. To see that ≤ is a total ordering, suppose for the stake of a contradic-
tion that there exists [(qn)n≥1], [(rn)n≥1] ∈ R such that [(qn)n≥1] ≰ [(rn)n≥1]
or [(rn)n≥1] ≰ [(qn)n≥1]. Note

• Since [(qn)n≥1] ≰ [(rn)n≥1], there exists an ϵ1 ∈ Q+ such that for all
N ∈ N there exists a n ≥ N such that qn > rn + ϵ1.

• Since [(rn)n≥1] ≰ [(qn)n≥1], there exists an ϵ2 ∈ Q+ such that for all
N ∈ N there exists a n ≥ N such that rn > qn + ϵ2.

Since the ordering on Q is a total ordering, there exists an ϵ0 ∈ Q+ such
that ϵ0 = min{ϵ1, ϵ2}. Since (qn)n≥1 ∈ R and since 1

2ϵ0 ∈ Q+, there exists an
N1 ∈ N such that |qn − qm| ≤ 1

2ϵ0 for all n,m ≥ N1. Similarly, (rn)n≥1 ∈ R
and since 1

2ϵ0 ∈ Q+, there exists an N2 ∈ N such that |rn − rm| ≤ 1
2ϵ0 for all

n,m ≥ N2.
Let N0 = max{N1, N2}. Clearly N0 ∈ N. Moreover, we have that

• |qn − qm| ≤ 1
2ϵ0 for all n,m ≥ N0,
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• |rn − rm| ≤ 1
2ϵ0 for all n,m ≥ N0,

• there exists an n1 ∈ N such that n1 ≥ N0 and qn1 > rn1 + ϵ0, and

• there exists an n2 ∈ N such that n2 ≥ N0 and rn2 > qn2 + ϵ0.

Hence

qn2 + ϵ0 < rn2

≤ rn1 + 1
2ϵ0

< (qn1 − ϵ) + 1
2ϵ0

= qn1 − 1
2ϵ0

≤
(
qn2 + 1

2ϵ0
)

− 1
2ϵ0

= qn2 .

Since this implies ϵ0 < 0 which clearly contradicts the fact that ϵ0 ∈ Q+,
we have a contradiction. Hence the partial ordering ≤ on R is a total
ordering.

Checking that this definition of R is an ordered field is not difficult, but
requires a bit of casework.

Lemma B.4.15. The partial ordering ≤ on R has the following additional
properties:

a) ≤ has the additive property; that is, if [(qn)n≥1], [(rn)n≥1], [(sn)n≥1] ∈ R
and [(qn)n≥1] ≤ [(rn)n≥1] then [(qn)n≥1]+[(sn)n≥1] ≤ [(rn)n≥1]+[(sn)n≥1].

b) ≤ has the multiplicative property; that is, if [(qn)n≥1], [(rn)n≥1] ∈ R are
such that O ≤ [(qn)n≥1] and O ≤ [(rn)n≥1], then O ≤ [(qn)n≥1] · [(rn)n≥1].

Proof. a) Assume [(qn)n≥1], [(rn)n≥1], [(sn)n≥1] ∈ R and [(qn)n≥1] ≤ [(rn)n≥1].
To see that [(qn)n≥1] + [(sn)n≥1] ≤ [(rn)n≥1] + [(sn)n≥1], let ϵ ∈ Q+ be arbi-
trary. Since [(qn)n≥1] ≤ [(rn)n≥1] and since ϵ ∈ Q+, there exists an N ∈ N
such that qn ≤ rn + ϵ for all n ≥ N . Therefore qn + sn ≤ (rn + sn) + ϵ for
all n ≥ N . Therefore, since ϵ ∈ Q+ was arbitrary, [(qn)n≥1] + [(sn)n≥1] ≤
[(rn)n≥1] + [(sn)n≥1] by definition as desired.

b) Assume [(qn)n≥1], [(rn)n≥1] ∈ R are such that O ≤ [(qn)n≥1] and
O ≤ [(rn)n≥1]. To proceed, we will divide the proof into three cases:

Case 1: [(qn)n≥1] = O. In this case we see that

[(qn)n≥1] · [(rn)n≥1] = [(0)n≥1] · [(rn)n≥1] = [(0rn)n≥1] = [(0)]n≥1 = O ≥ O

as desired.
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Case 2: [(rn)n≥1] = O. In this case we see that

[(qn)n≥1] · [(rn)n≥1] = [(qn)n≥1] · [(0)n≥1] = [(qn(0))n≥1] = [(0)]n≥1 = O ≥ O

as desired.
Case 3: O < [(qn)n≥1] and O < [(rn)n≥1]. By Lemma B.4.9 there exists

a K1 ∈ Q+ and an N1 ∈ N such that |qn| ≥ K1 for all n ≥ N1. Since
O ≤ [(qn)n≥1] and since 1

2K1 ∈ Q+, there exists an N2 ∈ N such that
0 ≤ qn + 1

2K1 for all n ≥ N2. Let N3 = max{N1, N2}. Clearly N3 ∈ N and
for all n ≥ N3 we have that |qn| ≥ K1 and −1

2K1 ≤ qn. Hence qn ≥ K1 for
all n ≥ N3.

By similar arguments, there exists an K2 ∈ Q+ and an N4 ∈ N such that
rn ≥ K2 for all n ≥ N4. Let N5 = max{N3, N4}. Therefore, for all n ≥ N5
we have that

qnrn ≥ K1K2 > 0.

Therefore, it follows by the definition of ≤ that O ≤ [(qn)n≥1] · [(rn)n≥1].
Therefore, as we have covered all possible cases, the result follows.

To complete the proof that R has the desired properties, only verifying R
has the Least Upper Bound remains. To do this, we first need the following
technical lemma to ensure that powers of 1

2 are sufficiently small.

Lemma B.4.16. For all ϵ ∈ Q+ there exists an N ∈ N such that 1
2n < ϵ for

all n ≥ N .

Proof. Note since 1
2n+1 ≤ 1

2n for all n ∈ N, it suffices to show that there
exists an N ∈ N such that 1

2N < ϵ.
Since ϵ ∈ Q+, there exists a, b ∈ N such that ϵ = a

b . By considering
Peano’s Axioms (Definition 1.1.1), there exists an N ∈ N such that b < 2Na.
Hence there exists an N ∈ N such that 1

2N < ϵ as desired.

With Lemma B.4.16 in hand, we can verify that this definition of R has
the Least Upper Bound Property. Note this is the most difficult aspect of
the proof and much more difficult then verifying the Dedekind cut definition
of R has the Least Upper Bound Property. Of course, overall verifying this
definition of R had the desired properties was far simpler then verifying the
Dedekind cut version had the desired properties (e.g. 15 pages to 22 pages).

Theorem B.4.17. The real numbers R are a totally ordered field with the
Least Upper Bound Property.

Proof. To begin, note by Definition B.4.8 and Lemma B.4.10 that R is a field.
Moreover, by Definition B.4.12 and Lemmata B.4.13, B.4.14, and B.4.13, R
is a totally ordered field.

To see that R has the Least Upper Bound Property, let A ⊆ R be a
non-empty subset that is bounded above. Our goal is to show that A has a
least upper bound.
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Let [(qn)n≥1] be an upper bound for A. By Lemma B.4.3, there exists
an M ∈ Q+ such that |qn| ≤ M for all n ∈ N. Therefore, since qn ≤ M
for all n ∈ N and since [(M)n≥1] ∈ R by Example B.4.2, it follows by the
definition of ≤ that [(qn)n≥1] ≤ [(M)n≥1]. Therefore, since [(qn)n≥1] be an
upper bound for A, [(M)n≥1] is an upper bound for A.

Since A is non-empty, there exists an [(an)n≥1] ∈ A. Since (an)n≥1 ∈ R,
there exists an N ∈ N such that |an − am| ≤ 1 for all n,m ≥ N0. Let
K = aN0 − 1 so that K ∈ Q. Moreover, since K ≤ an for all n ≥ N0, it
follows that [(K)n≥1] ≤ [(an)n≥1].

We will now construct two sequences of rational numbers (un)n≥1 and
(ln)n≥1 that will aid us in showing that A has a least upper bound. In
particular, we desire to construct (un)n≥1 and (ln)n≥1 such that ln ≤ ln+1 ≤
un+1 ≤ un for all n ∈ N, the constant sequence (uk)n≥1 is an upper bound
for A for all k ∈ N, the constant sequence (lk)n≥1 is not an upper bound for
A for all k ∈ N, and |un − ln| ≤ 1

2n−1 |u1 − l1| for all n ∈ N.
To begin, let u1 = M and l1 = K so that u1, l1 ∈ Q, l1 ≤ u1, the constant

sequence (u1)n≥1 is an upper bound for A, and the constant sequence (l1)n≥1
is not an upper bound for A.

To construct u2 and l2, let c1 = u1+l1
2 ∈ Q. Based on c1, we will define

u2 and l2 as follows: If the constant sequence (c1)n≥1 is a upper bound for
A, we define u2 = c1 and l2 = l1. Otherwise the constant sequence (c1)n≥1
is not a upper bound for A, we define u2 = u1 and l2 = c1. In either case,
we have that u2, l2 ∈ Q, l1 ≤ l2 ≤ u2 ≤ u1, the constant sequence (u2)n≥1 is
an upper bound for A, the constant sequence (l2)n≥1 is not an upper bound
for A, and |u2 − l2| = 1

2 |u1 − l1|.
To continue this recursive process ad infinitum, assume for some N ∈ N

we have define u1, . . . , uN , l1, . . . , ln ∈ Q with the desired properties. Let
cN = uN +lN

2 ∈ Q. Based on we will define uN+1 and lN+1 as follows: If the
constant sequence (cN )n≥1 is a upper bound for A, we define uN+1 = cN and
lN+1 = lN . Otherwise the constant sequence (cN )n≥1 is not a upper bound
for A, we define uN+1 = uN and lN+1 = cN . In either case, we have that
uN+1, lN+1 ∈ Q, lN ≤ lN+1 ≤ uN+1 ≤ uN , the constant sequence (uN )n≥1 is
an upper bound for A, the constant sequence (lN )n≥1 is not an upper bound
for A, and |uN+1 − lN+1| = 1

2 |uN − lN | = 1
2N |u1 − l1| as desired.

We now claim the the sequences (un)n≥1 and (ln)n≥1 as defined above
are Cauchy sequences in Q. To see this, let ϵ ∈ Q+ be arbitrary. By Lemma
B.4.16 there exists an N ∈ N such that

1
2n

≤ ϵ

2(|u1 − l1| + 1)

for all n ≥ N . Notice since ln ≤ ln+1 ≤ un+1 ≤ un for all n ∈ N and since
|un − ln| ≤ 1

2n−1 |u1 − l1| for all n ∈ N that

|un+1 − un| ≤ 1
2n

|u1 − l1| and |ln+1 − ln| ≤ 1
2n

|u1 − l1|
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for all n ∈ N. Therefore, we have for all n ≥ m ≥ N that

|un − um| =
∣∣∣∣∣

n−1∑
k=m

uk+1 − uk

∣∣∣∣∣
≤

n−1∑
k=m

|uk+1 − uk|

≤
n−1∑
k=m

1
2k

|u1 − l1|

= 1
2m

1 − 1
2n

1 − 1
2

|u1 − l1|

≤ 1
2m

(2)|u1 − l1|

≤ ϵ

2(|u1 − l1| + 1)(2)|u1 − l1|

< ϵ.

Furthermore, a similar computation shows that |un −um| ≤ ϵ for all n ≥ m ≥
N . Therefore, since ϵ > 0 was arbitrary, (un)n≥1 and (ln)n≥1 are Cauchy
sequences in Q by definition. Hence (un)n≥1, (ln)n≥1 ∈ R.

We claim that [(un)n≥1] = [(ln)n≥1]. To see this, let ϵ > 0 be arbitrary.
By Lemma B.4.16 there exists an N ∈ N such that

1
2n

≤ ϵ

(|u1 − l1| + 1)

for all n ≥ N . Since |un − ln| ≤ 1
2n−1 |u1 − l1| for all n ∈ N, we have for all

n ≥ N that

|un − ln| ≤ 1
2n−1 |u1 − l1| ≤ ϵ

(|u1 − l1| + 1) |u1 − l1| < ϵ.

Therefore, as ϵ > 0 was arbitrary, [(un)n≥1] = [(ln)n≥1] by definition.
We claim [(un)n≥1] is an upper bound for A. To see this, let [(an)n≥1] ∈ A

be arbitrary. To see that [(an)n≥1] ≤ [(un)n≥1], let ϵ ∈ Q+ be arbitrary.
Since (un)n≥1 ∈ R and since 1

2ϵ ∈ Q+, there exists an N1 ∈ N such that
|un − um| < 1

2ϵ for all n,m ≥ N . Moreover, since 1
2ϵ ∈ Q+ and since the

constant sequence (uN )n≥1 is an upper bound for A so that [(an)n≥1] ≤
[(uN ))n ≥ 1], there exists an N ′ ∈ N such that an ≤ uN + 1

2ϵ for all n ≥ N ′.
Hence for all n ≥ N ′ we have that

an ≤ uN + 1
2ϵ ≤

(
un + 1

2ϵ
)

+ 1
2ϵ = un + ϵ.

Therefore, since ϵ was arbitrary, [(an)n≥1] ≤ [(un)n≥1]. Therefore, since
[(an)n≥1] was arbitrary, [(un)n≥1] is an upper bound for A.
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Finally, we claim that [(un)n≥1] is a least upper bound for A. To see
this, let [(bn)n≥1] ∈ R be such that [(bn)n≥1] is an upper bound for A and
[(bn)n≥1] ≤ [(un)n≥1]. We desire to prove that (bn)n≥1 ∼ (un)n≥1. To see
this, let ϵ ∈ Q+ be arbitrary.

Since 1
2ϵ ∈ Q+ and since (un)n≥1 ∼ (ln)n≥1, there exists an N1 ∈ N such

that |un − ln| ≤ 1
2ϵ for all n ≥ N1. Since 1

4ϵ ∈ Q+ and since [(bn)n≥1] ≤
[(un)n≥1], there exists an N2 ∈ N such that bn ≤ un + 1

4ϵ for all n ≥ N2.
Recall that the constant sequence (lN1)n≥1 is not an upper bound for A.

Thus there exists an [(an)n≥1] ∈ A such that [(lN1)n≥1] ≤ [(an)n≥1]. Since
[(bn)n≥1] is an upper bound for A we know that [(an)n≥1] ≤ [(bn)n≥1] and
thus [(lN1)n≥1] ≤ [(bn)n≥1]. Therefore, since 1

4ϵ ∈ Q+, there exists an N3 ∈ N
such that lN1 ≤ bn + 1

4ϵ for all n ≥ N3.
Let N4 = max{N1, N2, N3}. Therefore, by the above and the fact that

un+1 ≤ un for all n ∈ N, we obtain for all n ≥ N4 that

lN1 ≤ bn + 1
4ϵ ≤

(
un + 1

4ϵ
)

+ 1
4ϵ = un + 1

2ϵ ≤ uN1 + 1
2ϵ.

Moreover, since ln ≤ ln+1 ≤ un+1 ≤ un for all n ∈ N, we obtain for all
n ≥ N4 that

lN1 ≤ un ≤ uN1 .

Therefore, we see for all n ≥ N4 that

|bn − un| ≤ (uN1 + 1
2ϵ) − lN1 = |uN1 − lN1 | + 1

2ϵ ≤ 1
2ϵ+ 1

2ϵ = ϵ.

Therefore, since ϵ ∈ Q+ was arbitrary, (bn)n≥1 ∼ (un)n≥1. Hence [(bn)n≥1] =
[(un)]n≥1. Hence [(un)n≥1] is a least upper bound for A.

Since A was an arbitrary subset of R that was bounded above and we
have demonstrated that A has a least upper bound, R has the least upper
bound property as desired.

B.5 Uniqueness of Real Numbers

In this section, we will demonstrate that all totally ordered field with the
Least Upper Bound Property are ‘isomorphic’ in the appropriate sense; that
is, there is a bijective map between them that preserves the totally ordered
field properties and least upper bounds. This . In particular, this means
there is a unique totally ordered field with the Least Upper Bound Property,
which is what we call the real numbers.

To prove the desired result, we will first show that every totally ordered
field with the Least Upper Bound Property contain the rational numbers
(with the same ordering). To do this, we will first show the natural numbers
lie inside every totally ordered field.

©For use through and only available at pskoufra.info.yorku.ca.



276 APPENDIX B. CONSTRUCTING NUMBER SYSTEMS

Lemma B.5.1. If R is a totally ordered field, then there exists a map
f : N → R such that

• f is injective,

• f(1) is the multiplicative unit of R,

• f(n+m) = f(n) + f(m) for all n,m ∈ N,

• f(nm) = f(n)f(m) for all n,m ∈ N, and

• for n,m ∈ N, n < m if and only if f(n) < f(m).

Proof. Let I denote the multiplicative unit of R. Define f : N → R recur-
sively as follows: Let f(1) = I. If we have defined f(n) for n ∈ N, define
f(n+ 1) = f(n) + I.

Clearly f(1) is the multiplicative unit of R, and f(n+m) = f(n) + f(m)
and f(nm) = f(n)f(m) for all n ∈ N due to the definitions of addition and
multiplication on N.

Since R is an ordered field, I is positive by Lemma 1.2.16. Therefore, by
the additive property implies that f(n) ≤ f(n) + I = f(n+ 1) for all n ∈ N.
If f(n) = f(n) + I, then by adding −f(n) to both sides we would obtain
that I is the zero element which contradicts the fact that R is a field. Hence
f(n) < f(n + 1) for all n ∈ N. Therefore, induction implies for n,m ∈ N,
n < m if and only if f(n) < f(m). Note this implies f is injective thereby
completing the proof.

Next, we can upgrade Lemma B.5.1 to show that the integers lie inside
of every totally ordered field. Although the existence of Section B.1 may
seem odd, it really aids us in the proof of the following.

Lemma B.5.2. If R is a totally ordered field, then there exists a map
f : Z → R such that

• f is injective,

• f(1) is the multiplicative unit of R,

• f(0) is the additive unit of R,

• f(n+m) = f(n) + f(m) for all n,m ∈ Z,

• f(nm) = f(n)f(m) for all n,m ∈ Z, and

• for n,m ∈ N, n ≤ m if and only if f(n) ≤ f(m).

Proof. By Lemma B.5.1, we can assume N ⊆ R with the operations, units,
and ordering of R giving the natural operations, units, and ordering of N.

©For use through and only available at pskoufra.info.yorku.ca.



B.5. UNIQUENESS OF REAL NUMBERS 277

Notice if m1, n1,m2, n2 ∈ N ⊆ R are such that m1 + n2 = m2 + n1, then
the field properties of R imply that m1 + (−n1) = m2 + (−n2). Therefore,
by using the equivalence class characterization of Z from Section B.1, the
map f : Z → R defined by

f ([(m,n)]) = m+ (−n)

is well-defined.
To see that f is injective, assume [(m1, n1)], [(m2, n2)] ∈ Z are such that

f ([(m1, n1)]) = f ([(m2, n2)]). Therefore

m1 + (−n1) = m2 + (−n2).

By adding n1 + n2 to both sides, the field properties of R imply that
m1 + n2 = m2 + n1 and thus [(m1, n1)] = [(m2, n2)] by definition. Hence f
is injective.

Since f ([(2, 1)]) = 2 + (−1) = 1, f sends the multiplicative unit of Z to
the multiplicative unit of R. Moreover, since f ([(1, 1)]) = 1 + (−1) = 0, f
sends the additive unit of Z to the multiplicative unit of R.

Next, notice for all [(m1, n1)], [(m2, n2)] ∈ Z that

f ([(m1, n1)] + [(m2, n2)])
= f ([(m1 +m2, n1 + n2)])
= (m1 +m2) + (−(n1 + n2))
= (m1 + (−n1)) + (m2 + (−n2)) by the field properties of R
= f ([(m1, n1)]) + f ([(m2, n2)])

and

f ([(m1, n1)] · [(m2, n2)])
= f ([(m1m2 + n1n2,m1n2 + n2m1)])
= (m1m2 + n1n2) + (−(m1n2 + n2m1))
= (m1 + (−n1))(m2 + (−n2)) by the field properties of R
= f ([(m1, n1)]) · f ([(m2, n2)])

as desired.
Finally, notice for [(m1, n1)], [(m2, n2)] ∈ Z that [(m1, n1)] ≤ [(m2, n2)] if

and only if m1 + n2 ≤ m2 + n1 in N if and only if m1 + n2 ≤ m2 + n1 in R
if and only if m1 + (−n1) ≤ m2 + (−n2) (by the field properties of R and
the additive property of ≤ in R) if and only if f ([(m1, n1)]) ≤ f ([(m2, n2)])
as desired.

Next, we can upgrade Lemma B.5.2 to show that the rational numbers
lie inside of every totally ordered field. Again, the mathematically precise
description of the rational numbers from Section B.2 are quite useful to prove
the following.
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Lemma B.5.3. If R is a totally ordered field, then there exists a map
f : Q → R such that

• f is injective,

• f(1) is the multiplicative unit of R,

• f(0) is the additive unit of R,

• f(q + r) = f(q) + f(r) for all q, r ∈ Q,

• f(qr) = f(q)f(r) for all q, r ∈ Q, and

• for all q, r ∈ Q, q ≤ r if and only if f(q) ≤ f(r).

Proof. By Lemma B.5.1, we can assume Z ⊆ R with the operations, units,
and ordering of R giving the natural operations, units, and ordering of Z.

Notice if a1, b1, a2, b2 ∈ Z ⊆ R are such that b1 ≠ 0, b2 ̸= 0, and
a1b2 = a2b1, then the field properties of R imply that a1b

−1
1 = a2b

−1
2 .

Therefore, by using the equivalence class characterization of Z from Section
B.2, the map f : Q → R defined by

f ([(a, b)]) = ab−1

is well-defined.
To see that f is injective, assume [(a1, b1)], [(a2, b2)] ∈ Q are such that

f ([(a1, b1)]) = f ([(a2, b2)]). Therefore

a1b
−1
1 = a2b

−1
2 .

By multiplying both sides by b1b2, the field properties of R imply that
a1b2 = a2b1 and thus [(a1, b1)] = [(a2, b2)] by definition. Hence f is injective.

Since f ([(1, 1)]) = 1(1)−1 = 1, f sends the multiplicative unit of Q to
the multiplicative unit of R. Moreover, since f ([(0, 1)]) = 0(1)−1 = 0, f
sends the additive unit of Q to the multiplicative unit of R.

Next, notice for all [(a1, b1)], [(a2, b2)] ∈ Q that

f ([(a1, b1)] + [(a2, b2)]) = f ([(a1b2 + a2b1, b1b2)])
= (a1b2 + a2b1)(b1b2)−1

= (a1b2 + a2b1)b−1
1 b−1

2 by the field properties of R
= a1b

−1
1 + a2b

−1
2 by the field properties of R

= f ([(a1, b1)]) + f ([(a2, b2)])

©For use through and only available at pskoufra.info.yorku.ca.



B.5. UNIQUENESS OF REAL NUMBERS 279

and

f ([(a1, b1)] · [(a2, nb2)])
= f ([(a1a2, b1b2)])
= (a1a2)(b1b2)−1

= (a1b
−1
1 )(a2b

−1
2 ) by the field properties of R

= f ([(a1, b1)]) · f ([(a2, b2)])

as desired.
Finally, notice for [(a1, b1)], [(a2, b2)] ∈ Q with b1, b2 > 0 that [(a1, b1)] ≤

[(a2, b2)] if and only if a1b2 ≤ a2b1 in Z if and only if a1b2 ≤ a2b1 in R if and
only if a1b

−1
1 ≤ a2b

−1
2 (by Lemma 1.2.18 since R is an ordered field) if and

only if f ([(a1, b1)]) ≤ f ([(a2, b2)]) as desired.

Finally, we can prove that if we have two totally ordered fields with
the Least Upper Bound Property, then there is a bijective map between
them that preserves all of the desired properties. To do this, we will use
the fact that every totally ordered field contains the rational numbers. We
will then use the fact that the rational numbers and least upper bounds
completely describe the elements of the totally ordered field. This was the
same motivation that was used to develop the Dedekind cut approach to the
real numbers discussed in Section B.3.

Theorem B.5.4. If R1 and R2 are totally ordered fields with the Least
Upper Bound Property, then there exists a map f : R1 → R2 such that

• f is bijective,

• if Ik is the multiplicative unit of Rk for k = 1, 2, then f(I1) = I2,

• if Ok is the additive unit of Rk for k = 1, 2, then f(O1) = O2,

• f(x1 + x2) = f(x1) + f(x2) for all x1, x2 ∈ R1,

• f(x1x2) = f(x1)f(x2) for all x1, x2 ∈ R1,

• for all x1, x2 ∈ R1, x1 ≤ x2 if and only if f(x1) ≤ f(x2),

• if A ⊆ R1 is non-empty, A is bounded above if and only if f(A) is
bounded above, and

• for all A ⊆ R1 such that A is bounded above, lub(f(A)) = f(lub(A)).

Proof. Let R1 and R2 be totally ordered fields with the Least Upper Bound
Property. By Lemma B.5.3, we can assume Q ⊆ R1 and Q ⊆ R2 with the
operations, units, and ordering of R1 and R2 giving the natural operations,
units, and ordering of Q.
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Existence of f . For all α ∈ R1 and β ∈ R2, let

A1,α = {q ∈ Q | q < α}
A2,β = {q ∈ Q | q < β}.

We claim that α = lubR1(A1,α) and β = lubR2(A2,β). To see the former,
note that α is clearly an upper bound for A1,α. To see α = lubR1(A1,α),
suppose for the sake of a contradiction that there exists an γ ∈ R1 such
that γ < α and q ≤ γ for all q ∈ A1,α. Since R1 is a totally ordered field
with the Least Upper Bound Property, Proposition 1.3.8 holds for R1 so
there exists a q ∈ Q such that γ < q < α, which is a contradiction. Hence
α = lubR1(A1,α). By similar arguments β = lubR2(A2,β).

Clearly A1,α is bounded above by α in R1 and A2,β is bounded above
by β in R2. Next we claim that A1,α is bounded above in R2 and A2,β is
bounded above in R1 for all α ∈ R1 and β ∈ R2. Since R1 and R2 are
totally ordered fields with the Least Upper Bound Property, Theorem 1.3.6
holds so there exists M1,M2 ∈ N such that α < M1 and β < M2. Therefore,
since the orderings on R1 and R2 restrict to the natural ordering on Q and
since A1,α, A2,β ⊆ Q, M1 is an upper bound for A1,α in R2 and M2 is an
upper bound for A2,α in R1.

Consider the functions f : R1 → R2 and g : R2 → R1 defined for all
α ∈ R1 and β ∈ R2 by

f(α) = lubR2(A1,α)
g(β) = lubR1(A2,β).

By the above, f and g are well-defined functions.
We claim that g(f(α)) = α for all α ∈ R1. To see this, let α ∈ R1. Since

f(α) = lubR2(A1,α), we know that f(α) > q for all q ∈ A1,α. Therefore

A1,α ⊆ {q ∈ Q | q < f(α)} = A2,f(α).

We claim that the above set inclusion is actually an equality. To see this,
suppose for the sake of a contradiction that there exists a

q0 ∈ {q ∈ Q | q < f(α)} \A1,α.

Since q0 /∈ A1,α, we know that q0 > α. Hence for all q ∈ A1,α we have that
q < α < q0. Therefore q0 is an upper bound for A1,α in Q. Therefore q0 is an
upper bound for A1,α in R2. However, q0 < f(α) by definition. Therefore,
since q0 is an upper bound for A1,α in R2 and since f(α) = lubR2(A1,α), we
have a contradiction.

Hence
A1,α = {q ∈ Q | q < f(α)} = A2,f(α).

so that
g(f(α)) = lubR1(A2,f(α)) = lubR1(A1,α) = α
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as desired.
A similar argument shows that f(g(β)) = β for all β ∈ R2. Therefore f

and g are invertible functions so f : R1 → R2 is a bijection.
To see that f has the desired properties, we will need to prove a lot.
f(I1) = I2 and f(O1) −O2. Note for all q ∈ Q that A1,q = A2,q. There-

fore
f(q) = lubR2(A1,q) = lubR2(A2,q) = q

for all q ∈ Q. Hence f(1) = 1 and f(0) = 0. Therefore f takes the
multiplicative and additive units of R1 to the multiplicative and additive
units of R2 respectively.

f(x1 + x2) = f(x1) + f(x2). Let x1, x2 ∈ R1. Notice that if q1, q2 ∈ Q
are such that q1 < f(x1) and q2 < x2, then q1 + q2 < x1 + x2. Therefore

A1,x1 +A1,x2 = {q1 + q2 | q1 ∈ A1,x1 , q2 ∈ A1,x2}
⊆ A1,x1+x2 .

We claim that the above set inclusion is an equality. To see this, assume
q ∈ Q is such that q < x1 + x2. Thus q − x1 < x2. Since R1 is a totally
ordered field with the Least Upper Bound Property, Proposition 1.3.8 holds
for R1 so there exists a q2 ∈ Q such that q − x1 < q2 < x2. Hence if
q1 = q − q2, then q1 < x1, q2 < x2, and q1 + q2 = q. Therefore, since q ∈ Q
was arbitrary, we obtain that

A1,x1 +A1,x2 = A1,x1+x2 .

Returning to showing that f(x1 +x2) = f(x1) + f(x2), note that we have

f(x1 + x2) = lubR2(A1,x1+x2)
= lubR2 (A1,x1 +A1,x2)

and
f(x1) + f(x2) = lubR2(A1,x1) + lubR2(A1,x2).

Therefore, to show that f(x1 + x2) = f(x1) + f(x2), it suffices to show that

lubR2 (A1,x1 +A1,x2) = lubR2(A1,x1) + lubR2(A1,x2).

To see this, notice lubR2(A1,x1) ≥ q1 for all q1 ∈ A1,x1 and lubR2(A1,x2) ≥
q2 for all q2 ∈ A1,x2 and thus

lubR2(A1,x1) + lubR2(A1,x2) ≥ q1 + q2

for all q1 ∈ A1,x1 and q2 ∈ A1,x2 . Therefore lubR2(A1,x1) + lubR2(A1,x2) is
an upper bound for A1,x1 +A1,x2 in R2 so

lubR2 (A1,x1 +A1,x2) ≤ lubR2(A1,x1) + lubR2(A1,x2).
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To obtain the equality, let γ ∈ R2 be an upper bound of A1,x1 +A1,x2 in
R2 such that

γ ≤ lubR2(A1,x1) + lubR2(A1,x2).

Since γ is an upper bound of A1,x1 +A1,x2 , we have that q1 + q2 < γ for all
q1 ∈ A1,x1 and q2 ∈ A1,x2 . Hence q1 < γ−q2 for all q1 ∈ A1,x1 and q2 ∈ A1,x2 .
Therefore γ − q2 is an upper bound of A1,x1 in R2 for all q2 ∈ A1,x2 so

lubR2(A1,x1)leqγ − q2

for all q2 ∈ A1,x2 . However, this implies

q2 ≤ γ − lubR2(A1,x1)

for all q2 ∈ A1,x2 and thus γ − lubR2(A1,x1) is an upper bound for A1,x2 so

lubR2(A1,x1) ≤ γ − lubR2(A1,x1).

Hence lubR2(A1,x1)+lubR2(A1,x2) ≤ γ. Thus γ = lubR2(A1,x1)+lubR2(A1,x2)
so that

lubR2 (A1,x1 +A1,x2) = lubR2(A1,x1) + lubR2(A1,x2)

thereby completing the proof that f(x1 + x2) = f(x1) + f(x2).
f(x1x2) = f(x1)f(x2). To prove this, we will divide the proof into a few

cases.
Case 1: x1 = 0 or x2 = 0. In this case, by the properties of fields, x1x2 =

0 and either f(x1) = 0 so f(x1)f(x2) = 0 or f(x2) = 0 so f(x1)f(x2) = 0.
Hence f(x1x2) = 0 = f(x1)f(x2).

Case 2: x1 > 0 and x2 > 0. Assume x1 > 0 and x2 > 0. Since R1 is
a totally ordered field with the Least Upper Bound Property, Proposition
1.3.8 holds for R1 so there exists a q1, q2 ∈ Q such that 0 < q1 < x1 and
0 < q2 < x2. Hence A1,x1 and A1,x2 contain positive elements.

Let

X = {q1q2 | q1 ∈ A1,x1 , q2 ∈ A1,x2 , q1, q2 > 0} ∪ {q ∈ Q |, q ≤ 0}

We claim that
A1,x1x2 = X.

To see this, first note by the properties of a total order field that x1x2 > 0.
Thus

{q ∈ Q |, q ≤ 0} ⊆ A1,x1x2

by definition. Moreover, if q1 ∈ A1,x1 and q2 ∈ A1,x2 are such that q1, q2 > 0,
then 0 < q1 < x1 and 0 < q2 < x2 so by the properties of a total order field
we have that 0 < q1q2 < x1x2 so q1q2 ∈ A1,x1x2 . Hence

A1,x1x2 ⊇ X.
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To see the other set inclusion, let q0 ∈ A1,x1x2 be arbitrary. Clearly if
q0 ≤ 0 then q0 ∈ X. Thus, we may assume without loss of generality that
q0 > 0.

Thus 0 < q0 < x1x2. Since x2 > 0, the properties of a total ordered
field imply that 0 < q0x

−1
2 < x1. Since R1 is a totally ordered field with

the Least Upper Bound Property, Proposition 1.3.8 holds for R1 so there
exists a q1 ∈ Q such that 0 < q0x

−1
2 < q1 < x1. Thus the properties of a

total ordered field imply 0 < q0q
−1
1 < x2. Therefore, if q2 = q0q

−1
1 ∈ Q, then

0 < q1 < x1, 0 < q2 < x2, and q = q1q2. Hence

A1,x1x2 ⊇ X

as claimed.
Returning to showing that f(x1x2) = f(x1)f(x2) in this case, notice that

f(x1x2) = lubR2(A1,x1x2) = lubR2(X)

whereas
f(x1)f(x2) = lubR2(A1,x1) = lubR2(A1,x2).

Therefore, to show that f(x1x2) = f(x1)f(x2), it suffices to show that

lubR2 (X) = lubR2(A1,x1)lubR2(A1,x2).

To see this, notice lubR2(A1,x1) ≥ q1 for all q1 ∈ A1,x1 and lubR2(A1,x2) ≥
q2 for all q2 ∈ A1,x2 . Therefore, for all q1 ∈ A1,x1 and q2 ∈ A1,x2 such that
q1, q2 > 0, we have that

lubR2(A1,x1)lubR2(A1,x2) ≥ q1q2 > 0.

Therefore, since X contains a positive element as A1,x1 and A1,x2 contain
positive elements, lubR2(A1,x1)lubR2(A1,x2) is an upper bound for X in R2
so

lubR2 (X) ≤ lubR2(A1,x1)lubR2(A1,x2).

To obtain the equality, let γ ∈ R2 be an upper bound of X in R2 such
that

γ ≤ lubR2(A1,x1)lubR2(A1,x2).

Note γ > 0 since X contains a positive element. Since γ is an upper bound
of X, we have that q1q2 < γ for all q1 ∈ A1,x1 and q2 ∈ A1,x2 with q1, q2 > 0.
Hence, by the properties of a totally ordered field, we have that 0 < q1 < γq−1

2
for all q1 ∈ A1,x1 and q2 ∈ A1,x2 with q1, q2 > 0. Therefore γq−1

2 is an upper
bound of A1,x1 in R2 for all q2 ∈ A1,x2 so

0 < lubR2(A1,x1)leqγq−1
2
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for all q2 ∈ A1,x2 (where the first inequality comes since A1,x1 has a positive
element). However, the properties of a totally ordered field then implies

0 < q2 ≤ γlubR2(A1,x1)−1

for all q2 ∈ A1,x2 with q2 > 0 and thus γlubR2(A1,x1)−1 is an upper bound
for A1,x2 so

0 < lubR2(A1,x1) ≤ γlubR2(A1,x1)−1.

Hence lubR2(A1,x1)lubR2(A1,x2) ≤ γ. Thus γ = lubR2(A1,x1)lubR2(A1,x2) so
that

lubR2 (A1,x1 +A1,x2) = lubR2(A1,x1)lubR2(A1,x2)

thereby completing the proof that f(x1x2) = f(x1)f(x2) in this case.
Case 3: x1 = −1 and x2 > 0. First note for all x ∈ R1 that

0 = f(0) = f(x+ (−x)) = f(x) + f(−x)

by the additive property of f . Therefore, by the properties of fields (see
Lemma 1.2.1), it follows that f(−x) = −f(x) for all x ∈ R1.

In particular, we see that f(−1) = −f(1) = −1. Therefore, by the
properties of fields, we have that

f(x1x2) = f((−1)x2) = f(−x2) = −f(x2) = (−1)f(x2) = f(x1)f(x2)

as desired.
Case 4: x1 < 0 and x2 > 0. In this case, note that −x1 > 0 by the prop-

erties of a totally ordered field. Therefore

f(x1x2) = f((−1)((−x1)x2)) by Lemma 1.2.1
= f(−1)f((−x1)x2) by Case 3
= (−1)f(−x1)f(x2) by Case 2
= f((−1)(−x1))f(x2) by Case 3
= f(x1)f(x2) by Lemma 1.2.1

as desired.
Case 5: x1 > 0 and x2 < 0. In this case, note that −x2 > 0 by the prop-

erties of a totally ordered field. Therefore

f(x1x2) = f((−1)(x1(−x2))) by Lemma 1.2.1
= f(−1)f(x1(−x2)) by Case 3
= (−1)f(x1)f(−x2) by Case 2
= f(x1)f((−1)(−x2)) by Case 3
= f(x1)f(x2) by Lemma 1.2.1

as desired.
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Case 6: x1 < 0 and x2 < 0. In this case, note that −x1 > 0 and −x2 > 0
by the properties of a totally ordered field. Therefore

f(x1x2) = f((−x1)(−x2)) by Lemma 1.2.1
= f(−x1)f(−x2) by Case 3
= f((−1)x1)f((−1)x2) by Case 2
= (−1)2f(x1)f(x2) by Case 3
= f(x1)f(x2) by Lemma 1.2.1

as desired.
Since the above cases cover all possibilities, the proof that f(x1x2) =

f(x1)f(x2) for all x1, x2 ∈ R1 is complete.
f is order preserving. First assume x ∈ R1 is such that x > 0. Since R1

is a totally ordered field with the Least Upper Bound Property, Proposition
1.3.8 holds for R1 so there exists a q ∈ Q such that 0 < q < x. Therefore
q ∈ A1,x1 so

f(x) = lubR2(A1,x1) ≥ q > 0.

To see the desired property, assume x1, x2 ∈ R1 are such that x1 ≤ x2. If
x1 = x2 then clearly f(x1) ≤ f(x2). Otherwise, if x1 < x2 then 0 < x2+(−x1)
by the properties of a totally ordered field. Thus we have that

0 < f(x2 + (−x1)) = f(x2) + f(−x1) = f(x2) + (−f(x1))

so f(x1) < f(x2) by the properties of a totally ordered field.
Conversely, assume x1, x2 ∈ R1 are such that f(x1) ≤ f(x2). Since

everything we have proved thus far for f must also hold for g by symmetry,
we have that

x1 = g(f(x1)) ≤ g(f(x2)) = x2

as desired.
f preserves being bounded above. Let A ⊆ R1 be non-empty. To see

the desired property, first assume α is an upper bound of A. Thus a ≤ α
for all a ∈ A. Therefore, since f preserves the ordering, this implies that
f(a) ≤ f(α) for all a ∈ A and thus f(α) is an upper bound of f(A).

For the other direction, note by symmetry and the fact that f(A) ̸= ∅,
we have that if β is an upper bound of f(A) then g(β) is an upper bound
for g(f(A)) = A. Hence A is bounded above if and only if f(A) is bounded
above.

f preserves least upper bounds. Let A ⊆ R1 be non-empty and bounded
above. The proof of the previous fact shows that α is an upper bound for A
if and only if f(α) is an upper bound for f(A). Therefore f(lubR1(A)) is an
upper bound for f(A) so

f(lubR1(A)) ≥ lubR2(f(A)).
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By symmetry, we have that

g(lubR2(f(A))) ≥ lubR1(g(f(A))) = lubR1(A).

Therefore, since f preserves the ordering, we obtain that

f(lubR1(A)) ≤ f (g(lubR2(f(A)))) = mathrmlubR2(f(A)).

Hence
f(lubR1(A)) = lubR2(f(A))

as desired.
By combining all of the above, the proof is complete.

Corollary B.5.5. There is a unique totally ordered field with the Least
Upper Bound Property. Said field is called the real numbers and denoted R.

Proof. Since Theorem B.5.4 shows that any two totally ordered fields with
the Least Upper Bound Property are the same upto relabelling the elements,
the proof is complete.
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nth root, odd n, 153

absolute value, 33
anti-derivative, 166
arccosine, 154
Archimedean Property, 28, 29
arcsine, 155
arctangent, 156

bijective, 206
Binomial Theorem, 5
Bolzano-Weierstrass Theorem, 63
boundary point, 80
bounded, above, 22
bounded, below, 23
bounded, function, 131
bounded, subset, 23

Cantor set, 82
Carathéodory’s Theorem, 143
Cartesian Product, 201
Cauchy sequence, 64
Cauchy’s Mean Value Theorem, 156
chain rule, 144
common refinement, 171
Comparison Theorem, functions, 106
Comparison Theorem, sequences, 54
Completeness of R, 66
composition, functions, 205
connected set, 123
continuous function (point), 109
continuous function, interval, 109
continuous, uniformly, 116
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de Morgan’s Laws, 202
Decreasing Function Theorem, 150
Dedekind cut, 239
derivative, 136
differentiable, 136
differentiable, on a closed interval, 147
differentiable, on an open interval, 147
disconnected set, 122
Division Algorithm, 8
domain, 204

empty set, 200
equal sets, 200
equals, functions, 204
equivalence relation, 210
Extreme Value Theorem, 131
Extreme Value Theorem, Topological Version, 132

field, 13
field, ordered, 18
field, subfield, 14
finite intersection property, 89
finite interval, 93
First Derivative Test, 148
function, 204
function, x → −∞, 107
function, x → ∞, 106
function, continuous (point), 109
function, decreasing, 126
function, diverge to infinity, 108, 109
function, increasing, 126
function, left-sided limit, 94
function, limit, 94
function, monotone, 126
function, non-decreasing, 126
function, non-increasing, 126
function, right-sided limit, 94
Fundamental Theorem of Calculus, I, 191
Fundamental Theorem of Calculus, II, 193

global maximum, 145
global minimum, 145
greatest lower bound, 24
Greatest Lower Bound Property, 26
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Heine-Borel Theorem, 86

image, 205
Increasing Function Theorem, 150
Induction Axiom, 4
infimum, 51
injective, 206
integers, 217
integration by parts, 198
integration by substitution, 197
interior point, 79
Intermediate Value Theorem, 121
Intermediate Value Theorem, Topological Version, 124
intersection, 201
interval, 23
interval, closed, 23
interval, finite, 93
interval, open, 23
Inverse Function Theorem, 150
inverse image, 208
inverse, function, 207
invertible, 206

L’Hôpital’s Rule, 157
least upper bound, 24
Least Upper Bound Property, 24
left endpoint, interval, 94
limit infimum, 52
limit point, 78
limit supremum, 52
limit, function, 94
limit, sequence, 38
local maximum, 145
local minimum, 145
logarithm, natural, 153
lower bound, 22

Mean Value Theorem, 147
Monotone Convergence Theorem, 42

natural logarithm, 153

one-to-one, 206
onto, function, 205
open cover, 84
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partial ordering, 17
partition, 167
peak point, 62
Peak Point Lemma, 62
Peano’s Axioms, 4
preimage, 208
Principle of Mathematical Induction, 5
Principle of Strong Induction, 7
product rule, 140

quotient rule, 142

range, 205
rational function, 104
rational numbers, 230
real numbers, definition, 240, 263
refinement, 170
reflexive, 210
relation, 204
Riemann integrable, 172
Riemann sum, 176
Riemann sum, lower, 168
Riemann sum, upper, 169
right endpoint, interval, 94
Rolle’s Theorem, 147

second derivative, 163
sequence, 37
sequence, bounded, 41
sequence, Cauchy, 64
sequence, constant, 37
sequence, converging, 38
sequence, decreasing, 42
sequence, diverging, 38
sequence, diverging to infinity, 48
sequence, Fibonacci, 38
sequence, increasing, 42
sequence, limit, 38
sequence, monotone, 42
sequence, non-decreasing, 42
sequence, non-increasing, 42
sequence, recursively defined, 38
set, 199
set difference, 202
set, closed, 74
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set, closure, 76
set, compact, 85
set, compliment, 202
set, element, 200
set, open, 69
set, sequentially compact, 88
sets, equal, 200
Squeeze Theorem, functions, 104
Squeeze Theorem, sequences, 50
subfield, 14
subsequence, 62
subset, 200
supremum, 51
surjective, 205
symmetric, 210

Taylor polynomial, 164
Taylor’s Theorem, 164
topology, R, 69
total ordering, 18
transitive, 210
Triangle Inequality, 34

uniform partition, 177
union, 201
upper bound, 22

Well-Ordering Principle, 7
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