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Chapter 1

Measure Spaces

As per its title, this course is dedicated to the study of the theory of measures.
So what sort of course would this be if we did not define the main object of
study in the first chapter? After defining the notion of a measure, we will
examine several examples and properties of measures that immediately follow
from definitions. We will then turn to constructing measures from various
notions of length and extending measure-like functions to actual measures.
This will lead us to looking at measures with important analytical properties
including the Lebesgue-Stieltjes measures and metric outer measures. By
using metric outer measures, we will obtain the notion of Hausdorff dimension
for subsets of metric spaces.

1.1 Measure Spaces
Before we can define the notion of a measure, we must describe collections
of sets which are valid for the domain of a measure. One may think of these
collections as all sets which have a valid length (or measure) or as all events
which have a well-defined probability. After all, it is not always true that we
can assign every event in the universe a probability at once.

Definition 1.1.1. Let X be a non-empty set. A σ-algebra on X is a subset
A ⊆ P(X) (the power set of X) such that

1. ∅ ∈ A and X ∈ A (that is, we can measure the empty event and the
full event),

2. if A ∈ A then Ac = X \A ∈ A (that is, we can measure the complement
of an event), and

3. if {An}∞
n=1 ⊆ A, then

⋃∞
n=1An ∈ A (that is, we can measure the union

of a countable collection of events).

The pair (X,A) is called a measurable space and the elements of A are called
measurable sets.

1



2 CHAPTER 1. MEASURE SPACES

Remark 1.1.2. One may ask why we only ask for countable unions of
measurable sets to be measurable. One answer for this comes with the
definition of a measure in that we want to have additivity over disjoint
unions and adding over an uncountable set only works if only a countable
number of elements are non-zero. Another reason is that restricting to
countable collections is quite powerful as we will see in this course.

Remark 1.1.3. One may also ask why we have not required that the
intersection of a countable collection of measurable sets is measurable. The
reason for this is that countable intersections come for free. Indeed if (X,A)
is a measurable space and {An}∞

n=1 ⊆ A then
∞⋂

n=1
An =

( ∞⋃
n=1

Ac
n

)c

∈ A

as complements and countable unions of elements of A are elements of A.
Furthermore, by using ∅ in unions and X is intersections, clearly a finite
union or intersection of elements of A is an element of A.

Of course, there are some trivial examples of measurable spaces.

Example 1.1.4. Let X be a non-empty set. Then (X,P(X)) is a measurable
space and (X, {∅, X}) is a measurable space.

Of course there are some more complicated examples of measurable
spaces.

Example 1.1.5. Let X be a non-empty set and let

A = {A ⊆ X | A is countable or Ac is countable}.

Then (X,A) is a measurable space.

Moreover, if one has a collection of σ-algebras on a set X, there are ways
of constructing new σ-algebras. In particular, it is elementary to verify the
following using set properties and Definition 1.1.1.

Lemma 1.1.6. Let X be a non-empty set and let {Aα | α ∈ I} be a
collection of σ-algebras of X. Then⋂

α∈I

Aα

is a σ-algebra of X.

Remark 1.1.7. Using Lemma 1.1.6 we can construct the smallest σ-algebra
containing a collection of subsets. Indeed let X be a non-empty set and let
A ⊆ P(X). Define

I = {A | A is a σ-algerba of X such that A ⊆ A}.

©For use through and only available at pskoufra.info.yorku.ca.



1.1. MEASURE SPACES 3

Clearly P(X) ∈ I so I is non-empty. Hence Lemma 1.1.6 implies that

σ(A) =
⋂

A∈I

A

is a σ-algebra. Since clearly A ⊆ σ(A) by construction, σ(A) is the smallest σ-
algebra of X that contains A. As such, σ(A) is called the σ-algebra generated
by A.

Definition 1.1.8. Let (X , d) be a metric space. The σ-algebra generated by
the open subsets of X is called the Borel σ-algebra and is denoted B(X ). In
particular, B(X ) is also the σ-algebra generated by the closed subsets of X
since open and closed sets are complements of each other and as σ-algebras
are closed under complements. Elements of B(X ) are called Borel sets.

Remark 1.1.9. In terms of the Borel subsets of R, the sets

{(a, b) | a, b ∈ R, a < b}
{(a, b] | a, b ∈ R, a < b}
{[a, b) | a, b ∈ R, a < b}
{[a, b] | a, b ∈ R, a < b}
{(−∞, b) | b ∈ R}
{(−∞, b] | b ∈ R}
{(a,∞) | a ∈ R}
{[a,∞) | a ∈ R}

all can be shown to generate B(R) via unions, intersections, and complements
(show that B(R) contains each of these sets and any σ-algebra containing
one of these sets contains all open intervals and thus all open sets by the fact
that every open set is a countable union of open intervals; see Proposition
C.2.11). We note it is possible to show that |B(R)| = |R| < |P(R)| (that is,
the cardinality of the Borel subsets of R is strictly less than the cardinality
of the power set of R so not every subset of R is Borel). Said proof requires
the use of transfinite induction.

With σ-algebras, we may now define the central object of study in this
course.

Definition 1.1.10. Let (X,A) be a measurable space. A (countably additive,
positive) measure on (X,A) is a function µ : A → [0,∞] such that

• µ(∅) = 0, and

• (countable additivity on disjoint subsets) if {An}∞
n=1 ⊆ A are pairwise

disjoint (i.e. An ∩Am = ∅ if n ̸= m), then

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An)

©For use through and only available at pskoufra.info.yorku.ca.



4 CHAPTER 1. MEASURE SPACES

(where the sum is infinite if one of the elements is ∞ or if the sum
diverges).

The triple (X,A, µ) is called a measure space and given an element A ∈ A,
µ(A) is called the µ-measure of A.

Remark 1.1.11. Notice if (X,A, µ) is a measure space and A1, . . . , An are
pairwise disjoint subsets of A, then

µ

(
n⋃

k=1
Ak

)
=

n∑
k=1

µ(Ak)

by countable additivity with Ak = ∅ for all k > n.

Before we get too deep into the study of properties of measures, let’s
examine some common measures which are easy to define.

Example 1.1.12. Let X be a non-empty set and let x ∈ X. The point-mass
measure at x is the measure δx on (X,P(X)) defined by

δx(A) =
{

1 if x ∈ A

0 if x /∈ A
.

It is elementary to verify that δx is a measure.

Example 1.1.13. Let X be a non-empty set. The counting measure on X
is the measure µ on (X,P(X)) defined by

µ(A) =
{

|A| if A is finite
∞ otherwise

.

It is elementary to verify that µ is a measure.

Example 1.1.14. A function µ : P(N) → [0,∞] is a measure on (N,P(N))
if and only if there exists a sequence (an)n≥1 of elements of [0,∞] such that

µ(A) =
∑
n∈A

an

for all A ⊆ N. To see this, note that it is elementary to verify that if µ has
the described form, then µ is a measure.

Conversely, suppose µ is a measure on (N,P(N)). Since for each n ∈ N
the set {n} is measurable, for each n ∈ N we may define

an = µ({n}) ∈ [0,∞].

We claim that
µ(A) =

∑
n∈A

an

©For use through and only available at pskoufra.info.yorku.ca.



1.1. MEASURE SPACES 5

for all A ⊆ N. To see this, let A ⊆ N be arbitrary. Then, since A is countable
and

A =
⋃

n∈A

{n},

we obtain by the properties of a measure that

µ(A) = µ

( ⋃
n∈A

{n}
)

=
∑
n∈A

µ({n}) =
∑
n∈A

an

as desired.

Note the measures in Example 1.1.14 can be constructed using Example
1.1.12 and the following technique (which will be of use to us later).

Example 1.1.15. Let (X,A, µ) be a measure space, let {Ak}∞
k=1 ⊆ A, and

let {ak}∞
k=1 ∈ [0,∞]. Define ν : A → [0,∞] by

ν(A) =
∞∑

k=1
akµ(Ak ∩A)

for all A ∈ A where the sum equates to ∞ if the sum diverges or one of the
terms is ∞, and

a× ∞ =
{

0 if a = 0
∞ if a > 0

.

Then ν is a measure on (X,A). To see this, we clearly note that ν(∅) = 0.
Furthermore, if {Bm}∞

m=1 ⊆ A are pairwise disjoint, then {Ak ∩Bm}∞
m=1 are

pairwise disjoint for all k and thus, since µ is a measure,

ν

( ∞⋃
m=1

Bm

)
=

∞∑
k=1

akµ

(
Ak ∩

( ∞⋃
m=1

Bm

))

=
∞∑

k=1
akµ

( ∞⋃
m=1

(Ak ∩Bm)
)

=
∞∑

k=1

∞∑
m=1

akµ (Ak ∩Bm)

=
∞∑

m=1

∞∑
k=1

akµ (Ak ∩Bm) as all terms are non-negative

=
∞∑

m=1
ν(Bm).

Hence ν is a measure as desired.

Although we can define many more measures, we turn our attention
to properties of measures immediately implied by Definition 1.1.10 and set
manipulations. We begin with the following.

©For use through and only available at pskoufra.info.yorku.ca.



6 CHAPTER 1. MEASURE SPACES

Remark 1.1.16. Let (X,A, µ) be a measure space and let E,F ∈ A. Assume
E ⊆ F . Since F \ E = F ∩ Ec ∈ A and since F \ E is disjoint from E, we
obtain by finite additivity on disjoint subsets that

µ(F ) = µ(E ∪ (F \ E)) = µ(E) + µ(F \ E) ≥ µ(E) + 0 = µ(E).

In particular, if A is ordered by inclusion, then µ is monotone with respect
to this inclusion. Consequently, if µ(F ) < ∞ then µ(E) < ∞. Moreover,
notice if µ(E) < ∞ the above computation implies that we may subtract
µ(E) from both sides in order to obtain that µ(F \ E) = µ(F ) − µ(E).

Remark 1.1.17. Let (X,A, µ) be a measure space and let A,B ∈ A. Assume
µ(A ∩ B) < ∞. Since A ∈ A and B \ (B ∩ A) ∈ A are disjoint, we obtain
finite additivity on disjoint subsets and Remark 1.1.16 that

µ(A ∪B) = µ(A ∪ (B \ (B ∩A)) = µ(A) + µ(B \ (B ∩A))
= µ(A) + µ(B) − µ(A ∩B)

The above formula is probably very familiar in the context of probability. In
fact, the basic objects in probability theory can be modelled as follows.

Of course if a measure is going to represent the probability of an event
occurring, we must dictate the probability of all possible events is one. As
such, when discussing probability, we use the following terminology.

Definition 1.1.18. Let (X,A, µ) be a measure space. It is said that (X,A, µ)
is a probability space and µ is a probability measure if µ(X) = 1. In this case,
X is called the sample space, elements of A are called events, and, given
A ∈ A, µ(A) denotes the probability that the event A occurs.

Remark 1.1.19. It is not difficult to see that a probability space is the
correct notion in order to study probability theory. Indeed the probability
of the entire space is one and whenever A and B are disjoint sets, which
is the notion of independent events, then the probability of A ∪ B is the
sum of the probability of A and the probability of B. Furthermore, Remark
1.1.17 is precisely the formula for the probability of A ∪ B when A and B
are not disjoint; that is, the formula for the probability of the union of two
not necessarily independent events.

Of course, when studying probability, one may only have finite additivity
instead of countable additivity. As will be seen in Section 1.3, it is not
difficult to extend finitely additive measures to countably additive measures,
which is far more desirable in our analytic realm.

Of course requiring the measure of the entire space to be one is a specific
property of a measure we may wish to study. The following generalizations
of probability measures are vital for this course.

©For use through and only available at pskoufra.info.yorku.ca.



1.1. MEASURE SPACES 7

Definition 1.1.20. A measure µ on a measurable space (X,A) is said to be

• finite if µ(X) < ∞ (and thus µ(A) < ∞ for all A ∈ A by monotonicity).

• σ-finite if there exists a collection {An}∞
n=1 ⊆ A such thatX =

⋃∞
n=1An

and µ(An) < ∞ for all n ∈ N.

In most cases, if one can prove a property for any finite measure, one can
extend the result to all σ-finite measures using analytical techniques. This
is often done using the following additional partition decompositions of a
σ-finite measure space.

Remark 1.1.21. Assume µ is a σ-finite measure on (X,A). Thus there
exists a collection {An}∞

n=1 ⊆ A such that X =
⋃∞

n=1An and µ(An) < ∞ for
all n ∈ N. Let B1 = C1 = A1 and for each n ≥ 2 let

Bn = An \
(

n−1⋃
k=1

Bk

)
and Cn =

n⋃
k=1

Ak.

Then {Bn}∞
n=1 are pairwise disjoint elements of A are such that X =

⋃∞
n=1Bn

and µ(Bn) ≤ µ(An) < ∞ for all n ∈ N. Similarly {Cn}∞
n=1 are elements of

A are such that X =
⋃∞

n=1Cn, Cn ⊆ Cn+1 for all n ∈ N, and µ(Cn) < ∞
for all n ∈ N. The reason µ(Cn) < ∞ can be seen via the following result as∑n

k=1 µ(Ak) < ∞.

Proposition 1.1.22 (Subadditivity of Measures). Let (X,A, µ) be a
measure space and let {An}∞

n=1 ⊆ A. Then

µ

( ∞⋃
n=1

An

)
≤

∞∑
n=1

µ(An).

Proof. Let E1 = A1. For each n ∈ N with n ≥ 2 let

En = An \
(

n−1⋃
k=1

Ak

)
.

Since {An}∞
n=1 ⊆ A, by the properties of σ-algebra we have that En ∈ A for

all n ∈ N. Furthermore, it is clear that En ∩ Em = ∅ if n ̸= m, En ⊆ An for
all n ∈ N, and

∞⋃
n=1

An =
∞⋃

n=1
En.

Hence by the definition and monotonicity of measures (Remark 1.1.16), we

©For use through and only available at pskoufra.info.yorku.ca.



8 CHAPTER 1. MEASURE SPACES

obtain that

µ

( ∞⋃
n=1

An

)
= µ

( ∞⋃
n=1

En

)

=
∞∑

n=1
µ(En) {En}∞

n=1 pairwise disjoint

≤
∞∑

n=1
µ(An) monotonicity of measures

as desired.

As seen above, being able to replace our measurable sets with disjoint
measurable is a very useful technique. In particular, the same idea is helpful
in proving the following.

Theorem 1.1.23 (Monotone Convergence Theorem, Measures). Let
(X,A, µ) be a measure space and let {An}∞

n=1 ⊆ A.

a) If An ⊆ An+1 for all n ∈ N, then µ (
⋃∞

n=1An) = limn→∞ µ(An).

b) If An+1 ⊆ An for all n ∈ N and µ(A1) < ∞, then µ (
⋂∞

n=1An) =
limn→∞ µ(An).

Proof. To see a) is true, let A0 = ∅ for notational simplicity. If for each
n ∈ N we define

Bn = An \An−1,

then {Bn}∞
n=1 is a collection of pairwise disjoint elements of A such that⋃∞

k=1Bk =
⋃∞

k=1Ak and
⋃n

k=1Bk = An for all n ∈ N. Hence

µ

( ∞⋃
n=1

An

)
= µ

( ∞⋃
n=1

Bn

)

=
∞∑

k=1
µ(Bk) {Bk}∞

k=1 pairwise disjoint

= lim
n→∞

n∑
k=1

µ(Bk) definition of series

= lim
n→∞

µ

(
n⋃

k=1
Bk

)
{Bk}∞

k=1 pairwise disjoint

= lim
n→∞

µ(An)

as desired.
To see b) is true, notice if Bn = A1 \An for all n ∈ N, then {Bn}∞

n=1 is a
collection of elements of A with Bn ⊆ Bn+1 for all n ∈ N. Hence, as

∞⋃
n=1

Bn = A1 \
( ∞⋂

n=1
An

)

©For use through and only available at pskoufra.info.yorku.ca.



1.2. THE CARATHÉODORY METHOD 9

we obtain by part a) that

µ

(
A1 \

( ∞⋂
n=1

An

))
= lim

n→∞
µ(Bn) = lim

n→∞
µ(A1 \An).

Since µ(A1) < ∞, Remark 1.1.16 implies that µ(A1 \E) = µ(A1) − µ(E) for
all E ∈ A with E ⊆ A1. Hence

µ (A1) − µ

( ∞⋂
n=1

An

)
= µ

(
A1 \

( ∞⋂
n=1

An

))
= lim

n→∞
µ(A1 \An)

= lim
n→∞

µ(A1) − µ(An)

= µ(A1) − lim
n→∞

µ(An).

Hence, by subtracting µ(A1) < ∞ from both sides, the result follows.

Remark 1.1.24. Note that part b) of the Monotone Convergence Theorem
(Theorem 1.1.23) fails if the condition µ(A1) < ∞ is removed. Indeed if µ
is the counting measure on N and An = N \ {1, 2, . . . , n} for all n ∈ N, then
An+1 ⊆ An for all n ∈ N, µ(An) = ∞ for all n ∈ N, yet

⋂∞
n=1An = ∅ so

µ (
⋂∞

n=1An ) = 0 ̸= ∞ = limn→∞ µ(An).

1.2 The Carathéodory Method
Based on the above notions, it is very natural to ask whether there exists a
measure λ on (R,P(R)) that emulates the length of a set. In particular, we
desire such a measure to have some very natural properties, such as:

1. if I is an interval, then λ(I) is the length of I.

2. if A ∈ P(R), x ∈ R, and x+A = {x+a | a ∈ A}, then λ(x+A) = λ(A);
that is, λ is translation invariant.

However it turns out that no such measure exists! This can be seen via the
following example.

Example 1.2.1. Suppose for the sake of a contradiction that λ is a measure
on (R,P(R)) with the above two properties. Define a relation ∼ on R by
x ∼ y if and only if x − y ∈ Q. It is not difficult to verify that ∼ is an
equivalence relation on R.

We claim that every element of R is ∼-equivalent to some element in
[0, 1). Indeed if x ∈ R, then x is the sum of its integer part ⌊x⌋ and its
fractional part {x}. Since x − {x} = ⌊x⌋ ∈ Q, we obtain that x ∼ {x}.
Therefore, since {x} ∈ [0, 1), x is ∼-equivalent to some element in [0, 1).

©For use through and only available at pskoufra.info.yorku.ca.



10 CHAPTER 1. MEASURE SPACES

Consequently every equivalence class under ∼ has an element in [0, 1). Let
A ⊆ [0, 1) be a set that contains precisely one element from each equivalence
class of ∼. Note the existence of A follows from the Axiom of Choice.

Since Q is countable, we may enumerate Q ∩ [0, 1) as

Q ∩ [0, 1) = {rn | n ∈ N}.

For each n ∈ N, let

An = {x ∈ [0, 1) | x ∈ rn +A or x+ 1 ∈ rn +A}

(that is, An is rn +A modulo 1).
We claim that {An}∞

n=1 are disjoint with union [0, 1). To see this, note if
x ∈ [0, 1) then there exists a unique y ∈ A ⊆ [0, 1) such that x ∼ y. Thus
x− y ∈ Q∩ (−1, 1). If x− y ∈ Q∩ [0, 1) then x− y = rn for some n and thus
x = rn + y ∈ An. Otherwise if x− y ∈ Q ∩ (−1, 0) then (x+ 1) − y ∈ (0, 1).
Thus (x+ 1) − y = rn for some n and thus x = rn + y − 1 ∈ An. Hence

[0, 1) =
∞⋃

n=1
An.

To see that {An}∞
n=1 are pairwise disjoint, suppose x ∈ An ∩Am for some

n,m ∈ N. By definition, there exists y, z ∈ A and k, l ∈ {0, 1} such that
x+k = rn+y and x+l = rm+z. Therefore y−z = rm−rn+k−l ∈ Q so y ∼ z.
Hence y = z as A contains exactly on element from each equivalence class of
∼. Thus 0 = rm − rn + k− l. Since k− l ∈ {−1, 0, 1} and rn − rm ∈ (−1, 1),
0 = rm − rn + k− l can only occur when rn = rm in which case n = m. Thus
{An}∞

n=1 is a collection of pairwise disjoint sets whose union is [0, 1).
For each n ∈ N, let

Bn,1 = (rn +A) ∩ [0, 1)
Bn,2 = −1 + ((rn +A) ∩ [1, 2)) .

Clearly An = Bn,1 ∪Bn,2 since rn +A ⊆ [0, 2) for all n.
We claim that Bn,1 ∩ Bn,2 = ∅. To see this, suppose for the sake of a

contradiction that b ∈ Bn,1 ∩Bn,2. By definition there exists x, y ∈ A such
that rn +x ∈ [0, 1), rn + y ∈ [1, 2), and b = rn +x = −1 + rn + y. Clearly we
have x− y = −1 ∈ Q so x ̸= y and x ∼ y. Therefore, as A contains exactly
one element from each equivalence class, we have obtained a contradiction.
Hence Bn,1 ∩Bn,2 = ∅.
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1.2. THE CARATHÉODORY METHOD 11

To obtain our contradiction, note that

1 = λ([0, 1))

= λ

( ∞⋃
n=1

An

)

=
∞∑

n=1
λ(An) since {An}∞

n=1are disjoint

=
∞∑

n=1
λ(Bn,1 ∪Bn,2)

=
∞∑

n=1
λ(Bn,1) + λ(Bn,2) since Bn,1 and Bn,2 are disjoint

=
∞∑

n=1
λ((rn +A) ∩ [0, 1)) + λ (((rn +A) ∩ [1, 2))

=
∞∑

n=1
λ((rn +A) ∩ [0, 2))

=
∞∑

n=1
λ(rn +A) since rn +A ⊆ [0, 2)

=
∞∑

n=1
λ(A).

This yields our contradiction since λ(A) ∈ [0,∞] yet no number in [0,∞]
when summed an infinite number of times produces 1. Thus we have obtained
a contradiction to the existence of such a λ defined on (R,P(R)).

The above example illustrates that P(R) is too large; that is, there are
too many sets in P(R) to define such a measure in a consistent way. The set
A in Example 1.2.1 is one of these sets.

To solve this problem, our answer is to reduce the number of sets we
consider measurable. Of course, if we would like to do analysis, we need
the open sets to be measurable and thus we require all Borel sets to be
measurable. However, the problem still remains, “How do we construct our
measure and determine which sets are measurable?”

To answer this problem, we will invoke a technique called Carathéodory’s
Method. The idea of this method is, given a set X, to define a function on
the power set of X that is almost a measure, but has weaker properties. We
will then define sets that behave ‘nicely’ and show these nice sets form a
σ-algebra. Finally, we will demonstrate that restricting the function to these
nice sets does indeed produce a measure space that hopefully contains some
nice measurable sets.

To begin, we define the ‘function’ that behaves almost like a measure.
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12 CHAPTER 1. MEASURE SPACES

Definition 1.2.2. Let X be a non-empty set. A function µ∗ : P(X) → [0,∞]
is said to be an outer measure if

(1) µ∗(∅) = 0,

(2) (monotonicity) µ∗(A) ≤ µ∗(B) whenever A,B ∈ P(X) are such that
A ⊆ B, and

(3) (countable subadditivity) if {An}∞
n=1 ⊆ P(X), then µ∗ (

⋃∞
n=1An) ≤∑∞

n=1 µ
∗(An).

Notice that every measure is an outer measure by the results of Section 1.1
whereas an outer measure need not be a measure as it is not necessary that
equality occur in the third property of Definition 1.2.2 when the collection
{An}∞

n=1 are pairwise disjoint. Of course, it is a priori possible that every
outer measure is automatically a measure. For an example to show this
is not the case, we will need to construct some outer measures. The most
natural way to do so is the following which attempts to assign certain sets a
specific value.

Definition 1.2.3. Let X be a non-empty set, let F ⊆ P(X) be a family
of subsets of X such that ∅, X ∈ F , and let ℓ : F → [0,∞] be any function
such that ℓ(∅) = 0. The outer measure associated to ℓ is the function
µ∗

ℓ : P(X) → [0,∞] defined by

µ∗
ℓ (A) = inf

{ ∞∑
n=1

ℓ(An)
∣∣∣∣∣ {An}∞

n=1 ⊆ F such that A ⊆
∞⋃

n=1
An

}

for all A ⊆ X (where inf{∞} = ∞).

Of course, we should prove that the outer measure associated to ℓ is
actually an outer measure!

Proposition 1.2.4. Let X be a non-empty set, let F ⊆ P(X) be a family
of subsets of X such that ∅, X ∈ F , and let ℓ : F → [0,∞] be any function
such that ℓ(∅) = 0. The outer measure associated to ℓ is an outer measure
µ∗

ℓ such that µ∗
ℓ (A) ≤ ℓ(A) for all A ⊆ X.

Furthermore, if ν∗ : P(X) → [0,∞] is an outer measure such that
ν∗(A) ≤ ℓ(A) for all A ⊆ X, then ν∗(A) ≤ µ∗

ℓ(A) for all A ∈ F . Hence µ∗
ℓ

is the largest outer measure bounded above by ℓ.

Proof. First notice that since X ∈ F that the set whose infimum defines
µ∗

ℓ(A) is non-empty for all A ⊆ X. This fact will be used throughout the
proof.

Clearly µ∗
ℓ : P(X) → [0,∞]. Furthermore, since ∅ ∈ F and ℓ(∅) = 0, we

clearly see that µ∗
ℓ (∅) = 0 as {∅}∞

n=1 is a cover of ∅. Moreover, if A ⊆ B ⊆ X,
it is easy to see that µ∗

ℓ(A) ≤ µ∗
ℓ(B) since the infimum in the definition
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1.2. THE CARATHÉODORY METHOD 13

of µ∗
ℓ(A) is taken over a larger collection of sets than the infimum in the

definition of µ∗
ℓ (B).

To verify the final property from Definition 1.2.2 for µ∗
ℓ , let {An}∞

n=1 ⊆
P(X) and let A =

⋃∞
n=1An. Fix ϵ > 0. By the definition of µ∗

ℓ , for each
n ∈ N there exists a collection {An,k | k ∈ N} ⊆ F such that An ⊆

⋃∞
k=1An,k

and ∞∑
k=1

ℓ(An,k) ≤ µ∗
ℓ (An) + ϵ

2n
.

Clearly {An,k | n, k ∈ N} is a countable subset of F is such that

A ⊆
∞⋃

n,k=1
An,k.

Hence by the definition of µ∗
ℓ

µ∗
ℓ (A) ≤

∞∑
n,k=1

ℓ(An,k) ≤
∞∑

n=1
µ∗

ℓ (An) + ϵ

2n
= ϵ+

∞∑
n=1

µ∗
ℓ (An).

Therefore, since ϵ > 0 was arbitrary, we obtain that

µ∗
ℓ (A) ≤

∞∑
n=1

µ∗
ℓ (An).

Hence µ∗
ℓ is an outer measure.

To complete the proof, assume ν∗ : P(X) → [0,∞] is an outer measure
such that ν∗(A) ≤ ℓ(A) for all A ⊆ X. Notice for each A ⊆ X and each
collection {An}∞

n=1 ⊆ F such that A ⊆
⋃∞

n=1An that

ν∗(A) ≤ ν∗
( ∞⋃

n=1
An

)
≤

∞∑
n=1

ν∗(An) ≤
∞∑

n=1
ℓ(An)

by the properties of an outer measure and the assumptions on ν∗. Therefore,
since µ∗

ℓ(A) is the infimum of
∑∞

n=1 ℓ(An) over all collections {An}∞
n=1 ⊆ F

such that A ⊆
⋃∞

n=1An, we easily see that ν∗(A) ≤ µ∗(A) for all A ⊆ X as
desired.

The outer measure one uses on R to define length is the following.

Definition 1.2.5. Given an interval I ⊆ R, let ℓ(I) denote the length of
I (where the length of an infinite interval is assigned ∞ and the length
of the empty set is 0). The Lebesgue outer measure, denoted λ∗, is the
outer measure associated to ℓ restricted to the open intervals. In particular
λ∗ : P(R) → [0,∞] is defined by

λ∗(A) = inf
{ ∞∑

n=1
ℓ(In)

∣∣∣∣∣ {In}∞
n=1 are open intervals

such that A⊆
⋃∞

n=1 In

}
for all A ⊆ R.
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14 CHAPTER 1. MEASURE SPACES

Clearly we can extend the Lebesgue outer measure on R to measures on
Rn to measure areas and volumes.

Definition 1.2.6. Let n ∈ N, let

F = {(a1, b1) × · · · × (an, bn) ⊆ Rn | ak, bk ∈ R ∪ {±∞}, ak < bk},

and define ℓ : F → [0,∞] by

ℓ((a1, b1) × · · · × (an, bn)) =
n∏

k=1
bk − ak

(where the product is zero if bk = ak for some k, and otherwise if bk = ∞
or ak = −∞ for some k then the product is infinite). The n-dimensional
Lebesgue outer measure, denoted λ∗

n, is the outer measure on Rn associated
to ℓ.

With the above notion of outer measures, we desire to construct measures
from outer measures. To do so, we need to define a σ-algebra of sets for
which the restriction of our outer measure produces a measure. These sets
are described as follows.

Definition 1.2.7. Let X be a non-empty set and let µ∗ : P(X) → [0,∞]
be an outer measure on X. A subset A ⊆ X is said to be µ∗-measurable or
outer measurable if for every B ∈ P(X)

µ∗(B) = µ∗(B ∩A) + µ∗(B ∩Ac).

Remark 1.2.8. The reason we are interested in outer measurable sets is
that if A ⊆ X has the property that

µ∗(B) ̸= µ∗(B ∩A) + µ∗(B ∩Ac)

for some B ∈ P(X), it is likely we don’t want to consider A to be measurable
as it causes µ∗ to fail to be additive on specific disjoint sets if B was also
measurable.

Remark 1.2.9. Notice by the properties of an outer measure that if A,B ∈
P(X) then

µ∗(B) ≤ µ∗(B ∩A) + µ∗(B ∩Ac).

Thus to show that A is outer measurable, it suffices to show that

µ∗(B) ≥ µ∗(B ∩A) + µ∗(B ∩Ac)

for all B ∈ P(X). Furthermore, clearly it suffices to restrict our attention to
B such that µ∗(B) < ∞.
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1.2. THE CARATHÉODORY METHOD 15

The Carathéodory Method of constructing a measure is as follows: con-
struct an outer measure µ∗, and apply the following to get a σ-algebra A
such that µ∗|A is a measure.

Theorem 1.2.10. Let X be a non-empty set and let µ∗ : P(X) → [0,∞] be
an outer measure on X. The set A of all outer measurable sets is a σ-algebra.
Furthermore µ∗|A is a measure on (X,A).

Proof. To see that A is a σ-algebra, first notice for all B ∈ P(X) that

µ∗(B) = µ∗(B) + 0 = µ∗(B ∩ ∅c) + µ∗(B ∩ ∅).

Hence ∅ ∈ A. Furthermore, clearly if A ∈ A then clearly Ac ∈ A due to the
symmetry in the definition of an outer measurable set. Hence A is closed
under compliments and X ∈ A.

In order to demonstrate that A is closed under countable unions, let’s
first verify that A is closed under finite unions. To verify that A is closed
under finite unions, it suffices to verify that if A1, A2 ∈ A then A1 ∪A2 ∈ A
as we can then apply recursion to take arbitrary finite unions of element of
A. Thus let A1, A2 ∈ A be arbitrary. To see that A1 ∪ A2 ∈ A, let B ⊆ X
be arbitrary. Since A1 is outer measurable, we know that

µ∗(B) = µ∗(B ∩A1) + µ∗(B ∩Ac
1).

Furthermore, since A2 is outer measurable, we know that

µ∗(B ∩Ac
1) = µ∗((B ∩Ac

1) ∩A2) + µ∗((B ∩Ac
1) ∩Ac

2).

Hence

µ∗(B) = µ∗(B ∩A1) + µ∗(B ∩Ac
1 ∩A2) + µ∗(B ∩Ac

1 ∩Ac
2).

However, since

B ∩ (A1 ∪A2) = (B ∩A1) ∪ (B ∩ (A2 ∩Ac
1)),

subadditivity implies that

µ∗(B) = µ∗(B ∩A1) + µ∗(B ∩Ac
1 ∩A2) + µ∗(B ∩Ac

1 ∩Ac
2)

≥ µ∗(B ∩ (A1 ∪A2)) + µ∗(B ∩Ac
1 ∩Ac

2)
= µ∗(B ∩ (A1 ∪A2)) + µ∗(B ∩ (A1 ∪A2)c)

Therefore, since B ⊆ X was arbitrary, we obtain that A1 ∪A2 ∈ A. Hence
A is closed under finite unions.

Since A is also closed under complements, we also obtain that A is closed
under finite intersections using a similar argument to that used in Remark
1.1.3.
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16 CHAPTER 1. MEASURE SPACES

To see that A is closed under countable unions, let {An}∞
n=1 ⊆ A be

arbitrary. Let E1 = A1 and for n ≥ 1 let

En = An \
(

n−1⋃
k=1

Ak

)
= An ∩

(
n−1⋃
k=1

Al

)c

.

Clearly {En}∞
n=1 are pairwise disjoint such that

⋃∞
n=1En =

⋃∞
n=1An. Fur-

thermore, En ∈ A for all n ∈ N by the above argument.
To see that E =

⋃∞
n=1En is an element of A, let B ⊆ X be arbitrary. For

each n ∈ N, let Fn =
⋃n

k=1Ek, which is an element of A since A is closed
under finite unions. Therefore, since Fn is outer measurable, since Fn ⊆ E
so Ec ⊆ F c

n, and since µ∗ is monotone, we obtain that

µ∗(B) = µ∗(B ∩ Fn) + µ∗(B ∩ F c
n) ≥ µ∗(B ∩ Fn) + µ∗(B ∩ Ec)

for all n ∈ N.
Since (Fn)n≥1 are a increasing sequence of sets with union E, we would

like to take the limit of the right-hand side of the above inequality to obtain
that µ∗(B) ≥ µ∗(B ∩ E) + µ∗(B ∩ Ec) thereby obtaining that E is outer
measurable. However, since we do not know the Monotone Convergence
Theorem (Theorem 1.1.23) works for outer measures (i.e. the proof required
countable additivity on disjoint sets, which we don’t have), we will need
another approach to taking the limit.

Notice that Fn = Fn−1∪En and Fn−1∩En = ∅ by construction. Therefore,
since En ∈ A, we obtain that

µ∗(B ∩ Fn) = µ∗((B ∩ Fn) ∩ En) + µ∗((B ∩ Fn) ∩ Ec
n)

= µ∗(B ∩ En) + µ∗(B ∩ Fn−1)

for all n ∈ N. Therefore recursion implies that

µ∗(B ∩ Fn) =
n∑

k=1
µ∗(B ∩ Ek)

for all n ∈ N. Hence

µ∗(B) ≥ µ∗(B ∩ Ec) +
n∑

k=1
µ∗(B ∩ Ek)

for all n ∈ N. By taking the supremum of the right-hand-side of the above
expression, we obtain that

µ∗(B) ≥ µ∗(B ∩ Ec) +
∞∑

k=1
µ∗(B ∩ Ek).
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1.2. THE CARATHÉODORY METHOD 17

Therefore subadditivity implies that

µ∗(B) ≥ µ∗(B ∩ Ec) + µ∗
( ∞⋃

n=1
(B ∩ Ek)

)
.

= µ∗(B ∩ Ec) + µ∗
(
B ∩

( ∞⋃
k=1

Ek

))
= µ∗(B ∩ Ec) + µ∗(B ∩ E).

Therefore, as B ⊆ X was arbitrary, we obtain that E ∈ A as desired. Hence
A is a σ-algebra.

To see that µ∗|A is a measure, first notice that µ∗(∅) = 0 by design. To
check the other property of Definition 1.1.10, let {En}∞

n=1 be an arbitrary
collection of pairwise disjoint elements of A and let E =

⋃∞
n=1En. Using the

above computation with E in place of B, we see that

µ∗(E) ≥ µ∗(E ∩ Ec) +
∞∑

k=1
µ∗(E ∩ Ek) = 0 +

∞∑
k=1

µ∗(Ek) =
∞∑

k=1
µ∗(Ek).

However, since subadditivity of outer measures implies

µ∗(E) ≤
∞∑

k=1
µ∗(Ek)

we obtain that

µ∗(E) =
∞∑

k=1
µ∗(Ek).

Hence µ∗|A is a measure as desired.

Let λ∗ be the Lebesgue outer measure from Definition 1.2.5. By Theorem
1.2.10 the collection M(R) of λ∗-measurable sets is a σ-algebra and λ∗|M(R)
is a measure. Since these objects will be the focus for the remainder of our
course, we make the following definition.

Definition 1.2.11. The Lebesgue measure on R is the measure λ = λ∗|M(R).
The elements of M(R) are called Lebesgue measurable sets.

Similarly, we have the n-dimensional analogue of the Lebesgue measure.

Definition 1.2.12. For each n ∈ N, the n-dimensional Lebesgue measure
on Rn is the measure λn obtained by restricting λ∗

n to the λ∗
n-measurable

subsets of Rn.

One by-product of the Carathéodory Method is that the measures con-
structed have a specific additional property that we now describe.
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18 CHAPTER 1. MEASURE SPACES

Definition 1.2.13. A measure space (X,A, µ) is said to be complete if
whenever A ∈ A and B ∈ P(X) are such that B ⊆ A and µ(A) = 0, then
B ∈ A.

Proposition 1.2.14. Let X be a non-empty set, let µ∗ : P(X) → [0,∞] be
an outer measure on X, and let A be the σ-algebra of all outer measurable
sets. If A ∈ P(X) and µ∗(A) = 0, then A ∈ A. Hence (X,A, µ∗|A) is
complete by the monotonicity of µ∗.

Proof. Assume A ∈ P(X) is such that µ∗(A) = 0. To see that A ∈ A, let
B ∈ P(X) be arbitrary. Then

0 ≤ µ∗(B ∩A) ≤ µ∗(A) = 0

by monotonicity. Hence, by monotonicity,

µ∗(B) ≥ µ∗(B ∩Ac) = µ∗(B ∩Ac) + µ∗(B ∩A).

Therefore, as B ∈ P(X) was arbitrary, A ∈ A.
To see that (X,A, µ∗|A) is complete, let A ∈ A and B ∈ P(X) be such

that B ⊆ A and µ∗(A) = 0. Hence monotonicity implies that µ∗(B) = 0.
Thus the first part of this proof implies that B ∈ A as desired.

Remark 1.2.15. Note by Proposition 1.2.14 that λ is a complete measure.

One may think the Carathéodory Method may not be that useful as it
can only construct measures that are complete and thereby might be limited.
However, this is not the case as it is always possible to ‘complete’ a measure
rather simply.

Proposition 1.2.16. Let (X,A, µ) be a measure space. Then there exists a
complete measure space (X,A, µ) such that A ⊆ A and µ(A) = µ(A) for all
A ∈ A.

Proof. Exercise. Alternatively, see Theorem 1.3.7.

1.3 Extending Measures
Although the Carathéodory Method has enabled us to construct the Lebesgue
measure and other measures, the process produces startlingly little infor-
mation about the properties the measure inherits from the length function
ℓ used to define the outer measure µ∗

ℓ . In particular, does the Lebesgue
measure have the properties described at the beginning of Section 1.2 and is
every Borel set Lebesgue measurable? Verifying the desired properties for the
Lebesgue measure is not difficult to do directly (and will be demonstrated
in Section 1.4). However, we will take a more indirect approach to produce
further results and obtain the properties of the Lebesgue measure for free.
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In this section, we will analyze how properties of specific length functions
are immediately inherited by the measures produced via the Carathéodory
Method. In particular, we will see how a ‘finitely additive measure’ can be
extended uniquely to an actual measures. Consequently, the results of this
section will immediately give almost all properties of the Lebesgue measure
we desire in the next section. Alternatively, Section 1.5 analyzes measure
similar to the Lebesgue measure and can also be used to produce another
indirect approach to obtaining the desired properties.

To begin, we desire to describe functions that are similar to measures on
a more general notion than a σ-algebra.

Definition 1.3.1. Let X be a non-empty set. An algebra on X is a subset
A ⊆ P(X) such that

1. ∅ ∈ A and X ∈ A,

2. if A ∈ A then Ac = X \A ∈ A, and

3. if A1, A2 ⊆ A, then A1 ∪A2 ∈ A.

Remark 1.3.2. Notice if A is an algebra then A is closed under finite
unions by iterating the third property in Definition 1.3.1. Furthermore, if
A1, A2 ∈ A then clearly

A1 ∩A2 = (Ac
1 ∪Ac

2)c ∈ A

so A is also closed under finite intersections.

Example 1.3.3. Clearly if A is a σ-algebra, then A is an algebra. However,
there are algebras that are not σ-algebras. Indeed for X = R let

F = {(a, b] | a, b ∈ [−∞,∞), a < b} ∪ {(a,∞) | a ∈ R ∪ {−∞}}

and let A denote the collection of all sets obtained by taking all finite unions
of elements of F (including the empty set). It is not difficult to see that A
is an algebra as the complement of each element of F is a finite union of
elements of F . However A is not a σ-algebra since

⋃∞
n=1(2n, 2n+ 1] /∈ A yet

(2n, 2n+ 1] ∈ A for all n ∈ N.

Using algebras in place of σ-algebras, we obtain the beginnings of a
measure.

Definition 1.3.4. Let X be a non-empty set and let A be an algebra on X.
A pre-measure on A is a function µ : A → [0,∞] such that

• µ(∅) = 0, and
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20 CHAPTER 1. MEASURE SPACES

• if {An}∞
n=1 ⊆ A are pairwise disjoint and

⋃∞
n=1An ∈ A, then

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An).

Remark 1.3.5. Notice the difference between a pre-measure on an algebra
and a measure on a σ-algebra stems from the fact that if A is an algebra
and {An}∞

n=1 ⊆ A then it need not be the case that
⋃∞

n=1An ∈ A. Hence, if
A is a σ-algebra, there is no difference between Definitions 1.1.10 and 1.3.4.
It is also not difficult to see that a pre-measure shares several properties
with measures by repeating some of the proofs demonstrated in Section 1.1.
Indeed every pre-measure is finitely additive (by taking the empty set for
an infinite number of times) and is monotone. To see the monotonicity of
pre-measures, assume A,B ∈ A are such that A ⊆ B. Then B ∩ Ac ∈ A
as A is an algebra. Therefore, since A and B ∩Ac are disjoint subsets, we
notice for every pre-measure µ on A that

µ(B) = µ(A ∪ (B ∩Ac)) = µ(A) + µ(B ∩Ac) ≥ µ(A)

as claimed.

Instead of repeating the theory to show that pre-measures have properties
similar to measures, we will demonstrate that every pre-measure can be
extended to a measure. We begin with the following lemma.

Lemma 1.3.6. Let X be a non-empty set, let A be an algebra on X, and
let µ : A → [0,∞] be a pre-measure on A. Let µ∗ be the outer measure
associated to µ; that is, µ∗ : P(X) → [0,∞] is defined by

µ∗(A) = inf
{ ∞∑

k=1
µ(An)

∣∣∣∣∣ {An}∞
n=1 ⊆ A, A ⊆

∞⋃
n=1

An

}

for all A ⊆ X. Then µ∗ is a an outer measure on X such that µ∗(A) = µ(A)
for all A ∈ A.

Proof. Clearly µ∗ is an outer measure by Proposition 1.2.4.
For the other claim, let A ∈ A be arbitrary. To see that µ∗(A) = µ(A),

first notice that trivially µ∗(A) ≤ µ(A) by definition. To see the other
inequality, assume {An}∞

n=1 ⊆ A is an arbitrary countable collection such
that A ⊆

⋃∞
n=1An. Let B1 = A1 ∩A and for each n ≥ 2 let

Bn = (A ∩An) \
(

n−1⋃
k=1

Ak

)
.

Since A is an algebra, we see that Bn ∈ A for all n ∈ N. Furthermore
{Bn}∞

n=1 are disjoint subsets such that Bn ⊆ An for all n ∈ N and
∞⋃

n=1
Bn =

∞⋃
n=1

A ∩An = A.
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Therefore, since µ is a pre-measure, we obtain that

µ(A) =
∞∑

n=1
µ(Bn) ≤

∞∑
n=1

µ(An)

where the inequality follows from the fact that µ is monotone as demonstrated
in Remark 1.3.5. Therefore, since {An}∞

n=1 ⊆ A was arbitrary, it follows that
µ∗(A) = µ(A) for all A ∈ A.

Theorem 1.3.7 (Carathéodory-Hahn Extension Theorem). Let X
be a non-empty set, let A be an algebra on X, and let µ : A → [0,∞] be a
pre-measure on A. Let µ∗ be the outer measure associated to µ and let A∗

denote the set of all µ∗-measurable sets. Recall from Theorem 1.2.10 that A∗

is a σ-algebra on X and µ = µ∗|A∗ is a measure on A∗. Then A ⊆ A∗ and
µ(A) = µ(A) for all A ∈ A.

Moreover assume µ is σ-finite in the sense that there exists {Xn}∞
n=1 ⊆ A

such that X =
⋃∞

n=1Xn and µ(Xn) < ∞. If ν : A∗ → [0,∞] is a measure
such that ν(A) = µ(A) for all A ∈ A, then ν = µ.

Proof. Recall from Lemma 1.3.6 that µ∗(A) = µ(A) for all A ∈ A. Therefore,
to complete the first claim, it suffices to show that A ⊆ A∗.

Let A ∈ A be arbitrary. To see that A is µ∗-measurable, let B ⊆ X and
let ϵ > 0 be arbitrary. By the definition of µ∗ there exists {An}∞

n=1 ⊆ A such
that B ⊆

⋃∞
n=1An and

∞∑
n=1

µ(An) ≤ µ∗(B) + ϵ.

Notice that

B ∩A ⊆
∞⋃

n=1
An ∩A and B ∩Ac ⊆

∞⋃
n=1

An ∩Ac.

Since A is an algebra, An ∩A,An ∩Ac ∈ A for all n ∈ N and therefore, since
µ∗ is an outer measure,

µ∗(B ∩A) ≤ µ∗
( ∞⋃

n=1
An ∩A

)
≤

∞∑
n=1

µ∗(An ∩A) =
∞∑

n=1
µ(An ∩A) and

µ∗(B ∩Ac) ≤ µ∗
( ∞⋃

n=1
An ∩Ac

)
≤

∞∑
n=1

µ∗(An ∩Ac) =
∞∑

n=1
µ(An ∩Ac)
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Hence

µ∗(B ∩A) + µ∗(B ∩Ac) ≤
∞∑

n=1
µ(An ∩A) +

∞∑
n=1

µ(An ∩Ac)

=
∞∑

n=1
µ(An ∩A) + µ(An ∩Ac)

=
∞∑

n=1
µ(An)

≤ µ∗(B) + ϵ.

where µ(An ∩ A) + µ(An ∩ Ac) = µ(An) follows from the fact that µ is a
pre-measure and An ∩A and An ∩Ac are disjoint sets. Therefore, since ϵ > 0
was arbitrary, we obtain that

µ∗(B ∩A) + µ∗(B ∩Ac) ≤ µ∗(B).

Hence, since B ⊆ X was arbitrary, A is µ∗-measurable as desired.
For the uniqueness, assume there exists {Xn}∞

n=1 ⊆ A such that X =⋃∞
n=1Xn and µ(Xn) < ∞, and ν : A∗ → [0,∞] is a measure such that

ν(A) = µ(A) for all A ∈ A. Notice if Yn =
⋃n

k=1Xk for all n ∈ N, then⋃∞
n=1 Yn = X, Yn ∈ A for all n ∈ N, Yn ⊆ Yn+1 for all n ∈ N, and

µ(Yn) = µ(Yn) = µ

(
n⋃

k=1
Xk

)
≤

n∑
k=1

µ(Xk) =
n∑

k=1
µ(Xk) < ∞.

To see that ν(B) = µ(B) for all B ∈ A∗, let B ∈ A∗ be arbitrary. Then
for every k and collection {An}∞

n=1 ⊆ A such that B ∩ Yk ⊆
⋃∞

n=1An, we see
by the properties of measures that

ν(B ∩ Yk) ≤ ν

( ∞⋃
n=1

An

)
≤

∞∑
n=1

ν(An) =
∞∑

n=1
µ(An).

Hence ν(B ∩ Yk) ≤ µ∗(B ∩ Yk) = µ(B ∩ Yk) as B ∩ Yk ∈ A∗. By repeating
with Bc in place of B, we obtain that ν(Bc ∩ Yk) ≤ µ(Bc ∩ Yk). However

µ(Yk) = ν(Yk) = ν(B ∩ Yk) + ν(Bc ∩ Yk)
≤ µ(B ∩ Yk) + µ(Bc ∩ Yk)
= µ(Yk) = µ(Yk).

Since µ(Yk) < ∞, we obtain that ν(B ∩ Yk) = µ(B ∩ Yk) for all k. Therefore,
since Yn ⊆ Yn+1 for all n ∈ N and

⋃∞
n=1 Yn = X, we obtain by the Monotone

Convergence Theorem for measures that

ν(B) = lim
n→∞

ν(B ∩ Yk) = lim
n→∞

µ(B ∩ Yk) = µ(B).

Hence ν = µ as desired.
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Due to the Carathéodory-Hahn Extension Theorem (Theorem 1.3.7), we
make the following definition.

Definition 1.3.8. Let X be a non-empty set, let A be an algebra on X, and
let µ : A → [0,∞] be a pre-measure. The measure µ constructed in Theorem
1.3.7 is called the Carathéodory extension of µ.

Before seeing what the Carathéodory-Hahn Extension Theorem (Theorem
1.3.7) produces in regards to the Lebesgue measure, we note the following
example demonstrating why the σ-finite condition is necessary in order to
prove uniqueness.

Example 1.3.9. If µ is a pre-measure on an algebra A that is not σ-finite,
the Carathéodory extension of µ need not be the unique extension of µ to
the set of all µ∗-measurable sets. Indeed consider X = Q ∩ (0, 1] and let A
be the collection of all finite unions of sets of the form Q ∩ (a, b]. It is not
difficult to see that A is an algebra on X.

Let µ : A → [0,∞] be defined by

µ(A) =
{

0 if A = ∅
∞ otherwise

.

Clearly µ is a pre-measure on A. Let µ∗ be the outer measure associated to
µ and let A∗ denote the σ-algebra of all µ∗-measurable sets. Clearly we see
that

µ∗(A) =
{

0 if A = ∅
∞ otherwise

.

for all A ⊆ X.
We claim that µ has multiple extensions to A∗. First, we claim that

A∗ = P(X). Indeed since

{q} =
∞⋂

n=1

(
q − 1

n
, q

]
∩ Q

for all q ∈ Q, we see that {q} ∈ A∗ for all q ∈ X. Therefore, since X is
countable so every subset of X is countable, and since σ-algebras are closed
under countable unions, the claim follows.

Since A∗ = P(X), we see that the Carathéodory extension of µ is µ∗.
However, since the counting measure on X is a measure that extends µ but
does not equal µ∗, the claim is complete.

To see the full power of the Carathéodory-Hahn Extension Theorem (The-
orem 1.3.7), we note the following generalization of the Lebesgue measure.

©For use through and only available at pskoufra.info.yorku.ca.



24 CHAPTER 1. MEASURE SPACES

Example 1.3.10. Recall from Example 1.3.3 that if

F = {(a, b] | a, b ∈ [−∞,∞), a < b} ∪ {(a,∞) | a ∈ R ∪ {−∞}}

then the set A consisting of all finite unions of elements of F (including the
empty set) is algebra. Notice that if A,B ∈ F and

dist(A,B) = inf{|a− b| | a ∈ A, b ∈ B} = 0

then A ∪ B ∈ F . Hence it is easy to see that if A ∈ A then there exists a
unique n ∈ N and a unique collection A1, . . . , An ∈ F such that A =

⋃n
k=1Ak

and dist(Ak, Am) > 0 for all k ̸= m.
Let F : R → R be a non-decreasing function such that

F (c) = lim
x→c+

F (x)

for all c ∈ R (that is, F is right continuous). Since F is non-decreasing,
limx→∞ F (x) either exists or equals ∞ and limx→−∞ F (x) either exists or
equals −∞. Define λF : F → [0,∞] by

λF (∅) = 0
λF ((a, b]) = F (b) − F (a)

λF ((a,∞)) = lim
x→∞

F (x) − F (a)

λF ((−∞, b]) = F (b) − lim
x→−∞

F (x)

λF ((−∞,∞)) = lim
x→∞

F (x) − lim
x→−∞

F (x)

for all a, b ∈ R with a < b (where ∞ + c = ∞ for all c ∈ [−∞,∞) and
d− (−∞) = ∞ for all d ∈ (−∞,∞]).

Notice we can extend λF to a function on A which we will also denoted
by λF as follows: If A ∈ A define

λF (A) =
n∑

k=1
λF (Ak)

where A1, . . . , An ∈ F are the unique elements such that A =
⋃n

k=1An and
dist(Ak, Am) > 0 for all k ̸= m.

We claim that λF is a pre-measure on A. To see this, first notice that
clearly λF (∅) = 0 and λF (A) ≥ 0 for all A ∈ A as F is non-decreasing.

Before we demonstrated that λF is countably additive, first notice that
if A,B ∈ F are such that A ∩B = ∅ and dist(A,B) = 0, then λF (A ∪B) =
λF (A) + λF (B) trivially. Hence it is easy to see that if {Ak}n

k=1 ⊆ A are
pairwise disjoint, then

λF

(
n⋃

k=1
Ak

)
=

n∑
k=1

λF (Ak)
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(that is, λF is finitely additive). Moreover if A,B ∈ A are such that A ⊆ B,
we see that B ∩Ac ∈ A and

λF (B) = λF (A ∪ (B ∩Ac)) = λF (A) + µ(B ∩Ac) ≥ λF (A).

Hence λF is monotone. This further implies that λF is finitely subadditive.
Indeed if {Ak}n

k=1 ⊆ A are arbitrary subsets of A, define B1 = A1 and

Bk = Ak \

k−1⋃
j=1

Aj


for all k ∈ {1, . . . , n}. Then {Bk}n

k=1 are pairwise disjoint elements of A such
that Bk ⊆ Ak for all k ∈ {1, . . . , n} and

⋃n
k=1Bk =

⋃n
k=1Ak. Consequently

λF

(
n⋃

k=1
Ak

)
= λF

(
n⋃

k=1
Bk

)
=

n∑
k=1

λF (Bk) ≤
n∑

k=1
λF (Ak).

Hence λF is finitely subadditive.
To see that λF is countably additive, assume {An}∞

n=1 ⊆ A are pairwise
disjoint sets such that A =

⋃∞
n=1An ∈ A. To see that λF (A) =

∑∞
n=1 λF (An),

we notice we may assume that A ∈ F and An ∈ F for all n ∈ N as every
element of A is a finite union of elements of F and λF is finitely additive.

Notice since λF is monotone that for all m ∈ N

λF (A) ≥ λF

(
m⋃

n=1
An

)
=

m∑
n=1

λF (An).

Hence, by taking the limit as m tends to infinity, we see that
∑∞

n=1 λF (An) ≤
λF (A).

To see the reverse inequality, first assume that A = (a, b] for some
a, b ∈ R. Therefore, since An ∈ F for all n ∈ N, we have for each n ∈ N
we have that An = (an, bn] for some an, bn ∈ R. Fix ϵ > 0 and notice since
F (bn) = limx→b+

n
F (x) for each n ∈ N that there exists a cn > bn such that

F (cn) < F (bn) + ϵ

2n
.

Furthermore, there exists a δ > 0 such that

F (a+ δ) < F (a) + ϵ.

Since (a, b] =
⋃∞

n=1(an, bn], we see that

[a+ δ, b] ⊆
∞⋃

n=1
(an, cn).
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Hence {(an, cn)}∞
n=1 is an open cover of the compact set [a+ δ, b] and thus

has a finite subcover, say {(ank
, cnk

)}m
k=1. Thus

(a+ δ, b] ⊆
m⋃

k=1
(ank

, cnk
].

Therefore, by the monotonicity and finite subadditivity of λF , we see that

λF (A) = F (b) − F (a) < ϵ+ F (b) − F (a+ δ)
= ϵ+ λF ((a+ δ, b])

≤ ϵ+ λF

(
m⋃

k=1
(ank

, cnk
]
)

≤ ϵ+
m∑

k=1
λF ((ank

, cnk
])

= ϵ+
m∑

k=1
F (cnk

) − F (ank
)

≤ ϵ+
m∑

k=1

ϵ

2nk
+ F (bnk

) − F (ank
)

≤ 2ϵ+
m∑

k=1
λF (Ank

)

≤ 2ϵ+
∞∑

n=1
λF (An).

Therefore, since ϵ > 0 was arbitrary, the claim follows in the case that
A = (a, b].

To see that λF (A) ≤
∑∞

n=1 λF (An) for arbitrary A ∈ F , notice that
A ∩ (−m,m] is of the form (a, b] for some a, b ∈ N for all m ∈ N. Therefore,
the previous case along with monotonicity implies that

λF (A ∩ (−m,m]) =
∞∑

n=1
λF (An ∩ (−m,m]) ≤

∞∑
n=1

λF (An).

Therefore, as it is easily seen by the definition of λF that

lim
m→∞

λF (A ∩ (−m,m]) = λF (A),

the claim follows.
Hence λF is a pre-measure on the algebra A. Furthermore, since

λF ((−n, n]) = F (n) − F (−n) < ∞

for all n ∈ N, λF is σ-finite. Hence the Carathéodory-Hahn Extension
Theorem (Theorem 1.3.7) implies that λF has a unique extension, which
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will also be denoted by λF , to the set of all λ∗
F -measurable sets. This

Carathéodory extension is called the Lebesgue-Stieljtes measure associated to
F . Notice since every element of F is λ∗

F -measurable and since σ(F) = B(R),
all Borel sets are Lebesgue-Stieljtes measurable. Consequently, λF |B(R) is
often called the Borel-Stieljtes measure associated to F .

Remark 1.3.11. We claim that the Lebesgue measure λ is a specific instance
of a Lebesgue-Stieljtes measure. Indeed if F (x) = x for all x ∈ R, we claim
that λ = λF . To see this, it suffices to show that λ∗ = λ∗

F . Recall for all
A ∈ R that

λ∗(A) = inf
{ ∞∑

n=1
ℓ(In)

∣∣∣∣∣ {In}∞
n=1 are open intervals

such that A⊆
⋃∞

n=1 In

}
and

λ∗
F (A) = inf

{ ∞∑
n=1

ℓ(Jn)
∣∣∣∣∣ {Jn}∞

n=1 are open on the left and closed on the right
such that A⊆

⋃∞
n=1 Jn

}

where ℓ denotes the length of an interval. Hence clearly λ∗
F (A) ≤ λ∗(A) for

all A ⊆ R. For the reverse inequality, let ϵ > 0. By the definition of λ∗
F there

exists a collection {Jn}∞
n=1 of intervals that are open on the left and closed

on the right such that A ⊆
⋃∞

n=1 Jn and

∞∑
n=1

ℓ(Jn) < λ∗
F (A) + ϵ.

For each n ∈ N choose an open interval In such that Jn ⊆ In and ℓ(In) ≤
ℓ(Jn) + ϵ

2n . Therefore {In}∞
n=1 are open intervals such that A ⊆

⋃∞
n=1 In.

Thus

λ∗(A) ≤
∞∑

n=1
ℓ(In) ≤

∞∑
n=1

ℓ(Jn) + ϵ

2n
< λ∗

F (A) + 2ϵ.

Therefore, since ϵ > 0 and A ⊆ R were arbitrary, λ∗
F = λ∗.

1.4 Properties of the Lebesgue Measure

Since the Lebesgue measure is a specific instance of the Lebesgue-Stieljtes
measure which was constructed using the Carathéodory-Hahn Extension
Theorem (Theorem 1.3.7), we immediately obtain several properties.

Corollary 1.4.1. Every Borel subset of R is Lebesgue measurable. Further-
more, if I ⊆ R is an interval, then λ(I) = ℓ(I).

Proof. Since the Lebesgue measure is a specific example of the Lebesgue-
Stieltjes measure by Remark 1.3.11, Example 1.3.10 shows all Borel subsets of
R are Lebesgue measurable. Moreover, by the Carathéodory-Hahn Extension
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Theorem (Theorem 1.3.7), we obtain that λ(I) = ℓ(I) for all intervals I of
the form (a, b], (a,∞), and (−∞, b] for a, b ∈ R. Therefore, since

{c} =
∞⋂

n=1

(
c− 1

n
, c

]
for all c ∈ R, we obtain by the Monotone Convergence Theorem (Theorem
1.1.23) that

λ({c}) = lim
n→∞

λ

((
c− 1

n
, c

])
= lim

n→∞
c− c+ 1

n
= 0.

Therefore, since every interval of R is differs from an interval of the form
(a, b], (a,∞), and (−∞, b] for a, b ∈ R by at most two points, the result
follow by properties of measures (i.e. to change “(a” to “[a”, union the above
intervals with the set {a} which does not change the length nor measure,
and to change “b]” to “b)”, remove the set {b} which does not change the
length nor measure).

If one does not want to prove the above via the Lebesgue-Stieltjes mea-
sures, one can use the following proof.

Another proof of Corollary 1.4.1. To see that (a,∞) is Lebesgue measurable,
let B ⊆ R be arbitrary. Therefore B1 = B ∩ (a,∞) and B2 = B ∩ (−∞, a]
are disjoint sets such that B = B1 ∪B2.

Let ϵ > 0 be arbitrary. By the definition of the Lebesgue outer measure,
there exists a collection {In | n ∈ N} of open intervals such that B ⊆

⋃∞
n=1 In

and ∞∑
n=1

ℓ(In) ≤ λ∗(B) + ϵ.

For each n ∈ N, let I ′
n = In ∩ (a,∞) and I ′′

n = In ∩ (∞, a]. Clearly I ′
n

an I ′′
n are disjoint intervals such that In = I ′

n ∪ I ′′
n and ℓ(In) = ℓ(I ′

n) + ℓ(I ′′
n).

Furthermore, clearly {I ′
n | n ∈ N} and {I ′′

n | n ∈ N} are countable collections
of intervals such that B1 ⊆

⋃∞
n=1 I

′
n and B2 ⊆

⋃∞
n=1 I

′′
n. Hence

λ∗(B ∩ (a,∞)) + λ∗(B ∩ (a,∞)c)
= λ∗(B1) + λ∗(B2)

≤
∞∑

n=1
λ∗(I ′

n) +
∞∑

n=1
λ∗(I ′′

n) subadditivity

=
∞∑

n=1
ℓ(I ′

n) +
∞∑

n=1
ℓ(I ′′

n)

=
∞∑

n=1
ℓ(In)

≤ λ∗(B) + ϵ.
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Therefore, since ϵ > 0 was arbitrary, we obtain that

λ∗(B ∩ (a,∞)) + λ∗(B ∩ (a,∞)c) ≤ λ∗(B).

Therefore, since B ⊆ R was arbitrary, (a,∞) is Lebesgue measurable.
Since M(R) is a σ-algebra, since (a,∞) ∈ M(R) for all a ∈ R, and since

{(a,∞) | a ∈ R} generated B(R) as a σ-algebra by Remark 1.1.9, it follows
that B(R) ⊆ M(R).

To see that λ(I) = ℓ(I) for all intervals I, first assume that I = [a, b].
To see that λ(I) ≤ b − a, let ϵ > 0 be arbitrary. Then I ′ = (a − ϵ, b + ϵ)
is an open interval such that I ⊆ I ′. Hence, by the definition of λ (using
the empty set for all other open intervals in our countable collection which
covers I), we obtain that

λ(I) ≤ ℓ(I ′) = b− a+ 2ϵ.

Therefore, since ϵ > 0 was arbitrary, we obtain that λ(I) ≤ b− a.
For the other inequality, let {In | n ∈ N} be an arbitrary collection of

open intervals such that I ⊆
⋃∞

n=1 In. Hence {In | n ∈ N} is an open cover
of I. Therefore, since I is compact, there must exists a finite subcover of
{In | n ∈ N} for I. By reindexing the intervals if necessary, we may assume
that I ⊆

⋃m
k=1 Ik for some m ∈ N.

Since a ∈ I, there exists a k ∈ {1, . . . ,m} such that a ∈ Ik. By reindexing
the intervals if necessary, we may assume that a ∈ I1. Write I1 = (a1, b1).
Hence a1 < a < b1. If b ∈ I1 terminate this algorithm here. Otherwise b1 ≤ b
so b1 ∈ I. Since I ⊆

⋃m
k=1 Ik, there exists a k ∈ {1, . . . ,m} such that b1 ∈ Ik.

By reindexing the intervals if necessary, we may assume that b1 ∈ I2. Write
I2 = (a2, b2). Hence a2 < b1 < b2. If b < b2, terminate this algorithm here.
Otherwise, as there are a finite number (specifically m) of intervals we need
to consider, we may continue this process a finite number of times to obtain
an m′ ≤ m and intervals Ik = (ak, bk) for k ≤ m′ such that a1 < a < b1,
ak+1 < bk < bk+1 for all 1 ≤ k ≤ m′ − 1, and am′ < b < bm′ . Hence

∞∑
k=1

ℓ(Ik) ≥
m′∑

k=1
ℓ(Ik)

=
m′∑

k=1
bk − ak

≥ (b1 − a1) +
m′∑

k=2
bk − bk−1

≥ bm′ − a1 > b− a.

Therefore, since {In | n ∈ N} was arbitrary, we obtain that λ∗(I) ≥ b− a.
Hence λ(I) = b− a as desired.
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To complete the proof, first assume I ⊆ R is an interval of finite length.
Thus I ∈ {(a, b), [a, b), (a, b], [a, b]} for some a, b ∈ R with a ≤ b. Hence
ℓ(I) = b − a. Let I = [a, b] so that I ⊆ I and λ∗(I) = ℓ(I) = b − a by the
previous case. Next, for any ϵ > 0 with ϵ < b−a

2 , let Jϵ =
[
a+ ϵ

2 , b− ϵ
2
]
.

Thus Jϵ ⊆ I and λ∗(Jϵ) = ℓ(Jϵ) = b−a− ϵ for all ϵ > 0. Therefore we obtain
for all ϵ > 0 that

b− a− ϵ = λ(Jϵ) ≤ λ(I) ≤ λ(I) = b− a.

Hence λ(I) = b− a as desired.
Otherwise, assume I is an infinite interval. Since I is an infinite interval,

for all M > 0 there exists a closed interval JM such that JM ⊆ I and
λ∗(JM ) = ℓ(JM ) = M . Hence 3) implies

λ∗(I) ≥ λ∗(JM ) = ℓ(JM ) = M.

Therefore, since M > 0 was arbitrary, we obtain that λ∗(I) = ∞ = ℓ(I) as
desired.

Using the above, we easily obtain the following important property of
the Lebesgue measure.

Corollary 1.4.2. The Lebesgue measure is σ-finite.

Proof. For each n ∈ N let Xn = [−n, n]. Then {Xn}∞
n=1 are Borel sets (and

hence Lebesgue measurable sets) such that R =
⋃∞

n=1Xn and λ(Xn) = 2n <
∞. Hence λ is σ-finite by definition.

Unsurprisingly, it is easy to compute the Lebesgue measure of any count-
able set.

Proposition 1.4.3. Let A ⊆ R be countable. Then A ∈ M(R) and λ(A) = 0.

Proof. Let A ⊆ R be countable. First we will show that λ∗(A) = 0. This
implies A is Lebesgue measurable and λ(A) = 0 as λ is complete.

To see that λ∗(A) = 0, let ϵ > 0 be arbitrary. Since A is countable, we
may write A = {an}∞

n=1. For each n ∈ N, let

In =
(
an − ϵ

2n+1 , an + ϵ

2n+1

)
.

Clearly for all n ∈ N we have In is an open interval of length ϵ
2n with an ∈ In.

Hence we obtain that
A ⊆

∞⋃
n=1

In.

Therefore, by the definition of the Lebesgue outer measure, we obtain that

0 ≤ λ∗(A) ≤
∞∑

n=1
ℓ(In) =

∞∑
n=1

ϵ

2n
= ϵ.

Therefore, since ϵ > 0 was arbitrary, we obtain that λ∗(A) = 0 as desired.

©For use through and only available at pskoufra.info.yorku.ca.



1.4. PROPERTIES OF THE LEBESGUE MEASURE 31

In terms of uncountable subsets of R, one of the most interesting sets
when studying the Lebesgue measure is the following.

Definition 1.4.4. Let P0 = [0, 1]. Construct P1 from P0 by removing the
open interval of length 1

3 from the middle of P0 (i.e. P1 = [0, 1
3 ] ∪ [2

3 , 1]).
Then construct P2 from P1 by removing the open intervals of length 1

32 from
the middle of each closed subinterval of P1. Subsequently, having constructed
Pn, construct Pn+1 by removing the open intervals of length 1

3n+1 from the
middle of each of the 2n closed subintervals of Pn. Specifically, Pn is the
union of the 2n closed intervals of the form[

n∑
k=1

ak

3k
,

1
3n

+
n∑

k=1

ak

3k

]

where a1, . . . , an ∈ {0, 2}.
The set

C =
⋂

n≥1
Pn

is known as the Cantor set.

Remark 1.4.5. The Cantor set has many interesting properties. In particu-
lar, the Cantor set is a compact set with no interior.

For an alternate description of the Cantor set, we prove the following.

Lemma 1.4.6. Let x ∈ R. Then x ∈ C if and only if there is a sequence
(an)n≥1 with an ∈ {0, 2} for all n ∈ N such that x = limn→∞

∑n
k=1

ak

3k (i.e.
x ∈ [0, 1] and x has a ternary expansion using only 0s and 2s).

Proof. Suppose x ∈ C. Hence x ∈ Pn for all n ∈ N. Thus, by the recursive
construction of the Pn, there exists numbers a1, a2, a3, . . . ∈ {0, 2} such that

x ∈
[

n∑
k=1

ak

3k
,

1
3n

+
n∑

k=1

ak

3k

]
⊆ Pn

for all n ∈ N. To see that x = limn→∞
∑n

k=1
ak

3k , we notice that∣∣∣∣∣x−
n∑

k=1

ak

3k

∣∣∣∣∣ ≤
∣∣∣∣∣
(

1
3n

+
n∑

k=1

ak

3k

)
−

n∑
k=1

ak

3k

∣∣∣∣∣ = 1
3n
.

Therefore, since limn→∞
1

3n = 0, we obtain that x = limn→∞
∑n

k=1
ak

3k as
desired.

Conversely, assume that x ∈ R is such that there exists a sequence (an)n≥1
with an ∈ {0, 2} for all n ∈ N such that x = limn→∞

∑n
k=1

ak

3k . For each
n ∈ N, let sn =

∑n
k=1

ak

3k . Hence, by the description of Pn, we obtain that
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sn ∈ Pn for all n. In fact, upon closer examination, we see that sm ∈ Pn

whenever m ≥ n. Indeed if m ≥ n then

n∑
k=1

ak

3k
≤

m∑
k=1

ak

3k
= sm ≤

n∑
k=1

ak

3k
+

m∑
k=n+1

2
3k

=
n∑

k=1

ak

3k
+ 2

3n+1

1 −
(

1
3

)m−n

1 − 1
3

=
n∑

k=1

ak

3k
+

1 −
(

1
3

)m−n

3n

≤
n∑

k=1

ak

3k
+ 1

3n
.

Since each Pn is a closed set, since x = limm→∞ sm, and since sm ∈ Pn

whenever m ≥ n, we obtain that x ∈ Pn for each n ∈ N by the sequential
description of closed sets. Hence x ∈

⋂
n≥1 Pn = C.

Using the above description of the Cantor set, it is not difficult to see
that the Cantor set has the same cardinality as P(N) and thus the Cantor
set is uncountable. However, since we have demonstrated that the Lebesgue
measure of an interval is its length, we can easily compute the Lebesgue
measure of the Cantor set to be zero.

Example 1.4.7. We claim that the Cantor set C has Lebesgue measure zero.
To begin, note C is a closed set, hence C is a Borel set, and thus Lebesgue
measurable. To see that λ(C) = 0, recall from the definition of the Cantor
set that

C =
⋂

n≥1
Pn

where Pn ⊆ [0, 1] (as described in Definition 1.4.4) is the union of 2n closed
intervals each of length 1

3n . Therefore, we obtain for each n ∈ N that

0 ≤ λ(C) ≤ λ(Pn) ≤ 2n

3n
.

Hence, since limn→∞
2n

3n = 0, we obtain that λ(C) = 0 as desired.

One important property of the Lebesgue measure is its invariance under
translation and multiplicative under scaling.

Proposition 1.4.8. If A ∈ M(R) and x ∈ R, then x + A ∈ M(R) and
λ(x+A) = λ(A).
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Proof. Fix A ∈ M(R) and x ∈ R. Since the translation of an open interval
is an open interval of the same length, it is elementary to see that if B ⊆ R
then

λ∗(x+B) = λ∗(B).

Thus it suffices to show that x+A is measurable.
To see that x+A is Lebesgue measurable, let B ⊆ R be arbitrary. Then

λ∗(B) = λ∗(−x+B)
= λ∗((−x+B) ∩A) + λ∗((−x+B) ∩Ac) A ∈ M(R)
= λ∗(B ∩ (x+A)) + λ∗(B ∩ (x+Ac))
= λ∗(B ∩ (x+A)) + λ∗(B ∩ (x+A)c).

Therefore, since B ⊆ R was arbitrary, x+A ∈ M(R).

Proposition 1.4.9. If A ∈ M(R), r ∈ R \ {0}, and rA = {ar | a ∈ A},
then rA ∈ M(R) and λ(rA) = |r|λ(A).

Proof. Fix A ∈ M(R). Since r ̸= 0 it is easy to see that if I is an open
interval then rI is an open interval with ℓ(rI) = |r|ℓ(I). Therefore it is
elementary to see that if B ⊆ R then

λ∗(rB) = |r|λ∗(B).

Thus it suffices to show that rA is measurable.
To see that rA is Lebesgue measurable, let B ⊆ R be arbitrary. Then

λ∗(B) = |r|λ∗(r−1B)
= |r|λ∗((r−1B) ∩A) + |r|λ∗((rB) ∩Ac) A ∈ M(R)
= λ∗(B ∩ (rA)) + λ∗(B ∩ (rAc))
= λ∗(B ∩ (rA)) + λ∗(B ∩ (rA)c).

Therefore, since B ⊆ R was arbitrary, rA ∈ M(R).

Remark 1.4.10. Note Corollary 1.4.1 shows us that B(R) ⊆ M(R) ⊆ P(R).
However, we have seen (claimed really) that |B(R)| = |R| whereas Cantor’s
Theorem implies that |R| < |P(R)|. Thus it is natural to ask, what is the
cardinality of M(R)? After all, if not that many subsets of R are Lebesgue
measurable, do we really have a suitably general measure?

Recall by Remark 1.4.5 that the Cantor set C is Lebesgue measurable
with λ(C) = 0. Hence every subset of the Cantor set must be Lebesgue
measurable as the Lebesgue measure is complete. Moreover, since |C| = |R|,
we obtain that |P(C)| = |P(R)|. Therefore, since P(C) ⊆ M(R) ⊆ P(R) and
since, |P(C)| = |P(R)|, we obtain that |M(R)| = |P(R)|. Thus, in terms
of cardinality, the set of Lebesgue measurable subsets of R is as large as
possible.
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Of course M(R) ̸= P(R) since Example 1.2.1 implies there exists (and
explicitly constructs) a set A ⊆ [0, 1) that is not Lebesgue measurable. Using
this set, we can show there exists |P(R)| subsets of R that are not Lebesgue
measurable. Indeed A′ = 2 + A ⊆ [2, 3) is not Lebesgue measurable being
the translation of a set that is not Lebesgue measurable. If A′ ∪ C was
Lebesgue measurable, then since A′ ∩ C = ∅ we would have (A′ ∪ C) ∩ Cc = A′

being the intersection of Lebesgue measurable sets and thus being Lebesgue
measurable. Since this is a contradiction, we have that A′ ∪C is not Lebesgue
measurable. Similarly, if S ⊆ C then A′ ∪ S is not Lebesgue measurable.
Therefore, since A′ ∩ C = ∅ and as there are |P(C)| = |P(R)| subsets of C,
we obtain that there are |P(R)| subsets of R that are not measurable.

In fact, by modifying the proof used in Example 1.2.1, one may prove
the following.

Proposition 1.4.11. If A ⊆ R is such that λ∗(A) > 0, then there exists a
subset B ⊆ A such that B is not Lebesgue measurable.

Proof. Let A ⊆ R be such that λ∗(A) > 0. For each n ∈ Z let An =
A∩ [n, n+ 1). Therefore, since A =

⋃∞
n=1An, we obtain by the subadditivity

of the Lebesgue outer measure that

0 < λ∗(A) ≤
∞∑

n=1
λ∗(An).

Hence there exists an N ∈ N such that λ∗(AN ) > 0.
We claim there exists a subset B ⊆ AN such that B is not Lebesgue

measurable. To see this, note since the notion of Lebesgue measurability is
invariant under translation, we may assume that N = 0.

Define an equivalence relation ∼ on R by x ∼ y if and only if x− y ∈ Q.
Clearly every equivalence class under ∼ has an element in [0, 1) and by the
Axiom of Choice there exists a subset B of A0 that contains precisely one
element from each equivalence class with a representative from A0. We claim
that B is not Lebesgue measurable. To see this, suppose for the sake of a
contradiction that B is Lebesgue measurable.

Since Q is countable, we may enumerate Q ∩ [0, 1) as

Q ∩ [0, 1) = {rn | n ∈ N}.

For each n ∈ N, let

Bn = {x ∈ [0, 1) | x ∈ rn +B or x+ 1 ∈ rn +B}

(that is, Bn is rn + B modulo 1). Since Bn ⊆ An where {An}∞
n=1 are as

in Example 1.2.1, we see that {Bn}∞
n=1 is a collection of pairwise disjoint

subsets of [0, 1).
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Moreover, we claim that

A0 ⊆
∞⋃

n=1
Bn.

To see this, note if x ∈ A0 then there exists a unique y ∈ B such that x ∼ y.
Thus x−y ∈ Q∩ (−1, 1). If x−y ∈ Q∩ [0, 1) then x−y = rn for some n and
thus x = rn +y ∈ Bn. Otherwise if x−y ∈ Q∩(−1, 0) then (x+1)−y ∈ (0, 1).
Thus (x+ 1) − y = rn for some n and thus x = rn + y − 1 ∈ Bn. Thus the
claim is complete.

For each n ∈ N, let

Bn,1 = (rn +B) ∩ [0, 1)
Bn,2 = −1 + ((rn +B) ∩ [1, 2)) .

Clearly Bn = Bn,1 ∪Bn,2 since rn +B ⊆ [0, 2) for all n.
We claim that Bn,1 ∩ Bn,2 = ∅. To see this, suppose for the sake of

a contradiction that b ∈ Bn,1 ∩ Bn,2. By definition there exists x, y ∈ B
such that rn + x ∈ [0, 1), rn + y ∈ [1, 2), and b = rn + x = −1 + rn + y.
Clearly rn + x ∈ [0, 1) and rn + y ∈ [1, 2) imply that x ̸= y whereas we
have x − y = −1 ∈ Q so x ∼ y. Therefore, since B contains exactly one
element from each equivalence class, we have obtained a contradiction. Hence
Bn,1 ∩Bn,2 = ∅.

To obtain our contradiction, note that

0 < λ(A0))

≤ λ

( ∞⋃
n=1

Bn

)
monotonicity

=
∞∑

n=1
λ(Bn) {An}∞

n=1 are disjoint

=
∞∑

n=1
λ(Bn,1 ∪Bn,2)

=
∞∑

n=1
λ(Bn,1) + λ(Bn,2) Bn,1 and Bn,2 are disjoint

=
∞∑

n=1
λ((rn +B) ∩ [0, 1)) + λ (((rn +B) ∩ [1, 2))

=
∞∑

n=1
λ((rn +B) ∩ [0, 2))

=
∞∑

n=1
λ(rn +B) rn +B ⊆ [0, 2)

=
∞∑

n=1
λ(B).
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This yields our contradiction since λ(B) ∈ [0,∞] yet no number in [0,∞]
when summed an infinite number of times produces a number in (0,∞). Hence
we have obtained our contradiction so B is not Lebesgue measurable.

The Lebesgue measure has many additional important properties. The
most important properties are described in the following two results and are
used later in these notes.

Proposition 1.4.12. Let A ∈ M(R). Then

a) λ(A) = inf{λ(U) | U ⊆ R is an open set such that A ⊆ U}. This prop-
erty of λ is known as outer regularity.

b) λ(A) = sup{λ(K) | K ⊆ R is a compact set such that K ⊆ A}. This
property of λ is known as inner regularity.

Proof. To see that a) is true, let A ∈ M(R). Clearly if U ⊆ R is an open
subset such that A ⊆ U then λ(A) ≤ λ(U) by the monotonicity of measures
and thus

λ(A) ≤ inf{λ(U) | U ⊆ R is an open set such that A ⊆ U}.

To see the other inequality let ϵ > 0. Since A ∈ M(R), we know that
λ(A) = λ∗(A). Hence there exists a countable collection {In}∞

n=1 of open
intervals such that A ⊆

⋃∞
n=1 In and

∞∑
n=1

ℓ(In) ≤ λ∗(A) + ϵ.

Therefore, if U =
⋃∞

n=1 In, then U is an open subset of R such that A ⊆ U
and

λ(U) ≤
∞∑

n=1
ℓ(In) ≤ λ∗(A) + ϵ.

Hence

inf{λ(U) | U ⊆ R is an open set such that A ⊆ U} ≤ λ(A) + ϵ.

Therefore, since ϵ > 0 was arbitrary, we obtain the desire inequality.
To see that b) is true, first note that the difficulty in using a) to directly

prove this result is that we have no control of measure of the complement
of a set with infinite measure. Thus fix A ∈ M(R). Clearly if K ⊆ R is
a compact such that K ⊆ A then λ(K) ≤ λ(A) by the monotonicity of
measures and thus

λ(A) ≥ sup{λ(K) | K ⊆ R is a compact set such that K ⊆ A}.
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For the other direction, for each n ∈ N let

An = A ∩ [−n, n].

Clearly An ∈ M(R) and

λ(An) ≤ λ([−n, n]) ≤ 2n < ∞

by the monotonicity of measures. Furthermore, since A =
⋃∞

n=1An and
An ⊆ An+1 for all n ∈ N, we obtain by the Monotone Convergence Theorem
(Theorem 1.1.23) that

λ(A) = lim
n→∞

λ(An).

For each n ∈ N, let B = Ac
n ∩ [−n, n]. Clearly λ(Bn) ≤ λ([−n, n]) ≤

2n < ∞ by the monotonicity of measures. By part a) there exists an open
subset Un ⊆ R such that Bn ⊆ Un and

λ(Un) ≤ λ(Bn) + 1
2n
.

Hence, since λ(Bn) < ∞ so λ(Un) < ∞, we obtain that Un ∩ [−n, n] ∈ M(R)
and

0 ≤ λ(Un ∩ [−n, n]) − λ(Bn) ≤ λ(Un) − λ(Bn) ≤ 1
2n
.

For each n ∈ N, let Kn = U c
n ∩ [−n, n]. Clearly Kn is closed being the

intersection of two closed sets and is bounded by n. Hence Kn is compact
and Kn ∈ M(R). Moreover, since Bn ⊆ Un, we have Kn = U c

n ∩ [−n, n] ⊆
Bc

n ∩ [−n, n] = An. Since

[−n, n] = Kn ∪ (Un ∩ [−n, n]) and [−n, n] = An ∪Bn

are disjoint unions of measurable sets, we obtain that

λ(Kn) + λ(Un ∩ [−n, n]) = 2n = λ(An) + λ(Bn)

so
λ(An) ≤ λ(Kn) + λ(Un ∩ [−n, n]) − λ(Bn) ≤ λ(Kn) + 1

2n
.

Therefore, since

λ(A) = lim
n→∞

λ(An) ≤ lim inf
n→∞

λ(Kn) + 1
2n

= lim inf
n→∞

λ(Kn),

we have that

λ(A) ≤ sup{λ(K) | K ⊆ R is a compact set such that K ⊆ A}

as desired.
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Proposition 1.4.13. Let A ⊆ R. The following are equivalent:

a) A ∈ M(R).

b) For all ϵ > 0 there exists an open subset U ⊆ R such that A ⊆ U and
λ∗(U \A) < ϵ.

c) For all ϵ > 0 there exists a closed subset F ⊆ R such that F ⊆ A and
λ∗(A \ F ) < ϵ.

d) There exists a Gδ set G ⊆ R (i.e. G is a countable intersection of open
sets) such that A ⊆ G and λ∗(G \A) = 0.

e) There exists an Fσ set F ⊆ R (i.e. F is a countable union of closed sets)
such that F ⊆ A and λ∗(A \ F ) = 0.

Proof. We will show that a), b), and d) are equivalent whereas the equivalence
of a), c), and e) will follow by taking complements.

Fix A ⊆ R and assume that d) holds. Notice if G ⊆ R is a Gδ-set such
that A ⊆ G and λ∗(G \ A) = 0, we obtain that G \ A ∈ M(R) since the
Lebesgue measure is complete. Furthermore, since G is Gδ, we obtain that
G is Borel and thus G ∈ M(R). Therefore, since

A = (G \A)c ∩G

and since M(R) is closed under complements and intersections, we obtain
that A ∈ M(R). Thus d) implies a).

Next, assume that a) holds so that A ∈ M(R). For each n ∈ Z, let

An = A ∩ [n, n+ 1].

By Proposition 1.4.12 for each n ∈ Z and k ∈ N there exists an open set Un,k

such that An ⊆ Un,k and

0 ≤ λ(Un,k) ≤ λ(An) + 1
k2−|n| .

Hence, since 0 ≤ λ(An) ≤ λ([n, n+1]) < ∞ by the monotonicity of measures,
we obtain that

λ(Un,k \An) ≤ 1
k2−|n| .

For each k ∈ N let
Uk =

⋃
n∈Z

Un,k.

Clearly Uk is an open set being the countable union of open sets. Further-
more, since Uk, A ∈ M(R), we obtain by subadditivity and monotonicity of
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measures that

λ(Uk \A) = λ

⋃
n∈Z

(Un,k \A)


≤
∑
n∈Z

λ(Un,k \A)

≤
∑
n∈Z

λ(Un,k \An)

≤
∑
n∈Z

1
k2−|n|

= 3
k
.

Hence b) follows.
To see that b) implies d), note that b) implies for each k ∈ N there exists

an open set Uk such that A ⊆ Uk and λ(Uk \A) ≤ 3
k . Let

G =
∞⋂

k=1
Uk.

Then G is a Gδ set being the countable intersection of open sets. Thus G is
Borel so G ∈ M(R). Furthermore, notice for all k ∈ N that

0 ≤ λ(G \A) ≤ λ(Uk \A) ≤ 3
k

by the monotonicity of measures. Hence, since limk→∞
3
k = 0, we obtain

λ∗(G \A) = λ(G \A) = 0

as desired.

1.5 Metric Outer Measures
In this section we will analyze an alternative way to demonstrate that every
Borel subset of R is Lebesgue measurable. The idea is to develop a property
for outer measures on metric spaces that will guarantee that Borel sets are
measurable. It turns out that the metric structure makes specific outer
measures more tractable. In particular, the special outer measures on metric
spaces we wish to examine are related to the following property of subsets of
metric spaces.

Definition 1.5.1. Let (X , d) be a metric space. Two subsets A,B ⊆ X are
said to have positive separation if

dist(A,B) = inf{d(a, b) | a ∈ A, b ∈ B} > 0.
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Example 1.5.2. Using the Extreme Value Theorem along with the fact
that the distance to a set is a continuous function, it is possible to show that
any two disjoint compact subsets of a metric space have positive separation.
However, two disjoint closed subsets of a metric space need not have positive
separation. Indeed consider A = N and B = {n+ 1

n | n ∈ N, n ≥ 2}. Clearly
A and B are disjoint closed subsets of R that do not have positive separation.

The special collection of outer measures on metric spaces we wish to
study are as follows.

Definition 1.5.3. Let (X , d) be a metric space. An outer measure µ∗ :
P(X ) → [0,∞] is said to be a metric outer measure if

µ∗(A ∪B) = µ∗(A) + µ∗(B)

for all A,B ⊆ X such that A and B have positive separation.

Remark 1.5.4. It is not difficult to see that if (X , d) is a metric space and
µ∗ : P(X ) → [0,∞] is an outer measure on X such that every Borel set
of X is µ∗-measurable, then µ∗ must be a metric outer measure. Indeed,
assume A,B ⊆ X have positive separation. By metric space properties, it is
elementary to see that if A and B denote the closures of A and B respectively,
then A and B are Borel sets such that A ∩B = ∅. Hence

(A ∪B) ∩A = A and (A ∪B) ∩A
c = B.

Therefore, since A is then µ∗-measurable, we obtain that

µ∗(A ∪B) = µ∗
(
(A ∪B) ∩A

)
+ µ∗

(
(A ∪B) ∩A

c
)

= µ∗(A) + µ∗(B)

as desired.

Of course, our desire is to prove the converse; that is, given a metric
outer measure µ∗ every Borel set is µ∗-measurable. To see this, we will make
use of the following lemma.

Lemma 1.5.5. Let (X , d) be a metric space, let µ∗ : P(X ) → [0,∞] be a
metric outer measure, let {An}∞

n=1 ⊆ P(X ) be such that Ak ⊆ Ak+1 for all
k ∈ N, and let A =

⋃∞
n=1An. If

dist(Ak, A \Ak+1) > 0

for all k ∈ N, then
µ∗(A) = lim

n→∞
µ∗(Ak).
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Proof. Due to the monotonicity of outer measures, (µ∗(An))n≥1 is a monotone
sequence. Therefore, either limn→∞ µ∗(An) exists and is finite, or is infinity.
Furthermore, since µ∗(Ak) ≤ µ∗(A) for all k ∈ N due to the monotonicity
of outer measures, we obtain that limn→∞ µ∗(An) ≤ µ∗(A). Therefore, if
limn→∞ µ∗(An) = ∞ then clearly µ∗(A) = ∞ and the result holds. Hence
we may assume that limn→∞ µ∗(An) < ∞.

Let B1 = A1 and for each k ≥ 2 let Bk = Ak \Ak−1. Clearly
⋃k

m=1Bm ⊆
Ak and Bk ⊆ A\Ak−1 for all k ∈ N. Therefore, if m ≥ k+2 and B ⊆

⋃k
j=1Bj

then

dist (Bm, B) ≥ dist

Bm,
k⋃

j=1
Bj


≥ dist(A \Am−1, Ak)
≥ dist(A \Am−1, Am−2) > 0

by assumption so µ∗(Bm ∪ B) = µ∗(Bm) + µ∗(B) as µ∗ is a metric outer
measure. Hence

µ∗
(

n⋃
k=1

B2k

)
= µ∗

(
B2n ∪

(
n−1⋃
k=1

B2k

))

= µ∗(B2n) + µ∗
(

n−1⋃
k=1

B2k

)

= . . . =
n∑

k=1
µ∗(B2k)

and

µ∗
(

n⋃
k=1

B2k−1

)
= µ∗

(
B2n−1 ∪

(
n−1⋃
k=1

B2k−1

))

= µ∗(B2n−1) + µ∗
(

n−1⋃
k=1

B2k−1

)

= . . . =
n∑

k=1
µ∗(B2k−1)

for all n ∈ N. Therefore, since

µ∗
(

n⋃
k=1

B2k

)
≤ µ∗(A2n) and µ∗

(
n⋃

k=1
B2k−1

)
≤ µ∗(A2n−1),

we obtain that the infinite sums
∑∞

k=1 µ
∗(B2k) and

∑∞
k=1 µ

∗(B2k−1) converge
as limn→∞ µ∗(An) < ∞.

©For use through and only available at pskoufra.info.yorku.ca.



42 CHAPTER 1. MEASURE SPACES

For each m ∈ N notice that

µ∗(A) = µ∗

Am ∪

 ∞⋃
k=m+1

Bk


≤ µ∗(Am) +

∞∑
k=m+1

µ∗(Bk)

by the subadditivity of outer measures. However, since

lim
m→∞

∞∑
k=m+1

µ∗(Bk) = 0

as
∑∞

k=1 µ
∗(B2k) and

∑∞
k=1 µ

∗(B2k−1) converge, and since limn→∞ µ∗(Ak)
exists, we obtain that

µ∗(A) ≤ lim
n→∞

µ∗(Ak)

which when combined with limn→∞ µ∗(An) ≤ µ∗(A) yields the desired result.

Proposition 1.5.6. If (X , d) be a metric space and µ∗ : P(X ) → [0,∞] is a
metric outer measure, then every Borel subset of X is µ∗-measurable.

Proof. Since the set of µ∗-measurable sets is a σ-algebra by Theorem 1.2.10
and since the set of closed subsets of X generate the Borel σ-algebra, it
suffices to prove that every closed subset of X is µ∗-measurable.

Let F be an arbitrary closed subset of X . To see that F is µ∗-measurable,
let A ⊆ X be arbitrary. For each n ∈ N let

An =
{
a ∈ A

∣∣∣∣ dist({a}, F ) ≥ 1
n

}
.

Notice that An ⊆ An+1 for all n ∈ N and that
∞⋃

n=1
An = {a ∈ A | dist({a}, F ) > 0} = A ∩ F c

since F is closed (so x ∈ F c if and only if dist({x}, F ) > 0).
We claim that

dist(Ak, (A ∩ F c) \Ak+1) ≥ 1
k(k + 1) .

To see this, let a ∈ Ak and x ∈ (A ∩ F c) \ Ak+1 be arbitrary. Clearly
this implies x ∈ A, x /∈ F , and x /∈ Ak+1. Hence 0 < dist({x}, F ) < 1

k+1 .
Furthermore, since a ∈ Ak, we obtain that dist({a}, F ) ≥ 1

k . Since for all
y ∈ F

d(a, y) ≤ d(a, x) + d(x, y)
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by the triangle inequality, we obtain by taking an infimum over all y ∈ F
that

1
k

≤ dist({a}, F ) ≤ d(a, x) + dist({x}, F ) < d(a, x) + 1
k + 1 .

Hence
d(a, x) ≥ 1

k(k + 1) .

Therefore, since a ∈ Ak and x ∈ (A ∩ F c) \Ak+1 were arbitrary, the claim is
complete.

By Lemma 1.5.5 we obtain that

lim
n→∞

µ∗(An) = µ∗(A ∩ F c).

Since An ∪ (A ∩ F ) ⊆ A, since

dist(An, (A ∩ F )) ≥ dist(An, F ) ≥ 1
n
> 0

and since µ∗ is a metric outer measure, we obtain that

µ∗(A) ≥ µ∗(An ∪ (A ∩ F )) = µ∗(An) + µ∗(A ∩ F )

for all n ∈ N. Therefore, by taking a limit of the right-hand-side, we obtain
that

µ∗(A) ≥ µ∗(A ∩ F c) + µ∗(A ∩ F ).

Therefore, as A ⊆ X was arbitrary, F is µ∗-measurable. Therefore, as F was
an arbitrary closed subset of X , the proof is complete.

To complete our alternative approach to demonstrating Borel subsets
of R are Lebesgue measurable, we demonstrate that the Lebesgue outer
measure is a metric outer measure.

Proposition 1.5.7. The Lebesgue outer measure is a metric outer measure.

Proof. Let A,B ⊆ R have positive separation. Since λ∗ is an outer measure,
clearly λ∗(A ∪B) ≤ λ∗(A) + λ∗(B) by subadditivity.

To see the other inequality, let δ = 1
4dist(A,B) > 0. For each 0 < ϵ <

δ there exists a countable collection of open intervals {In}∞
n=1 such that

A ∪B ⊆
⋃∞

n=1 In and
∞∑

n=1
ℓ(In) ≤ λ∗(A ∪B) + ϵ.

We desire to modify {In}∞
n=1 in order to control bound the lengths of each

interval we use. To begin if In = (a, b) where a, b ∈ R, for each k ∈ N let

In,k =
(
a+ kδ,min

{
b, a+ (k + 1)δ + ϵ

2nk

})
.
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Clearly each In,k is an open interval with length

ℓ(In,k) ≤ δ + ϵ

2nk
<

3
2δ < dist(A,B).

Furthermore In ⊆
⋃∞

k=1 In,k and

∞∑
k=1

ℓ(In,k) ≤ b− a+
∞∑

k=1

ϵ

2nk
= ℓ(In) + ϵ

2n
.

If a = −∞ or b = ∞ then we can apply a similar process to construct a
countable number of open intervals In,k such that ℓ(In,k) < dist(A,B) for
all k ∈ N, and

∑∞
k=1 ℓ(In,k) ≤ ℓ(In) + ϵ

2n . Therefore {In,k | n, k ∈ N} is a
countable collection of open intervals such that A ∪B ⊆

⋃∞
n,k=1 In,k and

∞∑
n,k=1

ℓ(In,k) ≤
∞∑

n=1
ℓ(In) + ϵ

2n
≤ λ∗(A ∪B) + 2ϵ.

Since ℓ(In,k) < dist(A,B), each In,k can intersect at most one of A and
B. Let

JA = {(n, k) ∈ N2 | In,k ∩A ̸= ∅} and
JB = {(n, k) ∈ N2 | In,k ∩B ̸= ∅}.

Then JA and JB are countable disjoint sets such that

A ⊆
⋃

(n,k)∈JA

In,k and B ⊆
⋃

(n,k)∈JB

In,k.

Hence

λ∗(A ∪B) + 2ϵ ≥
∞∑

n,k=1
ℓ(In,k)

≥
∑

(n,k)∈JA

ℓ(In,k) +
∑

(n,k)∈JB

ℓ(In,k)

≥ λ∗(A) + λ∗(B).

Therefore, since ϵ > 0 was arbitrary, we obtain that

λ∗(A ∪B) = λ∗(A) + λ∗(B).

Therefore, since A and B were arbitrary subsets of R with positive separation,
the result follows.
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1.6 Hausdorff Measures
One important use of metric outer measures is that it enables us to construct
Hausdorff measures on metric spaces. In addition to being interesting
measures trying to measure the diameter of sets, Hausdorff measures enable
us to define the Hausdorff dimension thereby generalizing our notion of
dimension to fractal-like sets. In order to define these objects, we recall the
following metric space definition.

Definition 1.6.1. Let (X , d) be a metric space and let A ⊆ X . The diameter
of A is

diam(A) = sup{d(x, y) | x, y ∈ A}.

In order to construct new metric outer measures, fix a metric space (X , d).
For each ϵ > 0 let

Fϵ = {A ⊆ X | diam(A) ≤ ϵ}

and for each s ∈ (0,∞) let ℓs : P(X ) → [0,∞] be defined by

ℓs(A) = diam(A)s

for all A ⊆ X . Let µ∗
s,ϵ denote the outer measure associated to ℓs|Fϵ ; that is

µ∗
s,ϵ(A) = inf

{ ∞∑
n=1

diam(An)s

∣∣∣∣ {An}∞
n=1 are subsets of X

such that A⊆
⋃∞

n=1 An and diam(An)≤ϵ

}
.

Notice trivially that if 0 < ϵ′ < ϵ then µ∗
s,ϵ(A) ≤ µ∗

s,ϵ′(A) for all A ⊆ X .

Definition 1.6.2. For s ∈ (0,∞), the s-dimensional outer Hausdorff measure
on the metric space (X , d) is the outer measure H∗

s : P(X ) → [0,∞] defined
by

H∗
s (A) = sup

ϵ>0
µ∗

s,ϵ(A) = lim
ϵ→0+

µ∗
s,ϵ(A)

for all A ⊆ X .

Unsurprisingly, the s-dimensional outer Hausdorff measure is a outer
measure with the properties of the previous section.

Proposition 1.6.3. For every metric space (X , d) and s ∈ (0,∞), H∗
s is a

metric outer measure.

Proof. To see that H∗
s is an outer measure, recall that each µ∗

s,ϵ is an outer
measure. Since the defining properties of an outer measure from Definition
1.2.2 are easily seen to pass to limits, H∗

s is an outer measure.
To see that H∗

s is a metric outer measure, suppose A,B ⊆ X have positive
separation. Therefore dist(A,B) > 0. Clearly

H∗
s (A ∪B) ≤ H∗

s (A) +H∗
s (B)
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since H∗
s is an outer measure. Thus it suffices to prove the other inequality.

Assume ϵ < 1
2dist(A,B). Let {An}∞

n=1 be an arbitrary collection of
subsets of Fϵ such that A ∪B ⊆

⋃∞
n=1An. Since

diam(An) ≤ ϵ <
1
2dist(A,B),

every An intersects at most one of A and B. Let

JA = {n ∈ N | An ∩A ̸= ∅} and JB = {n ∈ N | An ∩B ̸= ∅}

Then JA and JB are countable disjoint sets such that

A ⊆
⋃

n∈JA

An and B ⊆
⋃

n∈JB

An.

Hence
∞∑

n=1
diam(An)s ≥

∑
n∈JA

diam(An)s +
∑

n∈JB

diam(An)s

≥ µ∗
s,ϵ(A) + µ∗

s,ϵ(B).

Therefore, since {An}∞
n=1 was an arbitrary collection of subsets of Fϵ such

that A ∪B ⊆
⋃∞

n=1An, we obtain that

µ∗
s,ϵ(A ∪B) ≥ µ∗

s,ϵ(A) + µ∗
s,ϵ(B).

Since this holds for all ϵ < 1
2dist(A,B), we obtain by taking limits that

H∗
s (A ∪B) ≥ H∗

s (A) +H∗
s (B).

Therefore, since A and B were arbitrary subsets of X with positive separation,
the result follows.

Note that Proposition 1.5.6 implies that every Borel subset of (X , d) is
H∗

s -measurable for all s ∈ (0,∞).

Definition 1.6.4. For s ∈ (0,∞), the s-dimensional Hausdorff measure on
(X , d), denoted Hs, is the measure Hs obtained by restricting H∗

s to the set
of H∗

s -measurable sets.

Example 1.6.5. The 1-dimensional Hausdorff measure on R is the Lebesgue
measure. Indeed for all A ⊆ R it is clear that λ∗(A) ≤ µ∗

1,ϵ(A) for all ϵ > 0
so clearly λ∗(A) ≤ H∗

s (A). For the other inclusion, we notice that the proof
of Proposition 1.5.7 implies that for all A ⊆ R and all δ, ϵ > 0 there exists a
collection {In}∞

n=1 of open intervals with ℓ(In) = diam(In) < 3
2δ such that

∞∑
n=1

diam(In) ≤ λ∗(A) + ϵ.

This implies µ∗
1, 3

2 δ
(A) ≤ λ∗(A) + ϵ for all δ, ϵ > 0 and thus H∗

s (A) = λ∗(A).
Therefore, due to the definitions of Hs and λ, we obtain that Hs = λ.
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Remark 1.6.6. Notice that if s, t ∈ (0,∞) and t < s then xs ≤ xt whenever
0 ≤ x < 1. Consequently, by the above definitions, we see that µ∗

s,ϵ(A) ≤
µ∗

t,ϵ(A) for all A ⊆ X and ϵ < 1. Hence Hs(A) ≤ Ht(A) for all A ∈ B(X )
whenever s, t ∈ (0,∞) and t < s (note we restrict to Borel sets as this is the
largest common domain of Hs and Ht).

In fact, something rather spectacular occurs.

Theorem 1.6.7. Let (X , d) be a metric space. If s, t ∈ (0,∞) are such that
t < s and A ∈ B(X ) is such Ht(A) < ∞, then Hs(A) = 0.

Proof. Fix a Borel set A ⊆ X and assume Ht(A) < ∞. Let 0 < ϵ < 1. Then
for any collection {An}∞

n=1 ∈ Fϵ such that A ⊆
⋃∞

n=1An, observe that
∞∑

n=1
diam(An)s =

∞∑
n=1

diam(An)s−tdiam(An)t ≤ ϵs−t
∞∑

n=1
diam(An)t.

Therefore, by taking the infimum over all such {An}∞
n=1, we obtain that

µ∗
s,ϵ(A) ≤ ϵs−tµ∗

t,ϵ(A) ≤ ϵs−tHt(A).

Therefore, since Ht(A) < ∞, we obtain that Hs(A) = 0 by taking the limit
as ϵ tends to zero.

By Theorem 1.6.7, we arrive at a definition of dimension for a Borel
subset of R.

Definition 1.6.8. Let (X , d) be a metric space and let A be a Borel subset
of X . The Hausdorff dimension of A, denoted dimH(A), is

dimH(A) = inf{s > 0 | Hs(A) = 0} = sup{s > 0 | Hs(A) = ∞}.

Remark 1.6.9. Since A ⊆ B ⊆ X implies Hs(A) ≤ Hs(B) for all s ∈ (0,∞),
we see that dimH(A) ≤ dimH(B) by construction. This is clearly a property
we would expect for a good dimension function.

Remark 1.6.10. We claim that if A ⊆ R then dimH(A) ≤ 1. To see this, fix
s > 1 and let 0 < ϵ < 1. Since

∑∞
n=1

ϵ
n = ∞, it is possible to cover R with a

countable collection open intervals In such that ℓ(In) = ϵ
n for all n (i.e. place

a symmetric interval of length ϵ around 0 and alternate placing intervals at
the left most endpoint of the last interval placed in the negative numbers and
the right most endpoint of the last interval placed in the positive numbers).
Thus

µ∗
s,ϵ(R) ≤

∞∑
n=1

(
ϵ

n

)s

= ϵs
∞∑

n=1

1
ns
.

Since s > 1, we know that
∑∞

n=1
1

ns < ∞. Therefore, since limϵ→0+ ϵs = 0,
we obtain that Hs(R) = H∗

s (R) = 0. Moreover, since the 1-dimensional
Hausdorff measure is the Lebesgue measure and λ(R) = ∞, we obtain that
dimH(R) = 1. Thus the claim follows from Remark 1.6.9.
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Example 1.6.11. Let I ⊆ R be a non-singleton finite intervals. Hence
0 < λ(I) < ∞. Since the 1-dimensional Hausdorff measure is the Lebesgue
measure so H1(I) = λ(I) ∈ (0,∞), Theorem 1.6.7 implies that Hs(I) = 0 for
all s > 1 and Hs(I) = ∞ for all s < 1. Therefore dimH(I) = 1 by definition.

Similarly, if I is an infinite interval, then H1(I) = λ(I) = ∞. Thus
dimH(I) ≥ 1. Hence Remark 1.6.10 implies dimH(I) = 1.

To motivate lower-dimensional subsets of R, we leave the following to the
reader.

Proposition 1.6.12. The Hausdorff dimension of the Cantor set is ln(2)
ln(3) .

Proof. Let

s0 = ln(2)
ln(3) .

To compute Hs0(C), let 0 < ϵ < 1. Choose n such that 1
3n < ϵ. By taking

Pn as in Definition 1.4.4, by replacing each closed interval I in Pn with an
open interval J such that I ⊆ J and ℓ(J) < ℓ(I) + δ for some δ such that
1

3n + δ < ϵ, and by sending δ to 0, we obtain that

µ∗
s0,ϵ(C) ≤

2n∑
k=1

( 1
3n

)s0

= 2n

3ns0
.

However
3ns0 = 3

ln(2n)
ln(3) = 3log3(2n) = 2n

so µ∗
s0,ϵ(C) ≤ 1. Therefore, by taking the limit as ϵ tends to 0, we obtain

that Hs0(C) ≤ 1. Hence dimH(C) ≤ s0.
To see the other inequality, let 0 < ϵ < 1 and let {In}∞

n=1 ⊆ Fϵ be such
that C ⊆

⋃∞
n=1 In. Since C is compact, there exists an M ∈ N such that

C ⊆
⋃M

n=1 In.
Choose N ∈ N such that

1
3N+1 ≤ ϵ <

1
3N

and choose k ∈ N such that
1
3k

< ℓ(In)

for all 1 ≤ n ≤ M . Consider Pk as in Definition 1.4.4. If 1 ≤ n ≤ M and

1
3j

≤ ℓ(In) < 1
3j−1

for some j ≤ k, we see that In can intersect at most one closed interval in
the definition of Pj−1 since each such closed interval has length 1

3j−1 and is
separated from each other closed interval by an open interval of length 1

3j−1 .
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Therefore, since each closed interval in the definition of of Pj−1 contains
2k−j+1 of the closed intervals in the definition of Pk, we see that In can
intersect at most 2k−j+1 of the closed intervals in the definition of Pk. Since

2k−j+1 = 2k+12−j = 2k+13−js0 = 2k+1
( 1

3j

)s0

≤ 2k+1ℓ(In)s0 ,

we see that each In can intersect at most 2k+1ℓ(In)s0 of the closed intervals
in the definition of Pk. Thus, since C ⊆

⋃M
n=1 In and since Pk contains 2k

intervals, we obtain that

M∑
n=1

2k+1ℓ(In)s0 ≥ 2k.

Thus
∞∑

n=1
ℓ(In)s0 ≥

M∑
n=1

ℓ(In)s0 ≥ 1
2 .

Therefore, since {In}∞
n=1 ⊆ Fϵ was arbitrary, we obtain that

µ∗
s0,ϵ(C) ≥ 1

2

for all 0 < ϵ < 1. Therefore 1
2 ≤ Hs0(C) ≤ 1. Hence Theorem 1.6.7 implies

that dimH(C) = s0 as desired.
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Chapter 2

Measurable Functions

As with everything in mathematics, once one has defined the main objects one
desires to study, one then defines the morphisms or functions related to ones’
central object. These so called measurable functions will be the focus of this
chapter. After developing the basic properties of real- and complex-valued
measurable functions, we will demonstrate that every measurable function
can be ‘approximated’ by ‘simple’ functions. We will also demonstrate that
convergence of measurable functions occurs ‘uniformly almost everywhere’
and that measurable functions on the reals are ‘almost everywhere continuous’.
The theory of measurable function is vital for a theory of integration as we
will see in the next chapter.

2.1 Measurable Functions
To begin, we define the notion of a measurable function. Note the flavour
of this definition is very similar to the definition of continuous functions
between topological spaces where it is said that a function is continuous if
the inverse image of every open set is open.

Definition 2.1.1. Let (X,AX) and (Y,AY ) be measurable spaces. A func-
tion f : X → Y is said to be measurable if f−1(A) ∈ AX for all A ∈ AY ;
that is, the inverse image of every measurable set in Y is measurable in X.

Of course, we have a collection of trivial examples.

Example 2.1.2. Let (X,AX) and (Y,AY ) be measurable spaces and let
f : X → Y . If f is constant, then f is measurable as either f−1(A) = X or
f−1(A) = ∅ for all A ∈ AY .

Alternatively, if AX = P(X), then f is automatically measurable.
Similarly, if AY = {∅, Y }, then f is automatically measurable as f−1(∅) =

∅ and f−1(Y ) = X.

For a more robust collection of examples, we look at the following.
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Definition 2.1.3. Let X be a non-empty set and let A ⊆ X. The char-
acteristic function of A (or indicator function) is the function χA : X → R
defined by

χA(x) =
{

1 if x ∈ A

0 if x /∈ A

for all x ∈ X.

In the sense of probability theory, the characteristic function of an event
takes on the value one at a point where the event occurs and zero otherwise.
Of course, for a characteristic function to make sense in probability, we would
want the event to be in our probability space; that is, we would want the set
to be measurable.

Example 2.1.4. Let (X,A) be a measurable space and let A ⊆ X. The
characteristic function χA is measurable as a function to (R,B(R)) if and
only if A ∈ A. Indeed, notice for all B ⊆ R that

χ−1
A (B) =


∅ if 0, 1 /∈ B

A if 0 /∈ B and 1 ∈ B

Ac if 1 /∈ B and 0 ∈ B

X if 0, 1 ∈ B

.

From this and the fact that all cases are possibly by choosing select B ∈ B(R),
clearly χA is measurable if and only if A,Ac ∈ A if and only if A ∈ A.

Of course, we will mainly be interested in functions from a measure space
into either the real or complex numbers. As such, we will use K to denote
either the real or complex numbers.

However we have a notion of a measurable function for each σ-algebra on
K. One might think we could use the σ-algebra {∅,K} to force every function
to be measurable. However would imply the characteristic functions of non-
measurable sets are measurable, which is undesirable if we want to construct
an integral for measurable functions. Since we desire any continuous function
to be measurable, the σ-algebra on K should at least contain every open set,
and thus must contain the Borel σ-algebra. Thus we define the following
notion.

Definition 2.1.5. Let (X,A) be a measurable space. A function f : X → K
is said to be measurable if f is measurable as a function from (X,A) to
(K,B(K)). The set of all measurable functions from (X,A) to (K,B(K)) is
denoted M(X,K).

Of course, one natural question to ask when K = R is why we did not
use the Lebesgue measurable functions. To see the reason why, we require
the following peculiar function.
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Definition 2.1.6 (The Cantor Ternary Function). Given a sequence
a⃗ = (an)n≥1 of elements of {0, 1, 2}, define

Ka⃗ =
{
N if aN = 1 and ak ̸= 1 for all k < N

∞ otherwise

and define a sequence b⃗a⃗ = (bn)n≥1 of elements of {0, 1} by

bn =


an
2 if n ≤ Ka⃗

1 if n = Ka⃗

0 otherwise
.

The Cantor ternary function is the function f : [0, 1] → [0, 1] defined as
follow: if x =

∑∞
n=1

an
3n ∈ [0, 1] for a sequence a⃗ = (an)n≥1 of elements of

{0, 1, 2} and b⃗a⃗ = (bn)n≥1 is the sequence of elements of {0, 1} as defined
above, then

f(x) =
∞∑

n=1

bn

2n
;

(That is, write a ternary expansion of x. If N is the first index where a 1
occurs, replace each 0

3n with n < N with 0
2n , replace each 2

3n with n < N
with 1

2n , replace 1
3N with 1

2N , and change all terms of index greater than N
to zero).

Lemma 2.1.7. The Cantor ternary function is well-defined.

Proof. Let f denote the Cantor ternary function. Fix x ∈ [0, 1]. To show that
f(x) is well-defined, we must demonstrate the value of f(x) does not depend
on the ternary representation of x. Thus to see that f(x) is well-defined we
need only analyze following two cases:

(1) There exists an m ∈ N and a1, . . . , am−1 ∈ {0, 1, 2} such that

x =
m−1∑
k=1

ak

3k
+ 0

3m
+

∞∑
k=m+1

2
3k

=
m−1∑
k=1

ak

3k
+ 1

3m
+

∞∑
k=m+1

0
3k

Note we do not need to include m = 0 since as
∑∞

k=1
2

3k is the only
ternary expansion of 1 we need to consider in the definition of f .

(2) There exists an m ∈ N and a1, . . . , am−1 ∈ {0, 1, 2} such that

x =
m−1∑
k=1

ak

3k
+ 1

3m
+

∞∑
k=m+1

2
3k

=
m−1∑
k=1

ak

3k
+ 2

3m
+

∞∑
k=m+1

0
3k
.
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54 CHAPTER 2. MEASURABLE FUNCTIONS

We begin with case (1). Let a⃗1 be the sequence corresponding to the
first ternary expansion of x and let a⃗2 be the sequence corresponding to the
second ternary expansion of x; that is,

a⃗1 = (a1, a2, . . . , am−1, 0, 2, 2, 2, . . .)
a⃗2 = (a1, a2, . . . , am−1, 1, 0, 0, 0, . . .).

If b⃗a⃗1 = (bk)k≥1 and b⃗a⃗2 = (ck)k≥1 are as defined as above, then it suffices to
show that ∞∑

k=1

bk

2k
=

∞∑
k=1

ck

2k
.

Notice if there exists a n ∈ {1, . . . ,m − 1} such that an = 1, then bk = ck

for all k ∈ N by definition (as the sequence becomes 0 after n and thus does
not depend on the differences in a⃗1 and a⃗2) thereby completing the case.
Otherwise assume that an ̸= 1 for all n ∈ {1, . . . ,m− 1}. Hence

b⃗a⃗1 =
(
a1
2 ,

a2
2 , . . . ,

am−1
2 , 0, 1, 1, 1, . . .

)
b⃗a⃗2 =

(
a1
2 ,

a2
2 , . . . ,

am−1
2 , 1, 0, 0, 0, . . .

)
by definition. Hence we easily see that

∞∑
k=1

bk

2k
=

∞∑
k=1

ck

2k

thereby completing case (1).
For case (2), let a⃗1 be the sequence corresponding to the first ternary

expansion of x and let a⃗2 be the sequence corresponding to the second ternary
expansion of x; that is,

a⃗1 = (a1, a2, . . . , am−1, 1, 2, 2, 2, . . .)
a⃗2 = (a1, a2, . . . , am−1, 2, 0, 0, 0, . . .).

If b⃗a⃗1 = (bk)k≥1 and b⃗a⃗2 = (ck)k≥1 are as defined as above, then it suffices to
show that ∞∑

k=1

bk

2k
=

∞∑
k=1

ck

2k
.

Notice if there exists a n ∈ {1, . . . ,m− 1} such that an = 1, then bk = ck for
all k ∈ N by definition (as the sequence becomes 0 after n and thus does not
depend on the differences in a⃗1 and a⃗2). Otherwise assume that an ̸= 1 for
all n ∈ {1, . . . ,m− 1}. Hence

b⃗a⃗1 =
(
a1
2 ,

a2
2 , . . . ,

am−1
2 , 1, 0, 0, 0, . . .

)
b⃗a⃗2 =

(
a1
2 ,

a2
2 , . . . ,

am−1
2 , 1, 0, 0, 0, . . .

)
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2.1. MEASURABLE FUNCTIONS 55

by definition. Hence we easily see that

∞∑
k=1

bk

2k
=

∞∑
k=1

ck

2k

thereby completing case (2) and the proof.

Lemma 2.1.8. Let C denote the Cantor set and let f denote the Cantor
ternary function. Then f is a non-decreasing continuous function which is
constant on each interval of Cc. Furthermore f(C) = [0, 1].

Proof. By Lemma 2.1.7 we know that f is well-defined. Hence for each point
in [0, 1] with two ternary expansions we can select one to use throughout the
proof.

To see that f is constant on Cc, notice by the definition of C (Definition
1.4.4) that

Cc =
⋃

n≥0

⋃
a1,...,an∈{0,2}

In;a1,...,an

where

In;a1,...,an =
{
x =

∞∑
k=1

a′
k

3−k

∣∣∣∣∣ a′
k∈{0,1,2},a′

n+1=1, and
a′

k=ak for all k∈{1,...,n}

}
.

Therefore, by the definition of f we see that

f(x) =
n∑

k=1

1
2an

2n
+ 1

2n+1

for all x ∈ In;a1,...,an . Hence f is constant on each interval in Cc.
To see that f is non-decreasing, let x, y ∈ [0, 1] be such that x < y and

write the ternary expansions of x and y as

x =
∞∑

k=1

ak(x)
3k

and y =
∞∑

k=1

ak(y)
3k

.

Since x ̸= y, due to our assumed uniqueness of the ternary expansions
there exists a q ∈ N such that aq(x) ̸= aq(y) and ak(x) = ak(y) for all
k < q. We claim that aq(x) < aq(y). Indeed if aq(x) > aq(y) then, since
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56 CHAPTER 2. MEASURABLE FUNCTIONS

ak(x), ak(y) ∈ {0, 1, 2} for all k ∈ N, we see that

y − x =
∞∑

k=1

ak(y)
3k

−
∞∑

k=1

ak(x)
3k

= aq(y) − aq(x)
3q

+
∞∑

k=q+1

ak(y) − ak(x)
3k

≤ −1
3q

+
∞∑

k=q+1

ak(y) − ak(x)
3k

≤ −1
3q

+
∞∑

k=q+1

2
3k

= 0,

which is a contradiction. Hence aq(x) < aq(y).
Using the index q we can show that f(x) ≤ f(y). To do this we divide

the proof into three cases:

(1) There exists an k < q such that ak(x) = ak(y) = 1.

(2) Case (1) does not occur and aq(x) = 0 (and thus aq(y) ∈ {1, 2}).

(3) Case (1) does not occur and aq(x) = 1 (and thus aq(y) = 2).

To begin, in all cases write

f(x) =
∞∑

k=1

bk(x)
2k

and f(y) =
∞∑

k=1

bk(y)
2k

where the sequences (bk(x))k≥1 and (bk(y))k≥1 are determined from the
sequences (ak(x))k≥1 and (ak(y))k≥1 via the construction of the Cantor
ternary function.

In case (1), note that (bk(x))k≥1 = (bk(y))k≥1 by definition. Hence
f(x) = f(y) as desired.

In case (2), note that bk(x) = bk(y) for all k < q, that bq(x) = 0, and
that bq(y) = 1. Therefore, since bk(x), bk(y) ∈ {0, 1} for all k ∈ N, we see
that

f(y) − f(x) =
∞∑

k=1

bk(y)
2k

−
∞∑

k=1

bk(x)
2k

= 1
2q

+
∞∑

k=q+1

bk(y) − bk(x)
2k

≥ 1
2q

+
∞∑

k=q+1

−1
2k

= 0.
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2.1. MEASURABLE FUNCTIONS 57

Hence f(x) ≤ f(y) in case (2).
Finally, in case (3), note that bk(x) = bk(y) for all k < q, that bq(x) =

1, that bk(x) = 0 for all k > q, and that bq(y) = 1. Therefore, since
bk(x), bk(y) ∈ {0, 1} for all k ∈ N, we see that

f(y) − f(x) =
∞∑

k=1

bk(y)
2k

−
∞∑

k=1

bk(x)
2k

=
∞∑

k=q+1

bk(y) − bk(x)
2k

=
∞∑

k=q+1

bk(y)
2k

≥ 0.

Hence f(x) ≤ f(y) in case (3). Therefore, by combining all of the cases, we
obtain that f is non-decreasing and thus monotone.

To see that f is continuous, first notice that f is continuous at each point
in Cc since f is constant on each open interval of Cc. Thus it remains to
demonstrate that f is continuous at each point in C. To see this, fix x ∈ C
and let ϵ > 0. Choose n ∈ N such that 1

2n < ϵ. By Definition 1.4.4 there
exists a1, . . . , an ∈ {0, 2} such that

x ∈
[

n∑
k=1

ak

3k
,

1
3n

+
n∑

k=1

ak

3k

]
.

Consider the open interval I = (y, z) where

y = − 1
3n

+
n∑

k=1

ak

3k
and z = 2

3n
+

n∑
k=1

ak

3k

Clearly x ∈ I. We divide the discussion into two cases based on the value of
an.

Assume an = 0. Let m be the greatest natural number such that ak = 0
for all k ≥ m yet am−1 ̸= 0 (so am−1 = 2). Then

f(y) = f

m−2∑
k=1

ak

3k
+ 1

3m−1 +
n−1∑
k=m

2
3m

+ 1
3n

+
∞∑

k=n+1

2
3n

 =
m−2∑
k=1

ak
2

2k
+ 1

2m−1

whereas

f(z) =
n−1∑
k=1

ak
2

2k
+ 1

2n
=

m−1∑
k=1

ak
2

2k
+ 1

2n
= f(y) + 1

2n

(since ak = 0 for all k ≥ m). Therefore, since f is non-decreasing, we see for
all q ∈ I that

f(y) ≤ f(q) ≤ f(z) = f(y) + 1
2n
.
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58 CHAPTER 2. MEASURABLE FUNCTIONS

Hence |f(x) − f(q)| < 1
2n < ϵ for all q ∈ I so f is continuous at x.

Otherwise an = 2. Let m be the greatest natural number such that
ak = 2 for all k ≥ m yet am−1 ̸= 2 (so am−1 = 0). Then

f(z) = f

(
m−2∑
k=1

ak

3k
+ 1

3m−1 +
n−1∑
k=m

0
3m

+ 1
3n

)
=

m−2∑
k=1

ak
2

2k
+ 1

2m−1

whereas

f(y) =
n∑

k=1

ak
2

2k
=

m−2∑
k=1

ak
2

2k
+

n∑
k=m

1
2k

= f(z) − 1
2m−1 +

n∑
k=m

1
2k

= f(z) − 1
2n
.

Therefore, since f is non-decreasing, we see for all q ∈ I that

f(y) ≤ f(q) ≤ f(z) = f(y) + 1
2n
.

Hence |f(x) − f(q)| < 1
2n < ϵ for all q ∈ I so f is continuous at x. Hence f

is continuous on [0, 1].
Finally, clearly f(0) = 0 and f(1) = 1. Therefore, since f is non-

decreasing, the Intermediate Value Theorem immediately implies that f(C) =
[0, 1].

With the above properties of the Cantor ternary function, we can now
demonstrate why we do not want to use the set of Lebesgue measurable
functions for the σ-algebra of the co-domain of measurable functions; the
inverse image under a continuous function of a Lebesgue measurable set
need not be Lebesgue measurable. Consequently, if we defined a function
f : X → R to be Lebesgue measurable if and only if the inverse image of a
Lebesgue measurable set is Lebesgue measurable, there would be continuous
functions that are not Lebesgue measurable.

Example 2.1.9. Let f be the Cantor ternary function and define ψ : [0, 1] →
[0, 2] by ψ(x) = x+ f(x). Thus ψ is a strictly increasing continuous function.

Moreover, we claim that λ(ψ(C)) > 0. To see this, first notice since
ψ is a strictly increasing continuous function that if [a, b] ⊆ [0, 1] then
ψ([a, b]) = [ψ(a), ψ(b)]. Therefore, if (a, b) ⊆ Cc, then since f(a) = f(b) as f
is continuous and constant on each interval of Cc by construction, we obtain
that

λ∗(ψ(a, b)) ≤ λ∗(ψ([a, b])) = λ([ψ(a), ψ(b)]) = ψ(b) − ψ(a) = b− a.

Since ψ is strictly increasing (and thus injective), we know that [0, 2] =
ψ(C) ∪ ψ(Cc) and ψ(C) ∩ ψ(Cc) = ∅. Therefore, Cc is a disjoint union of
intervals whose sum of lengths is one, the above computation shows that

λ∗(ψ(Cc)) ≤ 1

©For use through and only available at pskoufra.info.yorku.ca.



2.1. MEASURABLE FUNCTIONS 59

so λ(ψ(C)) ≥ 1 > 0.
By Proposition 1.4.11 there exists a subset A ⊆ C such that B = ψ(A) is

not Lebesgue measurable.
Since ψ is a strictly increasing continuous function, φ = ψ−1 : [0, 2] →

[0, 1] is continuous. However, note A is Lebesgue measurable since A ⊆ C,
λ(C) = 0, and λ is complete, yet φ−1(A) = ψ(A) is not Lebesgue measurable.
Hence there is a continuous function on R such that the inverse image of a
Lebesgue measurable set is not Lebesgue measurable.

Returning to our actual definition of a measurable real-valued function,
we note that we do not have much precise information about the Borel σ-
algebra in the sense that we do not have an easy method for testing whether
a set is Borel. In particular, how can we determine whether f−1(A) ∈ A
for all A ∈ B(K) if we cannot describe the elements of B(K)? However, we
do know several sets which generate B(K). Hence the following result will
easily enable us to check whether a function is in M(X,K).

Proposition 2.1.10. Let (X,AX) and (Y,AY ) be measurable spaces and
let f : X → Y . If A ⊆ AY and AY = σ(A) (that is, AY is the smallest
σ-algebra containing A), then f is measurable if and only if

{f−1(B) | B ∈ A} ⊆ AX .

Proof. If f is measurable, then clearly {f−1(B) | B ∈ A} ⊆ AX by defini-
tion.

Conversely, assume {f−1(B) | B ∈ A} ⊆ AX . To see that f is measur-
able, consider the set

A = {B ⊆ Y | f−1(B) ∈ AX}.

We claim that A is a σ-algebra. To see this, we notice that f−1(∅) = ∅ ∈ AX

and f−1(Y ) = X ∈ AX so clearly ∅, X ∈ A. Next, if B ⊆ Y then f−1(B) ∈
AX so f−1(Bc) = (f−1(B))c ∈ AX so Bc ∈ A. Finally, let {Bn}∞

n=1 ⊆ A be
arbitrary. Hence {f−1(Bn)}∞

n=1 ⊆ AX . Since

f−1
( ∞⋃

n=1
Bn

)
=

∞⋃
n=1

f−1(Bn) ∈ AX

we see that
⋃∞

n=1Bn ∈ A. Hence, as {Bn}∞
n=1 was arbitrary, A is a σ-algebra.

Since A ⊆ A by assumption and since AY = σ(A), we obtain that
AY ⊆ A. Hence f is measurable by definition.

Corollary 2.1.11. Let (X,A) be a measurable space, let Y be a metric
space, and let f : X → Y . Then f is measurable as a function from (X,A)
to (Y,B(Y )) if and only if f−1(U) ∈ A for all open subsets U ⊆ Y ; that is,
a function to a metric space equipped with the Borel σ-algebra is measurable
if and only if the inverse image of every open set is measurable.
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60 CHAPTER 2. MEASURABLE FUNCTIONS

As the inverse image of an open set under a continuous function is open,
Corollary 2.1.11 trivially implies the following.

Corollary 2.1.12. Let (X , d) be a metric space and let A be a σ-algebra of
X containing B(X ). If f : X → K is continuous, then f is measurable.

Corollary 2.1.13. Let (X,A) be a measurable space and let f : X → R.
The following are equivalent:

1. f ∈ M(X,R).

2. {x ∈ X | f(x) > a} ∈ A for all a ∈ R.

3. {x ∈ X | f(x) ≥ a} ∈ A for all a ∈ R.

4. {x ∈ X | f(x) < a} ∈ A for all a ∈ R.

5. {x ∈ X | f(x) ≤ a} ∈ A for all a ∈ R.

6. {x ∈ X | a < f(x) < b} ∈ A for all a, b ∈ R.

Proof. The result follows easily from Proposition 2.1.10 as Remark 1.1.9
implies each of the sets used in the inverse images generate B(R).

Now that we have a good notion of real-valued and complex-valued mea-
surable functions on a measurable space, it is useful to see which operations
preserve measurability. To do so, we note the following important result.

Proposition 2.1.14. Let (X,AX) be a measurable space and let (Y, dY),
and (Z, dZ) be metric spaces. If Y and Z are equipped with their respective
Borel σ-algebras, if f : X → Y is measurable, and if g : Y → Z is measurable
(e.g. when g is continuous), then g ◦ f : X → Z is measurable.

Proof. Let U ⊆ Z be an arbitrary open set. Since g is measurable, g−1(U)
is measurable in Y. Hence, since f is measurable,

(g ◦ f)−1(U) = f−1(g−1(U)) ∈ AX .

Therefore, since U ⊆ Z was an arbitrary open set and as open sets generated
the Borel σ-algebra on Z, the result follows from Proposition 2.1.10.

Remark 2.1.15. Clearly the proof of Proposition 2.1.14 breaks down when g
is only Lebesgue measurable since the inverse image of a Lebesgue measurable
set under a Lebesgue measurable function need not be Lebesgue measurable
by Example 2.1.9.

To exhibit an example where Proposition 2.1.14 fails when g is only
Lebesgue measurable, let φ and A be as in Example 2.1.9 and let f = φ
and g = χA. Since A is Lebesgue measurable, g is Lebesgue measurable by
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Example 2.1.4. Moreover, since φ is continuous, f is Lebesgue measurable
by Corollary 2.1.11. However, note that {1} is a Borel set, yet

(g ◦ f)−1({1}) = f−1(g−1({1})) = f−1(A) = φ−1(A)

is not Lebesgue measurable. Hence g ◦ f is not Lebesgue measurable.

Using Corollary 2.1.11 and Proposition 2.1.14, we can easily use continu-
ous operations to show specific operations on measurable functions preserve
measurability. To get all of the operations we want, sometimes we need to
double up.

Proposition 2.1.16. Let (X,A) be a measurable space and let f, g ∈
M(X,K). If h : X → K2 is defined by

h(x) = (f(x), g(x))

for all x ∈ X, then h is a measurable function from (X,A) to (K2,B(K2)).

Proof. Let f, g ∈ M(X,K). Note that B(K2) is countably generated by
open balls with respect to the infinity norm (i.e. check that if U is open in
K2 then U is the union of all balls of the form B((z1, z2), r(z1,z2)) where z1
and z2 are rational (or complex rational) numbers and r(z1,z2) is the largest
radius r such that B((z1, z2), r) ⊆ U). However each open ball in the infinity
norm is of the form I1 ×I2 where I1, I2 ⊆ K are open sets with respect to | · |.
Hence if I1, I2 ⊆ K are open, then f−1(I1), g−1(I2) ∈ A as f, g ∈ M(X,K)
and thus

h−1(I1 × I2) = f−1(I1) ∩ g−1(I2) ∈ A.

Therefore Proposition 2.1.10 implies that h is measurable.

Corollary 2.1.17. Let (X,A) be a measurable space and let f, g ∈ M(X,K).
Then

a) cf ∈ M(X,K) for all c ∈ K.

b) f + g ∈ M(X,K).

c) fg ∈ M(X,K).

d) |f | ∈ M(X,K).

e) 1
f ∈ M(X,K) if f(x) ̸= 0 for all x ∈ X.

f) f ∈ M(X,K) where f(z) = f(z).
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Proof. As constant functions are measurable, a) will follow from c).
Let f, g ∈ M(X,K). By Proposition 2.1.16, the function h : X → K2

defined by h(x) = (f(x), g(x)) is measurable. Since the functions h+, h× :
K2 → K defined by h+(x, y) = x + y and h×(x, y) = xy are continuous
functions, Propositions 2.1.14 implies that f + g = h+ ◦ h and fg = h× ◦ h
are measurable. Hence b) and c) follow.

Since the functions a,C : K → R defined by a(z) = |z| and C(z) = z are
continuous, Proposition 2.1.14 implies that |f | = a ◦ f and f = C ◦ f are
measurable. Hence d) and f) follow.

Finally define the function q : K \ {0} → K \ {0} by q(z) = 1
z . Clearly q

is continuous with respect to the metric on K \ {0} induced by | · |. Since
1
f = q ◦ f is well-defined as f(x) ̸= 0 for all x ∈ X, Proposition 2.1.14 implies
that 1

f is measurable. Hence e) follows.

Remark 2.1.18. Using Corollary 2.1.17 we may reduce the study of complex-
valued measurable functions to real-valued measurable functions. Indeed
let (X,A) be a measurable space and let f : X → C. Define Re(f), Im(f) :
X → R by

Re(f)(x) = 1
2
(
f(x) + f(x)

)
and Im(f)(x) = 1

2i
(
f(x) − f(x)

)
for all x ∈ X. Hence f(x) = Re(f)(x) + iIm(f)(x) for all x ∈ X. Note
by by Corollary 2.1.17 that f is measurable if and only if Re(f) and Im(f)
are measurable. The functions Re(f) and Im(f) are called the real and
imaginary parts of f respectively.

Remark 2.1.19. In fact, the theory of measurable functions can be reduced
to non-negative measurable functions. Indeed let (X,A) be a measurable
space and let f : X → R. Define f+, f− : X → [0,∞) by

f+(x) = 1
2(|f(x)| + f(x)) =

{
f(x) if f(x) ≥ 0
0 otherwise

and

f−(x) = 1
2(|f(x)| − f(x)) =

{
−f(x) if f(x) ≤ 0
0 otherwise

for all x ∈ X. Hence |f |(x) = f+(x) + f−(x) and f(x) = f+(x) − f−(x) for
all x ∈ X. Thus, by Corollary 2.1.17, f is measurable if and only if f+ and
f− are measurable. The functions f+ and f− are called the positive and
negative parts of f respectively.

Of course, when dealing with limits of functions, often the collection of
functions diverges at specific points. Consequently, it is useful to extend the
notion of measurable functions to allow infinite values.
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Definition 2.1.20. Let (X,A) be a measurable space. An extended real-
valued function f : X → [−∞,∞] is said to be measurable if

f−1({−∞}), f−1({∞}) ∈ A

and f−1(A) ∈ A for all A ∈ B(R).

Remark 2.1.21. It is not difficult to see that the characterization of mea-
surable real-valued functions from Corollary 2.1.13 extends to extended
real-valued functions. Indeed the second characterization of Corollary 2.1.13
will extend since

f−1({∞}) =
∞⋂

n=1
f−1((n,∞]) and f−1({−∞}) =

( ∞⋃
n=1

f−1((−n,∞])
)c

.

Another reason to use extended real-valued functions is it enables us to
take supremums and infimums of functions without worrying about pointwise
boundedness. Using limit infimums and supremums, we obtain information
on how measurable functions are preserved under limits.

Proposition 2.1.22. Let (X,A) be a measurable space. For each n ∈ N, let
fn : X → [−∞,∞] be a measurable function. Then the functions

sup
n≥1

fn, inf
n≥1

fn, lim sup
n→∞

fn, and lim inf
n→∞

fn

are measurable (where by sup, inf, lim sup, and lim inf of functions, we
mean the functions that are defined pointwise by taking the respective op-
eration applied to the sequence of functions pointwise). Consequently, if
f : X → [−∞,∞] is such that f(x) = limn→∞ fn(x) (that is, fn converge to
f pointwise), then f is measurable.

Proof. For each n ∈ N, let fn : X → [−∞,∞] be a measurable function. To
see that supn≥1 fn is measurable, notice for all a ∈ R that(

sup
n≥1

fn

)−1

((a,∞]) =
∞⋃

n=1
f−1

n ((a,∞]) ∈ A.

Hence supn≥1 fn is measurable by Corollary 2.1.13. Similarly, to see that
infn≥1 fn is measurable, notice for all a ∈ R that(

inf
n≥1

fn

)−1
([a,∞]) =

∞⋂
n=1

f−1
n ([a,∞]) ∈ A.

Hence infn≥1 fn is measurable by Corollary 2.1.13.
Next, for each k ∈ N, let

gk = sup
n≥k

fn and hk = inf
n≥k

fn.
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Since each gk and hk is measurable from above and since

lim sup
n→∞

fn = inf
k≥1

gk and lim inf
n→∞

fn = sup
k≥1

hk,

we obtain that lim supn→∞ fn and lim infn→∞ fn are measurable from above.
Finally, if f : X → [−∞,∞] is such that f(x) = limn→∞ fn(x) then

f = lim supn→∞ fn so f is measurable.

Corollary 2.1.23. Let (X,A) be a measurable space. For each n ∈ N, let
fn : X → C be a measurable function. If f : X → C is such that f(x) =
limn→∞ fn(x) (that is, fn converge to f pointwise), then f is measurable.

Proof. Clearly for each x ∈ X we have f(x) = limn→∞ fn(x) if and only if

Re(f)(x) = lim
n→∞

Re(fn)(x) and Im(f)(x) = lim
n→∞

Im(fn)(x).

Since Re(fn) and Im(fn) are measurable by Remark 2.1.18, we obtain that
Re(f) and Im(f) are measurable by Proposition 2.1.22. Hence f is measurable
by Remark 2.1.18.

Of course, asking for pointwise convergence at every point in X is a lot
to ask. However, we are dealing with measures which determine the size of a
set. Since sets with zero measure have ‘no mass’, it is natural to ask whether
we can have pointwise convergence except on a set of zero measure and still
have measurability? This leads us to the following notion.

Definition 2.1.24. Let (X,A, µ) be a measure space and let P be a property
that at each point in X is either true or false. It is said that P holds µ-almost
everywhere (abbreviated µ-a.e. or simply a.e. if µ is clear) if there exists a
set A ⊆ A such that P (x) is true for all x ∈ A and µ(Ac) = 0.

Remark 2.1.25. For example, given a measure space (X,A, µ), two functions
f, g : X → K are equal almost everywhere if there exists a set A ⊆ A such
that f(x) = g(x) for all x ∈ A and µ(Ac) = 0. Note this is not necessarily
the same as saying

µ({x ∈ X | f(x) ̸= g(x)}) = 0

since we do not know whether this set is measurable. However, if we know f
and g are measurable, then f − g is measurable so the set

{x ∈ X | f(x) ̸= g(x)} = {x ∈ X | (f − g)(x) ̸= 0}

is indeed measurable. Thus f = g almost everywhere is equivalent to
µ({x ∈ X | f(x) ̸= g(x)}) = 0 when f and g are measurable.
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Example 2.1.26. It is elementary to see that χQ = 0 almost everywhere
with respect to the Lebesgue measure. Similarly, if A is any measurable set
with zero µ-measure, then χA = 0 µ-almost everywhere.

It is not difficult to see that measurable functions behave well if properties
only hold almost everywhere.

Proposition 2.1.27. Let (X,AX , µ) be a complete measure space, let (Y,AY )
be a measurable space, and let f, g : X → Y be such that f = g µ-almost
everywhere. If f is measurable, then g is measurable.

Proof. Let f, g : R → Y be such that f is measurable and f = g almost
everywhere. Hence there exists a set A ∈ AX such that f(x) = g(x) for all
x ∈ A and µ(Ac) = 0. Let B ∈ AY be arbitrary. Notice

g−1(B) =
(
A ∩ g−1(B)

)
∪
(
Ac ∩ g−1(B)

)
=
(
A ∩ f−1(B)

)
∪
(
Ac ∩ g−1(B)

)
since f(x) = g(x) for all x ∈ A. Since Ac ∩ g−1(B) ⊆ Ac, since Ac ∈ AX

as A ∈ AX , since µ(Ac) = 0, and since (X,AX , µ) is complete, we obtain
that Ac ∩ g−1(B) ∈ AX by definition. Furthermore, since f is measurable,
f−1(B) ∈ AX . Hence, we obtain that A ∩ f−1(B) ∈ AX . Hence g−1(B) ∈
AX . Therefore, since B ∈ AY was arbitrary, g is measurable.

The following illustrates our first use of how we can correct functions on
measure zero sets.

Corollary 2.1.28. Let (X,AX , µ) be a complete measure space. For each
n ∈ N, let fn : X → K be a measurable function. If f : X → K is such that
f(x) = limn→∞ fn(x) a.e. (that is, fn converge to f pointwise except on a
set of measure zero), then f is measurable.

Proof. Since f(x) = limn→∞ fn(x) for a.e. x ∈ X, there exists a set A ∈ A
such that f(x) = limn→∞ fn(x) for all x ∈ A and µ(Ac) = 0. Consider
the sequence of functions (fnχA)n≥1. Clearly fnχA is measurable for all
n ∈ N by Corollary 2.1.17 since fn is measurable and χA is measurable as
A ∈ A. Therefore, since f(x)χA(x) = limn→∞ fn(x)χA(x) for all x ∈ X,
fχA is measurable by Corollary 2.1.23. Therefore, since µ(Ac) = 0 and
f(x)χA(x) = f(x) for all x ∈ A, we see that f = fχA almost everywhere.
Hence Proposition 2.1.27 implies that f is measurable.

Remark 2.1.29. Note the trick used in Corollary 2.1.28 of multiplying by a
characteristic function of a set with measure zero complement is incredibly
useful in proving properties hold almost everywhere or when using a condition
that only holds almost everywhere. We will see several instances of this
technique in subsequent sections and chapters.
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2.2 Simple Functions
Since we desire to study measurable functions beyond the properties de-
veloped above and measurable functions may appear on the surface to be
difficult to describe, it is useful to have a ‘simple’ collection of measurable
functions that are easy to understand yet well-approximate all measurable
functions. We find such a collection in the following definition.

Definition 2.2.1. Let (X,A) be a measurable space. A function φ : X →
[0,∞) is said to be simple if there exists an n ∈ N, non-empty, pairwise
disjoint sets {Ak}n

k=1 ⊆ A such that X =
⋃n

k=1Ak, and {ak}n
k=1 ⊆ [0,∞)

distinct (i.e. ai ̸= aj whenever i ̸= j) such that

φ =
n∑

k=1
akχAk

.

Note clearly all simple functions are measurable by Example 2.1.4 and
Corollary 2.1.17. In particular, students have already encountered specific
types of simple functions in previous courses.

Example 2.2.2. Recall that φ : [a, b] → [0,∞) is said to be a step function
if φ =

∑n
k=1 akχAk

where {Ak}∞
k=1 are disjoint intervals whose union is [a, b].

Remark 2.2.3. Suppose (X,A) is a measurable space and φ : X → [0,∞)
is measurable with finite range. We claim that φ is a simple function. Indeed
write φ(X) = {b1, . . . , bm}. Since φ is measurable, Ak = φ−1({bk}) ∈ A
for all k ∈ {1, . . . ,m}. It is then easy to see that φ =

∑m
k=1 bkχAk

and
{Ak}n

k=1 ⊆ A pairwise disjoint non-empty with X =
⋃n

k=1Ak.
Since every simple function has finite range, we see that the set of simple

functions is precisely the set of measurable functions with finite non-negative
range. In particular, the simple functions are closed under addition and
non-negative scalar multiplication.

Consequently, if g : X → [0,∞] is such that g =
∑n

k=1 akχAk
where

{Ak}n
k=1 ⊆ A and {ak}n

k=1 ⊆ [0,∞), then g has finite range and thus is a
simple function. Note the description of g differs from that in Definition
2.2.1 since conditions are lacking on {Ak}n

k=1 and on {ak}n
k=1. The represen-

tation of a simple function given in Definition 2.2.1 is called the canonical
representation of a simple function.

The reason for analyzing simple functions and why simple functions are
so essential to this course is the following result. This result will most often
be used to conclude a result for all measurable functions provided one can
verify the result for simple function and take limits.

Theorem 2.2.4. Let (X,A) be a measurable space and let f : X → [0,∞].
Then f is measurable if and only if there exists a sequence (φn)n≥1 of simple
functions on X such that φn ≤ φn+1 for all n ∈ N and (φn)n≥1 converges to
f pointwise (that is, limn→∞ φn(x) = f(x) for all x ∈ X).
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Proof. Assume there exists a sequence (φn)n≥1 of simple functions such that
φn ≤ φn+1 for all n ∈ N and (φn)n≥1 converges to f pointwise. Since each
simple function is measurable, we obtain that f is measurable by Proposition
2.1.22.

Conversely assume f is measurable. We will proceed by recursively
approximating f by dividing up the range of f into interval regions of length
1

2n and approximating f from below. This is accomplished as follows.
For each n ∈ N and for each k ∈ {1, . . . , n2n}, consider the sets

An,k = f−1
([
k − 1

2n
,
k

2n

))
and Bn =

(
n2n⋃
k=1

An,k

)c

.

Clearly Bn and each An,k is Lebesgue measurable since f is a measurable
function. Moreover, clearly {An,k}n2n

k=1 are pairwise disjoint. Furthermore,
notice that x ∈ Bn if and only if x /∈ An,k for all k ∈ {1, . . . , n2n} if and only
if f(x) /∈

[
k−1
2n , k

2n

)
for all k ∈ {1, . . . , n2n} if and only if f(x) ≥ n.

For each n ∈ N let φn : X → [0,∞) be defined by

φn = nχBn +
n2n∑
k=1

k − 1
2n

χAn,k
.

Clearly φn is a simple function. Moreover φn ≤ φn+1 for all n ∈ N due to
the refining nature of the construction (i.e. An,k is refined into two An+1,k′

each of which has the property that k′−1
2n+1 ≥ k−1

2n and part of Bn becomes
2n+1 An+1,k′ each of which has the property that k′−1

2n+1 ≥ n).
To see that (φn)n≥1 converges to f pointwise, fix x ∈ R. If f(x) < ∞

then for all n ∈ N such that f(x) < n we see that |f(x) − φn(x)| ≤ 1
2n

since f(x) < n implies x ∈ An,k for some k. Hence limn→∞ φn(x) = f(x)
when f(x) < ∞. Otherwise, if f(x) = ∞ then φn(x) = n for all n ∈ N so
limn→∞ φn(x) = ∞ = f(x). Hence the result follows.

Theorem 2.2.4 will be essential to us since having every non-negative
Lebesgue measurable function as a pointwise increasing limit of simple
functions is quite powerful. However, as pointwise convergence can be weak,
it is often useful to have a strong convergence.

2.3 Egoroff’s Theorem

In this and the subsequent two sections, we will look at the three Littlewood
principles which give us more control over the behaviour of measurable sets
and functions. The following Littlewood principle (which is actually the
third of Littlewood’s principles) enables us to deduce that outside of a set of
small measure, pointwise convergence implies uniform convergence.

©For use through and only available at pskoufra.info.yorku.ca.



68 CHAPTER 2. MEASURABLE FUNCTIONS

Theorem 2.3.1 (Egoroff’s Theorem). Let (X,A, µ) be a finite measure
space. For each n ∈ N let fn : X → C be a measurable function. If f : X → C
is a measurable function such that f(x) = limn→∞ fn(x) for all x ∈ X, then
for all δ > 0 there exists an B ∈ A such that µ(B) < δ and f = limn→∞ fn

uniformly on Bc.

Proof. Fix δ > 0. For each m, k ∈ N let

Bm,k =
∞⋃

n=m

{
x ∈ X

∣∣∣∣ |fn(x) − f(x)| ≥ 1
k

}
.

Therefore, since f and (fn)n≥1 are measurable functions, we see that Bm,k ∈
A for all m, k ∈ N. Notice that Bm+1,k ⊆ Bm,k for all m ∈ N. Moreover,
since f(x) = limn→∞ fn(x) for all x ∈ X, we see that

∞⋂
m=1

Bm,k = ∅

for all k ∈ N. Therefore, since µ(∅) = 0 and µ(X) < ∞, the Monotone
Convergence Theorem (Theorem 1.1.23) implies that

lim
m→∞

µ(Bm,k) = 0

for all k ∈ N. Hence for each k ∈ N, there exists an nk ∈ N such that
µ(Bnk,k) < δ

2k .
Let B =

⋃∞
k=1Bnk,k. Clearly B is measurable being the countable union

of measurable sets. Furthermore, clearly

µ(B) ≤
∞∑

k=1
µ(Bnk,k) ≤

∞∑
k=1

δ

2k
= δ.

Hence, to complete the proof, it suffices to show that (fn)n≥1 converges
uniformly to f on Bc.

To see that (fn)n≥1 converges uniformly to f on Bc, let ϵ > 0 be arbitrary.
Choose k ∈ N be such that 1

k < ϵ. Notice that if x ∈ Bc then x /∈ B so
x /∈ Bnk,k. Hence for all x ∈ Bc and for all n ≥ nk we have that

|fn(x) − f(x)| < 1
k
< ϵ.

Therefore, since ϵ > 0 was arbitrary, we obtain that (fn)n≥1 converges
uniformly to f on Bc as desired.

Remark 2.3.2. If in the statement of Egoroff’s Theorem (Theorem 2.3.1)
one only knew that f(x) = limn→∞ fn(x) almost everywhere, then the
conclusions still hold. Indeed, assume δ > 0 and f(x) = limn→∞ fn(x)
almost everywhere. Then there exists an A ∈ A such that µc(A) = 0 and
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f(x) = limn→∞ fn(x) for all x ∈ A. Hence the sequence (χAfn)n≥1 is a
sequence of measurable functions that converges pointwise to the measurable
function χAf . By Egoroff’s Theorem (Theorem 2.3.1) as stated, there exists
a B ∈ A such that µ(B) < δ and fχA = limn→∞ fnχA uniformly on Bc.
Hence, if C = B ∪Ac, then C ∈ A, µ(C) < δ, and f = limn→∞ fn uniformly
on Cc as desired.

Example 2.3.3. The conclusions of Egoroff’s Theorem (Theorem 2.3.1)
fail if the assumption that µ is finite is removed (or replaced with σ-finite).
Indeed consider (R,M(R), λ) and for each n ∈ N let fn = χ[n,∞). Clearly
(fn)n≥1 converges pointwise to the constant function 0. However there does
not exists a set B ∈ M(R) such that (fn)n≥1 converges uniformly to 0 on
Bc and µ(B) is finite. To see this, assume (fn)n≥1 converged uniformly to 0
on Bc for some B ∈ M(R). Thus if ϵ = 1 there exists an N ∈ N such that

|fn(x)| < ϵ = 1

for all n ≥ N and for all x ∈ Bc. Due to the description of fn, the above
implies Bc ⊆ (−∞, N) as fn(x) = 1 when x ≥ n. Therefore [N,∞) ⊆ B so
µ(B) = ∞.

2.4 Littlewood’s First Principle

Our next goal in this course is to proof Lusin’s Theorem (Theorem 2.5.1),
which is also know as Littlewood’s second principle. One proof of Lusin’s
Theorem can be constructed using Littlewood’s first principle. However, we
will present a different proof of Lusin’s Theorem that is shorter and bypasses
the need for Littlewood’s first principle. Thus, for completeness and to
introduce concepts required for the proof of Lusin’s Theorem, we will prove
Littlewood’s first principle first. Consequently, we begin with the following
notions.

Definition 2.4.1. Let (X , d) be a metric space and let A be a σ-algebra on
X containing the Borel sets. A measure µ : A → [0,∞] is said to be:

• outer regular if µ(A) = inf{µ(U) | A ⊆ U,U open} for all A ∈ A.

• inner regular µ(A) = sup{µ(K) | K ⊆ A,K compact} for all A ∈ A.

A measure that both inner and outer regular is said to be regular .

Example 2.4.2. Note the Lebesgue measure is regular by Proposition 1.4.12.

For Littlewood’s first principle, outer regularity is key.
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Theorem 2.4.3 (Littlewood’s First Principle). Let A ⊆ P(R) be a σ-
algebra containing B(R) and let µ : A → [0,∞] be an outer regular measure.
If A ∈ A is such that µ(A) < ∞, then for all ϵ > 0 there exists a finite
number of disjoint open intervals I1, . . . , In such that if U =

⋃n
k=1 Ik then

µ((A \ U) ∪ (U \A)) < ϵ.

Proof. Let ϵ > 0. Since µ is outer regular, there exists an open set V such
that A ⊆ V and

µ(V ) < µ(A) + ϵ

2 .

Since µ(A) < ∞, the above implies µ(V ) < ∞ and

µ(V \A) < ϵ

2 .

Since every open subset of R is a countable union of disjoint open
intervals (see Proposition C.2.11), we can write V =

⋃∞
k=1 Ik where {Ik}∞

k=1
are disjoint open intervals. By the Monotone Convergence Theorem for
measures (Theorem 1.1.23), we know that

µ(V ) = lim
n→∞

µ

(
n⋃

k=1
Ik

)
.

Hence there exists an N ∈ N such that

µ(V ) < µ

(
N⋃

k=1
Ik

)
+ ϵ

2 .

Therefore, if U =
⋃N

k=1 Ik, we see that U ⊆ V so µ(U) < ∞, and thus the
above equation gives us that µ(V \ U) < ϵ

2 . Hence

µ(A \ U) ≤ µ(V \ U) < ϵ

2
and

µ(U \A) ≤ µ(V \A) < ϵ

2 .

Hence µ((A \ U) ∪ (U \A)) < ϵ as desired.

2.5 Lusin’s Theorem
With the proof of Littlewood’s first principle complete, we turn to the last
of the remaining Littlewood’s principles in the hopes to further understand
measurable functions. This principle roughly states that ‘every Lebesgue
measurable function is continuous except on a set of small measure’ which is
remarkable considering the behaviours and examples of measurable functions
we have studied! Formally, we have the following.
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Theorem 2.5.1 (Lusin’s Theorem). Let a, b ∈ R with a < b, let µ be a
finite, regular measure on a σ-algebra containing the Borel subsets of [a, b]
(e.g. the Lebesgue measure), and let f : [a, b] → C be µ-measurable. For all
ϵ > 0 there exists a closed subset F ⊆ [a, b] such that µ([a, b] \ F ) < ϵ and
f |F is continuous.

Consequently, for all ϵ > 0 there exists a exists a continuous function
g : [a, b] → C such that

sup({|g(x)| | x ∈ [a, b]}) ≤ sup({|f(x)| | x ∈ [a, b]})

and
µ({x ∈ [a, b] | f(x) ̸= g(x)}) < ϵ.

To see why the first part of Lusin’s Theorem implies the second, we note
the following that will also be of use in the proof of the first part of Lusin’s
Theorem.

Theorem 2.5.2 (Tietze’s Extension Theorem on R). Let F ⊆ R be
closed and let h : F → R be continuous. There exists a continuous function
g : R → R such that g(x) = h(x) for all x ∈ F and

sup({|g(x)| | x ∈ R}) ≤ sup({|h(x)| | x ∈ F}).

Proof. Since F c is open, F c is a countable union of disjoint non-empty open
intervals. Thus F c =

⋃∞
n=1(an, bn) for some an, bn ∈ R with an < bn. Define

g : R → R by

g(x) =


h(x) if x ∈ F

h(an) if x ∈ (an, bn) and bn = ∞
h(bn) if x ∈ (an, bn) and an = −∞
f(bn)−f(an)

bn−an
(x− an) + h(an) if x ∈ (an, bn), an ̸= −∞, and bn ̸= ∞

for all x ∈ R. Thus g agrees with h on F and is linear on each (an, bn). Thus
it is not difficult to see that g is continuous and

sup({|g(x)| | x ∈ R}) ≤ sup({|h(x)| | x ∈ F}).

To proceed with the proof of Lusin’s Theorem (Theorem 2.5.1), we begin
with the simplest case.

Lemma 2.5.3. Lusin’s Theorem (Theorem 2.5.1) holds under the additional
assumption that the function f is simple.

Proof. Let

f =
N∑

k=1
akχAk
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be the canonical representations of the simple function f . Thus {Ak}N
k=1 are

pairwise disjoint measurable sets with union [a, b] and ak ≥ 0 for all k.
Fix ϵ > 0. Since µ is inner regular, for every k there exists a compact

subset Fk ⊆ Ak such that

µ(Ak) < µ(Fk) + ϵ

N
.

Clearly {Fk}N
k=1 are pairwise disjoint as {Ak}N

k=1 are pairwise disjoint .
Let F =

⋃N
k=1 Fk. Then F is compact (and thus closed) being the finite

union of compact (and thus closed) sets. Moreover, notice since µ is finite,
{Ak}N

k=1 are pairwise disjoint, and {Fk}N
k=1 are pairwise disjoint that

µ([a, b] \ F ) = µ([a, b]) − µ(F ) =
N∑

k=1
µ(Ak) − µ(Fk) < ϵ.

It remains to show that f |F is continuous. To see this, assume (xn)n≥1 is
a sequence of elements in F that converge to a point x ∈ F . Since F is the
union of the pairwise disjoint closed sets {Fk}N

k=1, it must be the case that
there exists an k0 such that x ∈ Fk0 and xn ∈ Fk0 for all n ≥ M (for otherwise
there would exist a sequence in some Fk where k ̸= k0 that converges to
x, which would imply x ∈ Fk as Fk is closed thereby contradicting the
disjointness of Fk and Fk0). Therefore, since xn ∈ Fk0 for all n ≥ M ,
f(xn) = ak0 = f(x) for all n ≥ M . Hence f |F is continuous as desired.

The Tietz Extension Theorem (Theorem 2.5.2) then implies the second
conclusion of Lusin’s Theorem holds for simple functions.

Using our knowledge of simple functions, we are in a position to prove
Lusin’s Theorem (Theorem 2.5.1).

Proof of Lusin’s Theorem (Theorem 2.5.1). Let f : [a, b] → C be an arbi-
trary measurable function and fix ϵ > 0. By applying Theorem 2.2.4 to the
positive and negative parts of the real and imaginary parts of f , we can
construct a sequence (fn)n≥1 of functions that are linear combinations of
simple functions that converge to f pointwise. By applying Lemma 2.5.3
to each of the four simple functions in the linear combination of fn and
by taking the intersection of four closed sets (each whose measure in [a, b]
is at least (b − a) − ϵ

2n+3 ), there exists a closed subset Fn ⊆ [a, b] and a
continuous function gn : [a, b] → C such that fn(x) = gn(x) for all x ∈ Fn

and µ([a, b] \ Fn) < ϵ
2n+1 .

Since (fn)n≥1 converges pointwise to f , Egoroff’s Theorem (Theorem
2.3.1) implies there exists a measurable set B such that µ(B) < ϵ

4 and (fn)n≥1
converges uniformly to f on [a, b] \B. Since µ is outer regular, there exists
an open set U (by this we really mean an open subset U ⊆ [a, b], but by the
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relative topology we can view U as an open subset of R) such that B ⊆ U
and

µ(U) < µ(B) + ϵ

4 <
ϵ

2
Hence, if F0 = [a, b] \ U ⊆ [a, b] \ B, then F0 is a closed subset such that
(fn)n≥1 converges uniformly to f on F0 and

µ([a, b] \ F0) ≤ µ(U) < ϵ

2 .

Let F =
⋂∞

k=0 Fk. Then clearly F is a closed subset of [a, b] such that

µ([a, b] \ F ) = µ

( ∞⋃
k=0

([a, b] \ Fk)
)

≤
∞∑

k=0
µ([a, b] \ Fk) ≤

∞∑
k=0

ϵ

2k+1 = ϵ.

Since F ⊆ F0, we see that (fn)n≥1 converge uniformly to f on F . Therefore,
since F ⊆ Fn for all n and thus fn(x) = gn(x) for all x ∈ Fn, we see that the
continuous functions (gn|F )n≥1 converge uniformly to f |F on F . Hence f |F
is continuous as desired.

Although Lusin’s Theorem (Theorem 2.5.1) appears to rely on the finite-
ness of the measure used, this is not necessarily required as the following
result demonstrates.

Theorem 2.5.4 (Lusin’s Theorem, Lebesgue measure on R). Let
f : R → C be Lebesgue measurable. For all ϵ > 0 there exists a closed subset
F ⊆ R such that λ(F c) < ϵ and f |F is continuous.

Consequently, for all ϵ > 0 there exists a exists a continuous function
g : R → C such that

sup({|g(x)| | x ∈ R}) ≤ sup({|f(x)| | x ∈ R})

and
λ({x ∈ R | f(x) ̸= g(x)}) < ϵ.

Proof. For each n ∈ Z, let An = [n, n + 1]. Then
⋃

n∈ZAn = R. We will
apply Lusin’s Theorem (Theorem 2.5.1) to each An and stitch together the
results.

Let ϵ > 0. Since Lusin’s Theorem (Theorem 2.5.1) holds finite closed
intervals, for each n ∈ Z there exists a closed subset Fn ⊆ [n, n + 1] such
that f |Fn is continuous and

λ(An \ Fn) < ϵ

23+|n| .

It would be nice to say that f is continuous on
⋃

n∈Z Fn. However, for
each n ∈ Z, f |Fn and fFn−1 might have different limits at x. To solve this,
we introduce some distance between Fn and Fn−1.
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For each n ∈ Z, let

In =
[
n+ ϵ

24+|n| , n+ 1 − ϵ

24+|n|

]
and F ′

n = Fn ∩ In.

Then F ′
n is a closed subset of Fn such that f |F ′

n
is continuous and

λ(An \ F ′
n) = λ((An \ Fn) ∪ (An \ In)) < ϵ

23+|n| + ϵ

23+|n| = ϵ

22+|n| .

Let F =
⋃

n∈Z F
′
n. Although a countable union of closed sets need not be

closed, F is a closed set. To see this, let (xn)n≥1 be a sequence in F that
converges to some x ∈ R. Choose M ∈ N such that x ∈ (M − 1,M + 1).
Thus, since (xn)n≥1 converges to x, there exists an N ∈ N such that xn ∈
F ∩ (M−1,M +1) ⊆ F ′

M−1 ∪F ′
M for all n ≥ N . Therefore, since F ′

M−1 ∪F ′
M

is closed, we must have that x ∈ F ′
M−1 ∪ F ′

M ⊆ F . Moreover, since the
pairwise disjoint closed intervals subsets {In}n∈Z have positive separation
from one another, since F ′

n ⊆ In, and since f |F ′
n

is continuous for all n, it
follows that f |F is continuous (i.e. any sequence that is in F must eventually
completely lie in In0 for some n0 and thus has distance at least ϵ

24+|n0| from
any other In). Finally, since

λ(F c) = λ

⋃
n∈Z

An \ F ′
n

 ≤
∑
n∈Z

λ(An \ F ′
n) =

∑
n∈Z

ϵ

22+|n| < ϵ,

the result follows.

To conclude this section, we note Lusin’s Theorem (Theorem 2.5.1)
extends to a far more general context (including the n-dimensional Lebesgue
measure) as described below. Note the following is not as nice as Theorem
2.5.4 as R has a nice ordering to it whereas we will not have a nice ordering
in general.

Theorem 2.5.5 (Lusin’s Theorem, Locally Compact version). Let
(X , T ) be a locally compact Hausdorff space, let µ be a regular measure on the
Borel subsets of (X , T ) such that µ(K) < ∞ for all compact subsets K ⊆ X ,
and let f : X → C be a measurable function that vanishes outside a Borel set
of finite µ-measure. For all ϵ > 0 there exists a compact set K ⊆ X and a
continuous function g : X → C with compact support such that µ(Kc) < ϵ,
g(x) = f(x) for all x ∈ K, and

sup({|g(x)| | x ∈ X }) ≤ sup({|f(x)| | x ∈ X }).

To prove the locally compact version of Lusin’s Theorem (Theorem
2.5.5), first one verifies the theorem for simple functions (or, more simply,
characteristic functions and then uses linearity) by using the regularity of
the measure and the fact that if (X , T ) is a locally compact Hausdorff space,
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K ⊆ X is compact, and U ∈ T is such that K ⊆ U , then there exists a
continuous function f with compact support such that f(x) = 1 for all x ∈ K,
f(x) = 0 for all x ∈ U c, and 0 ≤ f(x) ≤ 1 for all x ∈ X. Indeed if f = χA

where A is a Borel set with finite µ-measure, then by the regularity properties
there exists a U ∈ T and a compact K ⊆ X such that A ⊆ U , K ⊆ U ,
µ(U) < ∞, and µ(U \ K) < ϵ. Applying the locally compact Hausdorff
property described above then gives the desired approximation.

To extend Theorem 2.5.5 from simple functions to arbitrary functions,
one uses Theorem 2.2.4 together with Egoroff’s Theorem 2.3.1, the finite
intersection property for compact sets, and the fact that the uniform limit of
continuous functions is continuous to prove that there exists a compact subset
K and a continuous function g on K such that µ(Kc) < ϵ and f(x) = g(x)
for all x ∈ K. One then uses a version of the Tietze Extension Theorem to
extend g to a continuous function on X with compact support.
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Chapter 3

Integration over Measure
Spaces

Lusin’s Theorem showed us that every measurable function on a closed
interval in R is ‘almost continuous’. Consequently, since continuous functions
are Riemann integrable, it is natural to ask “Can we integrate Lebesgue
measurable functions?” A review of the Riemann integral can be found in
Appendix A.

It is elementary to see that we cannot integrate every Lebesgue measurable
function. Indeed χQ is Lebesgue measurable since Q is countable and thus
Lebesgue measurable, but χQ is not Riemann integrable (see Example A.2.1).
This seems like a fundamental flaw in the Riemann integrable since Q has
zero Lebesgue measure (i.e. zero length) so we would believe “the area under
the curve” should be defined to be 0.

Another flaw of the Riemann integral occurs with respect to limits; the
concept at the heart analysis. For one example define fn : [0, 1] → R by

fn(x) =


2n2x if 0 ≤ x ≤ 1

2n

2n− 2n2x if 1
2n ≤ x ≤ 1

n

0 if 1
n ≤ x ≤ 1

.

It is elementary to verify that (fn)n≥1 converges to 0 pointwise yet
∫ 1

0 fn(x) dx =
1
2 for all n thereby showing that∫ 1

0
f(x) dx = 0 ̸= 1

2 = lim
n→∞

∫ 1

0
fn(x) dx.

For another example occurs by considering χQ. Indeed, since Q is countable,
we can enumerate Q ∩ [0, 1] as Q ∩ [0, 1] = {rn | n ∈ N}. Consequently, if
we define fn : [0, 1] → R by

fn(x) =
{

1 if x = rm for some m ≤ n

0 otherwise
,
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then fn has a finite number of discontinuities and thus is Riemann integrable,
yet converges pointwise to χQ which is not even Riemann integrable!

In this chapter, we will define a notion of integral with respect to any
measure. In particular, if we choose the Lebesgue measure, we obtain a
generalization of the Riemann integral that is much less rigid and much
easier to deal with mathematically. However, unlike the Riemann integral,
our integral will need to be developed in stages.

3.1 The Integral of Non-Negative Functions

When defining Riemann integration, one defines the integral via upper and
lower Riemann sums of partitions for any function and later determines which
functions were integrable. Our approach for the integral over a measure space
will be different. We want all measurable functions to be integrable, and we
will build-up our integral systematically. We will do this by first developing
a notion of an integral for all non-negative measurable functions. This will
enable us to construct an integral for other measurable functions using a
linear combination of integrals for non-negative measurable functions.

To begin, if A is a measurable set, it would be natural to expect to be
able to integrate the characteristic function of A, whose integral should just
be µ(A). Of course, this enables us to integrate χQ and obtain zero thereby
avoiding one of the pitfalls of the Riemann integral. Furthermore, it will
not be difficult to see how we should define the integral for the simplest of
functions if we want our integral to be linear.

Definition 3.1.1. Let (X,A, µ) be a measure space and let φ : X → [0,∞)
be a simple function with canonical representation φ =

∑n
k=1 akχAk

. For
every A ∈ A, we define the integral of φ over A against µ to be∫

A
φdµ =

n∑
k=1

akµ(A ∩Ak) ∈ [0,∞]

where

a× ∞ =
{

0 if a = 0
∞ otherwise

.

In fact, we have see the quantity in Definition 3.1.1 before.

Remark 3.1.2. Let (X,A, µ) be a measure space and let φ : X → [0,∞)
be a simple function. If one defines ν : A → [0,∞] by

ν(A) =
∫

A
φdµ,

then ν is a measure as shown in Example 1.1.15.
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Example 3.1.3. Let (X,A, µ) be a measure space and let A ∈ A. For
B ∈ A, consider the simple function φ = χB. If B = X, then the canonical
representation of φ is φ = 1χB = 1χX so∫

A
φdµ = 1µ(A) = µ(A ∩B)

If B = ∅, then the canonical representation of φ is φ = 0χBc = 0χX so∫
A
φdµ = 0µ(X) = 0 = µ(A ∩B).

Finally, if B ̸= X and B ̸= ∅, then the canonical representation of φ is
φ = 1χB + 0χBc so∫

A
χB dµ = 1µ(A ∩B) + 0µ(A ∩Bc) = µ(A ∩B).

Note all of these cases produces the expected result.

Note that Definition 3.1.1 is a bit cumbersome to use in Example 3.1.3
since we need to know the canonical representation of a simple function. This
causes some immediate issues when we attempt to verify that the Lebesgue
integral of simple functions has properties we would expect of an integral.
For example, if φ and ψ are simple functions, we know that φ+ ψ will be a
simple function by Remark 2.2.3 but the canonical form of φ+ψ need not be
the sum of the canonical forms. Thus our goal is to show that the formula in
Definition 3.1.1 does not depend on the representation of the simple function
and Lebesgue integral of simple functions has the desired properties. We
begin as follows.

Remark 3.1.4. Let (X,A, µ) be a measure space and let g : X → [0,∞)
be such that g =

∑n
k=1 akχAk

where {Ak}n
k=1 ⊆ A are pairwise disjoint

possibly empty sets with union X, and {ak}n
k=1 ⊆ [0,∞). By Remark 2.2.3

we know that g is a simple function. In particular, Remark 2.2.3 shows
that if g(X) = {b1, . . . , bm} and Bj = g−1({bj}) then g =

∑m
j=1 bjχBj is the

canonical representation of g. Thus, if for each j ∈ {1, . . . ,m} we define

Kj = {k ∈ {1, . . . , n} | ak = bj}

then
⋃m

j=1Kj = {k ∈ {1, . . . , n} | Ak ̸= ∅} and

Bj =
⋃

k∈Kj

Ak.
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Hence if A ∈ A, then

n∑
k=1

akµ(Ak ∩A) =
∑

k∈{1,...,n | Ak ̸=∅}
akµ(Ak ∩A)

=
m∑

j=1

∑
k∈Kj

akµ(Ak ∩A)

=
m∑

j=1

∑
k∈Kj

bjµ(Ak ∩A)

=
m∑

j=1
bjµ(Bj ∩A)

=
∫

A
g dµ.

Hence in Definition 3.1.1 it is not necessary for the {ak}n
k=1 ⊆ [0,∞) to be

distinct nor for the Ak to be non-empty.

With Remark 3.1.4, we can verify the integral of simple functions has
the desired properties of an integral.

Theorem 3.1.5. Let (X,A, µ) be a measure space, let A ∈ A, and let
φ,ψ : X → [0,∞) be simple functions. Then:

a) If c ≥ 0, then cφ is a simple function with
∫

A cφ dµ = c
∫

A φdµ.

b) φ+ ψ is a simple function with
∫

A φ+ ψ dµ =
∫

A φdµ+
∫

A ψ dµ.

c) If B ∈ A and B ⊆ A, then
∫

B φdµ ≤
∫

A φdµ.

d) φχA is a simple function with
∫

X χAφdµ =
∫

A φdµ.

e) If φχA ≤ ψχA, then
∫

A φdµ ≤
∫

A ψ dµ.

Proof. Let

φ =
n∑

k=1
akχAk

and ψ =
m∑

k=1
bkχBk

be the canonical representations of φ and ψ respectively. Thus {Ak}n
k=1 are

pairwise disjoint sets with union X and {Bk}m
k=1 are pairwise disjoint sets

with union X.
To see that a) is true, notice the result is trivial if c = 0. Otherwise, if

c > 0 then

cφ =
n∑

k=1
cakχAk
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so cφ is a simple function and the above is the canonical representation of
cφ. Hence, by definition,∫

A
cφ dµ =

n∑
k=1

cakµ(A ∩Ak) = c

(
n∑

k=1
akµ(A ∩Ak)

)
= c

∫
A
φdµ.

To see that b) is true, for each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, let
Ci,j = Ai ∩Bj . Clearly

{Ci,j | i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}

is a collection of pairwise disjoint measurable sets with union X such that⋃n
i=1Ci,j = Bj for all j ∈ {1, . . . ,m},

⋃m
j=1Ci,j = Ai for all i ∈ {1, . . . , n},

and
φ+ ψ =

n∑
i=1

m∑
j=1

(ai + bj)χCi,j .

Hence by Remark 3.1.4,∫
A
φ+ ψ dµ =

n∑
i=1

m∑
j=1

(ai + bj)µ(Ci,j ∩A)

=
n∑

i=1
ai

m∑
j=1

µ(Ci,j ∩A) +
m∑

j=1
bj

n∑
i=1

µ(Ci,j ∩A)

=
n∑

i=1
aiµ

 m⋃
j=1

Ci,j

 ∩A

+
m∑

j=1
bjµ

((
n⋃

i=1
Ci,j

)
∩A

)

=
n∑

i=1
aiµ(Ai ∩A) +

m∑
j=1

bjµ(Bj ∩A)

=
∫

A
φdµ+

∫
A
ψ dµ.

Hence b) is true.
Next note c) follows from the monotonicity of measures since A 7→

∫
A φdµ

is a measure by Remark 3.1.2.
To see that d) is true, we notice that

χAφ =
n∑

k=1
akχAk

χA =
n∑

k=1
akχAk∩A

(as χAk
(x)χA(x) = 1 if and only if x ∈ Ak and x ∈ A if and only if

χAk∩A(x) = 1). Hence d) easily follows via a) and b).
To see that e) is true, note that ψχA − φχA is a simple function by

Remark 2.2.3. Hence, by part b),∫
X
ψχA dµ =

∫
X
φχA + (ψχA − φχA) dµ =

∫
X
φχA dµ+

∫
X
ψχA − φχA dµ.

Therefore, since
∫

X ψχA − φχA dµ ≥ 0, the result follows by d).
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Using Theorem 3.1.5, we can conclude the representation of a simple
function does not effect the integral.

Corollary 3.1.6. Suppose (X,A, µ) is a measure space and φ : X → [0,∞)
is such that φ =

∑n
k=1 akχAk

where {Ak}n
k=1 ⊆ A and {ak}n

k=1 ⊆ [0,∞)
(that is, {Ak}n

k=1 are not necessarily disjoint with union X and {ak}n
k=1 need

not be distinct). Then for all A ∈ A,∫
A
φdµ =

n∑
k=1

akµ(Ak ∩A).

Our next goal is to extend the integral of simple functions to non-negative
measurable functions. To do so, we must use some form of approximation.
Although Riemann integral was obtained by approximating the area under the
curve from above and below, we will just use Theorem 2.2.4 and approximate
from below.

Definition 3.1.7. Let (X,A, µ) be a measure space, let A ∈ A, and let
f : X → [0,∞] be measurable. The integral of f over A against µ is defined
to be ∫

A
f dµ = sup

{∫
A
φdµ

∣∣∣∣ φ : X → [0,∞) simple, φ ≤ f

}
.

In the case (X,A, µ) = (R,M(R), λ), the above integral is called the Lebesgue
integral of f over A.

Remark 3.1.8. One incredibly subtlety that we need to be careful of is
that every simple function is a non-negative measurable function and thus
we have two definitions for the integral of a simple function: Definition 3.1.1
and Definition 3.1.7. We better make sure these definitions agree.

Let (X,A, µ) be a measure space, let A ∈ A and let ψ : X → [0,∞) be
a simple function. Let α =

∫
A ψ dµ when we evaluate the integral viewing

ψ as a simple function and let β =
∫

A ψ dµ when we evaluate the integral
viewing ψ as a non-negative measurable function. By Definition 3.1.7, we
see using φ = ψ that α ≤ β. However, if φ : X → [0,∞) is a simple function
such that φ ≤ ψ, we obtain by part e) of Theorem 3.1.5 that∫

A
φdλ ≤ α.

Hence taking the supremum in Definition 3.1.7 yields β ≤ α so α = β. Thus
the two definitions for the integral of a simple function are equal.

Example 3.1.9. Let X be a non-empty set, let x ∈ X, and let δx denote
the point-mass measure at x. Then it is easy to see via definitions that∫

X
f dδx = f(x)

for all f : X → [0,∞].
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Example 3.1.10. Let µ be the counting measure on N. If f : N → [0,∞],
then it is not difficult to see by the definition of the integral that∫

N
f dµ =

∞∑
n=1

f(n).

Hence integrals are truly generalizations of sums! To see the above formula,
notice for all N ∈ N that φN =

∑N
k=1 f(k)χ{k} is a characteristic function

such that χN ≤ f . Hence, for all N ∈ N,

∫
N
f dµ ≥

∫
N
φN dµ =

N∑
k=1

f(k)µ({k}) =
N∑

k=1
f(k).

Therefore
∫
N f dµ ≥

∑∞
n=1 f(n). Hence the inequality holds if the series

diverges. Otherwise, assume the series converges. If φ is a simple function
such that φ ≤ f , then, since φ has finite range and the series converges,
there exists an N ∈ N such that φ(k) = 0 for all k ≥ N . From this it is
elementary to see that φ ≤ φN and hence∫

N
f dµ = sup

({∫
N
φN dµ

∣∣∣∣N ∈ N
})

=
∞∑

k=1
f(k)

as desired.

Using Theorem 3.1.5, several properties of integrating simple functions
transfer to integrating non-negative measurable functions.

Theorem 3.1.11. Let (X,A, µ) be a measure space, let A ∈ A, and let
f, g : X → [0,∞] be measurable functions. Then:

a) If c ≥ 0, then
∫

A cf dµ = c
∫

A f dµ.

b) If B ∈ A and B ⊆ A, then
∫

B f dµ ≤
∫

A f dµ.

c)
∫

X χAf dµ =
∫

A f dµ.

d) If fχA ≤ gχA, then
∫

A f dµ ≤
∫

A g dµ.

e)
∫

A f dµ = 0 if and only if µ({x ∈ X | f(x) > 0} ∩A) = 0.

f) If µ(A) = 0, then
∫

A f dµ = 0.

Proof. Clearly a) holds if c = 0. Otherwise if c > 0, it is clear that if
φ : X → [0,∞) is a simple function and φ ≤ f then cφ is a simple function
and cφ ≤ cf . Hence, since Theorem 3.1.5 implies

c

∫
A
φdµ =

∫
A
cφ dµ ≤

∫
A
cf dµ,
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we obtain that c
∫

A f dµ ≤
∫

A cf dµ. Similarly, if φ : X → [0,∞) is a simple
function and φ ≤ cf then 1

cφ is a simple function and 1
cφ ≤ f . Hence, since

Theorem 3.1.5 implies
1
c

∫
A
φdµ =

∫
A

1
c
φ dµ ≤

∫
A
f dµ so

∫
A
φdµ ≤ c

∫
A
f dµ

we obtain that
∫

A cf dµ = c
∫

A f dµ as desired.
Note b) clearly follows from Theorem 3.1.5 and d) clearly follows by

Definition 3.1.7 once c) is complete. Similarly, f) follows easily from e).
To see that c) is true, notice by Theorem 3.1.5∫

A
f dµ = sup

{∫
A
φdµ

∣∣∣∣ φ : X → [0,∞) simple, φ ≤ f

}
= sup

{∫
X
χAφdµ

∣∣∣∣ φ : X → [0,∞) simple, φ ≤ f

}
= sup

{∫
X
ψ dµ

∣∣∣∣ ψ : X → [0,∞) simple, ψ ≤ χAf

}
=
∫

X
fχA dµ

as desired. [Note the third equality holds since if φ is a simple function and
φ ≤ f , then ψ = χAφ is a simple function and ψ ≤ χAf , and if ψ is a simple
function and ψ ≤ χAf , then ψ(x) = 0 for all x /∈ A so ψ = ψχA is a simple
function and ψ ≤ f .]

To see that e) is true, let B = {x ∈ X | f(x) > 0} ∩A. Note that B ∈ A
since A ∈ A and f is measurable.

Assume
∫

A f dµ = 0. For each n ∈ N let

An =
{
x ∈ X | f(x) > 1

n

}
.

Since f is measurable, An is measurable for all n ∈ N. Hence 1
nχAn is a

simple function for each n ∈ N. Since 1
nχAn ≤ f , the definition of the integral

implies that
1
n
µ(An ∩A) =

∫
A

1
n
χAn dµ ≤

∫
A
f dµ = 0.

Hence µ(An ∩A) = 0 for all n ∈ N. Since

B =
∞⋃

n=1
An ∩A

as f : X → [0,∞], we obtain by the subadditivity of measures that µ(B) = 0.
Conversely, assume µ(B) = 0. Let φ : X → [0,∞) be a simple function

such that φ ≤ f . Write φ =
∑n

k=1 akχAk
where ak > 0 for all k ∈ {1, . . . , n}.

Since φ ≤ f , we see that

Ak ⊆ {x ∈ X | f(x) > 0}.
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Hence the monotonicity of measures implies that

µ(Ak ∩A) ≤ µ(B) = 0.

Thus ∫
A
φdµ =

n∑
k=1

akµ(Ak ∩A) = 0.

Therefore, by the definition of the integral,
∫

A f dµ = 0.

Immediately we have some observations based on Theorem 3.1.11

Remark 3.1.12. As Theorem 3.1.11 implies that
∫

X χAf dµ =
∫

A f dµ, when
developing the theory of integrals, it suffices to consider only integrals over all
of X when developing our theory of integrals since the results for integrating
over an arbitrary measurable set A will then follow from multiplying the
functions under consideration by χA. Note multiplying by χA is linear and
preserves pointwise limits.

One omission in Theorem 3.1.11 is the additivity of integrals:∫
X
f + g dµ =

∫
X
f dµ+

∫
X
g dµ.

Clearly if φ and ψ are simple functions with φ ≤ f and ψ ≤ g, then φ+ψ is
a simple function with φ+ ψ ≤ f + g. Thus Theorem 3.1.5 clearly implies∫

X
f dµ+

∫
X
g dµ ≤

∫
X
f + g dµ.

However, difficulty occurs with the reverse inequality since if φ were a simple
function with φ ≤ f + g, how can we find simple functions φ1 and φ2 such
that φ1 ≤ f , φ2 ≤ g, and φ1 + φ2 = φ?

3.2 The Monotone Convergence Theorem
In order to try and demonstrate the additivity of the integral of non-negative
functions, we turn our attention to Theorem 2.2.4. We know every non-
negative measurable function is the pointwise limit of an increasing sequence
of simple functions. If we knew that the integral preserved these limits, then
we would obtain ∫

X
f dµ+

∫
X
g dµ =

∫
X
f + g dµ

for all measurable functions f, g : X → [0,∞] since the integral is additive
for simple functions, and since the limit of a sum is the sum of the limit.
Thus our goal is to show that the integral for non-negative measurable func-
tions preserves monotone limits; that is, we want a Monotone Convergence
Theorem for the integral of non-negative measurable functions.
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To prove our Monotone Convergence Theorem, we will make use of the
Monotone Convergence Theorem for measures (Theorem 1.1.23) since, by
Remark 3.1.2, the integral against a simple function produces a measure.

Theorem 3.2.1 (Monotone Convergence Theorem). Let (X,A, µ) be a
measure space. For each n ∈ N let fn : X → [0,∞] be a measurable function
such that fn ≤ fn+1 for all n ∈ N. If f : X → [0,∞] is a measurable function
and the pointwise limit of (fn)n≥1, then for all A ∈ A∫

A
f dµ = lim

n→∞

∫
A
fn dµ.

Proof. First note since f is the pointwise limit of measurable functions that
f is measurable by Proposition 2.1.22. Next note Remark 3.1.12 implies
we may assume that A = X since multiplying by a characteristic function
will preserve measurability, pointwise limits, and the value of the integral by
Theorem 3.1.11.

Since fn ≤ f for all n ∈ N, Theorem 3.1.11 implies that∫
X
fn dµ ≤

∫
X
f dµ

for all n ∈ N. Hence

lim sup
n→∞

∫
X
fn dµ ≤

∫
X
f dµ.

Thus, to complete the proof, it suffices to show that∫
X
f dµ ≤ lim inf

n→∞

∫
X
fn dµ.

In order to facilitate some ‘wiggle room’, we will show that

α

∫
X
f dµ ≤ lim inf

n→∞

∫
X
fn dµ

for all α ∈ (0, 1) from which the desired inequality will follow by take the
limit α → 1.

To obtain the desired inequality, fix α ∈ (0, 1). Let φ : X → [0,∞) be an
arbitrary simple function such that φ ≤ f . Thus, if we can prove that

α

∫
X
φdµ ≤ lim inf

n→∞

∫
X
fn dµ,

the proof will be complete by the definition of the integral of f (Definition
3.1.7).

Notice αφ is a simple function such that αφ ≤ f . For each n ∈ N, let

An = {x ∈ X | fn(x) − αφ(x) ≥ 0}.
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Since each fn − αφ is a measurable function, An is measurable for all n ∈ N.
Moreover, by Theorem 3.1.11, we have for all n ∈ N that

α

∫
An

φdµ =
∫

An

αφdµ by Theorem 3.1.11, part a)

≤
∫

An

fn dµ since αφχAn ≤ fnχAn

≤
∫

X
fn dµ since An ⊆ X

≤ lim inf
k→∞

∫
X
fk dµ

since fk≤fk+1 so (
∫

X
fk dµ)

k≥1
is an increasing sequence.

Thus, to complete the proof, it suffices to replace An with X in the above
inequality.

Since fn ≤ fn+1 for all n ∈ N, clearly An ⊆ An+1 for all n ∈ N. We claim
that

X =
⋃

n≥1
An.

To see this, let x ∈ X be arbitrary. If f(x) = 0 then fn ≤ f and φ ≤ f
implies that fn(x) = 0 = αφ(x) and thus x ∈ An for all n ∈ N. Otherwise,
if f(x) > 0, then we notice φ ≤ f implies that f(x) > αφ(x) since α < 1
(this is why we needed the wiggle room). Hence, since limn→∞ fn(x) = f(x),
there exists an N ∈ N such that f(x) ≥ fN (x) > αφ(x) and thus x ∈ AN .
Hence X =

⋃
n≥1An.

Let ν : X → [0,∞] be defined by

ν(A) =
∫

A
φdµ

for all A ∈ A. Since φ is a simple function, Remark 3.1.2 implies that ν is a
measure on (X,A). Therefore, since {An}∞

n=1 is an increasing sequence of
measurable sets with X =

⋃
n≥1An, the Monotone Convergence Theorem

for measures (Theorem 1.1.23) implies that

α

∫
X
φdµ = αν(R)

= α lim
n→∞

ν(An)

= α lim
n→∞

∫
An

φdµ

≤ lim inf
k→∞

∫
X
fk dµ.

Hence the proof is complete.

Using the Monotone Convergence Theorem (Theorem 3.2.1), we easily
obtain the following final properties of integrals of positive functions we
desire.
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Theorem 3.2.2. Let (X,A, µ) be a measure space, let A ∈ A, and let
f, g : X → [0,∞] be measurable functions. Then:

a)
∫

A f + g dµ =
∫

A f dµ+
∫

A g dµ.

b) If f = g a.e., then
∫

X f dµ =
∫

X g dµ.

Proof. To see that a) is true, note by Theorem 2.2.4 there exists increasing
sequences of simple functions (φn)n≥1 and (ψn)n≥1 on X that converge
pointwise to f and g respectively such that φn ≤ f and ψn ≤ g for all
n ∈ N. Therefore (φn + ψn)n≥1 is an increasing sequence of simple functions
that converges to f + g pointwise such that φn + ψn ≤ f + g for all n ∈ N.
Therefore, by applying the Monotone Convergence Theorem (Theorem 3.2.1)
twice and the additivity of integrals of simple functions from Theorem 3.1.5,
we obtain that ∫

A
f + g dµ = lim

n→∞

∫
A
φn + ψn dµ

= lim
n→∞

∫
A
φn dµ+

∫
A
ψn dµ

=
∫

A
f dµ+

∫
A
g dµ.

To see that b) is true, let B ∈ A be such that f(x) = g(x) for all x ∈ B
and µ(Bc) = 0. Thus fχB = gχB. Since µ(Bc) = 0, Theorem 3.1.5 implies
that ∫

Bc
f dµ =

∫
Bc
g dµ = 0

Hence we see that∫
X
f dµ =

∫
X
fχB dµ+

∫
X
fχBc dµ

=
∫

X
fχB dµ+

∫
Bc
f dµ

=
∫

X
gχB dµ+

∫
Bc
g dµ

=
∫

X
gχB dµ+

∫
X
gχBc dµ =

∫
X
g dµ

as desired.

Remark 3.2.3. Using part b) of Theorem 3.2.2 and the fact that the integral
of any non-negative measurable function against a set of measure zero is
zero, the Monotone Convergence Theorem (Theorem 3.2.1) also holds if the
condition that “f : X → [0,∞] is the pointwise limit of (fn)n≥1” is replaced
with the condition that “f(x) = limn→∞ fn(x) almost everywhere” provided
we know f is measurable (which is automatically implied when µ is complete
as (fn)n≥1 converges to f pointwise almost everywhere).

©For use through and only available at pskoufra.info.yorku.ca.



3.2. THE MONOTONE CONVERGENCE THEOREM 89

Moreover, under an relatively mild assumption on the measure, part b)
of Theorem 3.2.2 has a converse.

Proposition 3.2.4. Let (X,A, µ) be a measure space, and let f, g : X →
[0,∞] be measurable functions. If µ is σ-finite and∫

A
f dµ =

∫
A
g dµ

for every A ∈ A, then f = g almost everywhere.

Proof. Let B = {x ∈ X | f(x) > g(x)} ∈ A. We desire to show that
µ(B) = 0.

Consider
∫

B g dµ. Assume
∫

B g dµ < ∞. Thus, since (f − g)χB is a
non-negative measurable function on X and since∫

B
f dµ =

∫
X
fχB dµ

=
∫

X
(f − g)χB + gχB dµ

=
∫

X
(f − g)χB dµ+

∫
X
gχB dµ

=
∫

X
(f − g)χB dµ+

∫
B
g dµ,

we obtain by cancelling
∫

B g dµ =
∫

B f dµ from both sides that∫
X

(f − g)χB dµ = 0.

Hence part e) of Theorem 3.1.11 implies that

{x ∈ X | (f(x) − g(x))χB(x) > 0} = B

has µ-measure zero. Hence µ(B) = 0 as desired.
Otherwise, assume

∫
B g dµ = ∞. Since µ is σ-finite, there exists a

collection {Xn}∞
n=1 ⊆ A such that X =

⋃∞
n=1Xn and µ(Xn) < ∞ for all

n ∈ N. For each n,m ∈ N let

Bn,m = {x ∈ B ∩Xm | g(x) ≤ n}.

Since g(x) < ∞ for all x ∈ B by definition, we see that {Bn,m}∞
n=1 are

measurable subsets such that µ(Bn,m) ≤ µ(Xm) < ∞, Bn,m ⊆ Bn+1,m for
all n ∈ N and m ∈ N, and

⋃∞
n=1Bn,m = B ∩Xm. However, since∫

Bn,m

f dµ =
∫

Bn,m

g dµ ≤ nµ(Bn,m) < ∞,
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we can repeat the first part of the proof to obtain that µ(Bn,m) = 0. Hence,
by the Monotone Convergence Theorem for Measures (Theorem 1.1.23) we
obtain that µ(B ∩Xm) = 0 for all m ∈ N. Hence

0 ≤ µ(B) = µ

( ∞⋃
m=1

B ∩Xm

)
≤

∞∑
m=1

µ(B ∩Xm) = 0

so µ(B) = 0 as desired.
Similarly µ({x ∈ X | f(x) < g(x)}) = 0 so f = g µ-almost everywhere.

The Monotone Convergence Theorem (Theorem 3.2.1) can also be used
to prove several interesting properties of integrals of non-negative measurable
functions.

Corollary 3.2.5. Let (X,A, µ) be a measure space. For each n ∈ N let
fn : X → [0,∞] be a measurable function. If f : X → [0,∞] is a measurable
function such that f(x) =

∑∞
n=1 fn(x) for almost every x ∈ X (note f is

automatically measurable if µ is complete), then for all A ⊆ A
∫

A
f dµ =

∞∑
n=1

∫
A
fn dµ.

Proof. For each m ∈ N, let gm : X → [0,∞] be defined by gm =
∑m

n=1 fn.
Clearly (gm)m≥1 is an increasing sequence of non-negative measurable func-
tions that converges to f pointwise almost everywhere. Hence the Monotone
Convergence Theorem (Theorem 3.2.1) implies

∫
A
f dµ = lim

m→∞

∫
A
gm dµ = lim

m→∞

m∑
n=1

∫
A
fn dµ =

∞∑
n=1

∫
A
fn dµ

as desired.

As Remark 3.1.2 (which demonstrated that integrating against a simple
function gave rise to a measure) was instrumental in the proof of the Monotone
Convergence Theorem (Theorem 3.2.1), we note the following extension to
integrating against non-negative measurable functions.

Corollary 3.2.6. Let (X,A, µ) be a measure space and let f : X → [0,∞]
be measurable. Define ν : A → [0,∞] by

ν(A) =
∫

A
f dµ

for all A ∈ A. Then ν is a measure on (X,A). Furthermore, if A ∈ A and
µ(A) = 0, then ν(A) = 0.
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Proof. Recall Theorem 3.1.5 that if A ∈ A and µ(A) = 0, then

ν(A) =
∫

A
f dµ = 0.

Hence clearly ν(∅) = 0. To see that ν is countably additive, notice if {An}∞
n=1

is a collection of pairwise disjoint measurable sets in (X,A), then

ν

( ∞⋃
n=1

An

)
=
∫⋃∞

n=1 An

f dµ

=
∫

X
fχ⋃∞

n=1 An
dµ

=
∫

X

∞∑
n=1

χAnf dµ since {An}∞
n=1 are pairwise disjoint

=
∞∑

n=1

∫
X
χAnf dµ by Corollary 3.2.5

=
∞∑

n=1

∫
An

f dµ

=
∞∑

n=1
ν(An).

Hence ν is a measure as desired.

3.3 The Integral of Complex Functions
As the above notion of the integral for non-negative measurable functions
has all of our desired properties, we now turn to extended this notion to
all measurable functions. We have see that if f is a real-valued measurable
function, then we can write f = f+ − f− where f+ and f− are non-negative
Lebesgue measurable function. If we want the integral to be linear, we need
to define the Lebesgue integral of f to be the difference of the Lebesgue
integrals of f+ and f−. However, we run into an immediate issue: “what
should ∞ − ∞ be defined to be?” After all, we have allowed non-negative
measurable functions to have infinite integrals.

To solve this problem, we will avoid this problem. Of course, it is never
a good idea to ignore ones problems, but sometimes this is the best we can
do in mathematics. We can solve/avoid this problem by restricting to a
specific collection of the measurable functions so that we never end up in
the “∞ − ∞” setting.

Definition 3.3.1. Let (X,A, µ) be a measure space. A measurable function
f : X → C is said to be integrable if∫

X
|f | dµ < ∞.
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In the case that (X,A, µ) = (R,M(R), λ), it is said that f is Lebesgue
integrable.

Before defining the integral of a integrable function, we note some impor-
tant properties of integrable functions.

Remark 3.3.2. Notice if (X,A, µ) and f : X → C is integrable, then for all
A ∈ A ∫

A
|f | dµ =

∫
X

|fχA| dµ ≤
∫

X
|f | dµ < ∞.

Hence the integral of |f | with respect to µ against any measurable set is
finite.

Remark 3.3.3. Let (X,A, µ) be a measure space and let f : X → C be a
measurable function. Notice

f = Re(f) + iIm(f) = (Re(f)+ − Re(f)−) + i (Im(f)+ − Im(f)−)

(see Remarks 2.1.18 and 2.1.19 for definitions) where Re(f)+, Re(f)−, Im(f)+,
and Im(f)− are all measurable by Remarks 2.1.18 and 2.1.19. Since

Re(f)+,Re(f)−, Im(f)+, Im(f)− ≤ |f |,

clearly if f is integrable then Re(f)+, Re(f)−, Im(f)+, and Im(f)− are
integrable. Conversely, since

|f | =
√

Re(f)2 + Im(f)2 ≤ |Re(f)| + |Im(f)|
= Re(f)+ + Re(f)− + Im(f)+ + Im(f)−,

we see that f is integrable if and only if Re(f)+, Re(f)−, Im(f)+, and Im(f)−
are all integrable. More specifically, if f : X → R, then f is integrable if and
only if f+ and f− are integrable.

Based on Remark 3.3.3, we make the following definition of the integral
of an integrable function.

Definition 3.3.4. Let (X,A, µ) be a measure space, let A ∈ A, and let
f : X → C be integrable. The integral of f over A against µ is defined to be∫

A
f dµ =

∫
A

Re(f)+ dµ−
∫

A
Re(f)− dµ+ i

∫
A

Im(f)+ dµ− i

∫
A

Im(f)− dµ

where the four integrals on the right-hand-side are computed as integrals
of non-negative measurable functions (i.e. via Definition 3.1.7). In the case
that (X,A, µ) = (R,M(R), λ), the above is called the Lebesgue integral of f .

Remark 3.3.5. Due to Definition 3.3.4, given a measure space (X,A, µ),
a set A ∈ A, and measurable function f : X → [0,∞) we have two ways
to compute

∫
A f dµ; one as a non-negative measurable function, and one as

a complex-valued measurable function. However, the two notions agree as
Re(f)− = Im(f)+ = Im(f)− = 0 when f : X → [0,∞).
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Remark 3.3.6. If (X,A, µ) is a measure space is a measure space, f : X → C
is integrable, and A ∈ A, then it is elementary to verify that

Re(fχA)± = Re(f)±χA and Im(fχA)± = Im(f)±χA.

Moreover, by Remark 3.3.2, we know that fχA is integrable. Hence∫
A
f dµ

=
∫

A
Re(f)+ dµ−

∫
A

Re(f)− dµ+ i

∫
A

Im(f)+ dµ− i

∫
A

Im(f)− dµ

=
∫

X
χARe(f)+ dµ−

∫
X
χARe(f)− dµ+ i

∫
X
χAIm(f)+ dµ− i

∫
X
χAIm(f)− dµ

=
∫

X
Re(fχA)+ dµ−

∫
X

Re(fχA)− dµ+ i

∫
X

Im(fχA)+ dµ− i

∫
X

Im(fχA)− dµ

=
∫

X
fχA dµ.

Therefore, when working with the integral and integrable functions, it suffices
to just consider the Lebesgue integral over the entire space.

Moreover, it is possible to reduce the discussion of extended-valued
integrable functions down to those with values in R. To see this, we first
need the following.

Proposition 3.3.7. Let (X,A, µ) be a measure space, let f : X → [−∞,∞]
be integrable, and let g : X → [−∞,∞] be measurable. If f = g a.e., then g
is integrable and

∫
X g dµ =

∫
X f dµ.

Proof. Since f = g a.e., it is easy to see that

f+ = g+ and f− = g−

almost everywhere. Therefore, by Theorem 3.2.2, we obtain that∫
X
g+ dµ =

∫
X
f+ dµ < ∞ and

∫
X
g− dµ =

∫
X
f− dµ < ∞.

Thus we trivially obtain that g is integrable since f is, and∫
X
f dµ =

∫
X
f+ dµ−

∫
X
f− dµ =

∫
X
g+ dµ−

∫
X
g− dµ =

∫
X
g dµ.

Remark 3.3.8. Let (X,A, µ) be a measure space and let f : X → [−∞,∞]
be integrable. Since f is measurable, the set B = {x ∈ X | |f(x)| = ∞} is
measurable. However, if µ(B) > 0, it is elementary to see by the definition
of the integral that

∫
X |f | dµ = ∞, which would contradict the fact that∫

X
|f | dµ < ∞.
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Hence µ(B) = 0 so f = χBcf almost everywhere. Since χBcf : X → R, and
since ∫

X
|χBcf | dµ =

∫
X

|f | dµ < ∞

it suffices to only consider real-valued measurable functions when discussing
integrable functions.

By the way we constructed Definition 3.3.4, given a complex-valued
measurable function f , we first check that |f | has finite integral so that
the integrals of Re(f)+, Re(f)−, Im(f)+, and Im(f)− are finite, and then
we define the integral of f to be the appropriate linear combination of the
integrals of Re(f)+, Re(f)−, Im(f)+, and Im(f)−. Thus we have constructed
our integral by demonstrating the theory of integration can be completely
reduced to non-negative measurable functions!

Of course, we still need to verify that this integral is linear, which happens
to be a rather annoying technical task.

Theorem 3.3.9. Let (X,A, µ) be a measure space. The set of integrable
functions from X to K is a vector space over K. In particular, if f, g : X → K
are integrable and α, β ∈ K, then∫

A
αf + βg dµ = α

∫
A
f dµ+ β

∫
A
g dµ

for all A ∈ A.

Proof. We will focus on the case K = C as the case K = R follows as a
subcase.

First if f, g : X → C are integrable and α, β ∈ C, then∫
X

|αf + βg| dµ ≤
∫

X
|α||f | + |β||g| dµ = |α|

∫
X

|f | dµ+ |β|
∫

X
|g| dµ < ∞

since
∫

X |f | dµ,
∫

X |g| dµ < ∞. Hence αf + βg is integrable. Thus the set of
integrable functions from X to C is a vector space over C.

In order to show the linearity of the integral, it suffices to consider A = X
by multiplying the functions by χA if necessary (see Remark 3.3.2).

Next we claim that if h1, h2, h3, h4 : X → [0,∞) are integrable functions,
then∫

X
h1 − h2 + ih3 − ih4 dµ =

∫
X
h1 dµ−

∫
A
h2 dµ+ i

∫
A
h3 dµ− i

∫
A
h4 dµ.

To see this, let h = h1 − h2 + ih3 − ih4. Hence

h1 − h2 + ih3 − ih4 = Re(h)+ − Re(h)− + iIm(h)+ − iIm(h)−.

Thus

(h1 + Re(h)−) + i(h3 + Im(h)−) = (Re(h)+ + h2) + i(Im(h)+ + h4).
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Therefore, by equating real and imaginary parts, we see that

h1 + Re(h)− = Re(h)+ + h2 and h3 + Im(h)− = Im(h)+ + h4.

Since h1, h2,Re(h)+, and Re(h)− are non-negative measurable functions, we
see that ∫

X
h1 dµ+

∫
X

Re(h)− dµ =
∫

X
h1 + Re(h)− dµ

=
∫

X
Re(h)+ + h2 dµ

=
∫

X
h2 dµ+

∫
X

Re(h)+ dµ.

Therefore, since h1, h2,Re(h)+, and Re(h)− are integrable so each integral is
finite, we see that∫

X
h1 dµ−

∫
X
h2 dµ =

∫
X

Re(h)+ dµ−
∫

X
Re(h)− dµ.

Similarly ∫
X
h3 dµ−

∫
X
h4 dµ =

∫
X

Im(h)+ dµ−
∫

X
Im(h)− dµ.

Hence∫
X
h dµ =

∫
X

Re(h)+ dµ−
∫

X
Re(h)− dµ+ i

∫
X

Im(h)+ dµ− i

∫
X

Im(h)− dµ

=
∫

X
h1 dµ−

∫
X
h2 dµ+ i

∫
X
h3 dµ− i

∫
X
h4 dµ

as claimed.
To proceed with the proof, for notational simplicity let

f1 = Re(f)+, f2 = Re(f)− f3 = Im(f)+ f4 = Im(f)−

g1 = Re(g)+, g2 = Re(g)− g3 = Im(g)+ g4 = Im(g)−.

Since all fi and gj are positive integrable functions by Remark 3.3.3, we
obtain by our above technical result that∫

X
f + g dµ =

∫
X

(f1 + g1) − (f2 + g2) + i(f3 + g3) − i(f4 + g4) dµ

=
∫

X
f1 dµ+

∫
X
g1 dµ−

∫
X
f2 dµ−

∫
X
g2 dµ

+ i

∫
X
f3 dµ+ i

∫
X
g3 dµ− i

∫
X
f4 dµ− i

∫
X
fg4 dµ

=
∫

X
f dµ+

∫
X
g dµ.
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Hence the integral is additive. Thus, due to the properties of linear maps, it
suffices to prove that the integral preserves scalar multiplication.

To begin, let a ∈ R be arbitrary. If a ≥ 0, then af1, af2, af3 and af4 are
positive integrable functions such that∫

X
af dµ =

∫
X

(af1) − (af2) + i(af3) − i(af4) dµ

=
∫

X
af1 dµ−

∫
X
af2 dµ+ i

∫
X
af3 dµ− i

∫
X
af4 dµ

= a

∫
X
f1 dµ− a

∫
X
f2 dµ+ ai

∫
X
f3 dµ− ai

∫
X
f4 dµ

= a

∫
X
f dµ.

Similarly, if a < 0, then −a > 0 and (−a)f1, (−a)f2, (−a)f3 and (−a)f4 are
positive integral functions so∫

X
af dµ

=
∫

X
((−a)f2) − ((−a)f1) + i((−a)f4) − i((−a)f3) dµ

=
∫

X
(−a)f2 dµ−

∫
X

(−a)f1 dµ+ i

∫
X

(−a)f4 dµ− i

∫
X

(−a)f3 dµ

= (−a)
∫

X
f2 dµ− (−a)

∫
X
f1 dµ+ (−a)i

∫
X
f4 dµ− (−a)i

∫
X
f2 dµ

= a

∫
X
f dµ.

Furthermore, since f1, f2, f3, and f4 are positive integrable functions, we
know that∫

X
if dµ =

∫
X
f4 − f3 + if1 − if2 dµ

=
∫

X
f4 dµ−

∫
X
f3 dµ+ i

∫
X
f1 dµ− i

∫
X
f2 dµ

= i

(
−i
∫

X
f4 dµ

)
+ i

(
i

∫
X
f3 dµ

)
+ i

∫
X
f1 dµ− i

∫
X
f2 dµ

= i

∫
X
f dµ.

Combining all of the above, we see that if α = a+ bi where a, b ∈ R, then∫
X

(a+ bi)f dµ =
∫

X
af + b(if) dµ

=
∫

X
af dµ+

∫
X
b(if) dµ

= a

∫
X
f dµ+ b

∫
X
if dµ

= a

∫
X
f dµ+ bi

∫
X
f dµ = α

∫
X
f dµ.
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Hence the result follows.

Remark 3.3.10. If (X,A, µ) is a measure space and f : X → C is integrable,
then clearly the function f : X → C defined by f(x) = f(x) is integrable
since

Re(f) = Re(f), Im
(
f
)

+
= Im(f)−, and Im

(
f
)

−
= Im(f)+.

Furthermore, from this we easily obtain that∫
X
f dµ =

∫
X
f dµ.

Thus our notion of integration plays well with respect to complex conjugation.
As we now have our integral of complex-valued integrable functions, we

begin our study of the uses of this integral. To begin, we note three simple
yet essential results, the first of which is reminiscent of a property of the
Riemann integral.
Theorem 3.3.11. Let (X,A, µ) be a measure space. If f : X → C is
integrable, then ∣∣∣∣∫

A
f dµ

∣∣∣∣ ≤
∫

A
|f | dµ

for all A ∈ A.
Proof. By properties of complex numbers, there exists a z ∈ C such that
|z| = 1 and

z

∫
A
f dµ =

∣∣∣∣∫
A
f dµ

∣∣∣∣ ≥ 0

(i.e. rotate the complex number
∫

A f dµ until it is positive). Hence zf is
integrable and

0 ≤
∣∣∣∣∫

A
f dµ

∣∣∣∣ =
∫

A
zf dµ =

∫
A

Re(zf) dµ+ i

∫
A

Im(zf) dµ.

However, since
∫

A Re(zf) dµ,
∫

A Im(zf) dµ ∈ R, it must be the case that∫
A Im(zf) dµ = 0. Hence∣∣∣∣∫

A
f dµ

∣∣∣∣ =
∫

A
Re(zf) dµ

=
∫

A
Re(zf)+ dµ−

∫
A

Re(zf)− dµ

≤
∫

A
Re(zf)+ dµ+

∫
A

Re(zf)− dµ

=
∫

A
Re(zf)+ + Re(zf)− dµ

=
∫

A
|Re(zf)| dµ

≤
∫

A
|zf | dµ =

∫
A

|f | dµ
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as desired.

Similar to Proposition 3.3.7, the integral does not distinguish under
almost everywhere equivalence.

Theorem 3.3.12. Let (X,A, µ) be a measure space, let f : X → C be
integrable, and let g : X → C be measurable. If f = g a.e., then g is
integrable and

∫
X f dµ =

∫
X g dµ.

Proof. Since f = g a.e., it is easy to see that

Re(f)+ = Re(g)+, Re(f)− = Re(g)−,

Im(f)+ = Im(f)+, Im(f)− = Im(g)−

almost everywhere. Hence g is integrable. Thus we trivially obtain that∫
X f dµ =

∫
X g dµ.

To complete this section we note that the Lebesgue integral has some
additional properties which follows from Proposition 1.4.8. In particular, the
following shows that the Lebesgue integral behaves well with respect to the
properties of R.

Proposition 3.3.13 (Translation Invariance). Let f : R → C be Lebesgue
integrable. For each y ∈ R let fy : R → C be defined by fy(x) = f(x − y).
Then fy is Lebesgue integrable and∫

R
fy dλ =

∫
R
f dλ.

Proof. Since every Lebesgue integrable function can be written as a linear
combination of four Lebesgue integrable non-negative functions, we may
assume that f : R → [0,∞). Hence fy : R → [0,∞). Since f−1

y ([α,∞)) is a
translation of f−1([α,∞)) for all α ∈ R and thus measurable by Proposition
1.4.8 and the fact that f is measurable, we obtain that fy is measurable.

To see that ∫
R
fy dλ =

∫
R
f dλ

(and thus fy is integrable), first consider A,B ⊆ R and y ∈ R such that
B = y+A. Hence Proposition 1.4.8 implies B is measurable if and only if A
is measurable and

λ(B) = λ(A).

By the above, we obtain for all measurable A ⊆ R that∫
R

(χA)y dλ =
∫
R
χA dλ.
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Therefore, since the above also shows us that φ is a simple function such
that φ ≤ f if and only if φy is a simple function with φy ≤ fy and as by the
linearity of the integral we know that that∫

R
φy dλ =

∫
R
φdλ,

the result follows using the definition of the integral of a non-negative
measurable function.

By replacing Proposition 1.4.8 with Proposition 1.4.9 and repeating the
above proof, we easily obtain the following.

Proposition 3.3.14 (Inversion Invariance). Let f : R → R be Lebesgue
integrable. Let f̌ : R → R be defined by f̌(x) = f(−x). Then f̌ is Lebesgue
integrable and ∫

R
f̌ dλ =

∫
R
f dλ.

Proposition 3.3.15 (Scaling Invariance). Let f : R → R be Lebesgue
integrable and let α > 0. Let g : R → R be defined by g(x) = f(αx). Then g
is Lebesgue integrable and ∫

R
g dλ = 1

α

∫
R
f dλ.

3.4 Revisiting the Riemann Integral
Recall our goal was to generalize the Riemann integral in the hope of
correcting many of the deficiencies of the Riemann integral. We still have
yet to answer the questions: does the Lebesgue integral truly generalize the
Riemann integral?

To answer this question, we must first understand the set of Riemann
integrable functions. After all, if the Lebesgue integral is truly going to be a
generalization of the Riemann integral, we need every Riemann integrable
function to be Lebesgue integrable and thus Lebesgue measurable. To begin,
we must understand the set of discontinuities of a function.

Lemma 3.4.1. Let a, b ∈ R be such that a < b, let f : [a, b] → R, and let

D(f) = {x ∈ [a, b] | f is discontinuous at x}.

For each n ∈ N let

Dn(f) =
{
x ∈ [a, b]

∣∣∣∣∣ for every δ > 0 there exists y, z ∈ [a, b] such that
|x− y| < δ, |x− z| < δ, and |f(y) − f(z)| ≥ 1

n

}
.

Then Dn(f) is closed for each n ∈ N and D(f) =
⋃∞

n=1Dn(f). Hence the
discontinuities of f is a countable union of closed sets.
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Proof. Fix m ∈ N. To see that Dm(f) is closed, let (xn)n≥1 be an arbitrary
sequence of elements of Dm(f) that converges to some x ∈ [a, b]. To see that
x ∈ Dm(f), let δ > 0 be arbitrary. Since x = limn→∞ xn, there exists an
N ∈ N such that |x−xN | < 1

2δ. Furthermore, since xN ∈ Dm(f), there exists
y, z ∈ [a, b] such that |xN − y| < 1

2δ, |xN − z| < 1
2δ, and |f(y) − f(z)| ≥ 1

m .
Since |x − y| < δ and |x − z| < δ by the triangle inequality, and since
|f(y) − f(z)| ≥ 1

m , we obtain that x ∈ Dm(f) as δ > 0 was arbitrary. Hence,
since (xn)n≥1 was arbitrary, Dm(f) is closed.

To see that D(f) =
⋃∞

n=1Dn(f), first assume x ∈
⋃∞

n=1Dn(f). Hence
x ∈ Dm(f) for some m ∈ N. To see that f is discontinuous at x, suppose for
the sake of a contradiction that f is continuous at x. Notice by the definition
of Dm(f) that for each n ∈ N there exists points yn, zn ∈ [a, b] such that
|x− yn| < 1

n , |x− zn| < 1
n , and |f(yn) − f(zn)| ≥ 1

m . Since

x = lim
n→∞

yn = lim
n→∞

zn,

the continuity of f implies

f(x) = lim
n→∞

f(yn) = lim
n→∞

f(zn),

which contradicts the fact that |f(yn) − f(zn)| ≥ 1
m for all n. Hence we have

obtained a contradiction so x ∈ D(f). Hence
⋃∞

n=1Dn(f) ⊆ D(f).
For the other inclusion, notice if x ∈ D(f) then f is discontinuous at x.

Therefore there exists an ϵ > 0 such that for all δ > 0 there exists a y ∈ [a, b]
such that |x− y| < δ yet |f(x) − f(y)| ≥ ϵ. Choose m ∈ N such that 1

m < ϵ.
By taking z = x in the definition of Dm(f), we see that x ∈ Dm(f). Hence,
since x was arbitrary, D(f) ⊆

⋃∞
n=1Dn(f) thereby completing the proof.

Using the characterization of the discontinuities of a function, we can
provide an alternate description of the Riemann integrable functions beyond
the descriptions given in an undergraduate program.

Proposition 3.4.2. A function f : [a, b] → R is Riemann integrable if and
only if f is bounded and continuous almost everywhere.

Proof. To begin, assume f is Riemann integrable. Clearly this implies f is
bounded by definition. To see that f is continuous almost everywhere (i.e.
the set of discontinuities of f has Lebesgue measure zero), for each n ∈ N let

Dn(f) =
{
x ∈ [a, b]

∣∣∣∣∣ for every δ > 0 there exists y, z ∈ [a, b] such that
|x− y| < δ, |x− z| < δ, and |f(y) − f(z)| ≥ 1

n

}
.

By Lemma 3.4.1 the discontinuities of f are
⋃∞

n=1Dn(f). Therefore, to show
that f is continuous almost everywhere, it suffices to show that each Dn(f)
has Lebesgue measure zero by the subadditivity of the Lebesgue measure.
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Suppose for the sake of a contradiction that there exists an q ∈ N such
that λ(Dq(f)) > 0. Since f is Riemann integrable, there exists a partition
P = {tk}n

k=0 of [a, b] such that if for all k ∈ {1, . . . , n} we define

mk = inf{f(x) | x ∈ [tk−1, tk]} and Mk = sup{f(x) | x ∈ [tk−1, tk]}

then

U(f,P) − L(f,P) =
n∑

k=1
(Mk −mk)(tk − tk−1) < 1

q
λ(Dq(f)).

For each k ∈ {1, . . . , n} let Ik = [tk−1, tk]. Notice if Dq(f) ∩ Ik ̸= ∅, then
Mk −mk ≥ 1

q by the definition of Dq(f). Hence as

Dq(f) ⊆
⋃

k∈{1,...,n}
Ik∩Dq(f )̸=∅

Ik

we obtain that

1
q
λ(Dq(f)) >

n∑
k=1

(Mk −mk)(tk − tk−1) ≥
∑

k∈{1,...,n}
Ik∩Dq(f) ̸=∅

(Mk −mk)(tk − tk−1)

≥
∑

k∈{1,...,n}
Ik∩Dq(f) ̸=∅

1
q

(tk − tk−1)

≥ 1
q
λ

 ⋃
k∈{1,...,n}

Ik∩Dq(f )̸=∅

Ik


≥ 1
q
λ(Dq(f)),

which is a contradiction. Thus it must be the case that f is continuous
almost everywhere.

Conversely, assume f is bounded and continuous almost everywhere. To
see that f is Riemann integrable, we will demonstrate that for all ϵ > 0 there
exists a partition P of [a, b] such that

U(f,P) − L(f,P) < ϵ.

To begin, fix ϵ > 0 and choose n ∈ N such that 1
n(b − a) < 1

2ϵ. Since f
is bounded, there exists an M ∈ R such that |f(x)| ≤ M for all x ∈ [a, b].
Since Dn(f) has Lebesgue measure zero, there exists a collection {Ik}∞

k=1 of
open intervals such that Dn(f) ⊆

⋃∞
k=1 Ik and

λ

( ∞⋃
k=1

Ik

)
≤ ϵ

2(M + 1) .
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However, since Dn(f) is closed and thus a compact subset of [a, b], there
exists an m ∈ N such that Dn(f) ⊆

⋃m
k=1 Ik and thus

λ

(
m⋃

k=1
Ik

)
≤ λ

( ∞⋃
k=1

Ik

)
≤ ϵ

2(M + 1) .

Consider F = [a, b]∩(
⋃m

k=1 Ik)c. Then F is a finite union of closed intervals
in [a, b] such that F ⊆ Dn(f)c. Hence if x ∈ F ⊆ Dn(f)c there exists an
open neighbourhood Ux of x such that if y, z ∈ Ux then |f(y) − f(z)| < 1

n .
Since F is a closed subset of a compact set and thus compact, we can cover F
with a finite number of these open intervals. Hence one can form a partition
P of F such that the difference between the upper and lower Riemann sums
of f with respect to P on each interval is at most the length of the interval
times 1

n .
Notice P can then also be viewed as a partition on [a, b] (by adding in a

and/or b if necessary). Then the intervals described by the partition that
intersect F contribute at most 1

n(b− a) to the difference of the upper and
lower Riemann sums. Furthermore, the intervals described by the partition
that do not intersect F contribute at most 2Mλ (

⋃m
k=1 Ik) to the difference

of the upper and lower Riemann sums. Hence

U(f,P) − L(f,P) ≤ 1
n

(b− a) + 2Mλ

(
m⋃

k=1
Ik

)
< ϵ

and the result follows.

Corollary 3.4.3. If f : [a, b] → R is Riemann integrable, then f is Lebesgue
measurable.

Proof. By Proposition 3.4.2, f is continuous almost everywhere. Hence there
exists a Lebesgue measurable subset A of [a, b] such that λ(Ac) = 0 and f is
continuous at each point in A.

To show that f is Lebesgue measurable, we will apply Corollary 2.1.13.
To begin, let α ∈ R be arbitrary. Then

f−1((α,∞)) =
(
f−1((α,∞)) ∩Ac)

)
∪
(
f−1((α,∞)) ∩A

)
.

Since (
f−1((α,∞)) ∩Ac)

)
⊆ Ac

and since λ(Ac) = 0, we obtain from the completeness of λ that f−1((α,∞))∩
Ac is Lebesgue measurable. Hence it suffices to show that f−1((α,∞)) ∩A
is Lebesgue measurable.

Since f is continuous at each point in A and since (α,∞) is an open set,
for each x ∈ f−1((α,∞))∩A there exists an rx > 0 such that (x−rx, x+rx) ⊆
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f−1((α,∞)). Let

U =
⋃

x∈f−1((α,∞))∩A

(x− rx, x+ rx).

Clearly U is an open subset of R such that

U ∩A = f−1((α,∞)) ∩A.

Therefore, since U is open and thus Lebesgue measurable, and since A is
Lebesgue measurable, we obtain that f−1((α,∞))∩A is Lebesgue measurable.
Hence f is Lebesgue measurable.

We can now proceed to show that the Lebesgue integral generalizes the
Riemann integral starting with the non-negative functions.

Proposition 3.4.4. If f : [a, b] → [0,∞) is Riemann integrable, then∫ b

a
f(x) dx =

∫
[a,b]

f dλ.

Proof. By Corollary 3.4.3, we know that f is Lebesgue measurable. To see
that the integrals agree, let P = {tk}n

k=0 be a arbitrary partition of [a, b].
Clearly if for each k ∈ {1, . . . , n} we define

mk = inf{f(x) | x ∈ [tk−1, tk]} and Mk = sup{f(x) | x ∈ [tk−1, tk]}

and we let

φP =
n∑

k=1
mkχ(tk−1,tk) and ψP =

n∑
k=1

Mkχ[tk−1,tk]

then φ and ψ are simple functions such that φP ≤ f ≤ ψP . Furthermore,
we clearly see by Theorem 3.1.11 that

L(f,P) =
∫

[a,b]
φP dλ ≤

∫
[a,b]

f dλ ≤
∫

[a,b]
ψP dλ = U(f,P)

since φP ≤ f ≤ ψP almost everywhere and a set of Lebesgue measure zero
does not contribute to the Lebesgue integral. Therefore, since the Riemann
integral of f is supremum of L(f,P) over all partitions and the infimum of
U(f,P) over all partitions, we obtain that∫ b

a
f(x) dx ≤

∫
[a,b]

f dλ ≤
∫ b

a
f(x) dx.

Theorem 3.4.5. If f : [a, b] → R is Riemann integrable, then f is Lebesgue
integrable and ∫ b

a
f(x) dx =

∫
[a,b]

f dλ.
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Proof. By Corollary 3.4.3, we know that f is Lebesgue measurable. Since f
is Riemann integrable, |f | is Riemann integrable by Proposition A.4.6. Thus

f+ = 1
2 (f + |f |) and f− = 1

2 (|f | − f)

are Riemann integrable.
By Proposition 3.4.4, we have that∫

[a,b]
|f | dλ =

∫ b

a
|f(x)| dx < ∞

so |f | is Lebesgue integrable. Therefore∫ b

a
f(x) dx =

∫ b

a
f+(x) − f−(x) dx

=
∫ b

a
f+(x) dx−

∫ b

a
f−(x) dx Riemann integral is linear

=
∫

[a,b]
f+ dλ−

∫
[a,b]

f− dλ by Proposition A.4.6

=
∫

[a,b]
f dλ

as desired.

Hence the Riemann and Lebesgue integrals agree whenever the Riemann
integral exists! Hence the Lebesgue integral is truly a generalization of the
Riemann integral!

Remark 3.4.6. Of course, one may ask why in Definition 3.1.7 we didn’t
define the Lebesgue integral via∫

A
f dλ = inf

{∫
A
φdλ

∣∣∣∣ φ : X → [0,∞) simple, f ≤ φ

}
?

That is, in the Riemann integral we can use infimums so can we use infimums
to define the Lebesgue integral? Well, if f is bounded and λ(A) < ∞, then
these two notions are equal!

To see this, assume f : A → [0,∞) is such that there exists an M > 0
with f(x) ≤ M for all x ∈ A. We first desire to reduce the number of simple
functions we need to consider in the infimum.

Assume φ : A → [0,∞) is a simple function such that f ≤ φ. If
B = φ−1((M,∞)), then B is a Lebesgue measurable set since φ is Lebesgue
measurable. Thus if we define

φ0 = φχBc +MχB,
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then φ0 : A → [0,M ] is a simple function such that f ≤ φ0 ≤ φ so∫
A
φ0 dλ ≤

∫
A
φdλ.

Hence

inf
{∫

A
φdλ

∣∣∣∣ φ : A → [0,∞) simple, f ≤ φ

}
= inf

{∫
A
φdλ

∣∣∣∣ φ : A → [0,M ] simple, f ≤ φ

}
.

To compare the above with the definition of the Lebesgue integral of a
non-negative measurable function via the supremum, note φ : A → [0,M ]
is a simple function such that f ≤ φ if and only if M − φ : A → [0,M ] is a
simple function such that M − φ ≤ M − f . Furthermore

Mλ(A) =
∫

A
M dλ =

∫
A
φ+ (M − φ) dλ =

∫
A
φdλ+

∫
A
M − φdλ.

Therefore, since Mλ(A) < ∞, we obtain that∫
A
φdλ = Mλ(A) −

∫
A
M − φdλ.

Hence

inf
{∫

A
φdλ

∣∣∣∣ φ : A → [0,∞) simple, f ≤ φ

}
= inf

{
Mλ(A) −

∫
A
M − φdλ

∣∣∣∣ φ : A → [0,M ] simple, f ≤ φ

}
= Mλ(A) − sup

{∫
A
M − φdλ

∣∣∣∣ φ : A → [0,M ] simple, f ≤ φ

}
= Mλ(A) − sup

{∫
A
ψ dλ

∣∣∣∣ ψ : A → [0,M ] simple, ψ ≤ M − f

}
= Mλ(A) −

∫
A
M − f dλ.

Moreover, since f and M−f are non-negative Lebesgue measurable functions,
we see from Theorem 3.2.2 that

Mλ(A) =
∫

A
M dλ =

∫
A
f + (M − f) dλ =

∫
A
f dλ+

∫
A
M − f dλ.

Therefore, since Mλ(A) < ∞, we obtain that

Mλ(A) −
∫

A
M − f dλ =

∫
A
f dλ

thereby completing the claim.
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Remark 3.4.7. In general, if λ(A) = ∞ or if f is not bounded, then it need
not be true that∫

A
f dλ = inf

{∫
A
φdλ

∣∣∣∣ φ : A → [0,∞) simple, f ≤ φ

}
.

For an example where λ(A) = ∞, let A = [1,∞) and let f(x) = 1
x2 for

all x ∈ A. Note if fn = fχ[1,n] for all n ∈ N, then (fn)n≥1 is an increasing
sequence of non-negative Lebesgue measurable functions that converges to f
pointwise. Therefore, using Proposition 3.4.4 together with the Monotone
Convergence Theorem (Theorem 3.2.1), we obtain that∫

[1,∞)
f dλ = lim

n→∞

∫
[1,∞)

fχ[1,n] dλ

= lim
n→∞

∫
[1,n]

f dλ

= lim
n→∞

∫ n

1

1
x2 dx

= lim
n→∞

1 − 1
n

= 1.

However, we claim that if φ : [1,∞) → [0,∞) is a simple function such that
f ≤ φ, then

∫
[1,∞) φdλ = ∞ thereby leading to the above infimum being

infinity. To see this, note if a = minφ−1(0,∞), then a > 0 by the definition
of a simple function. Moreover, if f ≤ φ, then

φ−1([a,∞)) = φ−1((0,∞)) ⊇ f−1((0,∞)) = [1,∞)

and thus ∫
[1,∞)

φdλ ≥ aλ(φ−1([a,∞)) = ∞.

For example where f is not bounded, let A = (0, 1] and let f(x) = 1√
x

for
all x ∈ A. Note if fn = fχ[ 1

n
,1] for all n ∈ N, then (fn)n≥1 is an increasing

sequence of non-negative Lebesgue measurable functions that converges to f
pointwise. Therefore, using Proposition 3.4.4 together with the Monotone
Convergence Theorem (Theorem 3.2.1), we obtain that∫

(0,1]
f dλ = lim

n→∞

∫
(0,1]

fχ[ 1
n

,1] dλ

= lim
n→∞

∫
[ 1

n
,1]
f dλ

= lim
n→∞

∫ 1

1
n

1√
x
dx

= lim
n→∞

2 − 2
√

1
n

= 2.
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However, if φ : (0, 1] → [0,∞) is a simple function, then it is not possible for
f ≤ φ as φ has finite range whereas the range of f is [1,∞).

Remark 3.4.8. Note the computations in Remark 3.4.7 show why improper
integrals are defined as they are in elementary calculus. Moreover, we see that
all computations with improper integrals of non-negative Riemann integrable
functions are valid by the Monotone Convergence Theorem.

3.5 Fatou’s Lemma
Due to the use of the Monotone Convergence Theorem (Theorem 3.2.1) in
the theory of the integral, we desire two more limit theorems to demonstrate
how well-behaved the integral is with respect to limits. The first is another
limit theorem for non-negative measurable functions. Note it is possible
to prove this theorem before the Monotone Convergence Theorem and use
it to prove the Monotone Convergence Theorem. However, we believe the
approach we provided is the correct one.

Theorem 3.5.1 (Fatou’s Lemma). Let (X,A, µ) be a measure space. For
each n ∈ N let fn : X → [0,∞] be a measurable function. Then for each
A ∈ A ∫

A
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
A
fn dµ.

Proof. For each k ∈ N, define gk : X → [0,∞] by

gk(x) = inf{fn(x) | n ≥ k}

for all x ∈ X. By Proposition 2.1.22 each gk is a measurable function.
Furthermore, for all k ∈ N and for all n ≥ k we see that gk ≤ fn so∫

A
gk dµ ≤

∫
A
fn dµ

for all n ≥ k and thus ∫
A
gk dµ ≤ lim inf

n→∞

∫
A
fn dµ

for all k ∈ N. However, it is elementary to see that (gk)k≥1 is an increasing
sequence of measurable functions that converges to lim infn→∞ fn pointwise.
Thus the Monotone Convergence Theorem (Theorem 3.2.1) implies that∫

A
lim inf
n→∞

fn dµ = lim
n→∞

∫
A
gk dµ ≤ lim inf

n→∞

∫
A
fn dµ

as desired.

Remark 3.5.2. It is not difficult to see that the inequality in Fatou’s Lemma
(Theorem 3.5.1) may be strict. Indeed if fn = 1

nχ[0,n] for all n ∈ N, it is easy
to see that

∫
R fn dλ = 1 for all n ∈ N yet (fn)n≥1 converges to zero pointwise

almost everywhere so
∫
R lim infn→∞ fn dλ = 0.
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3.6 The Dominated Convergence Theorem
Finally, we arrive at the most powerful notion of limit theorem for integrals
of arbitrary integrable functions.

Theorem 3.6.1 (Dominated Convergence Theorem). Let (X,A, µ) be
a measure space and let g : X → [0,∞) be an integrable function. For each
n ∈ N let fn : X → C be a measurable function such that |fn| ≤ g almost
everywhere. If f : X → C is such that (fn)n≥1 converges to f pointwise
almost everywhere and f is measurable (e.g. if µ is complete), then f is
integrable with ∫

A
f dµ = lim

n→∞

∫
A
fn dµ

for all A ∈ A.

Proof. Since for each n ∈ N we have |fn| ≤ g almost everywhere and since
(fn)n≥1 converges to f pointwise almost everywhere, we see that |f | ≤ g
almost everywhere. Hence, since g is integrable and since f and each fn is
measurable, f and each fn is integrable by Theorem 3.1.11. Furthermore, as
|f − fn| is measurable and since |f − fn| ≤ |f | + |fn| ≤ 2g, we also see that
|f − fn| is integrable for all n ∈ N.

Notice that for each n ∈ N that 2g−|f−fn| ≥ 0 and that (2g−|f−fn|)n≥1
converges to 2g pointwise almost everywhere. Therefore Fatou’s Lemma
(Theorem 3.5.1) implies that∫

A
2g dµ =

∫
A

lim inf
n→∞

2g − |f − fn| dµ

≤ lim inf
n→∞

∫
A

2g − |f − fn| dµ

= lim inf
n→∞

∫
A

2g dµ−
∫

A
|f − fn| dµ

=
∫

A
2g dµ− lim sup

n→∞

∫
A

|f − fn| dµ.

Hence, since 0 ≤
∫
R 2g dλ < ∞, we have that

lim sup
n→∞

∫
A

|f − fn| dµ = 0.

Therefore, by Theorem 3.3.11, we see that

lim sup
n→∞

∣∣∣∣∫
A
f − fn dµ

∣∣∣∣ ≤ lim sup
n→∞

∫
A

|f − fn| dµ = 0

Hence
lim

n→∞

∣∣∣∣∫
A
f dµ−

∫
A
fn dµ

∣∣∣∣ = lim
n→∞

∣∣∣∣∫
A
f − fn dµ

∣∣∣∣ = 0

so the result follows.
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Remark 3.6.2. Notice that the proof of the Dominated Convergence Theo-
rem (Theorem 3.6.1) actually produced that

lim
n→∞

∫
A

|f − fn| dµ = 0.

This stronger claim will prove useful later.

Remark 3.6.3. The necessity of the existence of an integrable function
g : X → [0,∞) such that |fn| ≤ g in the Dominated Convergence Theorem
(Theorem 3.6.1) can be seen via the same example as in Remark 3.5.2.

To conclude, we note a result similar to part of the proof of Corollary
3.2.6 extends.

Corollary 3.6.4. Let (X,A, µ) be a measure space and let f : X → C be an
integrable function. If {An}∞

n=1 ⊆ A are pairwise disjoint with A =
⋃∞

n=1An,
then ∫

A
f dµ =

∞∑
n=1

∫
An

f dµ.

Furthermore, the sum converges absolutely.

Proof. Let {An}∞
n=1 be a collection of pairwise disjoint measurable sets in

(X,A) with A =
⋃∞

n=1An. To see that the series converges absolutely, notice
by Theorem 3.3.11 and Corollary 3.2.6 that

∞∑
n=1

∣∣∣∣∫
An

f dµ

∣∣∣∣ ≤
∞∑

n=1

∫
An

|f | dµ =
∫

A
|f | dµ < ∞.

Hence the sum converges absolutely.
To see the series converges to the integral, for each m ∈ N let gm =

fχ⋃m

n=1 An
. Clearly gm is measurable since f is measurable and {An}∞

n=1 ⊆ A.
Furthermore, since |gm| ≤ |f |, f is integrable, and (gm)m≥1 converge to fχA

pointwise, we obtain by the Dominated Convergence Theorem (Theorem
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3.6.1) that ∫
A
f dµ =

∫
X
fχA dµ

= lim
m→∞

∫
X
gm dµ

= lim
m→∞

∫
X
fχ⋃m

n=1 An
dµ

= lim
m→∞

∫
X

m∑
n=1

fχAn dµ

= lim
m→∞

m∑
n=1

∫
X
fχAn dµ

= lim
m→∞

m∑
n=1

∫
An

f dµ

=
∞∑

n=1

∫
An

f dµ

as claimed.

3.7 Lp-Spaces
Before moving onto to analyzing uses of our new integrals, it is useful to
describe specific collections of integrable functions in order to develop various
norms on these functions. In particular, the following is a generalization of
the notion of an integrable function.
Definition 3.7.1. Let (X,A, µ) be a measure space and let p ∈ [1,∞). A
measurable function f : X → C is said to be p-integrable if∫

X
|f |p dµ < ∞.

The set of p-integrable functions on (X,A, µ) is denoted Lp(X,µ).
Example 3.7.2. Let X = N, let A = P(X), and let µ : N → [0,∞) be
the counting measure from Example 1.1.13. By our choice of σ-algebra, we
obtain that every function on N is measurable. Furthermore, recall that there
is a bijection from the set of all functions to all sequences of complex numbers
by mapping a function f : N → C to the sequences (f(n))n≥1. Finally, due
to the choice of measure, we see that∫

N
|f |p dµ =

∞∑
n=1

|f(n)|p.

Thus it is not difficult to see that Lp(N, µ) = ℓp(N,K) (as sets and, as we
will see later, as normed linear spaces). In particular, p-integrable functions
generalize the notion of ℓp-sequences spaces.
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We know from undergraduate real analysis that ℓp(N,K) are nice normed
linear spaces. Thus we desire to prove the same for Lp(X,µ). To begin, we
note the following.

Lemma 3.7.3. Let (X,A, µ) be a measure space and let p ∈ [1,∞). Then
Lp(X,µ) is a vector space is a vector space over C (and thus, restricting to
real-valued functions produces a vector space over R).

Proof. Let f, g ∈ Lp(X,µ) and let α ∈ C. Then, since∫
X

|αf |p dµ = |α|p
∫

X
|f |p dµ < ∞,

we see that αf ∈ Lp(X,µ). Moreover, since

|f + g|p ≤ (|f | + |g|)p ≤ (2 max{|f |, |g|})p

= 2p max {|f |p, |g|p} ≤ 2p (|f |p + |g|p) ,

we see that ∫
X

|f + g|p dµ ≤ 2p
∫

X
|f |p dµ+ 2p

∫
X

|g|p dµ < ∞

so f + g ∈ Lp(X,µ). Hence Lp(X,µ) is a vector space.

Remark 3.7.4. Of course, given p ∈ [1,∞), we would like to define a
norm on Lp(X,µ) so that we can perform analysis. In particular, using
our previous knowledge of the norm on ℓp(N,K) from Example 3.7.2, given
f ∈ Lp(X,µ) we would like to define

∥f∥p =
(∫

X
|f |p dµ

) 1
p

to be the p-norm of f . It is elementary to see that if f ∈ Lp(X,µ), then
∥f∥p ∈ [0,∞). Moreover, for all α ∈ C we see that

∥αf∥p =
(∫

X
|αf |p dµ

) 1
p

=
(

|α|p
∫

X
|f |p dµ

) 1
p

= |α|
(∫

X
|f |p dµ

) 1
p

= |α| ∥f∥p .

Furthermore, we will be able to verify the triangle inequality below. However,
one problem remains. In the definition of a norm, the only vector that can
have zero norm is the zero vector. However ∥f∥p = 0 if and only if f is zero
almost everywhere. Thus it is possible there is a function f that is not the
zero function (but zero almost everywhere) such that ∥f∥p = 0. How can we
rectify this situation?
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Well, since the problem is that functions that are equal almost everywhere
are not equal, let’s define a new notion of equality to make then equal. To
begin, recall that M(X,C), the set of measurable functions from X to C, is
a vector space. Since it is elementary to verify that

W = {f ∈ M(X,C) | f = 0 µ-almost everywhere}

is a subspace of M(X,C), we can form the quotient space M(X,C)/W .
Given a function f ∈ M(X,C), we will use [f ] to denote the equivalence
class f +W in M(X,C)/W . Clearly if f, g ∈ M(X,C), then [f ] = [g] if and
only if f = g almost everywhere. In particular, if [f ] = [g] then∫

X
|f |p dµ =

∫
X

|g|p dµ

as |f |p = |g|p almost everywhere so f ∈ Lp(X,µ) if and only if g ∈ Lp(X,µ).
Furthermore, since W is clearly a subspace of Lp(X,µ), we can consider
Lp(X,µ)/W

Definition 3.7.5. Given a measure space (X,A, µ) and a p ∈ [1,∞), the
Lp-space of (X,A, µ), denote Lp(X,µ), is the vector space over C defined by

Lp(X,µ) = {[f ] | f ∈ Lp(X,µ)} .

Furthermore, the p-norm is the function ∥ · ∥p : Lp(X,µ) → [0,∞) defined
by

∥[f ]∥p =
(∫

X
|f |p dµ

) 1
p

for all [f ] ∈ Lp(X,µ).

Remark 3.7.6. First, note that the p-norm is well-defined on Lp(X,µ).
Indeed if [f ] = [g] then ∫

X
|f |p dµ =

∫
X

|g|p dµ

so the value of ∥[f ]∥p does not depend on the representative of the equivalence
class.

Due to the definition of Lp(X,µ) and Remark 3.7.4, we will often not
distinguish elements of Lp(X,µ) and Lp(X,µ). In actuality, elements of
Lp(X,µ) are functions whereas elements of Lp(X,µ) are equivalence classes
of functions in Lp(X,µ). However, each element v⃗ of Lp(X,µ) can be
represented by a function f ∈ Lp(X,µ) and if g ∈ Lp(X,µ) is such that
g = f a.e., then v⃗ can also be represented by g. Consequently, we will treat
elements of Lp(X,µ) as functions that are p-integrable where we are allowed
to modify the functions on a set of µ-measure zero. Thus we will often
omit the notation of an equivalence class. One thing to keep in mind is
that we must verify that any function defined on Lp(X,µ) respects almost
everywhere equivalence.
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To prove that the p-norm is a norm on Lp(X,µ), we require some in-
equalities.

Lemma 3.7.7 (Young’s Inequality). Let a, b ≥ 0 and let p, q ∈ (1,∞) be
such that 1

p + 1
q = 1. Then ab ≤ 1

pa
p + 1

q b
q.

Proof. Notice 1 = 1
p + 1

q = p+q
pq implies p+ q − pq = 0. Hence q = p

p−1 .
Fix b ≥ 0. Notice if b = 0, the inequality easily holds. Thus we will

assume b > 0.
Define f : [0,∞) → R by f(x) = 1

px
p + 1

q b
q − bx. Clearly f(0) > 0

and limx→∞ f(x) = ∞ as p > 1 so xp grows faster than x. We claim that
f(x) ≥ 0 for all x ∈ [0,∞) thereby proving the inequality. Notice f is
differentiable on [0,∞) with

f ′(x) = xp−1 − b.

Therefore f ′(x) = 0 if and only if x = b
1

p−1 . Moreover, it is elementary to
see from the derivative that f has a local minimum at b

1
p−1 and thus f has a

global minimum at b
1

p−1 due to the boundary conditions. Therefore, since

f
(
b

1
p−1
)

= 1
p
b

p
p−1 + 1

q
bq − b

1+ 1
p−1 = 1

p
bq + 1

q
bq − bq = 0,

we obtain that f(x) ≥ 0 for all x ∈ [0,∞) as desired.

Theorem 3.7.8 (Hölder’s Inequality). Let (X,A, µ) be a measure space
and let p, q ∈ (1,∞) be such that 1

p + 1
q = 1. If f ∈ Lp(X,µ) and g ∈ Lq(X,µ),

then fg ∈ L1(X,µ) and

∫
X

|fg| dµ ≤
(∫

X
|f |p dµ

) 1
p
(∫

X
|g|q dµ

) 1
q

.

Proof. Let

α =
(∫

X
|f |p dµ

) 1
p

and β =
(∫

X
|g|q dµ

) 1
q

.

If α = 0, then |f |p = 0 almost everywhere by Theorem 3.2.2. Hence |f | = 0
almost everywhere so |fg| = 0 almost everywhere and hence the inequality
holds. Similarly, if β = 0 then the inequality holds. Hence we may assume
that α, β > 0.
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Since α, β > 0, we obtain that∫
X

|fg| dµ = αβ

∫
X

|f |
α

|g|
β
dµ

≤ αβ

∫
X

|f |p

pαp
+ |g|q

qβq
dµ by Lemma 3.7.7

= αβ

( 1
pαp

∫
X

|f |p dµ+ 1
qβq

∫
X

|g|q dµ
)

= αβ

(1
p

+ 1
q

)
= αβ

as desired.

In addition to being used to prove that Lp(X,µ) is a vector space, Hölder’s
inequality (Theorem 3.7.8) also has following important corollary.

Corollary 3.7.9. Let (X,A, µ) be a measure space with µ(X) < ∞ and let
p ∈ (1,∞). If f ∈ Lp(X,µ), then f ∈ L1(X,µ) with

∫
X

|f | dµ ≤ µ(X)
1
q

(∫
X

|f |p dµ
) 1

p

.

where q ∈ (1,∞) is such that 1
p + 1

q = 1.

Proof. Since µ(X) < ∞, it is elementary to see that 1 ∈ Lq(X,µ); that is,
the function that is one everywhere is q-integrable as∫

X
1q dµ = µ(X) < ∞.

Hence, by Hölder’s inequality (Theorem 3.7.8) f = f1 ∈ L1(X,µ) and
∫

X
|f | dµ ≤ µ(X)

1
q

(∫
X

|f |p dµ
) 1

p

.

Hölder’s inequality (Theorem 3.7.8) also enables us to show that the
p-norm satisfies the triangle inequality modulo one technicality.

Theorem 3.7.10 (Minkowski’s Inequality). Let (X,A, µ) be a measure
space and let p ∈ [1,∞). If f, g ∈ Lp(X,µ), then

(∫
X

|f + g|p dµ
) 1

p

≤
(∫

X
|f |p dµ

) 1
p

+
(∫

X
|g|p dµ

) 1
p

.

Proof. Let f, g ∈ Lp(X,µ). Recall from Lemma 3.7.3 that f + g ∈ Lp(X,µ).
Moreover, if p = 1 then∫

X
|f + g| dµ ≤

∫
X

|f | + |g| dµ ≤
∫

X
|f | dµ+

∫
X

|g| dµ
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so the inequality holds.
Now assume p ∈ (1,∞). Choose q ∈ (1,∞) so that 1

p + 1
q = 1. Thus

q = p
p−1 . Since (|f + g|p−1)q = |f + g|p, we see that |f + g|p−1 ∈ Lq(X,µ).

Hence Hölder’s inequality (Theorem 3.7.8) implies that∫
X

|f + g|p dµ

=
∫

X
|f + g||f + g|p−1 dµ

≤
∫

X
(|f | + |g|)|f + g|p−1 dµ

=
∫

X
|f ||f + g|p−1 dµ+

∫
X

|g||f + g|p−1 dµ

≤
(∫

X
|f |p dµ

) 1
p
(∫

X
(|f + g|p−1)q dµ

) 1
q

+
(∫

X
|g|p dµ

) 1
p
(∫

X
(|f + g|p−1)q dµ

) 1
q

=
((∫

X
|f |p dµ

) 1
p

+
(∫

X
|g|p dµ

) 1
p

)(∫
X

|f + g|p dµ
) 1

q

.

If
∫

X |f + g|p dµ = 0, the result follows trivially. Otherwise, we may divide
both sides of the equation by (

∫
X |f + g|p dµ)

1
q to obtain that

(∫
X

|f + g|p dµ
) 1

p

=
(∫

X
|f + g|p dµ

)1− 1
q

≤
(∫

X
|f |p dµ

) 1
p

+
(∫

X
|g|p dµ

) 1
p

as desired.

Corollary 3.7.11. Let (X,A, µ) be a measure space and let p ∈ [1,∞). The
p-norm is a norm on Lp(X,µ).

Proof. To see that ∥ · ∥p is indeed a norm on Lp(X,µ), we first note by
Remark 3.7.6 that ∥ · ∥p is well-defined (i.e. its value does not depend on
the representative of the equivalence class) and finite by the definition of
Lp(X,µ). Furthermore, notice that ∥f∥p = 0 if and only if f = 0 almost
everywhere if and only if [f ] = 0. Furthermore, as clearly ∥αf∥p = |α| ∥f∥p

for all α ∈ C and f ∈ Lp(X,µ), and as the triangle inequality holds by
Minkowski’s Inequality (Theorem 3.7.10), we obtain that ∥ · ∥p is a norm on
Lp(X,µ) as desired.

Perhaps unsurprising for those with knowledge of undergraduate real
analysis, each Lp-space is a Banach space. Of course, the proofs used in
Section C.5 will not be of aid to us as how could we deduce ‘pointwise Cauchy’
knowing ‘Lp-Cauchy’?
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Theorem 3.7.12 (Riesz-Fisher Theorem). Let (X,A, µ) be a measure
space and let p ∈ [1,∞). Then Lp(X,µ) is a Banach space.

Proof. To see that Lp(X,µ) is a Banach space, let (fn)n≥1 be an arbitrary
Cauchy sequence in Lp(X,µ) (of course this really means an Cauchy sequence
of equivalence classes, each of which is represented by a function fn ∈
Lp(X,µ)). Since (fn)n≥1 is Cauchy, it is not difficult to see that there exists
a subsequence (fkn)n≥1 such that

∥∥fkn+1 − fkn

∥∥
p
<

1
2n

for all n ∈ N (i.e. choose kn ∈ N to be a natural number greater than kn−1
that works in the definition of a Cauchy sequence for ϵ = 1

2n ). Since (fn)n≥1
is Cauchy, it suffices to show that (fkn)n≥1 converges to some element in
Lp(X,µ).

Define a function g : X → [0,∞] by

g(x) = |fk1(x)| +
∞∑

n=1
|fkn+1(x) − fkn(x)|

for all x ∈ X. Since the sum of measurable functions is measurable, the
absolute value of measurable functions is measurable, and the pointwise limit
of measurable functions is measurable by Proposition 2.1.22, we obtain that
g is a measurable function. Furthermore, since g is the pointwise limit of(

|fk1 | +
m∑

n=1
|fkn+1 − fkn |

)
m≥1

,

we obtain by Fatou’s Lemma (Theorem 3.5.1) and Minkowski’s inequality
(Theorem 3.7.10) that

(∫
X

|g|p
) 1

p

dµ ≤ lim inf
m→∞

(∫
X

(
|fk1(x)| +

m∑
n=1

|fkn+1(x) − fkn(x)|
)p

dµ

) 1
p

≤ lim inf
m→∞

∥fk1∥p +
m∑

n=1

∥∥fkn+1 − fkn

∥∥
p

= ∥fk1∥p + 1 < ∞.

Hence g ∈ Lp(X,µ).
By Remark 3.3.8 we see that if A = {x ∈ X | g(x) = ∞}, then A ∈ A

and µ(A) = 0. By replacing each fn with fnχAc (which does not affect the
equivalence classes as fn = fnχAc almost everywhere), we may assume that
g(x) < ∞ for all x ∈ X.
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Since g(x) < ∞ for all x ∈ X and since C is complete so every absolutely
summable sequence is summable by Theorem C.6.2, we obtain that the
function f : X → C defined by

f(x) = fk1(x) +
∞∑

n=1
fkn+1(x) − fkn(x)

for all x ∈ X is well-defined. Notice for all m ∈ N that

fk1 +
m∑

n=1
fkn+1 − fkn = fkm .

Hence |fkm | ≤ g for all m ∈ N and

f(x) = lim
n→∞

fkn(x)

for all x ∈ X. Hence f is measurable by Corollary 2.1.23 being the pointwise
limit of measurable functions. Furthermore, since clearly |f | ≤ g, we obtain
that f ∈ Lp(X,µ).

We claim that (fkn)n≥1 converges to f in the p-norm. To see this, notice
since |f |p, |fkm |p ≤ gp for all m ∈ N that

|f − fkm |p ≤ (|f | + |fkm |)p ≤ (2|g|)p = 2p|g|p.

Therefore, since g ∈ Lp(X,µ) and since (|f − fkm |p)m≥1 converges pointwise
to zero, the Dominated Convergence Theorem (Theorem 3.6.1) implies that
that

lim
m→∞

∫
X

|f − fkm |p dµ = 0.

Hence (fkn)n≥1 converges to f with respect to ∥ · ∥p. Therefore, as (fn)n≥1
was Cauchy, we obtain that (fn)n≥1 converges to f in Lp(X,µ). Thus,
since (fn)n≥1 was an arbitrary Cauchy sequence in Lp(X,µ), we obtain that
Lp(X,µ) is complete.

Notice the proof of the Riesz-Markov Theorem (Theorem 7.3.2) immedi-
ately implies the following.

Corollary 3.7.13. Let (X,A, µ) be a measure space, let p ∈ [1,∞), and let
f ∈ Lp(X,µ). If (fn)n≥1 is a sequence of elements of Lp(X,µ) that converge
to f in Lp(X,µ), then there exists a subsequence (fkn)n≥1 of (fn)n≥1 that
converges to f pointwise almost everywhere.

Proof. Since (fn)n≥1 converges to f in Lp(X,µ), (fn)n≥1 is Cauchy in
Lp(X,µ). Therefore the proof of the Riesz-Markov Theorem (Theorem
7.3.2) implies there exists a subsequence (fkn)n≥1 of (fn)n≥1 that converges
both pointwise almost everywhere and in Lp(X,µ) to some function h (i.e.
h(x) = fk1(x) +

∑∞
n=1 fkn+1(x) − fkn(x) for all x ∈ X). Therefore, since

limits in normed linear spaces are unique, we obtain that h = f almost
everywhere thereby completing the proof.
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For those familiar with undergraduate real analysis, it should not be
surprising that the p = 2 case is special.

Corollary 3.7.14. Let (X,A, µ) be a measure space. Then L2(X,µ) is a
Hilbert space with inner product ⟨ ·, · ⟩ : L2(X,µ) × L2(X,µ) → C defined by

⟨f, g⟩ =
∫

X
fg dµ.

Proof. First, clearly if g ∈ L2(X,µ) then g ∈ L2(X,µ) and ∥g∥2 = ∥g∥2.
Hence, by Hölder’s inequality (Theorem 3.7.8), we see that if f, g ∈ L2(X,µ)
then fg ∈ L1(X,µ) so

⟨f, g⟩ =
∫

X
fg dµ

is a well-defined element of C. In addition, the definition of ⟨f, g⟩ does not
depend on the representative of the equivalence classes of f and g selected,
⟨ ·, · ⟩ is well-defined.

It is not difficult to see that ⟨f, f⟩ ≥ 0 for all f ∈ L2(X,µ) with equality
if and only if f = 0 almost everywhere, that ⟨ ·, · ⟩ is linear in the first entry
by the linearity of the integral, and that

⟨f, g⟩ = ⟨g, f⟩

by Remark 3.3.10. Hence ⟨ ·, · ⟩ is an inner product on L2(X,µ). Since
∥f∥2 =

√
⟨f, f⟩ for all f ∈ L2(X,µ), we obtain that L2(X,µ) is a Hilbert

space by Theorem 3.7.12.

Of course, the above did not deal with the case that p = ∞ as the formula
for the norms does not make sense in this situation. To develop a notion of
an ∞-norm for measurable functions, we define the following concept which
is motivated by the fact that we don’t need our functions to be bounded
everywhere, just almost everywhere.

Definition 3.7.15. Let (X,A, µ) be a measure space. A function f : X → K
is said to be essentially bounded if there exists an M ≥ 0 such that

µ({x ∈ X | |f(x)| > M}) = 0.

The set of essentially bounded functions on (X,A, µ) is denoted L∞(X,µ).

Of course, L∞(X,µ) will not have a well-defined norm for the same
reason that Lp(X,µ) did not have a well-defined norm; we have to deal with
functions that are equal almost everywhere. Notice if f, g : X → C are
such that f is essentially bounded and f = g almost everywhere, then g is
essentially bounded as the union of µ-measure zero sets has µ-measure zero.
Hence we may define the following.
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Definition 3.7.16. Given a measure space (X,A, µ), the L∞-space of
(X,A, µ), denote L∞(X,µ), is

L∞(X,µ) = {[f ] | f : X → C essentially bounded} .

Remark 3.7.17. Given a measure space (X,A, µ) and f, g ∈ M(X,C) such
that [f ] = [g], we have seen that f ∈ L∞(X,µ) if and only if g ∈ L∞(X,µ).
In particular, every representative of an equivalence class in L∞(X,µ) is an
element of L∞(X,µ). Due to this and to abuse notation, we will consider
elements of L∞(X,µ) as elements of L∞(X,µ) and drop the explicit reminder
that we are dealing with an equivalence class in most (if not all) arguments.

Theorem 3.7.18. Let (X,A, µ) be a measure space. Then L∞(X,µ) is a
normed linear space with respect to the norm

∥f∥∞ = inf{M ≥ 0 | µ({x | |f(x)| > M}) = 0}.

Proof. First we claim that L∞(X,µ) is a subspace of M(X,C)/ ∼ and thus
a vector space over C. To see this, let f, g ∈ L∞(X,µ) be arbitrary. Then
there exists M1,M2 ≥ 0 such that

µ({x | |f(x)| > M1}) = 0 and µ({x | |g(x)| > M2}) = 0.

Hence since

{x | |f(x) + g(x)| > M1 +M2}
⊆ {x | |f(x)| + |g(x)| > M1 +M2}
⊆ {x | |f(x)| > M1} ∪ {x | |g(x)| > M2}

we see that

µ({x | |f(x) + g(x)| > M1 +M2})
≤ µ({x | |f(x)| > M1}) + µ({x | |g(x)| > M2}) = 0.

Hence f + g ∈ L∞(X,µ). Further for all α ∈ C

µ({x | |αf(x)| > |α|M}) = 0

so αf ∈ L∞(X,µ). Hence, since 0 ∈ L∞(X,µ), we have shown that L∞(X,µ)
is a subspace of M(X,C)/ ∼ and thus a vector space over C.

To see that ∥ · ∥∞ is a well-defined norm on L∞(X,µ), first notice that if
f = g almost everywhere and M ≥ 0 then

µ({x | |f(x)| > M}) = 0 if and only if µ({x | |g(x)| > M}) = 0.

Hence ∥ · ∥∞ is well-defined. Furthermore, notice that ∥f∥∞ < ∞ for all
f ∈ L∞(X,µ) by the definition of an essentially bounded function. Next
notice that ∥f∥∞ ≥ 0 with equality if and only if

µ

({
x

∣∣∣∣ |f(x)| > 1
n

})
= 0
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for all n ∈ N if and only if

µ ({x | |f(x)| > 0}) = µ

⋃
n≥1

{
x

∣∣∣∣ |f(x)| > 1
n

} = 0

if and only if f = 0 almost everywhere if and only if f = 0 in L∞(X,µ).
Next let α ∈ C and f ∈ L∞(X,µ) be arbitrary. If α = 0, then clearly

∥αf∥∞ = 0 = |α| ∥f∥∞. Otherwise, if α ̸= 0, we see that

∥αf∥∞ = inf{M ≥ 0 | µ({x | |αf(x)| > M}) = 0}

= inf
{
M ≥ 0

∣∣∣∣µ({x ∣∣∣∣ |f(x)| > M

|α|

})
= 0

}
= inf{|α|M ′ ≥ 0 | µ({x | |f(x)| > M ′}) = 0}
= |α| ∥f∥∞

as desired.
Finally, to verify that ∥ · ∥∞ satisfies the triangle inequality, let f, g ∈

L∞(X,µ) be arbitrary. If M1,M2 ≥ 0 are such that

µ({x | |f(x)| > M1}) = 0 and µ({x | |g(x)| > M2}) = 0,

the above shows that

µ({x | |f(x) + g(x)| > M1 +M2}) = 0.

Hence
∥f + g∥∞ ≤ M1 +M2.

Therefore, since this holds for all such M1 and M2, we obtain that

∥f + g∥∞ ≤ ∥f∥∞ + ∥g∥∞

as desired.

Remark 3.7.19. If f ∈ L∞(X,µ), then µ({x ∈ X | |f(x)| > ∥f∥∞}) = 0.
To see this, for each n ∈ N let

An =
{
x ∈ X

∣∣∣∣ |f(x)| > ∥f∥∞ + 1
n

}
.

Note each An is measurable. Furthermore, by the definition of ∥f∥∞, we
obtain that µ(An) = 0. Therefore, since

{x ∈ X | |f(x)| > ∥f∥∞} =
∞⋃

n=1
An,

the claim follows by the Monotone Convergence Theorem for measures
(Theorem 1.1.23) or simply the subadditivity of measures. Hence |f(x)| ≤
∥f∥∞ almost everywhere.
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Remark 3.7.20. If f ∈ C[a, b], then the Extreme Value Theorem implies
f is bounded. Thus, since f is Lebesgue measurable, f ∈ L∞([a, b], λ). In
addition, it is not difficult to verify that two notions of the ∞-norm (the one
from Example C.1.15 and the one from Theorem 3.7.18) agree. Indeed if

M0 = sup({|f(x)| | x ∈ [a, b]}) ≥ 0

then clearly
λ({x ∈ [a, b] | |f(x)| > M0}) = 0.

Hence

sup({|f(x)| | x ∈ [a, b]}) ≥ inf{M ≥ 0 | λ({x | |f(x)| > M}) = 0}.

For the reverse inequality, assume

0 ≤ M < sup({|f(x)| | x ∈ [a, b]}).

By the Extreme Value Theorem, there exists an x0 ∈ [a, b] such that

|f(x0)| = sup({|f(x)| | x ∈ [a, b]}) > M.

However, if ϵ = 1
2(|f(x0)|−M) > 0, there exists a δ > 0 such that if x ∈ [a, b]

and |x− x0| < δ then |f(x) − f(x0)| < ϵ. Hence, since (x0 − δ, x0 + δ) ∩ [a, b]
has non-zero λ-measure and

|f(x)| > |f(x0)| − ϵ = 1
2(|f(x0)| +M) > M

for all x ∈ (x0 − δ, x0 + δ) ∩ [a, b], we see that

λ({x ∈ [a, b] | |f(x)| > M}) > 0.

Thus it follows that

sup({|f(x)| | x ∈ [a, b]}) = inf{M ≥ 0 | λ({x | |f(x)| > M}) = 0}.

as desired.

Unsurprisingly, we also have the following.

Theorem 3.7.21 (Riesz-Fisher Theorem). Let (X,A, µ) be a measure
space. Then L∞(X,µ) is a Banach space.

Proof. To see that L∞(X,µ) is a Banach space, let (fn)n≥1 be an arbitrary
Cauchy sequence in L∞(X,µ). For each n ∈ N let

An = {x ∈ X | |fn(x)| > ∥fn∥∞}
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and for each n,m ∈ N let

Bn,m = {x ∈ X | |fn(x) − fm(x)| > ∥fn − fm∥∞}.

Hence, by Remark 3.7.19, each An and Bn,m are measurable for all n,m ∈ N,
µ(An) = 0 for all n ∈ N, and µ(Bn,m) = 0 for all n,m ∈ N. Let

B =
( ∞⋃

n=1
An

)⋃ ∞⋃
n,m=1

Bn,m

 .
Then B is a measurable set and µ(B) = 0 since B is a countable union of
µ-measure zero sets.

By replacing each fn with fnχBc (which doesn’t affect the equivalence
classes), we may assume that |fn(x)| ≤ ∥fn∥∞ for all x ∈ X and n ∈ N, and
that |fn(x) − fm(x)| ≤ ∥fn − fm∥∞ for all x ∈ X and n,m ∈ N. By this
assumption, for each x ∈ X we see that (fn(x))n≥1 is a Cauchy sequence in
C and thus converges. Hence the function f : X → C defined by

f(x) = lim
n→∞

fn(x)

for all x ∈ X is well-defined and measurable by Corollary 2.1.23.
We claim that f ∈ L∞(X,µ) and that (fn)n≥1 converges to f in L∞(X,µ).

To see this, notice for all x ∈ X and n ∈ N that

|f(x) − fn(x)| = lim
m→∞

|fm(x) − fn(x)| ≤ lim sup
m→∞

∥fm − fn∥∞ .

Hence
sup{|f(x) − fn(x)| | x ∈ X} ≤ lim sup

m→∞
∥fm − fn∥∞

for all n ∈ N. In particular

sup{|f(x) − f1(x)| | x ∈ X} ≤ lim sup
m→∞

∥fm − f1∥∞

≤ lim sup
m→∞

∥fm∥∞ + ∥f1∥∞ < ∞

since Cauchy sequences are bounded. Hence by the definition of essentially
bounded functions we see that f−f1 ∈ L∞(X,µ). Hence, since f1 ∈ L∞(X,µ)
and L∞(X,µ) is closed under addition, we see that f ∈ L∞(X,µ). Thus the
above shows that

∥f − fn∥∞ ≤ lim sup
m→∞

∥fm − fn∥∞

for all n ∈ N. As
lim

n→∞
lim sup

m→∞
∥fm − fn∥∞ = 0

since (fn)n≥1 is Cauchy, we obtain that (fn)n≥1 converges to f in L∞(X,µ).
Hence, as (fn)n≥1 was an arbitrary Cauchy sequence, we obtain that L∞(X,µ)
is complete.
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Clearly essentially bounded functions behave like bounded functions when
it comes to integration.

Theorem 3.7.22 (Hölder’s Inequality). Let (X,A, µ) be a measure space.
If f ∈ L1(X,µ) and g ∈ L∞(X,µ), then fg ∈ L1(X,µ) and

∥fg∥1 ≤ ∥f∥1 ∥g∥∞ .

Proof. Since |g| ≤ ∥g∥∞ almost everywhere by Remark 3.7.19, we obtain
that

∥fg∥1 =
∫

X
|f ||g| dµ ≤

∫
X

|f | ∥g∥∞ dµ = ∥f∥1 ∥g∥∞

as desired.

Corollary 3.7.23. Let (X,A, µ) be a measure space with µ(X) < ∞ and
let p ∈ [1,∞). If f ∈ L∞(X,µ), then f ∈ Lp(X,µ) and

∥f∥p ≤ ∥f∥∞ µ(X)
1
p

Proof. Since µ(X) < ∞, it is elementary to see that

(∫
X

|f |p dµ
) 1

p

≤
(∫

X
∥f∥p

∞ dµ

) 1
p

= (∥f∥p
∞ µ(X))

1
p = ∥f∥∞ µ(X)

1
p < ∞.

Hence f ∈ Lp(X,µ).

To conclude this section, we note specific types of functions are dense in
the Lp-spaces (well, when p ̸= ∞).

Theorem 3.7.24. Let (X,A, µ) be a measure space. The set

F = span
{
φ : X → [0,∞)

∣∣∣ φ is simple and there exists a A∈A
such that µ(A)<∞ and φ|Ac =0

}
is dense in Lp(X,µ) for all p ∈ [1,∞).

Proof. Fix p ∈ [1,∞). To begin, we claim that if φ : X → [0,∞) is a simple
function, then φ ∈ Lp(X,µ) if and only if there exists an A ∈ A such that
µ(A) < ∞ and φ|Ac = 0. Indeed, assume there exists an A ∈ A such that
µ(A) < ∞ and φ|Ac = 0. Since φ is a simple function, φ is essentially
bounded. Hence the proof of Corollary 3.7.23 yields

∥φ∥p ≤ ∥φ∥
1
p
∞ µ(A)

1
p < ∞

so φ ∈ Lp(X,µ).
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Conversely, assume φ ∈ Lp(X,µ). Clearly if φ = 0 the result is true.
Hence assume φ ̸= 0. By the definition of a simple function, there exists
pairwise disjoint sets {Ak}n

k=1 ⊆ A and elements {ak}n
k=1 ⊆ (0,∞) such that

φ =
∑n

k=1 akχAk
(where we have removed the characteristic function on

which φ is zero). If c = min{a1, . . . , an} > 0, then we see that

cpµ

(
n⋃

k=1
Ak

)
= cp

n∑
k=1

µ(Ak) ≤
n∑

k=1
ap

kµ(Ak) =
∫

X
φp dµ < ∞.

Therefore, if A =
⋃n

k=1Ak ∈ A, then µ(A) < ∞ and φ|Ac = 0 as desired.
To demonstrate the theorem, we must first show that F ⊆ Lp(X,µ).

However, this follows from the above claim as F is a span of elements of
Lp(X,µ) and thus is a subspace of Lp(X,µ).

Finally, to show that F is dense in Lp(X,µ), it suffices (since F and
Lp(X,µ) are vector spaces) to show that if f ∈ Lp(X,µ) and f ≥ 0 then there
exists a sequence (φn)n≥1 of elements of F such that limn→∞ ∥f − φn∥p = 0.
Indeed notice it is easy to see that the positive and negative parts of the real
and imaginary parts of f are smaller than |f | and thus elements of Lp(X,µ).
If we can approximate each of these non-negative functions in Lp(X,µ) via
elements of F , then the triangle inequality will yield the result.

Fix f ∈ Lp(X,µ) such that f ≥ 0. By Theorem 2.2.4 there exists an
increasing sequence of simple functions (φn)n≥1 that converge to f pointwise.
Hence 0 ≤ φn ≤ f so ∫

X
|φn|p dµ ≤

∫
X

|f |p dµ < ∞.

Hence φn ∈ Lp(X,µ) so φn ∈ F by the result at the beginning of the proof.
Moreover, since (|f − φnχAn |p)n≥1 converges to zero pointwise and since

|f − φnχAn |p ≤ |f |p ∈ L1(X,µ),

we obtain by the Dominated Convergence Theorem (Theorem 3.6.1) that

lim
n→∞

∫
X

|f − φnχAn |p dµ = 0.

Hence limn→∞ ∥f − φnχAn∥p = 0 as desired.

Theorem 3.7.25. For all p ∈ [1,∞),

Cc(R,C) =
{
f : R → C

∣∣∣ f is continuous and there exists a compact set
K⊆C such that f |Kc =0

}
is dense in Lp(R, λ).

Proof. By Theorem 3.7.24 we know that

F = span
{
φ : R → [0,∞)

∣∣∣ φ is simple and there exists a A∈M(R)
such that µ(A)<∞ and φ|Ac =0

}
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is dense in Lp(R, λ). However, if φn : R → [0,∞) is simple and φ ∈ Lp(R, λ),
then the end of the proof of Theorem 3.7.24 can be used to show that φχ[−n,n]
converges to φ in Lp(R, λ). Therefore, since Corollary 3.7.23 implies that
Cc(R,C) ⊆ Lp(R, λ), to show that Cc(R,C) is dense in Lp(R, λ), it suffices
by the triangle inequality to show that each simple function φ such that
φ|[−n,n]c = 0 for some n ∈ N can be approximated in ∥ · ∥p by an element of
Cc(R,C).

To see the above, let φ be an arbitrary simple function such that
φ|[−n,n]c = 0 for some n ∈ N and let ϵ > 0 be arbitrary. By Lusin’s
Theorem (Theorem 2.5.1) there exists a continuous function f : [−n, n] → C
such that

λ({x ∈ [−n, n] | f(x) ̸= φ(x)}) < ϵ

and
sup{|f(x)| | x ∈ [−n, n]} ≤ ∥φ∥∞ < ∞.

Extend f to a continuous function g : R → C by defining

g(x) =


f(x) if x ∈ [−n, n]
−f(x)

ϵ (x− n) + f(x) if x ∈ [n, n+ δ)
f(x)

ϵ (x+ n) + f(x) if x ∈ (−n− δ,−n]
0 otherwise

.

Clearly g ∈ Cc(R,C) and it is easy to see that ∥g∥∞ ≤ ∥φ∥∞ since we
extended f to g using linear functions connecting f(±n) to 0. Therefore,
since ∫

R
|g − φ|p dλ

=
∫

[−n,n]
|f − φ|p dλ+

∫
[n,n+ϵ)∪(−n−ϵ,−n]

|g|p dλ

=
∫

{x∈[−n,n] | f(x)̸=φ(x)}
|f − φ|p dλ+

∫
[n,n+ϵ)∪(−n−ϵ,−n]

|g|p dλ

≤
∫

{x∈[−n,n] | f(x)̸=φ(x)}
(2 ∥φ∥∞)p dλ+

∫
[n,n+ϵ)∪(−n−ϵ,−n]

∥φ∥p
∞ dλ

≤ (2 ∥φ∥∞)pϵ+ 2ϵ ∥φ∥p
∞

= (2p + 2) ∥φ∥p
∞ ϵ

the proof is complete as ∥φ∥∞ is fixed and ϵ > 0 was arbitrary.
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Chapter 4

Differentiation and
Integration

With our construction of integrals with respect to measures complete, we
can turn our attention to studying the relation between our integral to other
objects. Since the relationship between integration and differentiation is the
centrepiece of any undergraduate calculus course, it makes sense we analyze
whether we have similar results in the measure theoretic realm. Thus this
section is devoted to understanding the relationship between the Lebesgue
integral and differentiation of measurable functions.

After a technical lemma pertaining to covering subsets of R with intervals
of small size, we will demonstrate that every monotone function is differ-
entiable λ-almost everywhere and obtain a bound for the integral of the
derivative. We then turn our attention to seeing if there is a version of the
Fundamental Theorems of Calculus for the Lebesgue integral. In particular,
if f ∈ L1([a, b], λ), what can we say about the function F : [a, b] → R defined
by

F (x) =
∫

[a,x]
f dλ?

4.1 Vitali Coverings

To begin our study of differentiation using Lebesgue measure theory, we
first need one if not the most technical results in this course. Clearly given
a subset X of R there are many ways to cover X with intervals. These
coverings have many important properties, especially if we are dealing with
open intervals covering a compact subsets for which a finite subcover can be
chosen. However, as we are dealing with Lebesgue measurable sets instead
of compact subsets, it is useful to to study various collections of intervals
and how they behave with respect to the Lebesgue measure. The technical
lemma that we need revolves around the following types of coverings where
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each point is covered by a set of arbitrarily small length.

Definition 4.1.1. A collection I of intervals of R containing no singleton
points is said to be a Vitali covering of a set X ⊆ R if for all δ > 0 and
x ∈ X there exists an I ∈ I such that x ∈ I and λ(I) < δ.

Example 4.1.2. Clearly the set of all open intervals of R is a Vitali covering
of R whereas the set of all intervals with length at least 1 is not a Vitali
covering of R.

Similar to how every open cover of a compact set has a finite subcover,
the following, which is our technical lemma, shows that if we use a Vitali
covering, we can almost choose a finite subcover. In fact, the finite almost
subcover we obtain has some additional nice properties.

Theorem 4.1.3 (Vitali Covering Lemma). Let X ⊆ R be such that
λ∗(X) < ∞. If I is a Vitali covering of X, then for all ϵ > 0 there exists a
finite, pairwise disjoint collection {Ik}n

k=1 ⊆ I such that

λ∗
(
X \

n⋃
k=1

Ik

)
< ϵ.

Proof. We begin by demonstrating that we can assume I has some additional
properties. First note since λ∗(X) < ∞ that there exists an open subset
U ⊆ R such that X ⊆ U and λ(U) < ∞ by the definition of the Lebesgue
outer measure.

We claim that
J =

{
I | I ∈ I, I ⊆ U

}
is a Vitali covering of X. To see this, first notice that J consists of intervals
of R that are not singletons. To see the other property of a Vitali covering,
let δ > 0 and x ∈ X be arbitrary. Since x ∈ X ⊆ U , there exists an ϵx > 0
such that (x − ϵx, x + ϵx) ⊆ U . However, since x ∈ X and I is a Vitali
covering of X, there exists an I ∈ I such that x ∈ I and

λ(I) < min
{1

2δ,
1
2ϵx

}
.

Since x ∈ I and λ(I) < 1
2ϵx, one easily sees that

I ⊆
(
x− 1

2ϵx, x+ 1
2ϵx

)
⊆ U.

Therefore I ⊆ (x− ϵx, x+ ϵx) ⊆ U so I ∈ J . Hence I ∈ J , x ∈ I, and
λ(I) < δ. Therefore, since δ > 0 and x ∈ X were arbitrary, J is a Vitali
covering of X.
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We claim it suffices to prove the result for J in place of I. Indeed suppose
given an ϵ > 0 there exists a finite, pairwise disjoint collection {Jk}n

k=1 ⊆ J
such that

λ∗
(
X \

n⋃
k=1

Jk

)
< ϵ.

By the definition of J there exists a collection {Ik}n
k=1 ⊆ I such that Ik = Jk

for all k ∈ {1, . . . , n}. Therefore, as {Jk}n
k=1 is pairwise disjoint and Ik = Jk

for all k ∈ {1, . . . , n}, clearly {Ik}n
k=1 are pairwise disjoint and there exists a

finite subset Y ⊆ X such that

X \
n⋃

k=1
Ik = Y ∪

(
X \

n⋃
k=1

Jk

)
.

Hence

λ∗
(
X \

n⋃
k=1

Ik

)
≤ λ∗

(
X \

n⋃
k=1

Jk

)
+ λ(Y ) < ϵ+ 0 = ϵ

as desired. Therefore, it suffices to prove the result for J in place of I. Note
using J is more desirable due to the additional property that each interval
in J is a closed interval contained in U .

Let ϵ > 0 be arbitrary. Consider the following recursive process to create
a pairwise disjoint collection {Jk}∞

k=1 ⊆ J with certain properties. Let
J1 ∈ J be any interval (which must exist unless X is empty; a case which is
trivial).

To proceed with the recursive step, assume for some n ∈ N that {Jk}n
k=1 ⊆

J have been defined with certain properties. Notice if we ended up in the
situation that X \

⋃n
k=1 Jk = ∅, then the result would be complete. Hence

we assume that X \
⋃n

k=1 Jk ̸= ∅. To construct Jn+1, let

Mn = sup{λ(J) | J ∈ J , J ∩ Jk = ∅ for all k ∈ {1, . . . , n}}.

Notice since J ⊆ U for all J ∈ J that λ(J) ≤ λ(U) for all J ∈ J so
Mn ≤ λ(U) < ∞.

To see that Mn > 0, recall that there exists an x ∈ X \
⋃n

k=1 Jk. Since
each element of J is closed,

⋃n
k=1 Jk is a closed set. Therefore, since x ∈

X \
⋃n

k=1 Jk,

dist
(

{x},
n⋃

k=1
Jk

)
= inf

{
|x− y|

∣∣∣∣∣ y ∈
n⋃

k=1
Jk

}
> 0

(i.e. there is no sequence in
⋃n

k=1 Jk that converges to x). Since J is
a Vitali covering of X, there exists a J ∈ J such that x ∈ J and λ(J) <
dist ({x},

⋃n
k=1 Jk). Hence J∩Jk = ∅ for all k ∈ {1, . . . , n} so Mn ≥ λ(J) > 0
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as every element of J has positive length. Therefore there exists a Jn+1 ∈ J
such that Jn+1 ∩ Jk = ∅ for all k ∈ {1, . . . , n} and

λ(Jn+1) > 1
2Mn.

If we use the above process, either the process ends after a finite number of
steps thereby completing the proof, or we obtain a pairwise disjoint collection
{Jk}∞

k=1 ⊆ J such that each Jk is a closed interval contained in U such that
λ(Jn+1) > 1

2Mn for all n ∈ N. Notice

∞∑
k=1

λ(Jk) = λ

( ∞⋃
k=1

Jk

)
≤ λ(U) < ∞.

Hence limk→∞ λ(Jk) = 0 so there exists an N ∈ N such that
∞∑

k=N+1
λ(Jk) < ϵ

5 .

For each k ∈ N, let Ik denote the unique interval with the same midpoint
as Jk and λ(Ik) = 5λ(Jk). We claim that

X \
N⋃

k=1
Jk ⊆

∞⋃
k=N+1

Ik.

To see this, let x ∈ X \
⋃N

k=1 Jk be arbitrary. Since J is a Vitali covering of
X and since

⋃N
k=1 Jk is a closed set disjoint from {x}, the above demonstrates

there exists a Jx ∈ J such that x ∈ Jx and Jx ∩Jk = ∅ for all k ∈ {1, . . . , N}.
If Jx ∩ Jk = ∅ for all k ∈ {1, . . . , n} for some n ≥ N , then the definition of
Mn implies that

0 < λ(Jx) ≤ Mn < 2λ(Jn+1).

However, since limn→∞ λ(Jn) = 0, it must be the case that there exists an
n > N such that Jx ∩ Jn ̸= ∅. Let nx be the least natural number such that
Jx ∩ Jnx ≠ ∅. Hence nx > N . Since Jx ∩ Jk = ∅ for all k ∈ {1, . . . , nx − 1},
the above computation shows that

0 < λ(Jx) ≤ Mnx−1 < 2λ(Jnx).

Furthermore, since x ∈ Jx and Jx ∩Jnx ≠ ∅, we see that the distance between
x and the midpoint of Jnx is at most

λ(Jx) + 1
2λ(Jnx) ≤ 2λ(Jnx) + 1

2λ(Jnx) = 5
2λ(Jnx).

Hence x ∈ Inx ⊆
⋃∞

k=N+1 Ik by the definition of Inx . Therefore, since
x ∈ X \

⋃N
k=1 Jk was arbitrary, the claim follows.
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Combining the above, we see that

λ∗
(
X \

n⋃
k=1

Jk

)
≤ λ

 ∞⋃
k=N+1

Ik


≤

∞∑
k=N+1

λ(Ik)

≤ 5
∞∑

k=N+1
λ(Jk) < ϵ

as desired.

4.2 The Lebesgue Differentiation Theorem
With the technical proof of the Vitali Covering Lemma (Theorem 4.1.3)
out of the way, we can turn our attention differentiation of Lebesgue mea-
surable functions. The goal of this section is to demonstrate the Lebesgue
Differentiation Theorem which tells us everything we want to know about
differentiation monotone Lebesgue measurable functions. First we set some
notation that is useful when discussing derivatives (that luckily could be
avoided in MATH 2001).

Definition 4.2.1. Let f : R → R. For each x ∈ R define

D+f(x) = lim sup
h→0+

f(x+ h) − f(x)
h

,

D+f(x) = lim inf
h→0+

f(x+ h) − f(x)
h

,

D−f(x) = lim sup
h→0−

f(x+ h) − f(x)
h

, and

D−f(x) = lim inf
h→0−

f(x+ h) − f(x)
h

,

and note that D+f(x) ≤ D+f(x) and D−f(x) ≤ D−f(x). It is said that f
is differentiable at x if

D+f(x) = D+f(x) = D−f(x) = D−f(x) ∈ R.

If f is differentiable at x, then the derivative of f at x, denoted f ′(x), is
f ′(x) = D+f(x) = D+f(x) = D−f(x) = D−f(x).

Theorem 4.2.2 (Lebesgue Differentiation Theorem). If f : [a, b] → R
is a non-decreasing function, then f is differentiable λ-almost everywhere, f ′

is Lebesgue measurable, f ′ ≥ 0 λ-almost everywhere, and∫
[a,b]

f ′ dλ ≤ f(b) − f(a).
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Proof. For notational simplicity, if x < a we define f(x) = f(a) and if
x > b we define f(x) = f(b). Clearly this extended definition of f is still
non-decreasing. Thus for all c ∈ R we see that f−1([c,∞)) is of the form
(y,∞) or [y,∞) for some y ∈ R ∪ {±∞}. Hence f is Lebesgue measurable.

To see that f is differentiable almost everywhere, we desire to show that
for all s, t ∈ {+,−} that

{x ∈ [a, b] | Dsf(x) ̸= Dtf(x)}
{x ∈ [a, b] | Dsf(x) ̸= Dtf(x)}
{x ∈ [a, b] | Dsf(x) ̸= Dtf(x)}

are Lebesgue measurable with Lebesgue measure zero. In this write-up of
the proof, we will only show that

X = {x ∈ [a, b] | D+f(x) > D+f(x)}

is Lebesgue measurable with Lebesgue measure zero as the proofs of the
remaining facts are nearly identical.

For each p, q ∈ R let

Ep,q = {x ∈ [a, b] | D+f(x) > p > q > D+f(x)}.

Clearly
X =

⋃
p,q∈Q

Ep,q.

Therefore, we can demonstrate that λ∗(Ep,q) = 0 for all p, q ∈ Q, then
λ∗(X) = 0 since Q is countable and thus X is measurable as the Lebesgue
measure is complete.

Fix p, q ∈ Q with p > q. Let r = λ∗(Ep,q) ≤ λ∗([a, b]) < ∞ and let ϵ > 0
be arbitrary. By the definition of the Lebesgue measure, there exists an open
subset U ⊆ R such that Ep,q ⊆ U and

λ(U) ≤ λ∗(Ep,q) + ϵ = r + ϵ.

Notice if x ∈ Ep,q then D+f(x) < q so

sup
δ>0

inf
0<h<δ

f(x+ h) − f(x)
h

= lim inf
h→0+

f(x+ h) − f(x)
h

< q.

Hence for each x ∈ Ep,q and δ > 0 there exists an interval of the form
[x, x + h) such that [x, x + h) ⊆ U , h < δ, and f(x + h) − f(x) < qh.
Since the collection of such intervals forms a Vitali covering of Ep,q, the
Vitali Covering Lemma (Theorem 4.1.3) implies there exists an n ∈ N,
x1, . . . , xn ∈ Ep,q, and h1, . . . , hn > 0 such that if Ik = (xk, xk + hk) for all
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k ∈ {1, . . . , n}, then {Ik}n
k=1 are pairwise disjoint subsets of U such that

f(xk + hk) − f(xk) < qhk for all k ∈ {1, . . . , n}, and

λ∗
(
Ep,q \

n⋃
k=1

Ik

)
< ϵ.

Notice this implies
n∑

k=1
f(xk + hk) − f(xk) < q

n∑
k=1

hk

= q
n∑

k=1
λ(Ik)

= qλ

(
n⋃

k=1
Ik

)
≤ qλ(U) ≤ q(r + ϵ).

Let
A = Ep,q ∩

(
n⋃

k=1
Ik

)
⊆ Ep,q.

Thus
Ep,q = A ∪

(
Ep,q \

n⋃
k=1

Ik

)
so r = λ∗(Ep,q) ≤ λ∗(A) + ϵ. Hence λ∗(A) ≥ r − ϵ.

Notice if x ∈ A ⊆ Ep,q then D+f(x) > p so

inf
δ>0

sup
0<h<δ

f(x+ h) − f(x)
h

= lim sup
h→0+

f(x+ h) − f(x)
h

> p.

Hence, since A ⊆
⋃n

k=1 Ik and {Ik}n
k=1 are pairwise disjoint open intervals,

for each x ∈ A and δ > 0 there exists an interval of the form [x, x+ h) such
that h < δ, [x, x+ h) ⊆ Ik for some k, and f(x+ h) − f(x) > ph. Since the
collection of such intervals forms a Vitali covering of A, the Vitali Covering
Lemma (Theorem 4.1.3) implies there exists an m ∈ N, y1, . . . , ym ∈ A, and
s1, . . . , sm > 0 such that if Jk = (yk, yk + sk) for all k ∈ {1, . . . ,m}, then
{Jk}m

k=1 are pairwise disjoint subsets such that each Jk is contained in a
single Ij , f(yk + sk) − f(yk) > psk for all k ∈ {1, . . . ,m}, and

λ∗
(
A \

m⋃
k=1

Jk

)
< ϵ.

Let
B = A ∩

(
m⋃

k=1
Jk

)
⊆

m⋃
k=1

Jk.
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Thus

A = B ∪
(
A \

m⋃
k=1

Jk

)

so λ∗(B) ≥ λ∗(A) − ϵ > r − 2ϵ. Furthermore

m∑
k=1

f(yk + sk) − f(yk) > p
m∑

k=1
sk

= p
m∑

k=1
λ(Jk)

= pλ

(
m⋃

k=1
Jk

)
≥ pλ∗(B)
≥ p(r − 2ϵ).

However, since each Jk is contained in a single Ij and since f is non-decreasing,
we obtain for each j ∈ {1, . . . , n} that∑

k such that Jk⊆Ij

f(yk + sk) − f(yk) ≤ f(xj + hj) − f(xj).

Therefore

p(r − 2ϵ) ≤
m∑

k=1
f(yk + sk) − f(yk) ≤

n∑
j=1

f(xj + hj) − f(xj) ≤ q(r + ϵ).

However, since ϵ > 0 was arbitrary, the above implies pr ≤ qr. Therefore,
since p > q and r ≥ 0, we obtain that r = 0 as desired.

By the above

lim
h→0

f(x+ h) − f(x)
h

exists almost everywhere provided we allow ±∞ as limits. Note as f is
non-decreasing, the limit is always non-negative and thus never −∞.

For each n ∈ N, let gn : [a, b] → [0,∞) be defined by

gn(x) = n

(
f

(
x+ 1

n

)
− f(x)

)
for all x ∈ [a, b] (where f(y) = f(b) for all y > b). Note each gn maps into
[0,∞) as f is non-decreasing. By the above and Proposition 3.3.13, (gn)n≥1
is a sequence of Lebesgue measurable functions that converge pointwise
almost everywhere to a Lebesgue measurable function g : [a, b] → [0,∞]
(which will be f ′ provided g(x) < ∞ for almost every x). Furthermore,
since gn : [a, b] → [0,∞) and since f is bounded (being non-decreasing) and
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thus Lebesgue integrable, we obtain by Fatou’s Lemma (Theorem 3.5.1) and
Proposition 3.3.13 that∫

[a,b]
g dλ =

∫
[a,b]

lim inf
n→∞

gn dλ

≤ lim inf
n→∞

∫
[a,b]

gn dλ

= lim inf
n→∞

n

∫
[a,b]

f

(
x+ 1

n

)
− f(x) dλ(x)

= lim inf
n→∞

n

∫
[a+ 1

n
,b+ 1

n
]
f dλ− n

∫
[a,b]

f dλ

= lim inf
n→∞

n

∫
[b,b+ 1

n ]
f dλ− n

∫
[a,a+ 1

n ]
f dλ

= lim inf
n→∞

f(b) − n

∫
[a,a+ 1

n ]
f dλ

= f(b) − lim sup
n→∞

n

∫
[a,a+ 1

n ]
f dλ

≤ f(b) − f(a)

since, for all n ∈ N,

n

∫
[a,a+ 1

n ]
f dλ ≥ n

∫
[a,a+ 1

n ]
f(a) dλ = f(a).

Therefore, since f(b) − f(a) < ∞, it must be the case that g(x) < ∞ for
almost every x. Hence f ′ exists almost everywhere and f ′ = g almost
everywhere. Therefore, since λ is complete and g is Lebesgue measurable, f ′

is Lebesgue measurable thereby completing the proof.

Remark 4.2.3. Note if f : [a, b] → R is non-increasing, then −f is non-
decreasing and thus differentiable almost everywhere with (−f)′ ≥ 0 almost
everywhere. Hence f is differentiable almost everywhere with f ′ ≤ 0 almost
everywhere.

Corollary 4.2.4. If f : [a, b] → R is Lebesgue measurable and differentiable
λ-almost everywhere, then f ′ : [a, b] → R is Lebesgue measurable.

Proof. For each n ∈ N, let gn : [a, b] → R be defined by

gn(x) = n

(
f

(
x+ 1

n

)
− f(x)

)
for all x ∈ [a, b] (where f(y) = f(b) for all y > b). By Proposition 3.3.13
(gn)n≥1 is a sequence of measurable functions that converge pointwise almost
everywhere to f ′. Hence f ′ is Lebesgue measurable.
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To conclude this section, we answer the question “Is the inequality in the
Lebesgue Differentiation Theorem (Theorem 4.2.2) always an equality?” It
turns out, the answer is no.

Remark 4.2.5. Let f : [0, 1] → [0, 1] be the Cantor ternary function. Thus
f is non-decreasing on [0, 1] and constant on Cc. Since Cc is a finite union of
open sets, we easily see by Definition 4.2.1 that f is differentiable at each
element of Cc with f ′(x) = 0 for all x ∈ Cc. Therefore f is differentiable
almost everywhere with f ′ = 0 almost everywhere since λ(C) = 0. However∫

[0,1]
f ′ dλ = 0 < 1 = f(1) − f(0).

Therefore the inequality in the Lebesgue Differentiation Theorem (Theorem
4.2.2) may be strict.

4.3 Bounded Variation

One nice result from undergraduate calculus was the Fundamental Theorem of
Calculus which showed the connection between integration and differentiation
and that a differentiable function can be recovered from its derivative; that
is

f(x) = f(a) +
∫ x

a
f ′(y) dy.

However, as we have seen above, the Cantor ternary function is a function
that cannot be recovered from its derivative via integration since its derivative
is zero almost everywhere. Therefore, if we desire to better understand the
relationship between the Lebesgue integral and differentiation, we need to
restrict the set of functions we consider. Since functions that ‘wiggle’ too
much are notorious for having derivatives that are not well-behaved (and
probably not Lebesgue integrable), we begin by analyzing the following type
of functions.

Definition 4.3.1. A function f : [a, b] → C is said to be of bounded variation
if there exists an M ∈ R such that whenever {xk}n

k=0 is a partition of [a, b],
then

n∑
k=1

|f(xk) − f(xk−1)| ≤ M.

Remark 4.3.2. If f : [a, b] → C it is clear that f is of bounded variation if
and only if Re(f) and Im(f) are of bounded variation. Thus we will focus
on real-valued functions of bounded variation.

Example 4.3.3. Let f : [a, b] → R be differentiable on [a, b] for which
there exist an M ∈ N such that |f ′(x)| ≤ M for all x ∈ (a, b). Then f is
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of bounded variation. Indeed assume {xk}n
k=0 is a partition of [a, b]. Then

|f(xk) − f(xk−1)| ≤ M |xk − xk−1| by the Mean Value Theorem. Hence

n∑
k=1

|f(xk) − f(xk−1)| ≤
n∑

k=1
M |xk − xk−1| = M |b− a| < ∞

as desired.

Going back to our motivation for functions of bounded variation, if a
function ‘wiggles’ too much, then the function is not of bounded variation.

Example 4.3.4. The continuous function f : [0, 1] → [−1, 1] defined by

f(x) = x cos
(
π

2x

)
(with f(0) = 0) is not of bounded variation. Indeed for each n ∈ N consider
the partition {xk}2n+1

k=0 of [0, 1] where x0 = 0 and

xk = 1
2n+ 2 − k

.

Notice that

|f(xk)| =
{

0 if k is odd
1

2n+2−k if k is even

and thus
2n+1∑
k=0

|f(xk) − f(xk−1)| = 2
n∑

j=1

1
2n+ 2 − 2j =

n∑
j=1

1
j
.

Therefore, as limn→∞
∑n

j=1
1
j = ∞, it follows that f is not of bounded

variation.

Unfortunately, these are not the functions we are looking for since the
Cantor ternary function is of bounded variation by the following.

Remark 4.3.5. It is elementary to see that if f is monotone then f is of
bounded variation since

n∑
k=1

|f(xk) − f(xk−1)| = |f(b) − f(a)|

for any partition {xk}n
k=0 of [a, b]. Similarly if f and g are both of bounded

variation, it is elementary that any linear combination of f and g is of bounded
variation by the triangle inequality. Furthermore, clearly the restriction of a
function f of bounded variation to a closed interval contained in the domain
of f is also of bounded variation.
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Even through functions of bounded variation are not the functions we
are looking for, they do contain some nice functions we wish to study and
the ideas and properties we develop will lead us to the correct collection of
functions. To begin our study, we consider the smallest constant that works
in Definition 4.3.1.

Definition 4.3.6. Let f : [a, b] → R be of bounded variation. The total
variation of f , denoted Vf (a, b), is

Vf (a, b) = sup
{

n∑
k=1

|f(xk) − f(xk−1)|
∣∣∣∣∣ n∈N,

{xk}n
k=1 a partition of [a,b]

}
.

If f : [a, b] → R is of bounded variation, then for all x, y ∈ (a, b) such
that x < y the restriction of f to [x, y] is of bounded variation so Vf (x, y)
makes sense. Using this, we are able to prove the following.

Theorem 4.3.7 (Jordan Decomposition Theorem). Let f : [a, b] → R
be of bounded variation. Define V,D : [a, b] → R by V (x) = Vf (a, x) (with
V (a) = 0) and D(x) = V (x) − f(x) for all x ∈ [a, b]. Then V and D are
non-decreasing functions such that f = V −D.

In particular, by Remark 4.3.5, a function is of bounded variation if and
only if it is the difference of two non-decreasing functions.

Proof. To see that V is non-decreasing, let x, y ∈ [a, b] with x < y be
arbitrary. To see that V (x) ≤ V (y), we claim that

Vf (a, y) = Vf (a, x) + Vf (x, y).

To see this, first notice that if {xk}n
k=0 is a partition of [a, x] and {yk}m

k=0
is a partition of [x, y], then {xk}n

k=0 ∪ {yk}m
k=0 is a partition of [a, y] (with

xn = y0). Since this implies

n∑
k=0

|f(xk) − f(xk−1)| +
m∑

k=0
|f(yk) − f(yk−1)| ≤ Vf (a, y)

and since {xk}n
k=0 and {yk}m

k=0 were arbitrary partitions of [a, x] and [x, y]
respectively, we obtain that

Vf (a, x) + Vf (x, y) ≤ Vf (a, y)

by the definition of the total variation.
For the other inequality, let {zk}n

k=0 be an arbitrary partition of [a, y].
Then P = {zk}n

k=0 ∪ {x} is a potentially larger partition such that P ∩ [a, x]
is a partition of [a, x] and P ∩ [x, y] is a partition of [x, y]. Therefore, if
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P = {wk}m
k=0 is the standard way to write P , then, by at most one application

of the triangle inequality,
n∑

k=1
|f(zk) − f(zk−1)| ≤

m∑
k=1

|f(wk) − f(wk−1)|

=
∑

k such that wk∈[a,x]
|f(wk) − f(wk−1)|

+
∑

k such that wk−1∈[x,y]
|f(wk) − f(wk−1)|

≤ Vf (a, x) + Vf (x, y).

Therefore, since {zk}n
k=0 was an arbitrary partition of [a, y], the claim follows.

Hence
V (y) − V (x) = Vf (a, y) − Vf (a, x) = Vf (x, y) ≥ 0.

Thus V is non-decreasing as desired.
Clearly f = V − D by construction. To see that D is non-decreasing,

notice for all x, y ∈ [a, b] with x < y that

D(y) −D(x) = V (y) − V (x) − (f(y) − f(x)) = Vf (x, y) − (f(y) − f(x)) ≥ 0

since clearly |f(y) − f(x)| ≤ Vf (x, y) by using the trivial partition {x, y} in
the definition of the total variation. Hence the proof is complete.

By combining the Lebesgue Differentiation Theorem (Theorem 4.2.2)
with the Jordan Decomposition Theorem (Theorem 4.3.7), we immediately
obtain information about derivatives and integrals of functions of bounded
variation.

Corollary 4.3.8. If f : [a, b] → R is of bounded variation, then f is
differentiable λ-almost everywhere, f ′ is Lebesgue measurable, and f ′ ∈
L1([a, b], λ).

Proof. Since f is of bounded variation, by the Jordan Decomposition Theo-
rem (Theorem 4.3.7) there exists non-decreasing functions V,D : [a, b] → R
such that f = V −D. Since every non-decreasing function is differentiable
with Lebesgue measurable derivatives by the Lebesgue Differentiation Theo-
rem (Theorem 4.2.2), we clearly see that f is differentiable with f ′ = V ′ −D′

being Lebesgue measurable. Moreover, since V and D are non-decreasing,
we see that V ′, D′ ≥ 0 almost everywhere and thus |f ′| ≤ V ′ +D′. Therefore∫

[a,b]
|f ′| dλ ≤

∫
[a,b]

V ′ +D′ dλ ≤ V (b) +D(b) − V (a) −D(a) < ∞

by the Lebesgue Differentiation Theorem (Theorem 4.2.2). Hence f ∈
L1([a, b], λ).
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4.4 Absolutely Continuous Functions

Although the functions of bounded variation are not the functions we are
looking for, the functions we desire are easy to describe and contain all
differentiable functions with bounded derivatives.

Definition 4.4.1. A function f : [a, b] → C is said to be absolutely continu-
ousif for all ϵ > 0 there exists a δ > 0 such that whenever {ak}n

k=1, {bk}n
k=1 ⊆

[a, b] are such that

a ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn ≤ b and
n∑

k=1
|bk − ak| < δ

then
n∑

k=1
|f(bk) − f(ak)| < ϵ.

Remark 4.4.2. Again, it is not difficult to see using the triangle inequality
that a function f : [a, b] → C is absolutely continuous if and only if Re(f) and
Im(f) are absolutely continuous. Thus we will mainly focus on real-valued
functions.

Example 4.4.3. Let f : [a, b] → R be a differentiable on [a, b] for which
there exist an M ∈ N such that |f ′(x)| ≤ M for all x ∈ (a, b). We claim
that f is absolutely continuous. To see this, let ϵ > 0 be arbitrary and let
δ = ϵ

M+1 . If {ak}n
k=1, {bk}n

k=1 ⊆ [a, b] are such that

a ≤ a1 < b1 ≤ a2 < b1 ≤ · · · ≤ an < bn ≤ b and
n∑

k=1
|bk − ak| < δ

then |f(bk) − f(ak)| ≤ M |bk − ak| for all k by the Mean Value Theorem.
Hence

n∑
k=1

|f(bk) − f(ak)| ≤
n∑

k=1
M |bk − ak| ≤ Mδ < ϵ.

Hence f is absolutely continuous.

Example 4.4.4. The Cantor ternary function is not absolutely continuous.
To see this, let f : [0, 1] → [0, 1] be the Cantor ternary function and let
{Pn}∞

n=0 be the sets from Definition 1.4.4 so that C =
⋂∞

n=0 Pn and Pn is a
disjoint union of 2n closed intervals such that λ(Pn) =

(
2
3

)n
.

To see that f is not absolutely continuous, let ϵ = 1
2 and let δ > 0 be

arbitrary. Choose N ∈ N such that

λ(PN ) =
(2

3

)N

< δ.
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Since PN is a disjoint union of 2N closed intervals, we can write PN =⋃2N

k=1[ak, bk] where bk < ak+1 for all k. Thus

0 = a1 < b1 ≤ a2 < b1 ≤ · · · ≤ a2N < b2N = 1

and
2N∑
k=1

|bk − ak| = λ(PN ) < δ.

However, since f is constant on each open interval in Cc and since (bk, ak+1) ⊆
Cc for all k, we obtain that f(bk) = f(ak+1) for all k and thus

2N∑
k=1

|f(bk)−f(ak)| =
2N∑
k=1

f(bk)−f(ak) = f(b2N )−f(a1) = f(1)−f(0) = 1 > ϵ.

Therefore, since δ > 0 was arbitrary, we see the definition of absolute
continuity fails for f when ϵ = 1

2 . Hence f is not absolutely continuous.

Unsurprisingly, absolutely continuous functions have some nice properties.

Proposition 4.4.5. Every real-valued absolutely continuous function is
continuous and of bounded variation.

Proof. Let f : [a, b] → R be absolutely continuous. It easily follows from
definition that f is continuous (i.e. take n = 1 in Definition 4.4.1).

To see that f is of bounded variation, recall since f is absolutely
continuous that if ϵ = 1 > 0 then there exists a δ > 0 such that if
{ak}n

k=1, {bk}n
k=1 ⊆ [a, b] are such that

a ≤ a1 < b1 ≤ a2 < b1 ≤ · · · ≤ an < bn ≤ b and
n∑

k=1
|bk − ak| < δ

then
n∑

k=1
|f(bk) − f(ak)| < ϵ.

Let ℓ =
⌊

2(b−a)
δ

⌋
. We claim f is of bounded variation with total variation

at most (ℓ+ 1)ϵ. To see this, let {xk}n
k=0 be an arbitrary partition of [a, b]

and consider the partition

P = {xk}n
k=0 ∪

{
a+ 1

2kδ
}ℓ

k=1
.

Clearly P is a partition of [a, b]. Write {zk}m
k=0 as the standard form of P

and for each j ∈ {0, 1, . . . , ℓ+ 1} let pj ∈ {0, . . . ,m} be such that

zpj = min
{
a+ 1

2jδ, b
}
.
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Notice if we let

zpj = a1 < zpj+1 = b1 = a2 < zpj+2 = b2 = a3 < · · · ≤ zpj+1 ,

then, since |zpj+1 − zpj | < δ, we obtain by our choice of δ via absolutely
continuity that

pj+1∑
k=pj+1

|f(zk) − f(zk−1)| < ϵ.

Hence
n∑

k=1
|f(xk) − f(xk−1)| ≤

m∑
k=1

|f(zk) − f(zk−1)|

=
ℓ∑

j=0

pj+1∑
k=pj+1

|f(zk) − f(zk−1)|

≤ (ℓ+ 1)ϵ < ∞.

Therefore, since {xk}n
k=0 was an arbitrary partition of [a, b], f is of bounded

variation.

Corollary 4.4.6. If f : [a, b] → R is absolutely continuous, then f is
differentiable λ-almost everywhere, f ′ is Lebesgue measurable, and f ′ ∈
L1([a, b], λ).

Proof. Since every absolutely continuous function is of bounded variation by
Proposition 4.4.5, the result follows from Corollary 4.3.8.

Of course, it is natural to ask whether the converse of Proposition 4.4.5
holds. To construct an example to show this is not the case, we require the
following.

Proposition 4.4.7. If f : [a, b] → R is absolutely continuous and f ′ = 0
λ-almost everywhere, then f is constant.

Proof. To see that f is constant on [a, b], let c ∈ (a, b] be arbitrary. We claim
that f(c) = f(a).

To see this, let ϵ > 0 and recall that since f ′ = 0 λ-almost everywhere,
there exists a Lebesgue measurable set X ⊆ [a, c] such that f ′(x) = 0 for all
x ∈ X and λ([a, c] \X) = 0. Since f is absolutely continuous, there exists a
δ > 0 such that if {ak}n

k=1, {bk}n
k=1 ⊆ [a, c] are such that

a ≤ a1 < b1 ≤ a2 < b1 ≤ · · · ≤ an < bn ≤ c and
n∑

k=1
|bk − ak| < δ

then
n∑

k=1
|f(bk) − f(ak)| < ϵ.
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Note we can even allow ak = bk in the above as the interval [ak, bk] then
contributes zero to both sums.

Let x ∈ X ∩ [a, c) be arbitrary. Then

0 = f ′(x) = lim
h→0

f(x+ h) − f(x)
h

.

Therefore, for any δ0 > 0 there exists an h > 0 such that λ([x, x+ h)) < δ0,
[x, x+ h) ⊆ [a, c), and |f(x+ h) − f(x)| < ϵh. Since the collection of such
intervals forms a Vitali covering of X ∩ [a, c), the Vitali Covering Lemma
(Theorem 4.1.3) implies there exists an n ∈ N, x1, . . . , xn ∈ X ∩ [a, c) with
x1 < x2 < · · · < xn, and h1, . . . , hn > 0 such that if Ik = (xk, xk + hk) for
all k ∈ {1, . . . , n}, then {Ik}n

k=1 are pairwise disjoint subsets of [a, c) such
that |f(xk + hk) − f(xk)| < ϵhk for all k ∈ {1, . . . , n} and

λ∗
(

[a, c] \
n⋃

k=1
Ik

)
≤ λ([a, c] \X) + λ∗

(
(X \ {c}) \

n⋃
k=1

Ik

)
< 0 + δ = δ.

Let y0 = a, xn+1 = c, and yk = xk + hk for all k ∈ {1, . . . , n}. Then

a ≤ y0 ≤ x1 < y1 ≤ x2 < y2 ≤ · · · ≤ xn < yn ≤ xn+1 = c.

Therefore, since

n∑
k=0

|xk+1 − yk| = λ

(
n⋃

k=0
[yk, xk+1)

)
= λ∗

(
[a, c] \

n⋃
k=1

Ik

)
< δ,

we obtain by our choice of δ via absolute continuity that

n∑
k=0

|f(xk+1) − f(yk)| < ϵ.

However, note in addition by our construction that

n∑
k=1

|f(yk) − f(xk)| <
n∑

k=1
ϵhk ≤ (c− a)ϵ.

Therefore, by the triangle inequality,

|f(c) − f(a)| ≤
n∑

k=0
|f(xk+1) − f(yk)| +

n∑
k=1

|f(yk) − f(xk)| < (c− a+ 1)ϵ.

Hence, since ϵ > 0 was arbitrary, we obtain that f(c) = f(a). Therefore,
since c ∈ (a, b] was arbitrary, the result follows.
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Example 4.4.8. If f : [0, 1] → [0, 1] is the Cantor ternary function, then f
is uniformly continuous on [0, 1] and of bounded variation, but not absolutely
continuous. Indeed f is non-decreasing and continuous by Lemma 2.1.8 and
thus uniformly continuous [0, 1] and of bounded variation. The fact that f is
not absolutely continuous follows from Proposition 4.4.7 along with the fact
that f is non-constant yet f ′ = 0 almost everywhere.

To conclude this section, we desire to show that functions defined by
integrating against an L1-function are absolutely continuous and thus the
collection of absolutely continuous functions include those defined in a
‘Fundamental Theorem of Calculus’-like manner. This is achieved via the
following lemma.

Lemma 4.4.9. Let (X,A, µ) be a measure space and let f ∈ L1(X,µ). Then
for all ϵ > 0 there exists a δ > 0 such that if A ∈ A and µ(A) < δ then

∫
A

|f | dµ < ϵ.

Proof. Let ϵ > 0 be arbitrary. Due to the definition of the Lebesgue integral
of |f | and the fact that

∫
R |f | dλ < ∞, there exists a simple function φ : R →

[0,∞) such that φ ≤ |f | and

∫
R

|f | dλ ≤
∫
R
φdλ+ ϵ

2 .

Since 0 ≤ φ ≤ |f | and |f | is Lebesgue integrable, we obtain that φ is Lebesgue
integrable with f − φ ≥ 0. Hence for all A ∈ M(R) we obtain that

∫
A

|f | dλ−
∫

A
φdλ =

∫
A

(|f | − φ) dλ ≤
∫
R

(|f | − φ) dλ ≤ ϵ

2 .

Hence ∫
A

|f | dλ ≤
∫

A
φdλ+ ϵ

2 .

for all A ∈ M(R).
Since φ is a simple function, we can write φ =

∑n
k=1 akχAk

where n ∈ N,
{ak}n

k=1 ⊆ [0,∞), and {Ak}n
k=1 are pairwise disjoint Lebesgue measurable

sets. Let

M = max({ak}n
k=1) < ∞
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and let δ = ϵ
2M+1 . Then δ > 0 and if A ∈ M(R) is such that λ(A) < δ, then

∫
A

|f | dλ ≤ ϵ

2 +
∫

A
φdλ

= ϵ

2 +
n∑

k=1
akλ(A ∩Ak)

≤ ϵ

2 +M
n∑

k=1
λ(A ∩Ak)

≤ ϵ

2 +Mλ

(
n⋃

k=1
A ∩Ak

)
{A ∩Ak}n

k=1 are pairwise disjoint

≤ ϵ

2 +Mδ

= ϵ

2 +M
ϵ

2M + 1 < ϵ.

Hence, since ϵ > 0 was arbitrary, the result follows.

Proposition 4.4.10. Let f ∈ L1([a, b], λ). If F : [a, b] → C is defined by

F (x) =
∫

[a,x]
f dλ

for all x ∈ [a, b], then F is absolutely continuous.

Proof. First notice that F is well-defined as f ∈ L1([a, b], λ).
To see that F is absolutely continuous, let ϵ > 0. Since f is Lebesgue

integrable, by Lemma 4.4.9 there exists a δ > 0 such that if A ∈ M(R) and
λ(A) < δ then ∫

A
|f | dλ < ϵ.

To see that this δ satisfies the requirements of Definition 4.4.1, let

{ak}n
k=1, {bk}n

k=1 ⊆ [a, b]

be such that

a ≤ a1 < b1 ≤ a2 < b1 ≤ · · · ≤ an < bn ≤ b and
n∑

k=1
|bk − ak| < δ.

Therefore, since

λ

(
n⋃

k=1
[ak, bk]

)
=

n∑
k=1

|bk − ak| < δ,
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we obtain that
n∑

k=1
|F (bk) − F (ak)| =

n∑
k=1

∣∣∣∣∣
∫

[a,bk]
f dλ−

∫
[a,ak]

f dλ

∣∣∣∣∣
=

n∑
k=1

∣∣∣∣∫
R
fχ[a,bk] − fχ[a,ak] dλ

∣∣∣∣
=

n∑
k=1

∣∣∣∣∫
R
fχ[ak,bk] dλ

∣∣∣∣
=

n∑
k=1

∣∣∣∣∣
∫

[ak,bk]
f dλ

∣∣∣∣∣
≤

n∑
k=1

∫
[ak,bk]

|f | dλ

=
∫⋃n

k=1[ak,bk]
|f | dλ < ϵ.

Hence F is absolutely continuous as desired.

4.5 The Fundamental Theorems of Calculus

Due to the examples of absolutely continuous functions in Proposition 4.4.10
resembling the functions analyzed in MATH 2001 in relation to the Funda-
mental Theorems of Calculus, it is natural to ask what the derivatives of
the functions defined in Proposition 4.4.10 are and whether all absolutely
continuous functions are of the above form. Both of these questions will be
answered in this section thereby generalizing the Fundamental Theorems of
Calculus!

To begin, we note the following technical lemma.

Lemma 4.5.1. Let f ∈ L1([a, b], λ) be real-valued and define F : [a, b] → R
by

F (x) =
∫

[a,x]
f dλ

for all x ∈ [a, b]. If F is non-decreasing, then f(x) ≥ 0 for almost every x.

Proof. Let
X = {x ∈ [a, b] | f(x) < 0},

which is a Lebesgue measurable set since f is Lebesgue measurable. It suffices
to prove that λ(X) = 0. To see that λ(X) = 0, suppose for the sake of a
contradiction that λ(X) > 0. Due to the regularity of the Lebesgue measure
from Proposition 1.4.12, there exists a compact subset K ⊆ X such that
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λ(K) > 0. Therefore, since f(x) < 0 for all x ∈ K ⊆ X and as λ(K) > 0,
we obtain that ∫

K
f dλ < 0.

Notice if V = (a, b) \K, then

F (b) − F (a) = F (b) =
∫

[a,b]
f dλ =

∫
K
f dλ+

∫
V
f dλ <

∫
V
f dλ.

However, since V is an open and a subset of (a, b), and since every open
subset of R is a countable union of disjoint open intervals, we may write

V =
∞⋃

k=1
(ak, bk)

where (ak, bk) ⊆ (a, b) for all k ∈ N and {(ak, bk)}∞
k=1 are pairwise disjoint.

Therefore, if fk = fχ(ak,bk) for each k ∈ N, then

∫
V
f dλ =

∫
R
fχV dλ =

∫
R

∞∑
k=1

fk dλ.

Notice if Sn =
∑n

k=1 fk for each n ∈ N, then |Sn| ≤ |f |. Hence, since f is
Lebesgue integrable, we obtain by the Dominated Convergence Theorem
(Theorem 3.6.1) that

F (b) − F (a) <
∫

V
f dλ

= lim
n→∞

∫
R

n∑
k=1

fk dλ

= lim
n→∞

n∑
k=1

F (bk) − F (ak)

≤ F (b) − F (a)

since F is non-decreasing. As this clearly is a contradiction, we obtain that
λ(X) = 0 as desired.

Corollary 4.5.2. Let f ∈ L1([a, b], λ) be real-valued and define F : [a, b] → R
by

F (x) =
∫

[a,x]
f dλ

for all x ∈ [a, b]. If F (x) = 0 for all x ∈ [a, b], then f = 0 λ-almost
everywhere.
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Proof. Since F is constant, F is non-decreasing. Hence Lemma 4.5.1 implies
that f ≥ 0 almost everywhere. Similarly, since −f is Lebesgue integrable
and since

0 = (−F )(x) =
∫

[a,x]
−f dλ

for all x ∈ [a, b], −F is non-decreasing so Lemma 4.5.1 implies that −f ≥ 0
almost everywhere. Hence f = 0 λ-almost everywhere.

Using all of the above, we arrive at our Fundamental Theorems of Calculus
which complete characterize absolutely continuous functions.
Theorem 4.5.3 (Fundamental Theorem of Calculus, I). Let f ∈
L1([a, b], λ) be real-valued. If F : [a, b] → R is defined by

F (x) =
∫

[a,x]
f dλ

for all x ∈ [a, b], then F ′ exists almost everywhere and F ′(x) = f(x) for
almost every x.
Proof. To begin, note F is absolutely continuous (and thus Lebesgue mea-
surable) by Proposition 4.4.10. Hence F ′ exists λ-almost everywhere and is
Lebesgue integrable by Corollary 4.4.6. To demonstrate that F ′ = f λ-almost
everywhere we divide the proof into three cases.

Case 1: f is bounded. In this case there exists an M ≥ 0 such that
|f(x)| ≤ M for all x ∈ [a, b]. For notational simplicity, for all t ≥ b define
F (t) = F (b). Furthermore, for each n ∈ N, let Fn : [a, b] → R be defined by

Fn(x) = n

(
F

(
x+ 1

n

)
− F (x)

)
= n

∫
[x,x+ 1

n ]
f dλ

for all x ∈ [a, b]. Clearly each Fn is a Lebesgue measurable function by
Proposition 1.4.8 since F is Lebesgue measurable. Furthermore, notice for
each n ∈ N and x ∈ [a, b] that

|Fn(x)| ≤ n

∫
[x,x+ 1

n ]
|f | dλ ≤ n

( 1
n
M

)
= M.

Since Mχ[a,b] is Lebesgue integrable, since limn→∞ Fn(x) = F ′(x) for almost
every x ∈ [a, b], and since |Fn| ≤ Mχ[a,b], we obtain by the Dominated
Convergence Theorem (Theorem 3.6.1) that∫

[a,c]
F ′ dλ = lim

n→∞

∫
[a,c]

Fn dλ

for all c ∈ [a, b]. Hence∫
[a,c]

F ′ dλ = lim
n→∞

n

∫
[a,c]

F

(
x+ 1

n

)
− F (x) dλ(x)

= lim
n→∞

n

(∫
[c,c+ 1

n ]
F dλ−

∫
[a,a+ 1

n ]
F dλ

)
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for all c ∈ [a, b].
We claim that

lim
n→∞

n

∫
[c,c+ 1

n ]
F dλ = F (c)

for all c ∈ [a, b]. To see this, recall that F is continuous since F is absolutely
continuous. Therefore, since c ∈ [a, b], for every ϵ > 0 there exists an Nc ∈ N
such that |F (x) − F (c)| < ϵ for all x ∈

[
c, c+ 1

Nc

]
. Hence for all n ≥ Nc we

obtain that∣∣∣∣∣F (c) − n

∫
[c,c+ 1

n ]
F (x) dλ(x)

∣∣∣∣∣ =
∣∣∣∣∣n
∫
[c,c+ 1

n ]
F (c) − F (x) dλ(x)

∣∣∣∣∣
≤ n

∫
[c,c+ 1

n ]
|F (c) − F (x)| dλ(x)

≤ n

∫
[c,c+ 1

n ]
ϵ dλ(x) = ϵ.

Hence the claim follows.
Therefore, by applying the above limit twice (once with c = a), we obtain

for all c ∈ [a, b] that∫
[a,c]

F ′ dλ = F (c) − F (a) = F (c) =
∫

[a,c]
f dλ.

Therefore, since F ′ and f are Lebesgue integrable, we obtain that∫
[a,x]

F ′ − f dλ = 0

for all x ∈ [a, b]. However, since F ′ − f is Lebesgue integrable, Corollary
4.5.2 implies that F ′ − f = 0 λ-almost everywhere. Hence F ′ = f λ-almost
everywhere as desired.

Case 2: f ≥ 0. For each n ∈ N, define fn : [a, b] → [0, n] by fn(x) =
min{f(x), n} for all x ∈ [a, b]. Note each fn is a Lebesgue measurable
function being the infimum of two Lebesgue measurable functions. Moreover
|fn| ≤ n so fn is Lebesgue integrable, and limn→∞ fn(x) = f(x) for all
x ∈ [a, b].

We claim for all n ∈ N that F ′ ≥ fn almost everywhere. To see this, for
each n ∈ N define Fn, Gn : [a, b] → R by

Fn(x) =
∫

[a,x]
fn dλ and Gn(x) =

∫
[a,x]

f − fn dλ

for all x ∈ [a, b]. Since fn and f − fn are Lebesgue integrable, we see that Fn

and Gn are well-defined and absolutely continuous, F = Fn +Gn, and Fn and
Gn are differentiable almost everywhere. Furthermore, since fn is bounded,
the first case of this proof implies that F ′

n = fn almost everywhere. Moreover,

©For use through and only available at pskoufra.info.yorku.ca.



150 CHAPTER 4. DIFFERENTIATION AND INTEGRATION

since f − fn ≥ 0 by construction, Gn is non-decreasing so G′
n(x) ≥ 0 for

almost every x. Hence for almost every x ∈ [a, b],

F ′(x) = F ′
n(x) +G′

n(x) ≥ F ′
n(x) = fn(x)

as claimed.
Since F ′(x) ≥ fn(x) for almost every x and limn→∞ fn(x) = f(x) for

all x ∈ [a, b], we obtain that F ′(x) ≥ f(x) for almost every x ∈ [a, b].
Furthermore, since f(x) ≥ 0 for almost every x ∈ [a, b], we obtain that F ′ ≥ 0
and F is non-decreasing on [a, b]. Therefore the Lebesgue Differentiation
Theorem (Theorem 4.2.2) implies

F (b) − F (a) ≥
∫

[a,b]
F ′ dλ ≥

∫
[a,b]

f dλ = F (b) − F (a).

Hence F ′ is Lebesgue integrable and∫
[a,b]

F ′ − f dλ = 0.

Therefore, since F ′ − f ≥ 0, the above integral implies that F ′ = f λ-almost
everywhere by Theorem 3.1.11.

Case 3: f arbitrary. Recall that we may write

f = f+ − f−

where f+ and f− are non-negative Lebesgue integrable functions. Therefore,
if F± : [a, b] → R are defined by

F±(x) =
∫

[a,x]
f± dλ,

then Case 2 implies that F± are well-defined functions such that F ′
± = f±

almost everywhere. Since clearly F = F1 − F2 by linearity, we obtain that

F ′ = F ′
1 − F ′

2 = f1 − f2 = f

λ-almost everywhere as desired.

Using a proof of the second Fundamental Theorem of Calculus as a model,
we obtain a Lebesgue measure theoretic version of the second Fundamental
Theorem of Calculus.

Theorem 4.5.4 (Fundamental Theorem of Calculus, II). If F : [a, b] →
R is absolutely continuous, then F ′ ∈ L1([a, b], λ) and

F (x) = F (a) +
∫

[a,x]
F ′ dλ

for all x ∈ [a, b].
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Proof. To begin, recall that if F : [a, b] → R is absolutely continuous, then F
is differentiable almost everywhere with F ′ ∈ L1([a, b], λ) by Corollary 4.4.6.
Define G : [a, b] → R by

G(x) =
∫

[a,x]
F ′ dλ

for all x ∈ [a, b]. Then G is absolutely continuous by Proposition 4.4.10 and
G′ = F ′ λ-almost everywhere by the First Fundamental Theorem of Calculus
(Theorem 4.5.3). Thus F −G is absolutely continuous and

(F −G)′ = F ′ −G′ = 0

almost everywhere. Hence Proposition 4.4.7 implies that F −G is constant.
Therefore, as (F −G)(a) = F (a), we obtain that F (x) −G(x) = F (a) for all
x ∈ [a, b] so

F (x) = F (a) +
∫

[a,x]
F ′ dλ

for all x ∈ [a, b] as desired.
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Chapter 5

Signed Measures

We have seen that integrating L1-functions produces exactly the class of
absolutely continuous functions and integrating a positive measurable func-
tion against a measure µ produces a new measure ν with specific properties
(see Corollary 3.2.6). Thus it is natural to ask, “What objects do we get by
integrating L1-functions against a measure µ?” Clearly such an object is a
function on a σ-algebra that need not take only positive values and thus is
not a measure.

To resolve this situation, we will extend our notion of a measure in this
section. In particular, this section will focus on “real-valued measures” and
the class of “complex-valued measures” easily follows and will be left as
homework. After developing the theory of “real-valued measures”, we will
be able to completely describe the collection of “real-valued measures” that
can be obtained by integration against a real-valued L1-function. Moreover,
given any two σ-finite measures µ and ν, we will demonstrate we can always
write ν as a sum of a measure obtained by integrating a positive measurable
function against µ and a measure that is “orthogonal” to µ.

5.1 Signed Measures

To begin, we extend our notion of a measure to allow for negative values.
Since we allow measures to obtain the value ∞, we must allow our new
notion of measures to obtain the value −∞. However, since we desire a
notion of countably additivity, we will not permit both ±∞ to be obtained.

Definition 5.1.1. Let (X,A) be a measurable space. A function ν : A →
[−∞,∞] is said to be a signed measure on (X,A) if

1. ν(∅) = 0,

2. the range of ν is contained in either [−∞,∞) or (−∞,∞], and
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3. if {An}∞
n=1 ⊆ A are pairwise disjoint, then ν (

⋃∞
n=1An) =

∑∞
n=1 ν(An)

in the following sense:

• If ν (
⋃∞

n=1An) = ±∞, then
∑∞

n=1 ν(An) diverges to ±∞.
• If |ν (

⋃∞
n=1An)| < ∞, then

∑∞
n=1 ν(An) converges absolutely to

ν (
⋃∞

n=1An).

Remark 5.1.2. The reason we require “
∑∞

n=1 ν(An) converges absolutely
to ν (

⋃∞
n=1An)” in the case that |ν (

⋃∞
n=1An)| < ∞ is that series that do

not converge absolutely (i.e. converge conditionally) can be rearranged to
converge to any real number and can be rearranged to diverge to ±∞. As
such, we need

∑∞
n=1 ν(An) to converges absolutely in order to make sense of

ν (
⋃∞

n=1An).

Example 5.1.3. Clearly any positive measure is a signed measure. Similarly,
if µ1, . . . , µn are finite positive measures on a measurable space (X,A) and
α1, . . . , αn ∈ R, then

∑n
k=1 αkµk is a signed measure on (X,A).

Recall our motivation for signed measures is the following example.

Example 5.1.4. Let (X,A, µ) be a measure space and let f ∈ L1(X,µ) be
real-valued. Define ν : A → [−∞,∞] by

ν(A) =
∫

A
f dµ

for all A ∈ A. We claim that ν is a signed measure. Indeed clearly ν(∅) = 0
and ν : A → (−∞,∞) since f ∈ L1(X,µ). Moreover, since the final property
in Definition 5.1.1 is precisely demonstrated in Corollary 3.6.4, the claim
follows.

Remark 5.1.5. Notice all of the above examples of signed measures are
obtained via linear combinations of positive measures. Indeed if ν is the
measure from Example 5.1.4, then

ν(A) =
∫

A
f dµ =

∫
A
f+ dµ−

∫
A
f− dµ

for all A ∈ A. Since µ+, µ− : A → [0,∞) defined by µ±(A) =
∫

A f± dµ
are positive measures by Corollary 3.2.6, ν is the difference of two positive
measures. This is not a coincidence as will be demonstrated in subsequent
sections.

5.2 The Hahn Decomposition Theorem
To begin our analysis of signed measure and decomposing them as a linear
combination of positive measures, notice in Remark 5.1.5 that ν was described
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as the difference of two positive measures. However, if P = {x | f(x) ≥ 0}
and N = {x | f(x) ≤ 0}, then for all A ⊆ P and B ⊆ N we see that
ν(A) ≥ 0 and ν(B) ≤ 0. Such sets are essential to understanding signed
measures and are described as follows.

Definition 5.2.1. Let (X,A) be a measurable space and let ν : A →
[−∞,∞] be a signed measure on X. A set P ∈ A is said to be positive for ν
if ν(B) ≥ 0 whenever B ∈ A and B ⊆ P .

Similarly, a set N ∈ A is said to be negative for ν if ν(B) ≤ 0 whenever
B ∈ A and B ⊆ N .

Finally, a set A ∈ A is said to be null for ν if ν(B) = 0 whenever B ∈ A
and B ⊆ A (that is, a set is null if and only if it is both positive and negative).

Example 5.2.2. Clearly the empty set is a null set for every signed measure.

Example 5.2.3. Let X = [−π, π] and define ν : M(R) → (−∞,∞) by

ν(A) =
∫

A
sin(x) dλ(x)

for all A ∈ M(R). Then [0, π] is a positive set. Indeed notice sin(x) ≥ 0 for
all x ∈ [0, π]. Therefore if B ∈ M(R) and B ⊆ [0, π] then

ν(B) =
∫

B
sin(x) dλ(x) ≥ 0.

Similarly [−π, 0] is a negative set. However, [−π, π] is not positive, negative,
nor null even though ν([−π, π]) = 0 as ν([0, π]) > 0 yet ν([−π, 0]) < 0.

Example 5.2.4. More generally, let (X,A, µ) be a measure space and let
f ∈ L1(X,µ) be real-valued. By Example 5.1.4 if we define ν : A → [−∞,∞]
by

ν(A) =
∫

A
f dµ

for all A ∈ A, then ν is a signed measure on (X,A). It is not difficult to see
that P = {x ∈ X | f(x) ≥ 0} is a positive set for ν, N = {x ∈ X | f(x) < 0}
is a negative set for ν, and {x ∈ X | f(x) = 0} is a null set for µ.

Our first goal with respect to signed measures is to demonstrate that
there are ‘large’ positive and negative sets. In particular, notice if P and
N are as in Example 5.2.4, then P ∪ N = X whereas P ∩ N = ∅. The
Hahn Decomposition Theorem (Theorem 5.2.7) will extend this idea to any
signed measure. However, first we need two lemmas; the first showing we
can combine positive sets to get a positive set, and the second showing we
can extract a positive set from a set of positive measure.

Lemma 5.2.5. Let (X,A) be a measurable space and let ν be a signed
measure on (X,A). If {An}∞

n=1 ⊆ A are positive sets for ν, then
⋃∞

n=1An is
a positive set for ν. Similarly, if {An}∞

n=1 ⊆ A are negative sets for ν, then⋃∞
n=1An is a negative set for ν.
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Proof. Assume {An}∞
n=1 ⊆ A are positive sets for ν. To see thatA =

⋃∞
n=1An

is positive, let B ∈ A be such that B ⊆ A. Let B1 = B ∩ A1 and for each
n ≥ 2 define

Bn = (B ∩An) \
(

n−1⋃
k=1

Ak

)
.

Clearly {Bk}n
k=1 are pairwise disjoint elements of A such that Bn ⊆ An for

all n ∈ N and B =
⋃∞

n=1Bn (since B ⊆ A). Since each An is positive and
Bn ⊆ An for all n ∈ N, we obtain that ν(Bn) ≥ 0 for all n ∈ N. Therefore,
as {Bk}n

k=1 are pairwise disjoint, we obtain that

ν(B) = ν

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

ν(Bn) ≥ 0.

Therefore, since B was arbitrary, we obtain that A is positive.
The proof in the case that {An}∞

n=1 ⊆ A are negative sets for ν is obtained
by reversing all inequalities.

Lemma 5.2.6. Let (X,A) be a measure space and let ν be a signed measure
on (X,A). If A ∈ A and ν(A) > 0, then there exists a positive set P ⊆ A
such that ν(P ) > 0.

Proof. Let A ∈ A be such that ν(A) > 0. If A is positive, then there is
nothing to prove. Hence we may assume that there exists a B ∈ A such
that B ⊆ A and ν(B) < 0. Clearly this implies there exists an m ∈ N and
a B ∈ A such that B ⊆ A and ν(B) < − 1

m . Hence there exists a least
natural number m1 ∈ N such that there exists a B ∈ A such that B ⊆ A
and ν(B) < − 1

m1
. Choose B1 ∈ A such that B1 ⊆ A and ν(B1) < − 1

m1
.

Proceeding recursively, assume we have constructed B1, . . . , Bn ∈ A
and m1, . . . ,mn ∈ N such that mk ∈ N is the least natural number such
that there exists a B ∈ A such that B ⊆ A \

(⋃k−1
j=1 Bj

)
and ν(B) < − 1

mk
,

Bk ⊆ A\
(⋃k−1

j=1 Bj

)
, and ν(Bk) < − 1

mk
for all k ∈ {1, . . . , n}. Since {Bk}n

k=1
are pairwise disjoint, notice that

0 < ν(A) = ν

(
A \

(
n⋃

k=1
Bk

))
+ ν

(
n⋃

k=1
Bk

)

= ν

A \

 n⋃
j=1

Bj

+
n∑

k=1
ν(Bk).

Therefore, since ν(Bk) < 0 for all k ∈ {1, . . . , n}, we obtain that

ν

(
A \

(
n⋃

k=1
Bk

))
> 0.
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Therefore, if A\ (
⋃n

k=1Bk) is positive, the proof is complete. Otherwise there
exists a least natural number mn+1 ∈ N such that there exists a B ∈ A such
that B ⊆ A \ (

⋃n
k=1Bj) and ν(B) < − 1

mn+1
. Choose Bn+1 ∈ A such that

Bn+1 ⊆ A \ (
⋃n

k=1Bj) and ν(Bn+1) < − 1
mn+1

.
The above recursive process thereby either completes the proof or produces

a collection {Bn}∞
n=1 ⊆ A and a sequence (mn)n≥1 of natural numbers such

that mn is the least natural number such that there exists a B ∈ A such
that B ⊆ A \

(⋃n−1
k=1 Bk

)
and ν(B) < − 1

mn
, Bn ⊆ A \

(⋃n−1
j=1 Bj

)
, and

ν(Bn) < − 1
mn

for all n ∈ N.
Let

P = A \
( ∞⋃

n=1
Bn

)
∈ A.

Hence

0 < ν(A) = ν (P ) + ν

( ∞⋃
n=1

Bn

)
.

Therefore, it must be the case that ν (
⋃∞

n=1Bn) ̸= −∞. Thus, since ν(Bn) <
0 for all n ∈ N, it must be the case that

∑∞
n=1 ν(Bk) converges absolutely

and

0 < ν(A) = ν (P ) + ν

( ∞⋃
n=1

Bn

)
= ν (P ) +

∞∑
n=1

ν(Bk).

Moreover, since
∑∞

n=1 ν(Bk) converges absolutely and since ν(Bn) < − 1
mn

for all n ∈ N, we obtain that limn→∞mn = ∞.
We claim that P is positive. To see that P is positive, suppose for the sake

of a contradiction that there exists a B′ ∈ A such that B′ ⊆ P and ν(B′) < 0.
Since limn→∞mn = ∞, there exists an N ∈ N such that ν(B′) > − 1

mN −1 .
However, since mN − 1 < mN and B′ ⊆ P ⊆ A \

(⋃N−1
n=1 Bn

)
, the inequality

ν(B′) < − 1
mN −1 contradicts the fact thatmN is the least natural number such

that there exists a B ∈ A such that B ⊆ A \
(⋃N−1

k=1 Bk

)
and ν(B) < − 1

mN
.

Therefore P is positive.

Using the above, we obtain our first vital step towards understanding
signed measures.

Theorem 5.2.7 (Hahn Decomposition Theorem). Let (X,A) be a
measurable space. If ν is a signed measure on (X,A), then there exists a
positive set P and a negative set N for ν such that X = P ∪N and P ∩N = ∅.

Proof. Recall that if ν is a signed measure on (X,A), then −ν is also a
signed measure on (X,A). Furthermore, it is elementary to see that a set
A ∈ A is positive (respectively negative) for ν if and only if A is negative
(respectively positive) for −ν. Therefore, by replacing ν with −ν if necessary,
we may assume that ν : A → [−∞,∞).

©For use through and only available at pskoufra.info.yorku.ca.



158 CHAPTER 5. SIGNED MEASURES

Let
α = sup{ν(A) | A ∈ A, A positive for ν}.

Since ∅ is a positive set for µ, we obtain that α ≥ 0 (i.e. the supremum is
not over an empty set).

Choose a sequence (An)n≥1 of positive sets for ν such that limn→∞ ν(An) =
α and let

P =
∞⋃

n=1
An.

Then P is clearly an element of A that is positive for µ by Lemma 5.2.5.
Hence ν(P ) ≤ α by the definition of α. However, since for each n ∈ N we
have

ν(P \An) ≥ 0

as P \An ⊆ P and P is positive, we obtain that

ν(P ) = ν(An) + ν(P \An) ≥ ν(An)

for all n ∈ N. Therefore, since limn→∞ ν(An) = α, we obtain that ν(P ) = α.
Hence α ̸= ∞.

Let N = X \ P . To complete the proof, it suffices to show that N is
negative. To see this, suppose for the sake of a contradiction that N is not
negative. Hence there exists a B ∈ A such that B ⊆ N and ν(B) > 0. Since
ν(B) > 0, Lemma 5.2.6 implies there exists a P0 ∈ A such that P0 ⊆ B,
ν(P0) > 0, and P0 is positive for ν. Since P0 ⊆ B ⊆ N , we see that P∩P0 = ∅
and thus

ν(P ∪ P0) = ν(P ) + ν(P0) > ν(P ) = α.

However, since P∪P0 is a positive subset for ν by Lemma 5.2.5, ν(P∪P0) > α
contradicts the definition of α. Hence it must have been the case that N is
negative as desired.

5.3 The Jordan Decomposition Theorem

Using the Hahn Decomposition Theorem (Theorem 5.2.7), it is now not diffi-
cult to completely characterize all signed measures using positive measures.

Theorem 5.3.1 (Jordan Decomposition Theorem). Let (X,A) be a
measurable space. If ν is a signed measure on (X,A), then there exists
measures ν+, ν− : A → [0,∞] such that ν(A) = ν+(A) − ν−(A) for all
A ∈ A.

Proof. Let ν be a signed measure on (X,A). By the Hahn Decomposition
Theorem (Theorem 5.2.7), there exists a positive set P and a negative set N
for ν such that X = P ∪N and P ∩N = ∅.
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Define ν+, ν− : A → [0,∞] by

ν+(A) = ν(A ∩ P ) and ν−(A) = −ν(A ∩N)

for all A ∈ A. Clearly ν+(A), ν−(A) ∈ [0,∞] for all A ∈ A since P is a
positive set for ν and N is a negative set for ν. Furthermore, since X = P ∪N
and P ∩N = ∅, we see for all A ∈ A that

ν(A) = ν((A ∩ P ) ∪ (A ∩N)) = ν(A ∩ P ) + ν(A ∩N) = ν+(A) − ν−(A).

Finally the fact that ν+ and ν− are measures follows from the same
arguments as used in Example 1.1.15.

One question that arises from the Jordan Decomposition Theorem (Theo-
rem 5.3.1 is whether or not the decomposition obtained is unique. In general,
these measures need not unique (especially if the measure ν has some nice
isolated set so we can add a value to ν± on this set). However, based on
their construction, the measures ν± have an additional property.

Definition 5.3.2. Let (X,A) be a measure space. Two signed measures ν1
and ν2 on (X,A) are said to be mutually singular , denoted ν1⊥ν2, if there
exists sets A1, A2 ∈ A such that X = A1 ∪ A2, A1 ∩ A2 = ∅, A1 is null for
ν1, and A2 is null for ν2.

Remark 5.3.3. Since null sets for measures are just sets on which the
measure vanishes, we see that two measures ν1 and ν2 on (X,A) are mutually
singular if and only if there exists A1, A2 ∈ A such that X = A1 ∪ A2,
A1 ∩A2 = ∅, and ν1(A1) = ν2(A2) = 0.

Example 5.3.4. Recall if ν is a signed measure on (X,A), then the proof
of the Jordan Decomposition Theorem (Theorem 5.3.1) demonstrates that
there exists a positive set P and a negative set N for ν such that X = P ∪N ,
P ∩N = ∅, and if ν+, ν− : A → [0,∞] are defined by

ν+(A) = ν(A ∩ P ) and ν−(A) = −ν(A ∩N)

for all A ∈ A, then ν+ and ν− are measures. Since clearly ν+(N) = 0 =
ν−(P ), ν+ and ν− are mutually singular measures.

Example 5.3.5. Let x ∈ R be arbitrary. Then δx, the point mass measure
at x from Example 1.1.12, and the Lebesgue measure are mutually singular
measure on the Lebesgue measurable sets since {x},R \ {x} are Lebesgue
measurable sets that are disjoint with union R such that δx(R \ {x}) = 0 =
λ({x}).

By adding the condition that the resulting measures in the Jordan
Decomposition Theorem (Theorem 5.3.1) must be singular, we obtain the
decomposition produced is unique.
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Proposition 5.3.6. Let (X,A) be a measurable space. If ν is a signed
measure on (X,A), then there exists a unique pair (ν+, ν−) of mutually
singular measures on (X,A) such that ν(A) = ν+(A) − ν−(A) for all A ∈ A.

Proof. Let ν be a signed measure on (X,A). By the Jordan Decomposition
Theorem (Theorem 5.3.1) and Example 5.3.4 there exists a pair (ν+, ν−) of
mutually singular measures on (X,A) such that ν(A) = ν+(A) − ν−(A) for
all A ∈ A.

To see uniqueness, assume there exists a pair (ν1, ν2) of mutually singular
measures on (X,A) such that ν(A) = ν1(A) − ν2(A) for all A ∈ A. By
assumptions, there exists sets P,N,B,C ∈ A such that X = P ∪N = B ∪C,
P ∩N = B ∩ C = ∅, and

ν+(N) = ν−(P ) = ν1(C) = ν2(B) = 0.

We desire to show that ν+ = ν1 and ν− = ν2.
To see that ν+(A) = ν1(A) and ν−(A) = ν2(A) for all A ∈ A, first assume

A ∈ A is such that A ⊆ P ∩B. Then ν−(A) = 0 since A ⊆ P and ν2(A) = 0
since A ⊆ B. Hence ν−(A) = ν2(A) and

ν+(A) = ν+(A) − ν−(A) = ν(A) = ν1(A) − ν2(A) = ν1(A)

as desired.
Next assume A ∈ A is such that A ⊆ P ∩ C. Then ν−(A) = 0 since

A ⊆ P and ν1(A) = 0 since A ⊆ C. Hence

ν+(A) = ν+(A) − ν−(A) = ν(A) = ν1(A) − ν2(A) = −ν2(A).

However, since ν+(A) ≥ 0 and −ν2(A) ≤ 0, it must be the case that
ν+(A) = ν2(A) = 0. Hence ν1(A) = ν+(A) = 0 = ν2(A) = ν−(A) in this
case.

Next assume A ∈ A is such that A ⊆ N ∩ B. Then ν+(A) = 0 since
A ⊆ N and ν2(A) = 0 since A ⊆ B. Hence

−ν−(A) = ν+(A) − ν−(A) = ν(A) = ν1(A) − ν2(A) = ν1(A).

However, since ν1(A) ≥ 0 and −ν−(A) ≤ 0, it must be the case that
ν−(A) = ν1(A) = 0. Hence ν1(A) = ν+(A) = 0 = ν2(A) = ν−(A) in this
case.

Next assume A ∈ A is such that A ⊆ N ∩ C. Then ν+(A) = 0 since
A ⊆ N and ν1(A) = 0 since A ⊆ C. Hence ν+(A) = ν1(A) and

−ν−(A) = ν+(A) − ν−(A) = ν(A) = ν1(A) − ν2(A) = −ν2(A)

as desired.
Finally, let A ∈ A be arbitrary. Then

{A ∩ P ∩B,A ∩ P ∩ C,A ∩N ∩B,A ∩N ∩ C}
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are pairwise disjoint elements of A such that

A = (A ∩ P ∩B) ∪ (A ∩ P ∩ C) ∪ (A ∩N ∩B) ∪ (A ∩N ∩ C).

Hence, by using the above four cases to each of these sets, we obtain that

ν+(A)
= ν+(A ∩ P ∩B) + ν+(A ∩ P ∩ C) + ν+(A ∩N ∩B) + ν+(A ∩N ∩ C)
= ν1(A ∩ P ∩B) + ν1(A ∩ P ∩ C) + ν1(A ∩N ∩B) + ν1(A ∩N ∩ C)
= ν1(A)

and

ν−(A)
= ν−(A ∩ P ∩B) + ν−(A ∩ P ∩ C) + ν−(A ∩N ∩B) + ν−(A ∩N ∩ C)
= ν2(A ∩ P ∩B) + ν2(A ∩ P ∩ C) + ν2(A ∩N ∩B) + ν2(A ∩N ∩ C)
= ν2(A).

Therefore, since A ∈ A was arbitrary, ν+ = ν1 and ν− = ν2 as desired.

Due to Proposition 5.3.6, we make the following definition.

Definition 5.3.7. Let (X,A) be a measurable space and let ν be a signed
measure on (X,A). The positive and negative parts of ν, denoted ν+ and ν−
respectively, is the unique pair of mutually singular measures on (X,A) such
that ν(A) = ν+(A) − ν−(A) for all A ∈ A.

Example 5.3.8. Let (X,A, µ) be a measure space and let f ∈ L1(X,µ) be
real-valued. Recall from Example 5.1.4 that if we define ν : A → (−∞,∞)
by

ν(A) =
∫

A
f dµ

for all A ∈ A, then ν is a signed measure on (X,A). We claim that if we
define ν+, ν− : A → [0,∞) by

ν+(A) =
∫

A
f+ dµ and ν− =

∫
A
f− dµ

for all A ∈ A, then ν+ and ν− are the positive and negative parts of ν
respectively. To see this, first note that ν+ and ν− are finite measures by
Corollary 3.2.6 and the fact that f+, f− ∈ L1(X,µ). Clearly ν = ν+ − ν−.
To see that ν+ and ν− are mutually singular, let

P = {x ∈ X | f(x) > 0} = {x ∈ X | f+(x) > 0, f−(x) = 0}.

Clearly P ∈ A since f is measurable. Since

ν−(P ) =
∫

P
f− dµ = 0 and ν+(X \ P ) =

∫
X\P

f+ dµ = 0

we obtain that ν+ and ν− are mutually singular as desired.
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5.4 Finite Signed Measures

Based on the uniqueness of the Jordan Decomposition, given any signed
measure there is a very natural associated positive measure that reveals
substantial information about the signed measure.

Definition 5.4.1. Let (X,A) be a measurable space and let ν be a signed
measure on (X,A). The total variation (or absolute value) of ν, denoted |ν|,
is the positive measure on (X,A) defined by

|ν|(A) = ν+(A) + ν−(A)

for all A ∈ A, where (ν+, ν−) are the positive and negative parts of ν
respectively.

Example 5.4.2. Let (X,A, µ) be a measure space and let f ∈ L1(X,µ) be
real-valued. Recall from Example 5.3.8 that if we define ν : A → (−∞,∞)
by

ν(A) =
∫

A
f dµ

for all A ∈ A and we define ν+, ν− : A → [0,∞) by

ν+(A) =
∫

A
f+ dµ and ν− =

∫
A
f− dµ

for all A ∈ A, then ν is a signed measure with positive and negative parts
ν+ and ν− respectively. It is clear that

|ν|(A) =
∫

A
f+ dµ+

∫
A
f− dµ =

∫
A

|f | dµ

for all A ∈ A.

The total variation of a signed measure has another description that can
be useful (especially with complex-valued measures).

Proposition 5.4.3. Let (X,A) be a measurable space and let ν be a signed
measure on (X,A). Let P denote all countable collections {An}∞

n=1 of
pairwise disjoint measurable sets such that X =

⋃∞
n=1An. Then for all

A ∈ A,

|ν|(A) = sup
{An}∞

n=1∈P

∞∑
n=1

|ν(A ∩An)|.

Proof. Since ν+ and ν− are mutually singular, there exists P,N ∈ A such
that X = P ∪ N , P ∩ N = ∅, and ν+(N) = ν−(P ) = 0. Thus {P,N} ∈ P
and

|ν(A ∩ P )| + |ν(A ∩N)| = ν+(A) + ν−(A) = |ν|(A).
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Hence
|ν|(A) ≥ sup

{An}∞
n=1∈P

∞∑
n=1

|ν(A ∩An)|.

Conversely, for any {An}∞
n=1 ∈ P we have

∞∑
n=1

|ν(A ∩An)| =
∞∑

n=1
|ν+(A ∩An) − ν−(A ∩An)|

≤
∞∑

n=1
ν+(A ∩An) + ν−(A ∩An)

= ν+

(
A ∩

( ∞⋃
n=1

An

))
+ ν−

(
A ∩

( ∞⋃
n=1

An

))
= ν+(A) + ν−(A) = |ν|(A).

Hence the inequality follows.

The total variation of a signed measure immediately produces a bounded
for the value of the signed measure on a set.

Lemma 5.4.4. Let (X,A) be a measurable space. If ν is a signed measure
on (X,A), then |ν(A)| ≤ |ν|(A) for all A ∈ A.

Proof. Let ν be a signed measure on (X,A) with positive and negative parts
ν+ and ν− respectively. Clearly

|ν(A)| = |ν+(A) − ν−(A)| = ν+(A) + ν−(A) = |ν|(A)

for all A ∈ A.

We have seen some instances where σ-finite measures are preferable over
arbitrary measures (with more instances to occur soon). Furthermore clearly
finite measures are even nicer. Thus we introduce the following.

Definition 5.4.5. Let (X,A) be a measurable space. A signed measure ν
on (X,A) is said to be finite if |ν(A)| < ∞ for all A ∈ A.

Lemma 5.4.6. Let (X,A) be a measurable space and let ν be a signed
measure on (X,A). The following are equivalent:

(1) ν is finite.

(2) ν+ and ν− are finite.

(3) |ν| is finite.

(4) ν(X) ̸= ±∞.
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Proof. First we claim that (2) and (3) are equivalent. Indeed recall that

|ν|(X) = ν+(X) + ν−(X).

Therefore, since |ν|(X), ν+(X), ν−(X) ∈ [0,∞], we see that |ν|(X) < ∞ if
and only if ν+(X), ν−(X) < ∞. Hence |ν| is finite if and only if ν+ and ν−
are finite. Thus (2) and (3) are equivalent.

Next assume that (3) holds. To see that (1) holds, notice by Lemma
5.4.4 that

|ν(A)| ≤ |ν|(A) ≤ |ν|(X)
for all A ∈ A. Hence ν is finite by definition. Thus (3) implies (1).

Next assume that (1) holds. To see that (4) holds, recall that ν+ and
ν− are mutually singular so there exists P,N ∈ A such that X = P ∪ N ,
P ∩N = ∅, and ν+(N) = ν−(P ) = 0. Since

ν+(X) = ν+(X ∩ P ) = ν+(X ∩ P ) − ν−(X ∩ P ) = ν(P ) ≤ |ν(P )| < ∞,

and since

ν−(X) = ν−(X ∩N) = ν−(X ∩N) − ν+(X ∩N) = −ν(N) ≤ |ν(N)| < ∞,

we see that ν(X) = ν+(X) − ν−(X) ̸= ±∞. Hence (4) holds.
Finally, to see that (4) implies (2), assume that (2) fails. Hence either

ν+(X) = ∞ or ν−(X) = ∞. If ν+(X) = ν−(X) = ∞, then if P,N ∈ A are
such that X = P ∪N , P ∩N = ∅, and ν+(N) = ν−(P ) = 0, we have that
ν+(P ) = ∞ and ν−(N) = ∞. Hence

ν(P ) = ν+(P ) − ν−(P ) = ν+(P ) = ∞

whereas
ν(N) = ν+(N) − ν−(N) = −ν+(N) = −∞

which contradicts the fact that a signed measure can only take one value
from {±∞}. Otherwise, if ν+(X) = ∞ but ν−(X) ̸= ∞, then ν(X) = ∞ and
thus (4) fails. Similarly if ν−(X) = ∞ but ν+(X) ̸= ∞, then ν(X) = −∞
and thus (4) fails. Hence (4) implies (2) thereby completing the proof.

In fact, the collection of finite signed measures has a nice normed linear
space structure.

Proposition 5.4.7. Let (X,A) be a measurable space and let

Meas(X,A) = {ν | ν a finite signed measure on (X,A)}.

Then Meas(X,A) is a vector space over R with the operations of pointwise
addition and scalar multiplication. Furthermore, if ∥ · ∥Meas : Meas(X,A) →
[0,∞) is defined by

∥ν∥Meas = |ν|(X)
for all ν ∈ Meas(X,A), then ∥ · ∥Meas is a norm on Meas(X,A).
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Proof. It is elementary to see that if ν1, ν2 ∈ Meas(X,A) and λ1, λ2 ∈ R
then the signed measure λ1ν1 + λ2ν2 defined by

(λ1ν1 + λ2ν2)(A) = λ1ν1(A) + λ2ν2(A)

is a finite signed measure. Hence Meas(X,A) is a vector space over R (seeing
as it is a subspace of the vector space of all real-valued functions on A).

To see that ∥ · ∥Meas is a norm on Meas(X,A), recall that the zero element
of Meas(X,A) is the signed measure ν0 where ν0(A) = 0 for all A ∈ A.
Clearly |ν0|(X) = 0 so ∥ν0∥Meas = 0. Furthermore, if ν ∈ Meas(X,A) is such
that ∥ν∥Meas = 0, then |ν|(X) = 0. Hence, by Lemma 5.4.4, we see that

|ν(A)| ≤ |ν|(A) ≤ |ν|(X) = 0

for all A ∈ A. Therefore ν = ν0 as required.
Next let ν ∈ Meas(X,A) and α ∈ R be arbitrary. If α ≥ 0, clearly

(αν)+ = αν+ and (αν)− = αν− so

∥αν∥Meas = (αν)+(X) + (αν)−(X)
= αν+(X) + αν−(X)
= α|ν|(X)
= |α| ∥ν∥Meas .

Alternatively, if α < 0 then clearly (αν)+ = −αν− and (αν)− = −αν+ so

∥αν∥Meas = (αν)+(X) + (αν)−(X)
= −αν−(X) − αν+(X)
= −α|ν|(X)
= |α| ∥ν∥Meas .

Hence ∥αν∥Meas = |α| ∥ν∥Meas in all cases as required.
Finally, to see that ∥ · ∥Meas satisfies the triangle inequality, let ν, γ ∈

Meas(X,A) be arbitrary. Then

ν + γ = (ν+ + γ+) − (ν− + γ−).

Consider (ν + γ)+ and (ν + γ)−. Since (ν + γ)+ and (ν + γ)− are mutually
singular, there exists P,N ∈ A such that X = P ∪ N , P ∩ N = ∅, and
(ν + γ)+(N) = (ν + γ)−(P ) = 0. Then

(ν + γ)+(X) = (ν + γ)+(P ) + (ν + γ)+(N)
= (ν + γ)+(P )
= (ν + γ)+(P ) − (ν + γ)−(P )
= (ν + γ)(P )
= (ν+(P ) + γ+(P )) − (ν−(P ) + γ−(P ))
≤ ν+(P ) + γ+(P )
≤ ν+(X) + γ+(X).
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Similarly

(ν + γ)−(X) = (ν + γ)−(P ) + (ν + γ)−(N)
= (ν + γ)−(N)
= (ν + γ)−(N) − (ν + γ)+(N)
= −(ν + γ)(N)
= (ν−(N) + γ−(N)) − (ν+(N) + γ+(N))
≤ ν−(N) + γ−(N)
≤ ν−(X) + γ−(X).

Therefore

∥ν + γ∥Meas = (ν + γ)+(X) + (ν + γ)−(X)
≤ (ν+(X) + γ+(X)) + (ν−(X) + γ−(X))
= ∥ν∥Meas + ∥γ∥Meas

as desired.

Moreover, we have the following.

Theorem 5.4.8. If (X,A) is a measurable space, then (Meas(X,A), ∥ · ∥Meas)
is a Banach space.

Proof. To see that (Meas(X,A), ∥ · ∥Meas) is a Banach space, let (νn)n≥1 be
an arbitrary Cauchy sequence in (Meas(X,A), ∥ · ∥Meas). Notice by Lemma
5.4.4 that

|νn(A) − νm(A)| = |(νn − νm)(A)|
≤ |νn − νm|(A)
≤ |νn − νm|(X)
= ∥νn − νm∥Meas

for all A ∈ A and n,m ∈ N. Hence (νn(A))n≥1 is Cauchy in R for all A ∈ A.
Therefore, since R is complete, limn→∞ νn(A) exists for all A ∈ A.

Define ν : A → R by ν(A) = limn→∞ νn(A) for all A ∈ A. We claim that
ν is a finite signed measure on (X,A) and that (νn)n≥1 converges to ν with
respect to ∥ · ∥Meas. To see these claims, first notice that

ν(∅) = lim
n→∞

νn(∅) = lim
n→∞

0 = 0.

Furthermore, we claim that ν is finitely additive. Indeed if {Ak}N
k=1 is a

finite pairwise disjoint collection of elements of A, then clearly

ν

(
N⋃

k=1
Ak

)
= lim

n→∞
νn

(
N⋃

k=1
Ak

)
= lim

n→∞

N∑
k=1

νn(Ak) =
N∑

k=1
νn(Ak).
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Next we desire a bound on ν. Since (νn)n≥1 is Cauchy, (νn)n≥1 is
bounded with respect to ∥ · ∥Meas. Hence there exists an M ∈ N such that
∥νn∥Meas ≤ M for all n ∈ N. Hence for all A ∈ A

|νn(A)| ≤ |νn|(A) ≤ |νn|(X) ≤ M.

Therefore, since ν(A) = limn→∞ νn(A) for all A ∈ A, we obtain that |ν(A)| ≤
M for all A ∈ A. Note this demonstrates that ν will be a finite signed measure
provided we can demonstrate that ν is a signed measure.

Before proceeding to show that ν is a signed measure, we claim that

lim
n→∞

sup{|ν(A) − νn(A)| | A ∈ A} = 0.

To see this, recall from the above computation that notice for all m ≥ n and
A ∈ A that

|νm(A) − νn(A)| ≤ ∥νn − νm∥Meas .

Hence for all A ∈ A

|ν(A) − νn(A)| = lim sup
m→∞

|νm(A) − νn(A)| ≤ lim sup
m→∞

∥νn − νm∥Meas .

Hence

sup{|ν(A) − νn(A)| | A ∈ A} ≤ lim sup
m→∞

∥νn − νm∥Meas .

However, since (νn)n≥1 is Cauchy, we see by the definition of a Cauchy
sequence that

lim sup
n→∞

lim sup
m→∞

∥νn − νm∥Meas = 0.

Hence the claim is complete.
To see that ν is countably additive, let {An}∞

n=1 be an arbitrary collection
of pairwise disjoint subsets of A. First we must demonstrate that

∑∞
k=1 ν(Ak)

converges absolutely. To see this, note for all N ∈ N and n ∈ N that
N∑

k=1
|νn(Ak)| ≤

N∑
k=1

|νn|(Ak) = |νn|
(

N⋃
k=1

Ak

)
≤ M.

Hence
N∑

k=1
|ν(Ak)| = lim

n→∞

N∑
k=1

|νn(Ak)| ≤ M

for all N ∈ N so
∑∞

k=1 ν(Ak) converges absolutely.
To see that ν (

⋃∞
k=1Ak) =

∑∞
k=1 ν(Ak), let ϵ > 0 be arbitrary. Since

(νn)n≥1 is Cauchy there exists an N1 ∈ N such that ∥νn − νm∥Meas <
ϵ
4 for

all n,m ≥ N1. Furthermore, since

lim
n→∞

sup{|ν(A) − νn(A)| | A ∈ A} = 0,
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there exists an N2 ∈ N such that |ν(A) − νn(A)| < ϵ
4 for all A ∈ A and

n ≥ N2. Let N = max{N1, N2}. Since νN (
⋃∞

k=1Ak) =
∑∞

k=1 νN (Ak) and
since

∑∞
k=1 ν(Ak) converges absolutely, there exists an M ∈ N such that∣∣∣∣∣νN

( ∞⋃
k=M

Ak

)∣∣∣∣∣ =
∣∣∣∣∣

∞∑
k=M

νN (Ak)
∣∣∣∣∣ < ϵ

4

and ∣∣∣∣∣
∞∑

k=M

ν(Ak)
∣∣∣∣∣ < ϵ

4 .

Hence, since ν has been verified to be finitely additive,∣∣∣∣∣ν
( ∞⋃

k=1
Ak

)
−

∞∑
k=1

ν(Ak)
∣∣∣∣∣

≤
∣∣∣∣∣ν
( ∞⋃

k=1
Ak

)
− νN

( ∞⋃
k=1

Ak

)∣∣∣∣∣+
∣∣∣∣∣νN

( ∞⋃
k=1

Ak

)
− νN

(
M−1⋃
k=1

Ak

)∣∣∣∣∣
+
∣∣∣∣∣νN

(
M−1⋃
k=1

Ak

)
−

M−1∑
k=1

ν(Ak)
∣∣∣∣∣+

∣∣∣∣∣
M−1∑
k=1

ν(Ak) −
∞∑

k=1
ν(Ak)

∣∣∣∣∣
≤ ϵ

4 +
∣∣∣∣∣

∞∑
k=M

νN (Ak)
∣∣∣∣∣+

∣∣∣∣∣νN

(
M−1⋃
k=1

Ak

)
− ν

(
M−1⋃
k=1

Ak

)∣∣∣∣∣+ ϵ

4

≤ ϵ

4 + ϵ

4 + ϵ

4 + ϵ

4 = ϵ.

Therefore, since ϵ > 0 was arbitrary, we obtain that ν (
⋃∞

k=1Ak) =
∑∞

k=1 ν(Ak)
as desired. Hence ν ∈ Meas(X,A).

Finally, to see that (νn)n≥1 converges to ν with respect to ∥ · ∥Meas, fix
m ∈ N. Since ν − νm is a signed measure, there exists P,N ∈ A such that
X = P ∪N , P ∩N = ∅, and (ν − νm)+(N) = (ν − νm)−(P ) = 0. Therefore

∥ν − νm∥Meas = |ν − νm|(X)
= (ν − νm)+(X) + (ν − νm)−(X)
= (ν − νm)+(P ) + (ν − νm)−(N)
= (ν − νm)(P ) − (ν − νm)(N)
= lim

n→∞
|(νn − νm)(P ) − (νn − νm)(N)|

≤ lim sup
n→∞

|(νn − νm)(P )| + |(νn − νm)(N)|

≤ lim sup
n→∞

|νn − νm|(P ) + |νn − νm|(N)

≤ lim sup
n→∞

2|νn − νm|(X)

≤ lim sup
n→∞

2 ∥νn − νm∥Meas .

Therefore, since m was arbitrary and since lim supn→∞ 2 ∥νn − νm∥Meas tends
to zero as m tends to infinity as (νn)n≥1 is Cauchy, the result follows.
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5.5 The Radon-Nikodym Theorem
In this section, we will prove one of the most important theorems for finite
signed measures, the Radon-Nikodym Theorem (Theorem 5.5.5). The Radon-
Nikodym Theorem will completely characterize which measures can be
obtained by integrating L1-functions against another fixed measure via the
following condition (which was precisely the additional property we observed
in Corollary 3.2.6).

Definition 5.5.1. Let (X,A, µ) be a measure space and let ν be a signed
measure on (X,A). It is said that ν is absolutely continuous with respect to
µ, denoted ν ≪ µ, if A ∈ A and µ(A) = 0 implies ν(A) = 0.

Remark 5.5.2. In fact, if (X,A, µ) is a measure space and ν is a signed
measure that is absolutely continuous with respect to µ, then if A ∈ A is
such that µ(A) = 0 then A is a null set for ν. To see this, assume A ∈ A
is such that µ(A) = 0. To see that A is null for ν we simply observe since
ν ≪ µ that if B ∈ A and B ⊆ A then µ(B) = 0 so ν(B) = 0.

Example 5.5.3. Let (X,A, µ) be a measure space and let f ∈ L1(X,µ) be
real valued. Recall from Example 5.1.4 that if we define ν : A → [−∞,∞]
by

ν(A) =
∫

A
f dµ

for all A ∈ A, then ν is a signed measure. Since A ∈ A and µ(A) = 0 implies

ν(A) =
∫

A
f dµ = 0,

we see that ν ≪ µ.

Perhaps unsurprisingly, the notion of absolute continuity of measure plays
well with respect to the positive and negative parts of signed measures.

Lemma 5.5.4. Let (X,A, µ) be a measure space and let ν be a signed
measure on (X,A). Then ν ≪ µ if and only if ν+ ≪ µ and ν− ≪ µ.

Proof. Clearly if ν+ ≪ µ and ν− ≪ µ then ν ≪ µ. Conversely, assume that
ν ≪ µ. Since ν+ and ν− are mutually singular, there exists P,N ∈ A such
that X = P ∪N , P ∩N = ∅, and ν+(N) = ν−(P ) = 0. To see that ν+ ≪ µ
and ν− ≪ µ, let A ∈ A be such that µ(A) = 0. Then µ(A ∩ P ) = 0 so, since
ν ≪ µ,

0 = ν(A ∩ P ) = ν+(A ∩ P ) − ν−(A ∩ P ) = ν+(A).
Similarly, since µ(A ∩N) = 0 we obtain that

0 = ν(A ∩N) = ν+(A ∩N) − ν−(A ∩N) = −ν−(A).

Hence, since A ∈ A with µ(A) = 0 was arbitrary, we obtain that ν+ ≪ µ
and ν− ≪ µ.
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We arrive at the centrepiece to understanding the relations between
absolutely continuous measures.

Theorem 5.5.5 (The Radon-Nikodym Theorem). Let (X,A) be a
measurable space. If µ and ν are measures on (X,A) such that µ is σ-finite
and ν ≪ µ, then there exists a measurable function f : X → [0,∞] such that

ν(A) =
∫

A
f dµ

for all A ∈ A. Furthermore, if g : X → [0,∞] is a measurable function such
that

ν(A) =
∫

A
g dµ

for all A ∈ A, then f = g almost everywhere.

The proof of the Radon-Nikodym Theorem (Theorem 5.5.5) is not a simple
one. The idea is to build up the measurable function f from knowledge
of ν and the fact that ν ≪ µ. Since measure theory only works well for
countable collections of sets, we must build up f using countable collections.
The following lemma is our first step.

Lemma 5.5.6. Let (X,A) be a measurable space and let Q ⊆ R be a
countable set. Assume {Aq}q∈Q ⊆ A are such that if q1, q2 ∈ Q and q1 ≤ q2
then Aq1 ⊆ Aq2. There exists a measurable function f : X → [−∞,∞] such
that f(x) ≥ q for all x ∈ Ac

q and q ∈ Q and f(x) ≤ q for all x ∈ Aq and
q ∈ Q.

Proof. Define f : X → [−∞,∞] by

f(x) = inf{q ∈ Q | x ∈ Aq}.

Clearly f is well-defined. Moreover, if x ∈ X and x ∈ Aq for some q ∈ Q,
then clearly f(x) ≤ q by definition. Furthermore, if x ∈ X and x ∈ Ac

q for
some q ∈ Q, then x /∈ Aq′ for all q′ ≤ q so f(x) ≥ q. Thus, to complete the
proof, it suffices to show that f is measurable.

To see that f is measurable, it suffices to show that

{x ∈ X | f(x) < t} ∈ A

for all t ∈ R. However, since clearly

{x ∈ X | f(x) < t} =
⋃

q∈Q
q<t

Aq,

we see the desired sets are measurable as {Aq}q∈Q ⊆ A and Q is countable.
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Next we extend Lemma 5.5.6 thereby weakening the conditions required to
construct our function at the cost of only having a bound almost everywhere
(which we do not care about if we are going to integrate the function).

Lemma 5.5.7. Let (X,A, µ) be a measure space and let Q ⊆ R be a countable
set. Assume {Aq}q∈Q ⊆ A are such that if q1, q2 ∈ Q and q1 ≤ q2 then

µ(Aq1 \Aq2) = 0.

There exists a measurable function f : X → [−∞,∞] such that, for all q ∈ Q,
f(x) ≥ q for µ-almost every x ∈ Ac

q and for all q ∈ Q and f(x) ≤ q for
µ-almost every x ∈ Aq.

Proof. Let
Z =

⋃
q1,q2∈Q
q1<q2

Aq1 \Aq2 .

Then Z ∈ A since {Aq}q∈Q ⊆ A and Q×Q is countable. Furthermore, by
the assumptions on {Aq}q∈Q ⊆ A, we see that

0 ≤ µ(Z) ≤
∑

q1,q2∈Q
q1<q2

µ(Aq1 \Aq2) = 0.

For each q ∈ Q, let Bq = Aq ∪ Z. Notice if q1, q2 ∈ Q and q1 ≤ q2 then

Bq1 = Aq1∪Z = (Aq1∩Aq2)∪(Aq1\Aq2)∪Z = (Aq1∩Aq2)∪Z ⊆ Aq2∪Z = Bq2 .

Therefore, by Lemma 5.5.6 there exists a measurable function f : X →
[−∞,∞] such that f(x) ≥ q for all x ∈ Bc

q and q ∈ Q and f(x) ≤ q for all
x ∈ Bq and q ∈ Q.

We claim that f satisfies the desired properties. Indeed if q ∈ Q and
x ∈ Aq then x ∈ Bq so f(x) ≤ q. Furthermore, if q ∈ Q and x ∈ Ac

q \ Z,
then, since

Ac
q \ Z = Ac

q ∩ Zc = (Aq ∪ Z)c = Bc
q ,

we see that f(x) ≥ q. Therefore, since µ(Z) = 0, we obtain that if q ∈ Q
then f(x) ≥ q for almost every x ∈ Ac

q as desired.

Proof of the Radon-Nikodym Theorem (Theorem 5.5.5). The proof will pro-
ceed by first assuming that µ is finite. We will then use the finite case to
prove the σ-finite case. Finally, we recall the uniqueness claim is precisely
Proposition 3.2.4.

Case 1: µ is finite. We desire to use Lemma 5.5.7 to construct the desired
function. To do so, we will need to construct the appropriate sets.

For each q ∈ Q, notice that ν − qµ is a signed measure since ν is positive
and µ is finite (i.e. the value −∞ cannot be obtained). Hence, by the Hahn
Decomposition Theorem (Theorem 5.2.7) there exists Pq, Nq ∈ A such that
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Pq is a positive set for ν − qµ, Nq is a negative set for ν − qµ, X = Pq ∪Nq

and Pq ∩Nq = ∅. For the case q = 0, we take P0 = X and N0 = ∅. Note we
are interested in Pq and Nq as ν ≥ qµ on Pq and ν ≤ qµ on Nq.

Assume q, r ∈ Q are such that q < r. Then, since Nq is a negative set for
ν − qµ, we see that

ν(Nq \Nr) − qµ(Nq \Nr) = (ν − qµ)(Nq \Nr) ≤ 0.

Therefore
ν(Nq \Nr) ≤ qµ(Nq \Nr) ≤ qµ(X) < ∞.

Furthermore, since Nq \Nr ⊆ N c
r = Pr and Pr is a positive set for ν − rµ,

we see that

ν(Nq \Nr) − rµ(Nq \Nr) = (ν − rµ)(Nq \Nr) ≥ 0.

Hence by combining the two inequalities above and by using the fact that
ν(Nq \Nr) < ∞, we see that

ν(Nq \Nr) − qµ(Nq \Nr) ≤ 0 ≤ ν(Nq \Nr) − rµ(Nq \Nr)
⇒ (r − q)µ(Nq \Nr) ≤ 0

However, since q < r and as µ is positive, this implies that µ(Nq \Nr) = 0.
Since µ(Nq \ Nr) = 0 for all q, r ∈ Q with q ≤ r, Lemma 5.5.7 implies

there exists a measurable function f : X → [−∞,∞] such that for all q ∈ Q
we have f(x) ≥ q for almost every x ∈ Pq whereas f(x) ≤ q for almost every
x ∈ Nq. We claim this is the function we are search for.

To begin, recall with q = 0 that N0 = ∅ and P0 = X. Hence f(x) ≥ 0 for
almost every x ∈ X. Thus we may assume that f : X → [0,∞].

Before we proceed with the proof, we require an observation that is the
crux of the proof. Assume q, r ∈ Q are such that q < r. If A ∈ A and
A ⊆ Pq ∩Nr then A ⊆ Pq so, since Pq is a positive set for ν − qµ,

0 ≤ (ν − qµ)(A) = ν(A) − qµ(A),

and A ⊆ Nr so, since Nr is a negative set for ν − rµ,

0 ≥ (ν − rµ)(A) = ν(A) − rµ(A).

Hence
qµ(A) ≤ ν(A) ≤ rµ(A)

whenever A ⊆ Pq ∩Nr. Similarly, if A ∈ A and A ⊆ Pq ∩Nr then f(x) ≥ q
for almost every x ∈ A as A ⊆ Pq, and f(x) ≤ r for almost every x ∈ A as
A ⊆ Nr. Therefore

qµ(A) ≤
∫

A
f dµ ≤ rµ(A).
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The remainder of the proof is some simple analysis to show that we can
squeeze these quantities to show that ν(A) =

∫
A f dµ for every A ∈ A.

To complete this case of the proof, let A ∈ A be arbitrary. For each fixed
m ∈ N, let

Am,n = A ∩
(
Nn+1

m
\
(

n⋃
k=0

N k
m

))
∈ A

for all n ∈ N ∪ {0}. Furthermore, let

Am,∞ = A \
∞⋃

n=0
Am,n = A \

∞⋃
n=0

N n
m

∈ A.

Hence {Am,∞} ∪ {Am,n}∞
n=0 is a pairwise disjoint collection of elements of A

such that
A = Am,∞ ∪

( ∞⋃
n=0

Am,n

)
.

Consider Am,∞ and the case that µ(Am,∞) > 0. In this case, notice if
x ∈ Am,∞ then x ∈ N c

n
m

= P n
m

for all n ∈ N so f(x) ≥ n
m for all n ∈ N and

thus f(x) = ∞. Therefore, since µ(Am,∞) > 0 and f is non-negative, we
obtain that

∞ =
∫

Am,∞
f dµ ≤

∫
A
f dµ ≤ ∞.

On the other hand, since Am,∞ ⊆ N c
n
m

= P n
m

for all n ∈ N, the above
computations show that ν(Am,∞) ≥ n

mµ(Am,∞) for all n ∈ N. Hence, since
µ(Am,∞) > 0, ν(Am,∞) = ∞, which clearly implies ν(A) = ∞. Therefore, if
µ(A∞) > 0 then

ν(A) = ∞ =
∫

A
f dµ

and the proof would be complete.
Thus to complete the proof, we may assume that µ(Am,∞) = 0. Since

ν ≪ µ, this implies that ν(Am,∞) = 0. Therefore, since µ(Am,∞) = 0, we
see that ∫

Am,∞
f dµ = 0 = ν(Am,∞).

Furthermore, for each n ∈ N ∪ {0} we see that Am,n ⊆ P n
m

∩Nn+1
m

so by the
previous computations

n

m
µ(Am,n) ≤ ν(Am,n) ≤ n+ 1

m
µ(Am,n)

and
n

m
µ(Am,n) ≤

∫
Am,n

f dµ ≤ n+ 1
m

µ(Am,n).

Hence ∣∣∣∣∣ν(Am,n) −
∫

Am,n

f dµ

∣∣∣∣∣ ≤ 1
m
µ(Am,n).

©For use through and only available at pskoufra.info.yorku.ca.



174 CHAPTER 5. SIGNED MEASURES

Therefore, either both ν(A) and
∫

A f dµ are infinite, or otherwise all terms
in the following computation are finite:∣∣∣∣ν(A) −

∫
A
f dµ

∣∣∣∣ =
∣∣∣∣∣ν(Am,∞) +

∞∑
n=0

ν(Am,n) −
∫

Am,∞
f dµ−

∞∑
n=0

∫
Am,n

f dµ

∣∣∣∣∣
=
∣∣∣∣∣

∞∑
n=0

ν(Am,n) −
∞∑

n=0

∫
Am,n

f dµ

∣∣∣∣∣
≤

∞∑
n=0

∣∣∣∣∣ν(Am,n) −
∫

Am,n

f dµ

∣∣∣∣∣
≤

∞∑
n=0

1
m
µ(Am,n)

= 1
m
µ

( ∞⋃
n=0

Am,n

)

≤ 1
m
µ(X).

Therefore, since the above holds for all m ∈ N and as µ(X) < ∞, we obtain
that

ν(A) =
∫

A
f dµ.

Therefore, since A ∈ A was arbitrary, the proof is complete in this case.
Case 2: µ is σ-finite. Since µ is σ-finite, Remark 1.1.21 implies there

exists a pairwise disjoint collection {Xn}∞
n=1 ⊆ A such that X =

⋃∞
n=1Xn,

and µ(Xn) < ∞ for all n ∈ N.
For each n ∈ N, define µn, νn : A → [0,∞] by

µn(A) = µ(A ∩Xn) and νn(A) = ν(A ∩Xn)

for all A ∈ A. Clearly µn and νn are well-defined measures on (X,A).
Furthermore, since

µn(X) = µ(Xn) < ∞,

µn is a finite measure. Moreover, if A ∈ A and µn(A) = 0, then µ(A∩Xn) = 0
so νn(A) = ν(A ∩Xn) = 0 as ν ≪ µ. Hence νn ≪ µn.

By the previous case, for each n ∈ N there exists a measurable function
fn : X → [0,∞] such that

νn(A) =
∫

A
fn dµn

for all A ∈ A. Notice by the definition of µn and the definition of the integral
that ∫

A
fn dµn =

∫
A∩Xn

fn dµ
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for all A ∈ A (i.e. clearly holds for all characteristic functions, thus simple
functions, and thus non-negative measurable functions).

Let f : X → [0,∞] be defined by

f(x) =
∞∑

n=1
fn(x)χXn(x)

for all x ∈ X. Then f is a measurable function by Proposition 2.1.22.
Furthermore, we see for all A ∈ A that

ν(A) = ν

( ∞⋃
n=1

A ∩Xn

)

=
∞∑

n=1
ν(A ∩Xn)

=
∞∑

n=1
νn(A)

=
∞∑

n=1

∫
A
fn dµn

=
∞∑

n=1

∫
A∩Xn

fn dµ

=
∞∑

n=1

∫
A
fnχXn dµ

=
∫

A

∞∑
n=1

fnχXn dµ

=
∫

A
f dµ

(where the second last inequality follows from Corollary 3.2.5). Hence the
proof of existence of an f is complete.

Using our knowledge of signed measures, we can extend the Radon-
Nikodym Theorem (Theorem 5.5.5) to signed measures.

Corollary 5.5.8. Let (X,A, µ) be a σ-finite measure space. If ν is a finite
signed measure on (X,A) such that ν ≪ µ, then there exists a unique
real-valued function f ∈ L1(X,µ) such that

ν(A) =
∫

A
f dµ

for all A ∈ A.

Proof. Since ν is a finite signed measure on (X,A) such that ν ≪ µ, we see
that ν+ and ν− are finite positive measure on (X,A) that are absolutely
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continuous with respect to µ by Lemma 5.4.6 and Lemma 5.5.4. Hence by the
Radon-Nikodym Theorem (Theorem 5.5.5) there exists positive measurable
functions f1, f2 : X → [0,∞] such that

ν+(A) =
∫

A
f1 dµ and ν−(A) =

∫
A
f2 dµ

for all A ∈ A. Since ν+ and ν− are finite, we see that∫
X

|f1| dµ =
∫

X
f1 dµ = ν+(X) < ∞

and ∫
X

|f2| dµ =
∫

X
f2 dµ = ν−(X) < ∞

so f1, f2 ∈ L1(X,µ). Hence f1 − f2 ∈ L1(X,µ). Therefore, since∫
A
f1 − f2 dµ =

∫
A
f1 − f2 dµ = ν(A)

for all A ∈ A, the existence proof is complete.
For uniqueness, notice if g ∈ L1(X,µ) is such that∫

A
f dµ =

∫
A
g dµ

for all A ∈ A, then as f+, f−, g+, g− ∈ L1(X,µ) we obtain that∫
A
f+ + g− dµ =

∫
A
g+ + f− dµ

for all A ∈ A. Hence Proposition 3.2.4 implies that f+ +g− = g+ +f− almost
everywhere. Therefore, since f+, f−, g+, g− ∈ L1(X,µ) implies f+, f−, g+, g−
are finite almost everywhere, we obtain that f = f+ − f− = g+ − g− = g
almost everywhere.

Example 5.5.9. To see why the assumption that µ is σ-finite is required in
the Radon-Nikodym Theorem, let µ be the counting measure on R restricted
to the Lebesgue measurable sets and let ν = λ. We claim that λ ≪ µ. Indeed
if A ∈ M(R) is such that µ(A) = 0, then A = ∅ so λ(A) = 0.

To see that the Radon-Nikodym Theorem fails in this setting, suppose for
the sake of a contradiction that there exists a Lebesgue measurable function
f : R → [0,∞] such that

λ(A) =
∫

A
f dµ

for all A ∈ M(R). Then

0 = λ({x}) =
∫

{x}
f dµ = f(x)µ({x}) = f(x)
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for all x ∈ X. Hence f = 0 so

λ(A) =
∫

A
f dµ = 0

for all A ∈ M(R), which is absurd. Hence the Radon-Nikodym Theorem
potentially fails when µ is not σ-finite.

Due to the uniqueness portion of the Radon-Nikodym Theorem (Theorem
5.5.5), we make the following definition.

Definition 5.5.10. Let (X,A, µ) be a σ-finite measure space and let ν be
either a measure or a finite signed measure on (X,A) such that ν ≪ µ. The
Radon-Nikodym derivative of ν with respect to µ, denoted dν

dµ , is the unique
measurable function (positive if ν is a measure and in L1(X,µ) if ν is finite)
such that

ν(A) =
∫

A

dν

dµ
dµ

for all A ∈ A.

Unsurprisingly, there is a connection between measures that are absolutely
continuous with respect to the Lebesgue measure and absolutely continuous
functions.

Proposition 5.5.11. Let F : R → R be non-decreasing function with the
limit conditions required by Example 1.3.10 and let λF denote the Borel-
Stieltjes measure associated to F (the restriction of the Lebesgue-Stieltjes
measure to B(R)). Then F is absolutely continuous on every closed interval
in R if and only if λF ≪ λ. Furthermore, if F is absolutely continuous, then
dλF
dλ = F ′.

Proof. To begin, assume F is absolutely continuous on every closed interval
in R. Therefore, since F is non-decreasing, F ′ exists on R and F ′ ≥ 0 by the
Lebesgue Differentiation Theorem (Theorem 4.2.2).

Define ν : B(R) → [0,∞] by

ν(A) =
∫

A
F ′ dλ

for all A ∈ B(R). Clearly ν is a well-defined measure by Corollary 3.2.6. To
see that λF ≪ λ and that dλF

dλ = F ′, it suffices by the uniqueness portion of
the Radon-Nikodym Theorem (Theorem 5.5.5) to show that ν = λF .

To begin, notice for all (a, b] ∈ R that

λF ((a, b]) = F (b) − F (a) =
∫

(a,b]
F ′ dλ = ν((a, b])

by the second Fundamental Theorem of Calculus (Theorem 4.5.4). Hence,
by taking the limit as a → −∞ or as b → ∞, we obtain that λF (A) = ν(A)
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for all A ∈ F where F is defined as in Example 1.3.10. Therefore, since ν
is a measure, we obtain that λF = ν by the uniqueness portion of Example
1.3.10.

Conversely, assume that λF ≪ λ. Therefore, by the Radon-Nikodym
Theorem there exists a Borel function g : R → [0,∞] such that

λF (A) =
∫

A
g dλ

for all A ∈ B(R). Since F (x) ∈ R for all x ∈ R, we see that∫
[a,b]

|g| dλ =
∫

[a,b]
g dλ = λF ((a, b]) = F (b) − F (a) < ∞

so g ∈ L1([a, b], λ) for all a, b ∈ R. Therefore, since for all x, a, b ∈ R with
a < x < b we have that

F (x) − F (a) = λF ((a, x]) =
∫

[a,x]
gdλ,

we see that F is absolutely continuous [a, b] by Proposition 4.4.10.

In fact, the Radon-Nikodym derivative allows an extension of ‘integration
by change of variables’.

Proposition 5.5.12. Let (X,A, µ) be a σ-finite measure space and let ν be
a measure on (X,A) such that ν ≪ µ. If f : X → [0,∞] is measurable, then∫

X
f dν =

∫
X
f
dν

dµ
dµ.

Proof. First, since ν ≪ µ, we know that dν
dµ is a well-defined, non-negative

measurable function on (X,A) by the Radon-Nikodym Theorem.
To begin, assume f = χA for some A ∈ A. Then clearly∫

X
χA dν = ν(A) =

∫
A

dν

dµ
dµ =

∫
X
χA

dν

dµ
dµ.

Hence, by linearity, we obtain that∫
X
f dν =

∫
X
f
dν

dµ
dµ

for all simple functions f . Therefore, since every measurable function is the
increasing limit of simple functions and since dν

dµ is non-negative, we obtain
by two applications of the Monotone Convergence Theorem that∫

X
f dν =

∫
X
f
dν

dµ
dµ
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for all measurable functions f : X → [0,∞].
Now assume f : X → C is measurable. Since the above demonstrates

that ∫
X

∣∣∣∣f dνdµ
∣∣∣∣ dµ =

∫
X

|f |dν
dµ

dµ =
∫

X
|f | dν,

we clearly see that f is integrable with respect to ν if and only if f dν
dµ is

integrable with respect to µ.
Finally, assume that f : X → C is measurable and integrable with

respect to ν. Thus we can write f =
∑4

k=1 i
kfk where fk : X → [0,∞) are

measurable functions that are integrable with respect to ν. Hence fk
dν
dµ are

all integrable with respect to µ so the above implies

∫
X
f dν =

4∑
k=1

ik
∫

X
fk dν =

4∑
k=1

ik
∫

X
fk
dν

dµ
dµ =

∫
X
f
dν

dµ
dµ

as desired.

Combining the above two results, we have the following.

Corollary 5.5.13. Let F : R → R be non-decreasing with the limit conditions
required by Example 1.3.10 that is absolutely continuous on every closed
interval and let λF denote the Borel-Stieltjes measure associated to F . If
f : X → [0,∞] is Lebesgue measurable, then∫

R
f dλF =

∫
R
fF ′ dλ.

5.6 The Lebesgue Decomposition Theorem

To conclude this chapter, we demonstrate that given two σ-finite measures µ
and ν on a measurable space, we can always decompose ν into a portion that
is absolutely continuous with respect to µ and a portion that is orthogonal
to µ.

Theorem 5.6.1 (The Lebesgue Decomposition Theorem). Let (X,A)
be a measurable space. If µ and ν are σ-finite measures on (X,A), then there
exists a unique pair of measures (νa, νs) on (X,A) such that νa ≪ µ, νs⊥µ,
and ν = νa + νs.

Proof. Let µ and ν are σ-finite measures on (X,A). We claim that µ + ν
is σ-finite. Indeed since µ and ν are σ-finite, there exist {Xn}∞

n=1 ⊆ A and
{Ym}∞

n=1 ⊆ A such that X =
⋃∞

n=1Xn =
⋃∞

m=1 Yn and µ(Xn), ν(Ym) < ∞
for all n,m ∈ N. For each n,m ∈ N let Zn,m = Xn ∩ Ym. Then

{Zn,m | n,m ∈ N}
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is a countable collection of elements of A such that X =
⋃∞

n,m=1 Zn,m and

(µ+ ν)(Zn,m) = µ(Zn,m) + ν(Zn,m) ≤ µ(Xn) + ν(Ym) < ∞

for all n,m ∈ N. Hence µ+ ν is σ-finite.
Notice if A ∈ A and (µ + ν)(A) = 0 then clearly µ(A) = 0. Hence

µ ≪ µ+ ν. Therefore, since µ+ ν is σ-finite, the Radon-Nikodym Theorem
(Theorem 5.5.5) implies there exists a measurable function f : X → [0,∞]
such that

µ(A) =
∫

A
f d(µ+ ν)

for all A ∈ A.
Let

P = {x ∈ X | f(x) > 0} and N = {x | f(x) = 0}.

Clearly P,N ∈ A are such that P ∩N = ∅ and P ∪N = X. Furthermore, P
is a positive set for µ and N is a null set for µ by Example 5.2.4.

Define νa, νs : A → [0,∞] by

νa(A) = ν(A ∩ P ) and νs(A) = ν(A ∩N)

for all A ∈ A. We claim that (νa, νs) are the pair of measures we are
looking for. Clearly νa and νs are measures on (X,A) by Example 1.1.15.
Furthermore, as P ∩N = ∅ and P ∪N = X, we see for all A ∈ A that

ν(A) = ν(A ∩ P ) + ν(A ∩N) = νa(A) + νs(A)

so ν = νa + νs as desired.
To see that νa ≪ µ, let A ∈ A such that µ(A) = 0 be arbitrary. Then

0 = µ(A ∩ P ) =
∫

A∩P
f d(µ+ ν).

However, since f(x) > 0 for all x ∈ P , the above equation implies (µ+ν)(A∩
P ) = 0. Therefore νa(A) = ν(A ∩ P ) = 0. Hence, since A ∈ A such that
µ(A) = 0 was arbitrary, νa ≪ µ.

To see that νs⊥µ, notice that

µ(N) =
∫

N
f d(µ+ ν) = 0

as f(x) = 0 for all x ∈ N and

νs(P ) = ν(A ∩N ∩ P ) = ν(∅) = 0.

Therefore since P,N ∈ A are such that P ∩ N = ∅ and P ∪ N = X, the
claim existence claim follows.
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To see uniqueness of the pair (νa, νs), assume (ν ′
a, ν

′
s) is a pair of measures

on (X,A) such that ν ′
a ≪ µ, ν ′

s⊥µ, and ν = ν ′
a + ν ′

s. Since ν is σ-finite,
Remark 1.1.21 implies there exists a pairwise disjoint collection {Yn}∞

n=1 ⊆ A
such that X =

⋃∞
n=1 Yn and ν(Yn) < ∞ for all n ∈ N. Therefore, since

ν = νa + νs = ν ′
a + ν ′

s, we obtain for all n ∈ N and A ∈ A that

ν ′
a(A ∩ Yn) − νa(A ∩ Yn) = ν ′

s(A ∩ Yn) − νs(A ∩ Yn)

as all terms are finite.
Since νs⊥µ and ν ′

s⊥µ, there exists N,B ∈ A such that

νs(N c) = µ(N) = 0 = µ(B) = ν ′
s(Bc).

Hence, if Y = B ∪N ∈ A, then νs(Y c) = ν ′
s(Y c) = µ(Y ) = 0. Hence, for all

A ∈ A and n ∈ N

ν ′
s(A ∩ Yn) − νs(A ∩ Yn) = ν ′

s(A ∩ Yn ∩ Y ) − νs(A ∩ Yn ∩ Y )
= ν ′

s((A ∩ Y ) ∩ Yn) − νs((A ∩ Y ) ∩ Yn)
= νa((A ∩ Y ) ∩ Yn) − ν ′

a((A ∩ Y ) ∩ Yn) = 0.

Hence ν ′
s(A ∩ Yn) = νs(A ∩ Yn) and thus ν ′

a(A ∩ Yn) = νa(A ∩ Yn) for all
A ∈ A and n ∈ N. Therefore, for all A ∈ A we have that

νa(A) = νa

( ∞⋃
n=1

(Yn ∩A)
)

=
∞∑

n=1
νa(Yn ∩A)

=
∞∑

n=1
ν ′

a(Yn ∩A)

= ν ′
a

( ∞⋃
n=1

(Yn ∩A)
)

= ν ′
a(A)

and similarly νs(A) = ν ′
s(A). Hence ν ′

a = νa and ν ′
s = νs as desired.

There are several quick corollaries to the Lebesgue Decomposition Theo-
rem (Theorem 5.6.1).

Corollary 5.6.2. Let F : [0, 1] → [0, 1] denote the Cantor ternary function
(with F (x) = 0 if x < 0 and F (x) = 1 if x > 1) and let λF denote the
Borel-Stieltjes measure associated to F . Then λF ⊥λ.

Proof. To see this, note that λF and λ are σ-finite measures on (R,B(R)).
Thus the Lebesgue Decomposition Theorem (Theorem 5.6.1) implies that
there exists a unique pair of measure (νa, νs) on (R,B(R)) such that νa ≪ λ,
νs⊥λ, and λF = νa + νs.
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By the Radon-Nikodym Theorem (Theorem 5.5.5) there exists a measur-
able function f : R → [0,∞] such that

νa(A) =
∫

A
f dλ

for all A ∈ B(R). However, if A ∈ B(R) and A is a subset an interval in the
complement of the Cantor set, we see that

0 = λF (A) = νs(A) +
∫

A
f dλ.

Hence
∫

A f dλ = 0 for all such A. Therefore we obtain that f |Cc = 0 λ-almost
everywhere. Therefore, since λ(C) = 0, we obtain that f = 0 λ-almost
everywhere. Hence νa = 0 so λF = νs is mutually singular to λ as desired.

Corollary 5.6.3. Let (X,A, µ) be a σ-finite measure space. If ν is a finite
signed measure on (X,A), then then there exists a unique pair of finite signed
measures (νa, νs) on (X,A) such that νa ≪ µ, νs⊥µ, and ν = νa + νs.

Proof. Since ν is a finite signed measure, ν+ and ν− are finite measures by
Lemma 5.4.6. Therefore, the Lebesgue Decomposition Theorem (Theorem
5.6.1) implies there exists measures ν+,a, ν+,s, ν−,a and ν−,s on (X,A) such
that ν+,a, ν−,a ≪ µ, ν+,s⊥µ, ν−,s⊥µ, ν+ = ν+,a + ν+,s, and ν− = ν−,a + ν−,s.
Furthermore, since ν+ and ν− are finite measures, we see that ν+,a, ν+,s, ν−,a

and ν−,s are all finite measures.
Let νa = ν+,a − ν−,a and νs = ν+,s − ν−,s. Clearly νa and νs are finite

signed measures on (X,A) such that ν = νa + νs. To see that νa ≪ µ, let
A ∈ A be an arbitrary element such that µ(A) = 0. Then, as ν+,a, ν−,a ≪ µ,
we clearly have νa(A) = 0. Hence, since A ∈ A was arbitrary, νa ≪
µ. Similarly, since ν+,s⊥µ and ν−,s⊥µ there exists N,B ∈ A such that
ν+,s(N c) = µ(N) = 0 = µ(B) = ν−,s(Bc). Hence, if Y = B ∪N ∈ A, then
ν+,s(Y c) = ν−,s(Y c) = µ(Y ) = 0. Hence νs(Y c) = 0 = µ(Y ) so νs⊥µ as
desired.

Finally, the proof of uniqueness may be repeated verbatim from the
proof of uniqueness used in the Lebesgue Decomposition Theorem (Theorem
5.6.1).
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Chapter 6

Product Measures and
Fubini’s Theorem

One idea from undergraduate studies that has yet to be discussed in the
context of measure theory is integrating functions of multiple variables. Of
course, we have discussed arbitrary measure spaces so we have a notion of
integrating functions on Rn with respect to λn. However, we do not have any
nice methods for computing integrals of functions on Rn with respect to λn

other than definitions. It seems like λn should be related to λ and we should
be able to integrate functions on Rn with respect to λn by performing some
integrals using λ; that is, we should have a Fubini’s Theorem to compute
the integrals by integrating over the variables one at a time.

Thus the focus of this chapter is to develop and prove a version of
Fubini’s Theorem in the measure-theoretic context. Before we can do that,
we need to discuss how to construct measures on a product of measure spaces.
Subsequently, we will be able to prove Fubini’s Theorem and a theorem
by Tonelli, which is often first necessary to use in order to invoke Fubini’s
Theorem.

6.1 Product Measures

To begin, given two measure spaces (X,A, µ) and (Y,B, ν), we desire a notion
of the product of µ and ν so that the measure of a Cartesian product an
element A ∈ A and B ∈ B is µ(A)ν(B) (i.e. the measure of a rectangle is
the products of the measures of the length and width). This is also exactly
what we need to study independence in probability theory; that is, the joint
probability measure of two independent random variables will be this product
of the two individual probability measures. Moreover, the hope is then that
the product of n-copies of λ is λn. In order to define such a measure, we first
need to construct a σ-algebra. Since we want A×B to be measurable for all
A ∈ A and B ∈ B, a natural place to start is the following.
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184 CHAPTER 6. PRODUCT MEASURES AND FUBINI’S THEOREM

Definition 6.1.1. Let (X,A) and (Y,B) be measurable spaces. The set of
measurable rectangles of (X,A) and (Y,B), denote R(A × B), is the set of
all subsets of X × Y of the form A×B where A ∈ A and B ∈ B. Elements
of R(A × B) are called measurable rectangles.

There is a natural algebra (not σ-algebra) once we have the measurable
rectangles.

Lemma 6.1.2. Let (X,A) and (Y,B) be measurable spaces and let

A(A × B) = {E ⊆ X × Y | E is a finite union of elements of R(A × B)}.

Then A(A × B) is an algebra on X × Y . Furthermore, if Z ∈ A(A × B),
then there exists a pairwise disjoint collection {Rk}n

k=1 ⊆ R(A × B) such
that Z =

⋃n
k=1Rk.

Proof. To see that A(A × B) is an algebra on X × Y , first notice that
∅ = ∅ × ∅ ∈ R(A × B) ⊆ A(A × B) and X × Y ∈ R(A × B) ⊆ A(A × B) by
definition. Furthermore, clearly A(A × B) is closed under finite unions by
definition.

To see that A(A × B) is closed under complements and thus an algebra
on X × Y , we first claim that A(A × B) is closed under finite intersections.
Indeed R(A × B) is clearly closed under intersections as

(A×B) ∩ (A′ ×B′) = (A ∩A′) × (B ∩B′).

Therefore de Morgan’s laws implies that A(A × B) is closed under finite
intersections.

Next notice if A ∈ A and B ∈ B then

(A×B)c = (Ac ×B) ∪ (A×Bc) ∪ (Ac ×Bc) ∈ A(A × B).

To complete the claim that A(A × B) is closed under complements, let
Z ∈ A(A × B) be arbitrary. Then we may write Z =

⋃n
k=1Ak × Bk where

{Ak}n
k=1 ⊆ A and {Bk}n

k=1 ⊆ B by the definition of A(A × B). Therefore

Zc =
n⋂

k=1
((Ac

k ×Bk) ∪ (Ak ×Bc
k) ∪ (Ac

k ×Bc
k)) .

Hence, since A and B are closed under complements and since A(A × B) is
closed under finite unions and intersections, we obtain that Zc ∈ A(A × B)
as desired. Hence A(A × B) is an algebra.

For the other claim, let Z ∈ A(A × B) be arbitrary. Hence we may write
Z =

⋃n
k=1Ak ×Bk where {Ak}n

k=1 ⊆ A and {Bk}n
k=1 ⊆ B by the definition

of A(A × B). We will proceed by recursion on m to show that
⋃m

k=1Ak ×Bk

can be written as a disjoint union of elements of R(A × B). Clearly the case
m = 1 is trivial.
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Assume it has been demonstrated for some m ≥ 1 that
⋃m

k=1Ak ×Bk =⋃M
k=1A

′
k ×B′

k where {A′
k ×B′

k}M
k=1 are pairwise disjoint elements of R(A×B).

To see that
⋃m+1

k=1 Ak ×Bk can be written as a disjoint union of elements of
R(A × B), consider

X1 = (Am+1 ×Bm+1) \ (A′
1 ×B′

1).

By the above computations, the set X1 can be written as the disjoint union
of at most three measurable rectangles, namely

R1 = (Am+1 \A′
1) × (Bm+1 ∩B′

1)
R2 = (Am+1 ∩A′

1) × (Bm+1 \B′
1)

R3 = (Am+1 \A′
1) × (Bm+1 \B′

1).

Then, for each k ∈ {1, 2, 3}, consider

X2,k = Rk \ (A′
2 ×B′

2).

Hence, for each k, X2,k can be written as the disjoint union of at most
three measurable rectangles, and the collection of all measurable rectangles
obtained over all k ∈ {1, 2, 3} is pairwise disjoint as R1, R2, and R3 are
pairwise disjoint. Therefore, by repeating this process ad nauseum, we
obtain that

⋃m+1
k=1 Ak ×Bk can be written as a disjoint union of elements of

R(A × B).

In order to prove our definition of a measure on the algebra A(A × B) is
indeed a measure, we will need the following.

Lemma 6.1.3. Let (X,A, µ) and (Y,B, ν) be measure spaces and let A×B ∈
R(A × B). If {Ak ×Bk}∞

k=1 are pairwise disjoint elements of R(A × B) such
that

A×B =
∞⋃

k=1
Ak ×Bk,

then
µ(A)ν(B) =

∞∑
k=1

µ(Ak)ν(Bk).

Proof. To begin, notice for each (x, y) ∈ A × B that (x, y) is contained in
exactly one element of {Ak ×Bk}∞

k=1. Therefore, for each x ∈ A

B =
⋃

k such that x∈Ak

Bk.

Therefore, since for each x ∈ A the collection

{Bk | k ∈ {1, . . . , n} is such that x ∈ Ak}
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is pairwise disjoint and since ν is a measure, we obtain that

ν(B) =
∑

k such that x∈Ak

ν(Bk)

Hence
ν(B)χA(x) =

∞∑
k=1

ν(Bk)χAk
(x)

for each x ∈ A. However, since Ak ⊆ A for all k ∈ N, we obtain that

ν(B)χA =
∞∑

k=1
ν(Bk)χAk

as functions on X. Therefore, since all terms are positive, we obtain by
Corollary 3.2.5 that

µ(A)ν(B) =
∫

X
ν(B)χA dµ

=
∫

X

∞∑
k=1

ν(Bk)χAk
dµ

=
∞∑

k=1

∫
X
ν(Bk)χAk

dµ

=
∞∑

k=1
µ(Ak)ν(Bk)

as desired.

We now can construct a pre-measure.

Lemma 6.1.4. Let (X,A, µ) and (Y,B, ν) be measure spaces. Then there
exists a unique pre-measure µ · ν on the algebra A(A × B) from Lemma 6.1.2
such that

(µ · ν)(A×B) = µ(A)ν(B)

for all A ∈ A and B ∈ B.

Proof. We desire to define µ · ν : A(A × B) → [0,∞] such that (µ · ν)(∅) = 0
and

(µ · ν)(Z) =
n∑

k=1
γ(Ak ×Bk) =

n∑
k=1

µ(Ak)ν(Bk)

whenever Z ∈ A(A × B) and {Ak ×Bk}n
k=1 ⊆ R(A × B) are pairwise disjoint

such that Z =
⋃n

k=1Ak ×Bk. However, since there are multiple ways to write
an element Z ∈ A(A × B) as a disjoint union of elements of R(A × B), it is
necessary to show that the above definition of (µ ·ν) is well-defined. However,
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since µ · ν is clearly well-defined on elements of R(A × B) by Lemma 6.1.3,
we see that µ · ν is well-defined on A(A ×B).

To see that µ·ν is a pre-measure on A(A×B), we first see that (µ·ν)(∅) = 0.
Furthermore, if {Zn}∞

n=1 ⊆ A(A × B) are pairwise disjoint such that Z =⋃∞
k=1 Zn ∈ A(A × B), we easily see via the definition of µ · ν and Lemma

6.1.3 that

(µ · ν)(Z) =
∞∑

n=1
(µ · ν)(Zn).

Hence µ · ν is a pre-measure on A(A × B).
To see uniqueness, assume γ : A(A × B) → [0,∞] is a pre-measure on

A(A × B) such that γ(A × B) = µ(A)ν(B) for all A × B ∈ R(A × B).
If Z ∈ A(A × B) is arbitrary then Lemma 6.1.2 implies pairwise disjoint
collection {Ak ×Bk}n

k=1 ⊆ R(A × B) such that Z =
⋃n

k=1Ak ×Bk. Hence,
since γ is a pre-measure,

γ(Z) =
n∑

k=1
γ(Ak ×Bk) =

n∑
k=1

µ(Ak)ν(Bk) = (µ · ν)(Z).

Therefore, since Z ∈ A(A × B) was arbitrary, γ = µ · ν as desired.

Using Chapter 1, we obtain the measure we are looking for.

Definition 6.1.5. Let (X,A, µ) and (Y,B, ν) be measure spaces. The
product measure of µ and ν, denoted µ× ν, is the Carathéodory extension
of the pre-measure µ · ν on the algebra A(A × B) from Lemma 6.1.4. The
collection of µ× ν measurable sets is denoted M(µ× ν).

Remark 6.1.6. Recall from the Carathéodory-Hahn Extension Theorem
(Theorem 1.3.7) that

R(A × B) ⊆ A(A× B) ⊆ M(µ× ν)

and that
(µ× ν)(A×B) = (µ · ν)(A×B) = µ(A)ν(B)

for all A ∈ A and B ∈ B. Furthermore, since µ × ν is a Carathéodory
Extension, µ× ν is automatically complete by Proposition 1.2.14.

Example 6.1.7. We claim that λ× λ = λ2; that is, the product measure
of two one-dimensional Lebesgue measures is the two-dimensional Lebesgue
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measure. Indeed recall by construction that for all Z ∈ R × R = R2 we have

(λ · λ)∗(Z)

= inf
{ ∞∑

n=1
(λ · λ)(Zn)

∣∣∣∣∣ {Zn}∞
n=1 ⊆ A(M(R) × M(R)), Z ⊆

∞⋃
n=1

Zn

}

= inf
{ ∞∑

n=1
(λ · λ)(Zn)

∣∣∣∣∣ {Zn}∞
n=1 ⊆ R(M(R) × M(R)), Z ⊆

∞⋃
n=1

Zn

}

= inf
{ ∞∑

n=1
λ(An)λ(Bn)

∣∣∣∣∣ {An, Bn}∞
n=1 ⊆ M(R), Z ⊆

∞⋃
n=1

An ×Bn

}
.

However, since

λ(A) = inf
{ ∞∑

n=1
λ(In)

∣∣∣∣∣ {In}∞
n=1 open intervals, A ⊆

∞⋃
n=1

In

}
,

we see that

(λ · λ)∗(Z)

= inf
{ ∞∑

n=1
λ(In)λ(Jn)

∣∣∣∣∣ {In, Jn}∞
n=1 open intervals, Z ⊆

∞⋃
n=1

In × Jn

}
= λ∗

2(Z)

by the definition of the two-dimensional Lebesgue outer measure from Defi-
nition 1.2.6. Hence both (λ · λ)∗ and λ∗

2 are the outer measure associated to
the pre-measure λ ·λ on the algebra A(M(R)×M(R)). Therefore, since λ ·λ
is clearly σ-finite in the sense of the Carathéodory-Hahn Extension Theorem
(Theorem 1.3.7), the Carathéodory-Hahn Extension Theorem implies that
M(λ× λ) is the two-dimensional Lebesgue measurable sets and λ× λ = λ2
as desired.

Remark 6.1.8. It is not difficult to see that the operation of taking the
product of measures is associative in the sense that if {(Xk,Ak, µk)}n

k=1
are measure spaces, then M((µ1 × µ2) × µ3) = M(µ1 × (µ2 × µ3)) and
(µ1 × µ2) × µ3 = µ1 × (µ2 × µ3). Indeed if

A =
{
Z ⊆ X1 ×X2 ×X3

∣∣∣∣∣Z =
n⋃

k=1
Zk where Zk ∈ A1 × A2 × A3

}

then A is an algebra by similar arguments to those used in Lemma 6.1.2. By
using our knowledge of product measures, it is possible to extend Lemma
6.1.3 to triples (i.e. take one measure in the assumptions of Lemma 6.1.3 to
be a product measure) and then extend Lemma 6.1.4 to construct a unique
pre-measure µ1 · µ2 · µ3 on A such that

(µ1 · µ2 · µ3)(A1 ×A2 ×A3) = µ1(A1)µ2(A2)µ3(A3)
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for all Ak ∈ Ak. Then, by similar arguments to those used in Example 6.1.7,
it is possible to see that both (µ1 × µ2) × µ3 and µ1 × (µ2 × µ3) are the
Carathéodory Extension of µ1 · µ2 · µ3. In particular, by extending the proof
of Example 6.1.7, one can see that

λ× λ× · · · × λ︸ ︷︷ ︸
n times

= λn.

Not only are product measures automatically complete, product measures
inherit properties from their underlying measures.

Proposition 6.1.9. Let (X,A, µ) and (Y,B, ν) be measurable spaces. If
both µ and ν are finite, then µ× ν is finite. Similarly, if both µ and ν are
σ-finite, then µ× ν is σ-finite.

Proof. Notice if A ∈ A and B ∈ B are such that µ(A), ν(B) < ∞, then
(µ× ν)(A×B) < ∞. Therefore, clearly µ× ν is finite if µ and ν are finite.

Assume µ and ν are σ-finite. Then there exists collections {An}∞
n=1 ⊆ A

and {Bn}∞
n=1 ⊆ B such that

X =
∞⋃

n=1
An, Y =

∞⋃
n=1

Bn, and µ(An), ν(Bn) < ∞

for all n ∈ N. For each n,m ∈ N, let

Zn,m = An ×Bm.

Clearly {Zn,m}∞
n,m=1 is a countable collection of elements of M(µ× ν) such

that (µ× ν)(Zn,m) < ∞ for all n,m ∈ N and X × Y =
⋃∞

n,m=1 Zn,m. Hence
µ× ν is σ-finite as desired.

6.2 Tonelli’s and Fubini’s Theorem
In this section, we will state our two main theorems. The proofs will be
postponed until the next section in order to provide examples to see why all
of the conditions are necessary.

Theorem 6.2.1 (Fubini’s Theorem). Let (X,A, µ) and (Y,B, ν) be com-
plete measure spaces. If f ∈ L1(X × Y, µ× ν), then:

1. for µ-almost every x ∈ X the function fx : Y → C defined by fx(y) =
f(x, y) for all y ∈ Y is a well-defined element of L1(Y, ν) and for ν-
almost every y ∈ Y the function fy : X → C defined by fy(x) = f(x, y)
for all x ∈ X is a well-defined element of L1(X,µ),

2. the function Φ : X → C defined by Φ(x) =
∫

Y fx dν is a well-defined
element of L1(X,µ) and the function Ψ : Y → C defined by Ψ(y) =∫

X fy dµ is a well-defined element of L1(Y, ν), and
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3.
∫

X×Y f d(µ× ν) =
∫

X Φ dµ =
∫

Y Ψ dν; that is

∫
X×Y

f d(µ× ν) =
∫

X

(∫
Y
f(x, y) dν(y)

)
dµ(x)

=
∫

Y

(∫
X
f(x, y) dµ(x)

)
dν(y).

Theorem 6.2.2 (Tonelli’s Theorem). Let (X,A, µ) and (Y,B, ν) be com-
plete, σ-finite measure spaces. If f : X × Y → [0,∞] is µ × ν-measurable,
then:

1. for µ-almost every x ∈ X the function fx : Y → [0,∞] defined by
fx(y) = f(x, y) for all y ∈ Y is a well-defined ν-measurable function
and for ν-almost every y ∈ Y the function fy : X → [0,∞] defined by
fy(x) = f(x, y) for all x ∈ X is a well-defined µ-measurable function,

2. the function Φ : X → [0,∞] defined by Φ(x) =
∫

Y fx dν is a well-
defined µ-measurable function and the function Ψ : Y → [0,∞] defined
by Ψ(y) =

∫
X fy dµ is a well-defined ν-measurable function, and

3.
∫

X×Y f d(µ× ν) =
∫

X Φ dµ =
∫

Y Ψ dν; that is

∫
X×Y

f d(µ× ν) =
∫

X

(∫
Y
f(x, y) dν(y)

)
dµ(x)

=
∫

Y

(∫
X
f(x, y) dµ(x)

)
dν(y).

Remark 6.2.3. It is clear that Fubini’s Theorem (Theorem 6.2.1) is more
general that Tonelli’s Theorem (Theorem 6.2.2) except for positive functions
that integrate to infinity. So what is the point of Tonelli’s Theorem? The
main use of Tonelli’s Theorem is to show that the assumptions of Fubini’s
Theorem holds; that is, to check that f ∈ L1(µ× ν), one generally verifies
that ∫

X×Y
|f | d(µ× ν) < ∞

using Tonelli’s Theorem!

To see why all of the conditions are necessary in Fubini’s Theorem
(Theorem 6.2.1) and Tonelli’s Theorem (Theorem 6.2.2), we exhibit the
following three examples.

Example 6.2.4. Let X = Y = N and let µ and ν be the counting measure
on N. Consider the function f : N × N → R defined by

f(n,m) =


1 if n = m

−1 if m = n+ 1
0 otherwise

.
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Then ∫
X

(∫
Y
f(n,m) dν(m)

)
dµ(n) =

∫
X

0 dµ(n) = 0

(since for any n, m obtains the values n and n+1 as m varies over N) whereas∫
Y

(∫
X
f(n,m) dµ(n)

)
dν(m) =

∫
Y
χm=1 dν(m) = 1

(i.e. if m = 1 then n takes the value m once and does not take the value
m− 1 as n varies over N, whereas if m ≥ 2 then n takes the values m and
m− 1 exactly once each as n varies over N). Hence the final conclusions of
Fubini’s Theorem (Theorem 6.2.1) and Tonelli’s Theorem (Theorem 6.2.2)
do not hold in this setting.

To see why this does not contradict the theorems, notice Tonelli’s Theorem
does not apply as f is not positive. To see why Fubini’s Theorem does not
apply, first notice by the properties of the product measure that µ× ν is the
counting measure on N × N. Therefore∫

X×Y
|f | d(µ× ν) = ∞

as |f(n,m)| = 1 for infinitely many (n,m) ∈ N2. Hence f /∈ L1(X ×Y, µ× ν)
so Fubini’s Theorem does not apply.

Example 6.2.5. Let X = Y = [0, 1], let µ = λ, and let ν be the counting
measure on Y . Consider the function f : X × Y → R defined by

f(x, y) =
{

1 if x = y

0 otherwise
.

Then ∫
X

(∫
Y
f(x, y) dν(y)

)
dµ(x) =

∫
X

1 dµ(x) = 1

(since ν is the counting measure and since for each x ∈ X there exists a
unique y ∈ Y such that f(x, y) ̸= 0 in which case f(x, y) = 1) whereas∫

Y

(∫
X
f(x, y) dµ(x)

)
dν(y) =

∫
Y

0 dν(y) = 0

(since f(x, y) = 0 for λ-almost every x for each y ∈ Y ). Hence the final
conclusions of Fubini’s Theorem (Theorem 6.2.1) and Tonelli’s Theorem
(Theorem 6.2.2) do not hold in this setting.

To see why this does not contradict the theorems, notice Tonelli’s Theorem
does not apply since ν is not σ-finite on Y . To see why Fubini’s Theorem
does not apply, first notice that f = χ∆ where

∆ = {(x, x) | x ∈ [0, 1]}.
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We claim that
(µ× ν)(∆) = ∞

which implies f /∈ L1(X × Y, µ× ν) so Fubini’s Theorem does not apply. To
see the claim recall that

(µ× ν)(∆) = inf
{ ∞∑

n=1
µ(An)ν(Bn)

∣∣∣∣ ∆⊆
⋃∞

n=1 An×Bn,

{An}∞
n=1⊆M(R),{Bn}∞

n=1⊆P([0,1])

}
.

Assume {An}∞
n=1 ⊆ M(R) and {Bn}∞

n=1 ⊆ P([0, 1]) are arbitrary collections
such that ∆ ⊆

⋃∞
n=1An ×Bn. Then for each x ∈ [0, 1] we have

(x, x) ∈ ∆ ⊆
∞⋃

n=1
An ×Bn

so there exists an n ∈ N such that x ∈ An ∩Bn. Therefore [0, 1] ⊆
⋃∞

n=1(An ∩
Bn). Therefore, since

1 = λ([0, 1]) ≤
∞∑

n=1
λ∗(An ∩Bn),

it must be the case that there exists an n0 ∈ N such that λ∗(An0 ∩Bn0) > 0.
This implies λ(An0) > 0 and Bn0 is infinite. Hence λ(An0)µ(Bn0) = ∞.
Therefore, since {An}∞

n=1 and {Bn}∞
n=1 were arbitrary, the claim is complete.

Example 6.2.6. Let X = Y = [0, 1] and let µ = ν = λ on [0, 1]. By the
Well-Ordering Principle and by assuming the Continuum Hypothesis (i.e. so
the cardinality of [0, 1] is the first uncountable cardinal ℵ1), there exists a
well-ordering ⪯ on [0, 1] such that {x ∈ [0, 1] | x ⪯ y} is countable for all
y ∈ [0, 1] except for the one corresponding to ℵ1.

Let Z = {(x, y) ∈ [0, 1]2 | x ⪯ y} and let f = χZ . Then∫
X

(∫
Y
f(x, y) dν(y)

)
dµ(x) =

∫
X
λ({y ∈ [0, 1] | x ⪯ y}) dµ(x)

=
∫

X
1 dµ(x) = 1

(since {y ∈ [0, 1] | x ⪯ y} contains all but a countable number of elements
of [0, 1] for λ-almost every x) whereas∫

Y

(∫
X
f(x, y) dµ(x)

)
dν(y) =

∫
Y
λ({x ∈ [0, 1] | x ⪯ y}) dν(y)

=
∫

Y
0 dν(y) = 0

(since {x ∈ [0, 1] | x ⪯ y} is countable for all but one y ∈ [0, 1]). Hence the
final conclusions of Fubini’s Theorem (Theorem 6.2.1) and Tonelli’s Theorem
(Theorem 6.2.2) do not hold in this setting.
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It turns out that Z is not a measurable set for λ× λ (and thus not two-
dimensional Lebesgue measurable by Example 6.1.7). Indeed suppose for the
sake of a contradiction that Z is measurable. Since λ× λ is a finite measure
on [0, 1] by Proposition 6.1.9, (λ× λ)(Z) < ∞ and thus f = χZ ∈ L1(λ× λ).
Since λ is complete, all the assumptions of Fubini’s Theorem then holds
thereby contradicting the above computations. Hence Z is not a measurable
set for λ× λ.

Thus this really isn’t an example of why the hypotheses of Fubini and
Tonelli’s Theorem must be satisfied, but another method of constructing a
set that is not measurable.

6.3 Proof of Tonelli’s and Fubini’s Theorem

In this section we will prove Fubini’s Theorem (Theorem 6.2.1) and Tonelli’s
Theorem (Theorem 6.2.2). Since the proofs are long and complicated, we
will divided the proofs into several lemmata. The idea of the proof is to first
prove the results for the characteristic functions of specific sets, then the
characteristic functions of all sets. This gives that the results hold for all
simple function from which we will obtain the full results.

To reduce assumptions, we will assume throughout that we are working
on fixed complete measure spaces (X,A, µ) and (Y,B, ν) and we establish
the following notation.

Notation 6.3.1. Given Z ⊆ X × Y , x ∈ X, and y ∈ Y , denote

Zx = {w ∈ Y | (x,w) ∈ Z} and Zy = {z ∈ X | (z, y) ∈ Z}.

Similarly, given a function f : X×Y → C, x ∈ X, and y ∈ Y , let fx : Y → C
and fy : X → C denote the functions such that

fx(w) = f(x,w) and fy(z) = f(z, y)

for all z ∈ X and w ∈ Y . Finally, let

Rσ(A × B) =
{
Z ⊆ X × Y

∣∣∣ Z is a countable union
of elements of R(A×B)

}
Rσδ(A × B) =

{
Z ⊆ X × Y

∣∣∣ Z is a countable intersection
of elements of Rσ(A×B)

}
Note since R(A × B) ⊆ M(µ× ν) and since M(µ× ν) is a σ-algebra that

R(A × B) ⊆ A(A × B) ⊆ Rσ(A ×B) ⊆ Rσδ(A ×B) ⊆ M(µ× ν).

Lemma 6.3.2. If Z ∈ Rσδ(A×B), then Zx is ν-measurable for every x ∈ X.

Proof. The proof will be divided into three cases of increasing generality.
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Case 1: Z ∈ R(A × B). In this case, we may write Z = A×B for some
A ∈ A and B ∈ B. Therefore, for each x ∈ X,

Zx =
{

∅ if x /∈ A

B if x ∈ A
.

Since ∅, B are elements of B and thus ν-measurable, Zx is ν-measurable in
this case.

Case 2: Z ∈ Rσ(A × B). In this case, we may write Z =
⋃∞

n=1Rn for
some collection {Rn}∞

n=1 ⊆ R(A × B). Since

Zx =
∞⋃

n=1
(Rn)x

for each x ∈ X, and since (Rn)x ∈ B for all n ∈ N and x ∈ X by Case 1, we
see that Zx ∈ B for all x ∈ X and thus Zx is ν-measurable in this case.

Case 3: Z ∈ Rσδ(A × B). In this case, we may write Z =
⋂∞

n=1 Zn for
some collection {Zn}∞

n=1 ⊆ Rσ(A × B). Since

Zx =
∞⋂

n=1
(Zn)x

for each x ∈ X, and since (Zn)x ∈ B for all n ∈ N and x ∈ X by Case 2, we
see that Zx ∈ B for all x ∈ X and thus Zx is ν-measurable. Since this is the
most general case, the proof is complete.

Lemma 6.3.3. Let Z ∈ Rσδ be such that (µ × ν)(Z) < ∞ and define
g : X → [0,∞] by g(x) = ν(Zx) for all x ∈ X. Then g is µ-measurable and∫

X
g dµ = (µ× ν)(Z) =

∫
X×Y

χZ d(µ× ν).

In particular ν(Zx) < ∞ for µ-almost every x ∈ X.

Proof. First notice that g is well-defined since Zx is ν-measurable for all
x ∈ X by Lemma 6.3.2. Furthermore, the equality

(µ× ν)(Z) =
∫

X×Y
χZ d(µ× ν)

is trivial.
The remainder of the proof will be divided into three cases of increasing

generality.
Case 1: Z ∈ R(A × B). In this case, we may write Z = A×B for some

A ∈ A and B ∈ B. Since

Zx =
{

∅ if x /∈ A

B if x ∈ A
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for all x ∈ X, we see that

g(x) = ν(Zx) = ν(B)χA(x)

for all x ∈ X. Hence g is clearly µ-measurable and∫
X
g dµ = ν(B)

∫
X
χA dµ = µ(A)ν(B) = (µ× ν)(Z)

as desired.
Case 2: Z ∈ Rσ(A × B). In this case, we may write Z =

⋃∞
n=1Rn for

some collection {Rn}∞
n=1 ⊆ R(A × B). Since A(A × B) is an algebra con-

structed by taking all finite unions of elements of R(A × B), we notice
the proof of Lemma 6.1.2 implies that we may assume that the collection
{Rn}∞

n=1 ⊆ R(A × B) is pairwise disjoint. Hence {(Rn)x}∞
n=1 ⊆ B is pairwise

disjoint for all x ∈ X. Therefore

g(x) = ν(Zx) = ν

( ∞⋃
n=1

(Rn)x

)
=

∞∑
n=1

ν((Rn)x)

for all x ∈ X. Therefore, by Case 1, g is a countable sum of non-negative
µ-measurable functions and hence is µ-measurable by Proposition 2.1.22.
Moreover, by Corollary 3.2.5,∫

X
g dµ =

∫
X

∞∑
n=1

ν((Rn)x) dµ(x)

=
∞∑

n=1

∫
X
ν((Rn)x) dµ(x)

=
∞∑

n=1
(µ× ν)(Rn)

= (µ× ν)
( ∞⋃

n=1
Rn

)
= (µ× ν)(Z)

as desired.
Case 3: Z ∈ Rσδ(A × B). In this case, we may write Z =

⋂∞
n=1 Zn for

some collection {Zn}∞
n=1 ⊆ Rσ(A × B). Since (µ× ν)(Z) < ∞, the definition

of µ× ν implies there exists a {Cn}∞
n=1 ∈ A(A × B) such that Z ⊆

⋃∞
n=1Cn

and
(µ× ν)(Z) ≤

∞∑
n=1

(µ× ν)(Cn) < ∞.

Therefore, if Z ′
0 =

⋃∞
n=1Cn, then Z ′

0 ∈ Rσ(A × B) and (µ × ν)(Z0) < ∞.
Moreover, since the intersection of any two elements of R(A × B) is an
element of R(A × B) (i.e. (A1 ×B1) ∩ (A2 ×B2) = (A1 ∩A2) × (B1 ∩B2)),
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since each element of Rσ(A×B) is a countable union of elements of R(A×B),
and since the countable union of countable sets is countable, we note that if

Z ′
n = Zn ∩ Z ′

n−1

for all n ∈ N, then {Z ′
n}∞

n=0 ⊆ Rσ(A × B), Z =
⋂∞

n=0 Z
′
n, (µ× ν)(Z ′

0) < ∞,
and Z ′

n ⊆ Z ′
n−1 for all n ∈ N.

For each n ∈ N ∪ {0}, define gn : X → [0,∞] by gn(x) = ν((Z ′
n)x) for all

x ∈ X. Clearly each gn is µ-measurable by Case 2. Moreover, Case 2 implies
that

0 ≤
∫

X
ν((Z ′

0)x) dµ(x) =
∫

X
g0 dµ = (µ× ν)(Z ′

0) < ∞

and thus ν((Z ′
0)x) < ∞ for µ-almost every x. In addition, notice that

Zx =
⋂∞

n=1(Z ′
n)x for all x ∈ X and, since Z ′

n ⊆ Z ′
n−1 for all n ∈ N, that

(Z ′
n)x ⊆ (Z ′

n−1)x for all n ∈ N and x ∈ X. Therefore, we obtain by the
Monotone Convergence Theorem for Measures (Theorem 1.1.23) that

lim
n→∞

gn(x) = lim
n→∞

ν((Z ′
n)x) = ν(Zx) = g(x)

for µ-almost every x. Therefore, since µ is complete, Corollary 2.1.28 implies
that g is µ-measurable.

Next, since (Z ′
n)x ⊆ (Z ′

n−1)x for all n ∈ N and x ∈ X, we see that
gn(x) ≤ g0(x) for all x ∈ X. However, since g0 is non-negative and µ-
measurable, we see by Case 2 that∫

X
g0 dµ = (µ× ν)(Z ′

0) < ∞

and thus g0 ∈ L1(X,µ). Therefore, by the Dominated Convergence Theorem
(Theorem 3.6.1) and Case 2, we obtain that∫

X
g dµ = lim

n→∞

∫
X
gn dµ

= lim
n→∞

∫
X
ν((Z ′

n)x) dµ(x)

= lim
n→∞

(µ× ν)(Z ′
n).

However, since (µ×ν)(Z ′
0) < ∞, Z ′

n ⊆ Z ′
n−1 for all n ∈ N, and Z =

⋂∞
n=1 Z

′
n,

we obtain by the Monotone Convergence Theorem for Measures (Theorem
1.1.23) that ∫

X
g dµ = lim

n→∞
(µ× ν)(Z ′

n) = (µ× ν)(Z)

as desired. Since this is the most general case, the proof is complete.

Note Lemma 6.3.3 proves the desired result (i.e. Fubini’s Theorem
(Theorem 6.2.1)) for all characteristic functions of elements of Rσδ. To
extend this to all characteristic functions, we will require the following two
lemmata.
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Lemma 6.3.4. If Z ∈ M(µ× ν) is such that (µ× ν)(Z) < ∞, then there
exists an G ∈ Rσδ(A × B) such that Z ⊆ G and (µ× ν)(G \ Z) = 0.

Proof. Fix ϵ > 0. By the definition of µ × ν there exists a collection
{Cn}∞

n=1 ⊆ A(A × B) such that Z ⊆
⋃∞

n=1Cn and
∞∑

n=1
(µ× ν)(Cn) ≤ (µ× ν)(Z) + ϵ.

Since each element of A(A × B) is a finite union of elements of R(A × B),
since the countable union of countable sets is countable, and since µ × ν
is subadditive, there exists a collection {Rn}∞

n=1 ⊆ R(A × B) such that
Z ⊆

⋃∞
n=1Rn and

∞∑
n=1

(µ× ν)(Rn) ≤ (µ× ν)(Z) + ϵ.

Let Gϵ =
⋃∞

n=1Rn ∈ Rσ(A × B). Then clearly Z ⊆ Gϵ and

(µ× ν)(Z) ≤ (µ× ν)(Gϵ) ≤
∞∑

n=1
(µ× ν)(Rn) ≤ (µ× ν)(Z) + ϵ.

Let G =
⋂∞

n=1G 1
n

∈ Rσδ(A × B). Clearly Z ⊆ G as Z ⊆ G 1
n

for all
n ∈ N. Moreover, clearly

(µ× ν)(Z) ≤ (µ× ν)(G) ≤ (µ× ν)
(
G 1

n

)
≤ (µ× ν)(Z) + 1

n

for all n ∈ N. Hence
(µ× ν)(Z) = (µ× ν)(G).

Therefore, since (µ× ν)(Z) < ∞ and Z ⊆ G, we obtain that

(µ× ν)(G \ Z) = 0

as desired.

Lemma 6.3.5. If Z ∈ M(µ × ν) is such that (µ × ν)(Z) = 0, then Zx is
ν-measurable with ν(Zx) = 0 for µ-almost every x ∈ X.

Proof. By Lemma 6.3.4 there exists an G ∈ Rσδ(A × B) such that Z ⊆ G
and (µ× ν)(G \ Z) = 0. Hence (µ× ν)(G) = 0.

Recall from Lemma 6.3.3 that if we define g : X → [0,∞] by g(x) = ν(Gx)
for all x ∈ X, then g is µ-measurable and∫

X
g dµ = (µ× ν)(G) = 0.

Therefore 0 = g(x) = ν(Gx) for µ-almost every x ∈ X. Since Z ⊆ G
so Zx ⊆ Gx for all x ∈ X and since ν is complete, we obtain that Zx is
ν-measurable with ν(Zx) = 0 for µ-almost every x ∈ X.
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Lemma 6.3.6. If Z ∈ M(µ× ν) is such that (µ× ν)(Z) < ∞, then Fubini’s
Theorem (Theorem 6.2.1) holds for the function f = χZ .

Proof. Fix Z ∈ M(µ× ν) such that (µ× ν)(Z) < ∞. By Lemma 6.3.4 there
exists an G ∈ Rσδ(A × B) such that Z ⊆ G and (µ× ν)(G \ Z) = 0.

Notice for all x ∈ X that

Zx = (Gx) \ (G \ Z)x.

Since (µ× ν)(G) = (µ× ν)(Z) < ∞ we know that Gx is ν-measurable for all
x ∈ X by Lemma 6.3.3. Moreover, since (µ× ν)(G \ Z) = 0, we know that
(G \ Z)x is ν-measurable for µ-almost every x ∈ X by Lemma 6.3.5. Hence
we obtain that Zx is ν-measurable for µ-almost every x ∈ X. Moreover, by
Lemma 6.3.5,

ν(Zx) = ν(Gx) − ν((G \ Z)x) = ν(Gx).
for µ-almost every x ∈ X.

Let f = χZ and notice that fx : Y → [0,∞] is defined by

fx(y) = f(x, y) = χZ(x, y) = χZx(y).

Therefore, since Zx is ν-measurable for µ-almost every x ∈ X, fx is ν-
measurable for µ-almost every x ∈ X. Moreover∫

Y
fx dν =

∫
Y
χZx dν = ν(Zx) = ν(Gx)

for µ-almost every x ∈ X. However, by Lemma 6.3.3,∫
X
ν(Gx) dµ(x) = (µ× ν)(G) < ∞

so that ν(Gx) < ∞ for µ-almost every x ∈ X. Hence
∫

Y fx dν < ∞ for
µ-almost every x ∈ X so fx ∈ L1(Y, ν) for µ-almost every x ∈ X as desired.

Next recall that Φ : X → [0,∞] is defined by

Φ(x) =
∫

Y
fx dν = ν(Zx) = ν(Gx)

for all x ∈ X. Therefore, by Lemma 6.3.3, Φ is µ-measurable and∫
X

Φ dµ =
∫

X
ν(Gx) dµ(x) = (µ× ν)(G) < ∞.

Hence Φ ∈ L1(X,µ) as desired.
Finally, by Lemma 6.3.3,∫

X
Φ dµ = (µ× ν)(G) = (µ× ν)(Z) =

∫
X×Y

χZ d(µ× ν)

as desired. The remainder of the proof of Fubini’s Theorem (Theorem 6.2.1)
in this case holds by symmetry (i.e. repeat Lemmata 6.3.2, 6.3.3, and 6.3.5
with y in place of x, and µ and ν interchanged).
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Finally, we can complete the proof of Fubini’s Theorem (Theorem 6.2.1).

Proof of Fubini’s Theorem (Theorem 6.2.1). To begin, note Lemma 6.3.6
implies Fubini’s Theorem holds for characteristic functions of finite (µ× ν)-
measure. Therefore, since simple functions are linear combinations of simple
functions, it is elementary to see that Fubini’s Theorem holds for simple
functions which vanish off a set of finite (µ× ν)-measure.

Next recall that every element of L1(µ × ν) is a linear combination of
four non-negative elements of L1(µ× ν). Therefore, since it is elementary to
see that if Fubini’s Theorem holds for a finite set of functions then Fubini’s
Theorem holds for all linear combinations of those functions, we may assume
without loss of generality that f is non-negative.

Since f is non-negative, Theorem 2.2.4 implies there exists a sequence
(φn)n≥1 of simple functions on (X × Y, µ × ν) such that φn ≤ φn+1 for
all n ∈ N and (φn)n≥1 converges to f pointwise. Hence the Monotone
Convergence Theorem (Theorem 3.2.1) implies that

lim
n→∞

∫
X×Y

φn d(µ× ν) =
∫

X×Y
f d(µ× ν) < ∞.

Moreover, since 0 ≤ φn ≤ f , we see that φn ∈ L1(X × Y, µ× ν). Therefore,
the proof of Theorem 3.7.24 implies that each φn vanishes off a set of finite
(µ× ν)-measure and thus Fubini’s Theorem holds for each φn.

To see that fx is ν-measurable for µ-almost every x ∈ X, notice by
construction that

lim
n→∞

(φn)x(y) = lim
n→∞

φn(x, y) = f(x, y) = fx(y)

for all (x, y) ∈ X ×Y . Therefore, since ν is complete and since y 7→ (φn)x(y)
is ν-measurable for µ-almost every x ∈ X, we obtain by Proposition 2.1.22
that fx is ν-measurable for µ-almost every x ∈ X. Furthermore since
φn ≤ φn+1 implies that (φn)x(y) ≤ (φn+1)x(y), the Monotone Convergence
Theorem (Theorem 3.2.1) implies that

Φ(x) =
∫

Y
fx dν = lim

n→∞

∫
Y

(φn)x dν

for µ-almost every x ∈ X. Hence, since θn : X → [0,∞] defined by

θn(x) =
∫

Y
(φn)x dµ

is µ-measurable for every n, Proposition 2.1.22 implies that Φ is µ-measurable.
Moreover, since φn ≤ φn+1 implies that θn ≤ θn+1 for all n ∈ N and since
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limn→∞ φn(x) = Φ(x) for µ-almost every x ∈ X, we again obtain that∫
X

Φ dµ = lim
n→∞

∫
X
θn dµ by the Monotone Convergence Theorem

= lim
n→∞

∫
X

(∫
Y

(φn)x(y) dν(y)
)
dµ(x)

= lim
n→∞

∫
X×Y

φn d(µ× ν) as Fubini’s Theorem holds for φn

=
∫

X×Y
f d(µ× ν) by the Monotone Convergence Theorem.

Therefore, since
∫

X×Y f d(µ × ν) < ∞, we see that Φ ∈ L1(X,µ). Since
Φ ∈ L1(X,µ) implies that Φ(x) < ∞ for µ-almost every x ∈ X, we see that∫

Y fx dν < ∞ for µ-almost every x ∈ X. Hence fx ∈ L1(Y, ν) for µ-almost
every x ∈ X as desired.

The proof is then completed by interchanging x and y and interchanging
µ and ν to obtain the results for fy and Ψ.

Proof of Tonelli’s Theorem (Theorem 6.2.2). To begin, note that all simple
functions which vanish off a set of finite (µ× ν)-measure are non-negative
elements of L1(µ× ν) so Fubini’s Theorem (Theorem 6.2.1) holds for them.
Hence it is elementary to see that Tonelli’s Theorem holds for simple functions
which vanish off a set of finite (µ× ν)-measure.

Let f be as in Tonelli’s Theorem. Since f is non-negative, Theorem 2.2.4
implies there exists a sequence (φn)n≥1 of simple functions on (X × Y, µ× ν)
such that φn ≤ φn+1 for all n ∈ N and (φn)n≥1 converges to f pointwise.

Notice that if each φn vanishes off a set of finite (µ× ν)-measure, then
the proof of Fubini’s Theorem (Theorem 6.2.1) carries forward verbatim to
complete the proof. Hence it suffices to show we can take each φn to vanish
off a set of finite (µ× ν)-measure.

Since µ and ν are σ-finite, µ× ν is σ-finite by Proposition 6.1.9. Hence
Remark 1.1.21 implies there exists {Zn}∞

n=1 ⊆ M(A × B) such that X×Y =⋃∞
n=1 Zn and Zn ⊆ Zn+1 for all n ∈ N.

For each n ∈ N let ψn = φnχZn . Then (ψn)n≥1 is a sequence of simple
functions on X × Y each of which vanishes off a set of finite (µ× ν)-measure
such that, by construction, ψn ≤ ψn+1 for all n ∈ N and (ψn)n≥1 converges
to f pointwise. Hence the proof of Fubini’s Theorem (Theorem 6.2.1) carries
forward verbatim to complete the proof.
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Chapter 7

Riesz Representation
Theorems

In this final chapter, analyze various the Banach space structures of the
objects we have seen in this course. In particular, we desire to better
understand all Lp-space even though we have mainly studied L1(X,µ). One
reason why one might be interested in understanding Lp-spaces is that the
p-norms are very natural norms and occur with regularity in analysis.

In order to better understand Lp-spaces and the p-norms, we turn to
some ideas from functional analysis. By understanding the continuous linear
functionals on a Banach space, one can understand many structural properties
and behaviours of the Banach space. Thus in this chapter we will describe
the collection of bounded linear functionals on Lp-spaces. This will lead to
an alternate yet highly useful description of the p-norms.

7.1 Dual Spaces
In this section, we will recall some necessary facts pertaining to continuous
linear functionals on Banach spaces. For some detailed proofs, we refer the
reader to Appendix C. Recall that K denotes either R or C.

Definition 7.1.1. Let (X , ∥ · ∥X ) be a normed linear space over K. A linear
functional on (X , ∥ · ∥X ) is a linear map T : X → K.

Remark 7.1.2. It is not difficult to see that a linear functional T on a
normed linear space (X , ∥ · ∥) is continuous if and only if there exists an
M > 0 such that |T (x⃗)| ≤ M whenever x⃗ ∈ X and ∥x⃗∥X ≤ 1 (see Theorem
C.3.24). In particular, if T is a continuous linear functional and we define

∥T∥ = sup{|T (x⃗)| | x⃗ ∈ X , ∥x⃗∥X ≤ 1}

then ∥T∥ < ∞ and
|T (x⃗)| ≤ ∥T∥ ∥x⃗∥X
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for all x⃗ ∈ X .

Definition 7.1.3. Let (X , ∥ · ∥X ) be a normed linear space over K. The dual
space of (X , ∥ · ∥X ), denoted X ∗, is the set of all continuous linear functional
on (X , ∥ · ∥X ).

Theorem 7.1.4. If (X , ∥ · ∥X ) is a normed linear space over K, then the
dual space X ∗ is a Banach space with respect to the norm ∥ · ∥ : X ∗ → [0,∞)
defined by

∥T∥ = sup{|T (x⃗)| | x⃗ ∈ X , ∥x⃗∥X ≤ 1}

for all T ∈ X ∗.

Proof. See Theorem C.5.8.

Example 7.1.5. Let (X , d) be a compact metric space, let C(X ,R) denote
continuous, real-valued functions on X , and let ν be a finite signed measure
on the Borel subsets of X . Recall that C(X ,R) is a normed linear space with
respect to the norm ∥ · ∥∞ : C(X ,R) → [0,∞) defined by

∥f∥∞ = sup{|f(x)| | x ∈ X }

for all f ∈ C(X ,R).
Define T : C(X ,R) → R by

T (f) =
∫

X
f dν =

∫
X
f dν+ −

∫
X
f dν−

for all f ∈ C(X ,R). To see that T is well-defined recall that ν is finite so
ν+ and ν− are finite Borel measures on (X , d) by Lemma 5.4.6. Therefore,
since every continuous function on a compact metric space is bounded by the
Extreme Value Theorem and since bounded functions are integrable with
respect to any finite measure, T is well-defined. Furthermore, it is clear that
T is a linear functional.

We claim that T is continuous. To see this, notice for all f ∈ C(X ,R)
that

|T (f)| =
∣∣∣∣∫

X
f dν+ −

∫
X
f dν−

∣∣∣∣
≤
∫

X
|f | dν+ +

∫
X

|f | dν−

≤ ∥f∥∞ ν+(X ) + ∥f∥∞ ν−(X )
= ∥f∥∞ ∥ν∥ .

Therefore T is continuous with ∥T∥ ≤ ∥ν∥.
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Example 7.1.6. Let (X,A, µ) be a σ-finite measure space, let p, q ∈ [1,∞]
be such that 1

p + 1
q = 1, and let g ∈ Lq(X,µ). Define Ψg : Lp(X,µ) → C by

Ψg(f) =
∫

X
fg dµ

for all f ∈ Lp(X,µ). To see that T is well-defined, notice since g ∈ Lq(X,µ)
and 1

p + 1
q = 1 that fg ∈ L1(X,µ) for all f ∈ Lp(X,µ) by Hölder’s Inequality

(Theorems 3.7.8 and 3.7.22). Hence Ψg is well-defined. Furthermore, clearly
Ψg is linear.

To see that Ψg is continuous, notice for all f ∈ Lp(X,µ) that

|Ψg(f)| =
∣∣∣∣∫

X
fg dµ

∣∣∣∣ ≤
∫

X
|fg| dµ ≤ ∥f∥p ∥g∥q

by Hölder’s Inequality. Hence Ψg ∈ Lp(X,µ)∗ with ∥Ψg∥ ≤ ∥g∥q.
We claim that ∥Ψg∥ = ∥g∥q. To see this, we divide the discussion into

three cases.
Case 1: q = 1. In this case p = ∞. Consider f : X → C defined by

f(x) = sgn(g)(x) =


|g(x)|
g(x) if g(x) ̸= 0

1 if g(x) = 0

for all x ∈ X. It is not difficult to see that f is measurable with |f(x)| = 1
for all x ∈ X and thus f ∈ L∞(X,µ) with ∥f∥∞ = 1. Therefore, since

Ψg(f) =
∫

X
fg dµ =

∫
X

|g| dµ = ∥g∥1 ,

we see that ∥Ψg∥ ≥ ∥g∥1 and thus ∥Ψg∥ = ∥g∥1 as desired.
Case 2: 1 < q < ∞. In this case 1 < p < ∞. Let f = sgn(g)|g|

q
p . Clearly

f is a well-defined measurable function since 1 < p, q < ∞. We claim that
f ∈ Lp(X,µ). To see this, notice

(∫
X

|f |p dµ
) 1

p

=
(∫

X
|g|q dµ

) 1
p

= ∥g∥
q
p
q < ∞

since |sgn(g)| = 1 and g ∈ Lq(X,µ). Hence f ∈ Lp(X,µ) with ∥f∥p = ∥g∥
q
p
q .

Therefore, since
1
p

+ 1
q

= 1 =⇒ q

p
+ 1 = q
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we see that

Ψg(f) =
∫

X
fg dµ

=
∫

X
|g|

q
p

+1
dµ

=
∫

X
|g|q dµ

= ∥g∥q
q

= ∥g∥q ∥g∥
q
p
q

= ∥g∥q ∥f∥p .

If f = 0 then clearly g = 0 and the result follows. Otherwise if h = 1
∥f∥p

f

then h ∈ Lp(X,µ), ∥h∥p = 1, and the above computation implies that

Ψg(h) = ∥g∥q .

Therefore ∥Ψg∥ ≥ ∥g∥q and thus ∥Ψg∥ = ∥g∥q as desired.
Case 3: q = ∞. In this case p = 1. Notice the previous cases did not

require µ to be σ-finite whereas we will need to use σ-finiteness here. To
begin, since µ is σ-finite there exists a collection {Xn}∞

n=1 ⊆ A such that
µ(Xn) < ∞ for all n ∈ N, X =

⋃∞
n=1Xn, and Xn ⊆ Xn+1 for all n ∈ N by

Remark 1.1.21.
Let ϵ > 0 be arbitrary and let

Aϵ = {x ∈ X | |g(x)| > ∥g∥∞ − ϵ}.

Since g ∈ L∞(X,µ), we know that µ(Aϵ) > 0. For each n ∈ N let Bn =
Aϵ∩Xn. Then clearly Aϵ =

⋃∞
n=1Bn and Bn ⊆ Bn+1 for all n ∈ N. Therefore

µ(Aϵ) = limn→∞ µ(Bn) by the Monotone Convergence Theorem for Measures
(Theorem 1.1.23). Moreover, since 0 ≤ µ(Bn) ≤ µ(Xn) < ∞ for all n ∈ N,
there exists an N ∈ N such that

0 < µ(BN ) < ∞.

Let f = 1
µ(BN )χBN

sgn(g). Then f is clearly measurable with∫
X

|f | dµ = 1
µ(BN )

∫
X
χBN

dµ = 1.

Therefore, since

Ψg(f) =
∫

X
fg dµ

= 1
µ(BN )

∫
X
χBN

|g| dµ

≥ 1
µ(BN )

∫
X
χBN

(∥g∥∞ − ϵ) dµ

= ∥g∥∞ − ϵ
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as BN ⊆ Aϵ, we obtain that ∥Ψg∥ ≥ ∥g∥∞ − ϵ. Hence, as ϵ > 0 was arbitrary,
the result follows.

Remark 7.1.7. Notice as a direct corollary Example 7.1.6 that if (X,A, µ)
is a σ-finite measure space and p, q ∈ [1,∞] are such that 1

p + 1
q = 1, then

∥g∥q = ∥Ψg∥ = sup
{∣∣∣∣∫

X
fg dµ

∣∣∣∣ ∣∣∣∣ f ∈ Lp(X,µ), ∥f∥p ≤ 1
}

for all g ∈ Lq(X,µ). This alternative way to compute the norm can be useful
on occasion.

7.2 The Lp-Riesz Representation Theorem

In the previous section, we saw various continuous linear functionals on both
C(X ,R) and Lp(X,µ). In this section, we will completely characterize the
continuous linear functionals on Lp(X,µ) (for p ≠ ∞) and thereby develop
a method for verifying a function is in Lq(X,µ). In particular, our main
goal is to prove the following which shows that Lp(X,µ) and Lq(X,µ) are
‘dual’ to each other and serves as demonstrating that the continuous linear
functionals on Lp(X,µ) from Example 7.1.6 are all the continuous linear
functionals there are.

Theorem 7.2.1 (Riesz Representation Theorem for Lp-Spaces). Let
(X,A, µ) be a σ-finite measure space, let 1 ≤ p < ∞, and let 1 < q ≤ ∞ be
such that 1

p + 1
q = 1. If Ψ ∈ Lp(X,µ)∗ then there exists a unique g ∈ Lq(X,µ)

such that
Ψ(f) =

∫
X
fg dµ

for all f ∈ Lp(X,µ). Moreover ∥Ψ∥ = ∥g∥q. In particular, Lp(X,µ)∗ =
Lq(X,µ).

First note that the norm estimates in the Riesz Representation Theorem
for Lp-spaces (Theorem 7.2.1) immediately follow for Example 7.1.6. Thus it
suffices to prove given a continuous linear functional on Lp(X,µ) that there
is one and exactly one element of Lq(X,µ) that, via Example 7.1.6, produces
the continuous linear functional.

To begin, we desire to reduce to the setting that our functions are real-
valued. Thus, let Lp(X,µ)R denote the real-valued p-integrable functions
and consider the following.

Lemma 7.2.2. Let (X,A, µ) be a σ-finite measure space, let 1 ≤ p < ∞,
and let Ψ ∈ Lp(X,µ)∗. Then there exists continuous functions

ψ1, ψ2 : Lp(X,µ)R → R
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such that ψ1 and ψ2 are (real-)linear and

Ψ(f) = ψ1(Re(f)) + iψ1(Im(f)) + iψ2(Re(f)) − ψ2(Im(f))

for all f ∈ Lp(X,µ).

Proof. Given a function f ∈ Lp(X,µ), recall the complex conjugate of f ,
denoted f , is an element of Lp(X,µ). Define ψ1, ψ2 : Lp(X,µ)R → R by

ψ1(f) = Re(Ψ(f)) and ψ2(f) = Im(Ψ(f))

for all f ∈ Lp(X,µ)R. Since Ψ is complex linear and continuous, it is
elementary to see that ψ1 and ψ2 are real linear and continuous. Moreover,
the equation

Ψ(f) = ψ1(Re(f)) + iψ1(Im(f)) + iψ2(Re(f)) − ψ2(Im(f))

for all f ∈ Lp(X,µ) is then trivial to verify.

Next we require a method for verifying that a function is in Lq(X,µ)
based on knowledge of its integral against elements of Lp(X,µ). This is
achieved via the following two lemma (one for p ∈ (1,∞) and one for p = 1).
Note this has significance outside the proof of the Riesz Representation
Theorem (Theorem 7.2.1) as it enables us to deduce a function is in Lq(X,µ)
and obtain a bound on its norm based on integration.

Lemma 7.2.3. Let (X,A, µ) be a finite measure space, let 1 < p < ∞, and
1 < q < ∞ be such that 1

p + 1
q = 1, and let g ∈ L1(X,µ)R. If there exists an

M ∈ R such that ∣∣∣∣∫ gφ dµ

∣∣∣∣ ≤ M ∥φ∥p

for all measurable functions φ : X → R of finite range, then g ∈ Lq(X,µ)
with ∥g∥q ≤ M .

Proof. Since |g|q is a measurable function, Theorem 2.2.4 implies there exists
an increasing sequence (φn)n≥1 of simple functions that converges to |g|q
pointwise. For each n ∈ N let

ψn = φ
1
p
n sgn(g).

Since g is real-valued so sgn(g) obtains a finite number of values, it is
elementary to see that each ψn is a measurable function of finite range.
Moreover, notice for all n ∈ N that

∥ψn∥p =
(∫

X
|ψn|p dµ

) 1
p

=
(∫

X
φn dµ

) 1
p
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and
0 ≤ φn = φ

1
p
nφ

1
q
n ≤ φ

1
p
n |g| = φ

1
p
n sgn(g)g = ψng.

Therefore, for all n ∈ N

0 ≤
∫

X
φn dµ ≤

∫
X
gψn dµ ≤ M ∥ψn∥p = M

(∫
X
φn dµ

) 1
p

.

Since µ is finite so all simple functions are integrable, we know that∫
X
φn dµ < ∞

for all n ∈ N. Hence the above equation implies that(∫
X
φn dµ

) 1
q

=
(∫

X
φn dµ

)1− 1
p

≤ M.

However, by the Monotone Convergence Theorem(∫
X

|g|q dµ
) 1

q

=
(

lim
n→∞

∫
X
φn dµ

) 1
q

≤ M

and thus ∥g∥q ≤ M . Hence g ∈ Lq(X,µ) as desired.

Lemma 7.2.4. Let (X,A, µ) be a finite measure space, and let g ∈ L1(X,µ)R.
If there exists an M ∈ R such that∣∣∣∣∫ gφ dµ

∣∣∣∣ ≤ M ∥φ∥1

for all measurable functions φ : X → R of finite range, then g ∈ L∞(X,µ)
with ∥g∥∞ ≤ M .

Proof. Let ϵ > 0 be arbitrary. Consider the set

Aϵ = {x ∈ X | |g(x)| ≥ M + ϵ}.

Clearly Aϵ is measurable. Hence

(M + ϵ)µ(Aϵ) ≤
∫

Aϵ

|g| dµ

=
∫

X
sgn(g)χAϵg dµ

≤ M ∥sgn(g)χAϵ∥1
= Mµ(Aϵ)

since sgn(g)χAϵ is a measurable function of finite range (as g is real-valued).
Therefore ϵµ(Aϵ) ≤ 0 so µ(Aϵ) = 0. Therefore, since ϵ > 0 was arbitrary, we
obtain that g ∈ L∞(X,µ) with ∥g∥∞ ≤ M .
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Proof of the Riesz Representation Theorem for Lp-Spaces (Theorem 7.2.1).
Recall from Example 7.1.6 that if Ψg : Lp(X,µ) → C is defined by

Ψg(f) =
∫

X
fg dµ

for all f ∈ Lp(X,µ), then Ψg ∈ Lp(X,µ)∗ and ∥Ψg∥ = ∥g∥q. Furthermore,
notice if g1, g2 ∈ Lq(X,µ) are such that Ψg1 = Ψg2 , then

0 = Ψg1(f)−Ψg2(f) =
∫

X
fg1 dµ−

∫
X
fg2 dµ =

∫
X
f(g1−g2) dµ = Ψg1−g2(f)

for all f ∈ Lp(X,µ). Therefore 0 = ∥Ψg1−g2∥ = ∥g1 − g2∥q so g1 = g2. Hence,
to complete the proof, it suffices to show that if Ψ ∈ Lp(X,µ)∗ then there
exists a g ∈ Lq(X,µ) such that Ψ = Ψg (as the above produces the value of
the norm and uniqueness).

Fix Ψ ∈ Lp(X,µ)∗. Recall by Lemma 7.2.2 that there exists continuous
real-linear functions ψ1, ψ2 : Lp(X,µ)R → R such that

Ψ(f) = ψ1(Re(f)) + iψ1(Im(f)) + iψ2(Re(f)) − ψ2(Im(f))

for all f ∈ Lp(X,µ). If we demonstrate that there exists g1, g2 ∈ Lq(X,µ)R
such that

ψ1(h) =
∫

X
hg1 dµ and ψ2(h) =

∫
X
hg2 dµ

for all h ∈ Lp(X,µ)R, then we obtain (using complex linearity) that

Ψ(f) =
∫

X
f(g1 + ig2) dµ

for all f ∈ Lp(X,µ), which would complete the proof as g1 + ig2 ∈ Lq(X,µ).
Therefore, it suffices to show that if ψ : Lp(X,µ)R → R is continuous and
real-linear then there exists a g ∈ Lq(X,µ)R such that

ψ(f) =
∫

X
fg dµ

for all f ∈ Lp(X,µ).
To see the above claim, we will divide the proof into two cases.
Case 1: µ is finite. Since µ is finite, χA ∈ Lp(X,µ) for all A ∈ A. Hence

define ν : A → R by
ν(A) = ψ(χA)

for all A ∈ A. We claim that ν is a finite signed measure that is absolutely
continuous with respect to µ. To see this, first notice that

ν(∅) = ψ(χ∅) = ψ(0) = 0
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as ψ is linear. Moreover, clearly ν does not obtain the values ±∞ by
definition.

To see that ν is countably additive, let {Ak}∞
k=1 ⊆ A be pairwise disjoint

and let A =
⋃∞

k=1Ak. Since µ is a finite measure,

µ(A) =
∞∑

k=1
µ(Ak) < ∞.

Hence
lim

n→∞

∞∑
k=n

µ(Ak) = 0.

Therefore

lim
n→∞

∥∥∥∥∥χA −
n∑

k=1
χAk

∥∥∥∥∥
p

= lim
n→∞

( ∞∑
k=n

µ(Ak)
) 1

p

= 0.

Hence χA =
∑∞

k=1 χAk
as a sum of vectors in Lp(X,µ). Therefore, since ψ

is a continuous linear functional, we obtain that

ν(A) = ψ(χA) =
∞∑

k=1
ψ(χAk

) =
∞∑

k=1
ν(Ak).

Thus ν is countably additive. However, to show that ν is a signed measure,
it is necessary to show that the sum converges absolutely.

For each n ∈ N let cn = sgn(ν(An)) and let fn =
∑n

k=1 ckχAk
. Then for

all n,m ∈ N with n ≥ m

∥fn − fm∥p =

∥∥∥∥∥∥
n∑

k=m+1
ckχAk

∥∥∥∥∥∥
p

=

 n∑
k=m+1

µ(Ak)

 1
p

≤
( ∞∑

k=m

µ(Ak)
) 1

p

.

Therefore, since limm→∞ (
∑∞

k=m µ(Ak))
1
p = 0, (fn)n≥1 is Cauchy in Lp(X,µ).

Since Lp(X,µ) is complete by the Riesz-Fisher Theorem (Theorems 3.7.12
and 3.7.21), there exists an f ∈ Lp(X,µ) such that f = limn→∞ fn in
Lp(X,µ). Therefore, since ψ is a continuous linear functional, we obtain that

ψ(f) = lim
n→∞

ψ(fn) = lim
n→∞

n∑
k=1

|ν(An)|.
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Therefore, since ψ(f) ∈ R, we see that the sum converges absolutely.
To see that ν is finite, notice since µ is finite that for all A ∈ A

|ν(A)| = |ψ(χA)| ≤ ∥ψ∥ ∥χA∥p = ∥ψ∥µ(A)
1
p < ∞.

Hence ν is finite. Finally, to see that ν is absolutely continuous with respect
to µ, notice if A ∈ A is such that µ(A) = 0, then χA = 0 as an element of
Lp(X,µ) and thus

ν(A) = ψ(χA) = ψ(0) = 0

as ψ is linear. Hence ν is a finite signed measure that is absolutely continuous
with respect to µ.

By the Radon-Nikodym Theorem for signed measures (Corollary 5.5.8)
there exists a real-valued function g ∈ L1(X,µ) such that

ψ(χA) = ν(A) =
∫

A
g dµ =

∫
X
gχA dµ

for all A ∈ A. Using the linearity of the integral and of ψ, we obtain for any
measurable function φ : X → R with finite range that

ψ(φ) =
∫

X
φg dµ.

However, this implies that∣∣∣∣∫
X
φg dµ

∣∣∣∣ = |ψ(φ)| ≤ ∥ψ∥ ∥φ∥p

for all measurable functions φ : X → R with finite range. Hence Lemma
7.2.3 or Lemma 7.2.4 implies that g ∈ Lq(X,µ)R.

Since
ψ(φ) =

∫
X
φg dµ

for all simple functions in Lp(X,µ), we obtain by linearity that

ψ(φ) =
∫

X
φg dµ

for all φ which are linear combinations of simple functions in Lp(X,µ).
Therefore Theorem 3.7.24 (along with continuity) implies that

ψ(f) =
∫

X
fg dµ

for all f ∈ Lp(X,µ) as desired.
Case 2: µ is σ-finite. By Remark 1.1.21 there exists {Xn}∞

n=1 ⊆ A such
that X =

⋃∞
n=1Xn, µ(Xn) < ∞ for all n ∈ N, and Xn ⊆ Xn+1 for all n ∈ N.
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For each n ∈ N, let

An = {A ∩Xn | A ∈ A}

and let µn = µ|An . It is elementary to verify that An is a σ-algebra on Xn

and that µn is a measure on (Xn,An). Notice if f ∈ Lp(Xn, µn), we can
view f as an element of Lp(X,µ) by extending f to be zero on Xc

n. Hence,
for each n ∈ N, we can define ψn : Lp(Xn, µn) → R by

ψn(f) = ψ(f)

for all f ∈ Lp(Xn, µn) ⊆ Lp(X,µ). It is elementary to verify that ψn is a
continuous linear functional on Lp(Xn, µn) with norm at most ∥ψ∥ as the
norms on Lp(Xn, µn) and Lp(X,µ) agree on elements of Lp(Xn, µn).

Since (Xn,An, µn) is a finite measure space, the first case of this proof
implies there exists a unique function gn ∈ Lq(Xn, µn) such that∫

Xn

fgn dµn = ψn(f) = ψ(f)

for all f ∈ Lp(Xn, µn). Moreover ∥gn∥Lq(Xn,µn) = ∥ψn∥ ≤ ∥ψ∥.
Extend each gn to be zero on Xc

n. Hence gn ∈ Lq(X,µ) for all n ∈ N,
∥gn∥Lq(Xn,µn) = ∥gn∥q, and

ψn(f) =
∫

X
fgn dµ

for all f ∈ Lp(Xn, µn). Moreover, notice for all n ∈ N and f ∈ Lp(Xn, µn) ⊆
Lp(Xn+1, µn+1) that∫

X
fgn+1 dµ = ψn+1(f) = ψn(f) =

∫
X
fgn dµ.

Therefore, due to the uniqueness of gn, we obtain that gn+1|Xn = gn.
Define g : X → R by g(x) = gn(x) whenever x ∈ Xn. Since gn+1|Xn = gn

and since X =
⋃∞

n=1Xn, g is well-defined up to a set of measure zero
and defines a measurable function (as it is the pointwise limit of (gn)n≥1).
If q = ∞ then, since ∥gn∥∞ ≤ ∥ψ∥ for all n ∈ N, we easily see that
∥g∥∞ ≤ ∥ψ∥ < ∞ and thus g ∈ L∞(X,µ). Otherwise, if q ̸= ∞, notice that
as |gn| ≤ |gn+1| for all n ∈ N and as (gn)n≥1 converges to g pointwise almost
everywhere, the Monotone Convergence Theorem (Theorem 3.2.1) implies
that (∫

X
|g|q dµ

) 1
q

= lim
n→∞

(∫
X

|gn|q dµ
) 1

q

≤ ∥ψ∥ < ∞.

Hence g ∈ Lq(X,µ).
Finally, to see that

ψ(f) =
∫

X
fg dµ
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for all f ∈ Lp(X,µ), let f ∈ Lp(X,µ) be arbitrary and for each n ∈ N let
fn = fχXn . Then

|fn − f |p ≤ |f |p

and (|fn − f |p)n≥1 converges to zero almost everywhere. Therefore, since
|f |p ∈ L1(X,µ), the Dominated Convergence Theorem (Theorem 3.6.1)
implies that limn→∞ ∥f − fn∥p = 0. Since ψ is continuous and since fngn =
fng for all n ∈ N, we have that

ψ(f) = lim
n→∞

ψ(fn) = lim
n→∞

ψn(fn) = lim
n→∞

∫
X
fngn dµ = lim

n→∞

∫
X
fng dµ.

However, since (fng)n≥1 converges pointwise to fg and since |fng| ≤ |fg| ∈
L1(X,µ) by Hölder’s Inequality (Theorems 3.7.8 and 3.7.8), the Dominated
Convergence Theorem (Theorem 3.6.1) implies that

ψ(f) = lim
n→∞

∫
X
fng dµ =

∫
X
fg dµ

as desired.

To conclude this section, we formally show (using only the Riesz Repre-
sentation Theorem (Theorem 7.2.1)) that a function can be verified to be in
Lq(X,µ) via only integrals against Lp(X,µ) functions.

Corollary 7.2.5. Let (X,A, µ) be a σ-finite measure space and let p, q ∈
[1,∞] be such that 1

p + 1
q = 1 and q ̸= 1. If

sup
{∣∣∣∣∫

X
fg dµ

∣∣∣∣ ∣∣∣∣ f ∈ Lp(X,µ), ∥f∥p ≤ 1
}
< ∞,

then g ∈ Lq(X,µ).

Proof. Define Ψ : Lp(X,µ) → R by

Ψ(f) =
∫

X
fg dµ

for all f ∈ Lp(X,µ). By the assumptions in the statement, we easily see that
Ψ is a well-defined continuous linear functional on Lp(X,µ). Therefore, by the
Riesz Representation Theorem there exists an unique function h ∈ Lq(X,µ)
such that

Ψ(f) =
∫

X
fh dµ

for all f ∈ Lp(X,µ). In particular, for all f ∈ Lp(X,µ) and A ∈ A we see
that ∫

A
fg dµ =

∫
X

(fχA)g dµ = Ψ(fχA) =
∫

X
(fχA)h dµ =

∫
A
fh dµ.
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Therefore, since µ is σ-finite, by the Radon-Nikodym Theorem (Theorem
5.5.5) we obtain that fg = fh for all f ∈ Lp(X,µ).

Since µ is σ-finite, there exists {Xn}∞
n=1 ⊆ A such that X =

⋃∞
n=1Xn,

µ(Xn) < ∞ for all n ∈ N, and {Xn}∞
n=1 are pairwise disjoint. Since µ(Xn) <

∞, χXn ∈ Lp(X,µ) for all n ∈ N. Hence the above implies that

gχXn = hχXn

for all n ∈ N. Therefore, since X =
⋃∞

n=1Xn, we obtain that g = h ∈
Lq(X,µ) as desired.

7.3 Other Riesz Representation Theorems
To conclude our course, we mention there are several other versions of the
Riesz Representation Theorem we could analyze in the context of measure
theory. Here are two which describe the dual spaces of two very natural
collections of functions seen in this course.

Theorem 7.3.1 (Riesz Representation Theorem for L∞). Let (X,A, µ)
be a σ-finite measure space. If Ψ ∈ L∞(X,µ)R → R is a continuous linear
functional, then there exists a unique ‘bounded, finitely additive’ signed
measure ν such that ν is absolutely continuous with respect to µ and

Ψ(f) =
∫

X
f dν

for all f ∈ L∞(X,µ). Moreover ∥Ψ∥ = |ν|(X).

Theorem 7.3.2 (Riesz-Markov Theorem). Let X be a locally compact
Hausdorff space, let Cc(X) denote the continuous complex-valued functions
of compact support on X, and let Ψ : Cc(X) → C be such that Ψ(f) ≥ 0
whenever f ∈ Cc(X) and f ≥ 0. Then there exists a unique regular measure
µ on the Borel σ-algebra associated to X such that µ(K) < ∞ for all compact
subsets K of X and

Ψ(f) =
∫

X
f dµ

for all f ∈ Cc(X).

Remark 7.3.3. It is not difficult to demonstrate that if X is a locally
compact Hausdorff space then every continuous linear functional on Cc(X)
is a linear combination of four linear functional satisfying the hypotheses of
Theorem 7.3.2.
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Appendix A

Review of the Riemann
Integral

In this appendix chapter, we will recall the construction and properties
of the Riemann integral presented in undergraduate analysis. The formal
definition of the Riemann integral is modelled on trying to approximate the
area under the graph of a function. The idea of approximating this area
is to divide up the interval one wants to integrate over into small bits and
approximate the area under the graph via rectangles. Thus we must make
such constructions formal. Once this is done, we must decide whether or not
these approximations are good approximations to the area. If they are, the
resulting limit will be the Riemann integral.

A.1 Partitions and Riemann Sums

In order to ‘divide up the interval into small bits’, we will use the following
notion.

Definition A.1.1. A partition of a closed interval [a, b] is a finite list of real
numbers {tk}n

k=0 such that

a = t0 < t1 < t2 < · · · < tn−1 < tn = b.

Eventually, we will want to ensure that |tk − tk−1| is small for all k in
order to obtain better and better approximations to the area under a graph.
To obtain a lower bound for the area under a graph, we can choose our
approximating rectangles to have the largest possible height while remaining
completely under the graph. This leads us to the following notion.

Definition A.1.2. Let P = {tk}n
k=0 be a partition of [a, b] and let f :

[a, b] → R be bounded. The lower Riemann sum of f associated to P,
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denoted L(f,P), is

L(f,P) =
n∑

k=1
mk(tk − tk−1)

where, for all k ∈ {1, . . . , n},

mk = inf{f(x) | x ∈ [tk−1, tk]}.

Example A.1.3. If f : [0, 1] → R is defined by f(x) = x for all x ∈ [0, 1]
and if P = {tk}n

k=0 is a partition of [0, 1], it is easy to see that

L(f,P) =
n∑

k=1
tk−1(tk − tk−1)

as f obtains its minimum on [tk−1, tk] at tk−1.
If it so happens that tk = k

n for all k ∈ {0, 1, . . . , n}, we see that

L(f,P) =
n∑

k=1

k − 1
n

(
k

n
− k − 1

n

)

=
n∑

k=1

1
n2 (k − 1)

= 1
n2

n−1∑
j=1

j


= 1
n2
n(n− 1)

2 =
1 − 1

n

2

where the fact that
∑n−1

j=1 j = n(n−1)
2 follows by an induction argument.

Clearly, as n tends to infinity, L(f,P) tends to 1
2 for this particular partitions,

which happens to be the area under the graph of f on [0, 1].

Although lower Riemann sums accurately estimate the area under the
graph of the function in the previous example, perhaps we also need an upper
bound for the area under the graph. By choose our approximating rectangles
to have the smallest possible height while remaining completely above the
graph, we obtain the following notion.

Definition A.1.4. Let P = {tk}n
k=0 be a partition of [a, b] and let f :

[a, b] → R be bounded. The upper Riemann sum of f associated to P,
denoted U(f,P), is

U(f,P) =
n∑

k=1
Mk(tk − tk−1)

where, for all k ∈ {1, . . . , n},

Mk = sup{f(x) | x ∈ [tk−1, tk]}.
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Example A.1.5. If f : [0, 1] → R is defined by f(x) = x for all x ∈ [0, 1]
and if P = {tk}n

k=0 is a partition of [0, 1], it is easy to see that

U(f,P) =
n∑

k=1
tk(tk − tk−1)

as f obtains its maximum on [tk−1, tk] at tk.
If it so happens that tk = k

n for all k ∈ {0, 1, . . . , n}, we see that

U(f,P) =
n∑

k=1

k

n

(
k

n
− k − 1

n

)

=
n∑

k=1

1
n2k

= 1
n2

(
n∑

k=1
k

)

= 1
n2
n(n+ 1)

2 =
1 + 1

n

2

where the fact that
∑n

k=1 k = n(n+1)
2 follows by an induction argument.

Clearly, as n tends to infinity, U(f,P) tends to 1
2 for this particular partitions,

which happens to be the area under the graph of f on [0, 1].

Although we have been able to approximate the area under the graph of
f(x) = x using upper and lower Riemann sums, how do we know whether
we can accurate do so for other functions? To analyze this question, we must
first decide whether we can compare the upper and lower Riemann sums of a
function. Clearly we have that L(f,P) ≤ U(f,P) for any bounded function
f : [a, b] → R and any partition P of [a, b]. However, if Q is another partition
of [a, b], is it the case that L(f,Q) ≤ U(f,P)? Of course our intuition using
‘areas under a graph’ says this should be so, but how do we prove it?

To answer the above question and provide some ‘sequence-like’ structure
to partitions, we define an ordering on the set of partitions.

Definition A.1.6. Let P and Q be partitions of [a, b]. It is said that Q is a
refinement of P, denoted P ≤ Q, if P ⊆ Q; that is Q has all of the points
that P has, and possibly more.

It is not difficult to check that refinement defines a partial ordering
(Definition B.1.4) on the set of all partitions of [a, b] (see Example B.1.5).
Furthermore, the following says that if Q is a refinement of P, then we
should have better upper and lower bounds for the area under the graph of
a function if we use Q instead of P.

Lemma A.1.7. Let P and Q be partitions of [a, b] and let f : [a, b] → R be
bounded. If Q is a refinement of P, then

L(f,P) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f,P).
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Proof. Note the inequality L(f,Q) ≤ U(f,Q) is clear. Thus it remains only
to show that L(f,P) ≤ L(f,Q) and U(f,Q) ≤ U(f,P). Write P = {tk}n

k=0
where

a = t0 < t1 < t2 < · · · < tn−1 < tn = b.

To show the desired inequalities, we will first show that adding a single point
to P does not decrease the lower Riemann sum and does not increase the
upper Riemann sum. As there are only a finite number of points one needs
to add to P to obtain Q, the proof will follow.

To implement the above strategy, assume Q = P ∪ {t′} where t′ ∈ [a, b]
is such that tq−1 < t′ < tq for some q ∈ {1, . . . , n}. For all k ∈ {1, . . . , n}, let

mk = inf{f(x) | x ∈ [tk−1, tk]} and Mk = sup{f(x) | x ∈ [tk−1, tk]}.

Therefore

L(f,P) =
n∑

k=1
mk(tk − tk−1) and U(f,P) =

n∑
k=1

Mk(tk − tk−1).

Moreover, if we define

m′
q = inf{f(x) | x ∈ [tq−1, t

′]},
m′′

q = inf{f(x) | x ∈ [t′, tq]},
M ′

q = sup{f(x) | x ∈ [tq−1, t
′]}, and

M ′′
q = sup{f(x) | x ∈ [t′, tq]},

then we easily see that mq ≤ m′
q,m

′′
q , that M ′

q,M
′′
q ≤ Mq, and that

L(f,Q) = m′
q(t′ − tq−1) +m′′

q (tq − t′) +
n∑

k=1
k ̸=q

mk(tk − tk−1), and

U(f,Q) = M ′
q(t′ − tq−1) +M ′′

q (tq − t′) +
n∑

k=1
k ̸=q

Mk(tk − tk−1).

Therefore

L(f,Q) − L(f,P) = m′
q(t′ − tq−1) +m′′

q (tq − t′) −mq(tq − tq−1)
≥ mq(t′ − tq−1) +mq(tq − t′) −mq(tq − tq−1) = 0

so L(f,P) ≤ L(f,Q). Similarly

U(f,Q) − U(f,P) = M ′
q(t′ − tq−1) +M ′′

q (tq − t′) −Mq(tq − tq−1)
≤ Mq(t′ − tq−1) +Mq(tq − t′) −Mq(tq − tq−1) = 0

so U(f,Q) ≤ U(f,P). Hence the result follows when Q = P ∪ {t′}.
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To complete the proof, let Q be an arbitrary refinement of P. Hence we
can write Q = P ∪ {t′k}m

k=1 for some {t′k}m
k=1 ⊆ (a, b). Thus, by adding a

single point at a time, we obtain that

L(f,P) ≤ L(f,P ∪ {t′1}) ≤ L(f,P ∪ {t′1, t′2}) ≤ · · · ≤ L(f,Q)

and

U(f,P) ≥ U(f,P ∪ {t′1}) ≥ U(f,P ∪ {t′1, t′2}) ≥ · · · ≥ U(f,Q),

which completes the proof.

In order to answer our question of whether L(f,Q) ≤ U(f,P) for all
partitions P and Q, we can use Lemma A.1.7 provided we have a partition
that is a refinement of both P and Q: that is, there is a least upper bound
of P and Q.

Definition A.1.8. Given two partitions P and Q of [a, b], the common
refinement of P and Q is the partition P ∪ Q of [a, b].

Remark A.1.9. Clearly, given two partitions P and Q, P ∪ Q is a partition
that is a refinement of both P and Q. Consequently, if f : [a, b] → R is
bounded, then Lemma A.1.7 implies that

L(f,P) ≤ L(f,P ∪ Q) ≤ U(f,P ∪ Q) ≤ U(f,Q).

Hence any lower bound for the area under a curve is smaller than any upper
bound for the area under a curve.

A.2 Definition of the Riemann Integral
In order to define the Riemann integral of a bounded function on a closed
interval, we desire that the upper and lower Riemann sums both better and
better approximate a single number. Using the above observations, we notice
that if f : [a, b] → R is bounded, then

sup{L(f,P) | P a partition of [a, b]}
≤ inf{U(f,P) | P a partition of [a, b]}.

Therefore, in order for there to be no reasonable discrepancy between our
approximations, we will like an equality in the above inequality, in which
case the value obtained should be the area under the graph. Unfortunately,
this is not always the case.

Example A.2.1. Let f : [0, 1] → R be defined by

f(x) =
{

1 if x ∈ Q
0 if x ∈ R \ Q
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for all x ∈ [0, 1]. Since each open interval always contains at least one element
from each of Q and R \ Q, we easily see that L(f,P) = 0 and U(f,P) = 1
for all partitions P of [0, 1]. Hence

sup{L(f,P) | P a partition of [0, 1]}
̸= inf{U(f,P) | P a partition of [0, 1]}.

So what should be the area under the graph of this function?

Consequently we will just restrict our attention to the following type of
functions.

Definition A.2.2. Let f : [a, b] → R be bounded. It is said that f is
Riemann integrable on [a, b] if

sup{L(f,P) | P a partition of [a, b]}
= inf{U(f,P) | P a partition of [a, b]}.

If f is Riemann integrable on [a, b], the Riemann integral of f from a to b,
denoted

∫ b
a f(x) dx, is defined to be∫ b

a
f(x) dx = sup{L(f,P) | P a partition of [a, b]}

= inf{U(f,P) | P a partition of [a, b]}.

Remark A.2.3. Notice that if f is Riemann integrable on [a, b], then

L(f,P) ≤
∫ a

b
f(x) dx ≤ U(f,P)

for every partition P of [a, b] by the definition of the Riemann integral.

Clearly the function f in Example A.2.1 is not Riemann integrable.
However, which types of function are Riemann integrable and how can we
compute the value of the integral? To illustrate the definition, we note the
following simple examples (note if the first example did not work out the
way it does, we clearly would not have a well-defined notion of area under a
graph using Riemann integrals).

Example A.2.4. Let c ∈ R and let f : [a, b] → R be defined by f(x) = c
for all x ∈ [a, b]. If P = {tk}n

k=0 is a partition of [a, b], we see that

L(f,P) = U(f,P) =
n∑

k=1
c(tk − tk−1) = c

n∑
k=1

tk − tk−1 = c(tn − t0) = c(b−a).

Hence f is Riemann integrable and
∫ b

a f(x) dx = c(b − a). (Was there any
doubt?)
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Example A.2.5. Let f : [0, 1] → R be defined by f(x) = x for all x ∈ [0, 1].
For each n ∈ N, note Example A.1.3 demonstrates the existence of a partition
Pn such that L(f,Pn) = 1− 1

n
2 . Hence

sup{L(f,P) | P a partition of [a, b]} ≥ lim sup
n→∞

1 − 1
n

2 = 1
2 .

Similarly, for each n ∈ N, Example A.1.5 demonstrates the existence of a
partition Qn such that U(f,Qn) = 1+ 1

n
2 . Hence

inf{U(f,P) | P a partition of [a, b]} ≤ lim inf
n→∞

1 + 1
n

2 = 1
2 .

Therefore, since

sup{L(f,P) | P a partition of [a, b]}
≤ inf{U(f,P) | P a partition of [a, b]},

the above computations show both the inf and sup must be 1
2 . Hence f is

Riemann integrable on [0, 1] and
∫ 1

0 x dx = 1
2 .

Example A.2.6. Let f : [0, 1] → R be defined by f(x) = x2 for all x ∈ [0, 1].
We claim that f is Riemann integrable on [0, 1] and

∫ 1
0 x

2 dx = 1
3 . To see this,

let n ∈ N and let Pn = {tk}n
k=1 be the partition of [0, 1] such that tk = k

n
for all n ∈ N. Then, by an induction argument to compute the value of the
sums,

L(f,P) =
n∑

k=1

(k − 1)2

n2

(
k

n
− k − 1

n

)

=
n∑

k=1

1
n3 (k − 1)2

= 1
n3

n−1∑
j=1

j2


= 1
n3

(n− 1)(n)(2(n− 1) + 1)
6 = 2n3 − 3n2 + n

6n3

and

U(f,P) =
n∑

k=1

k2

n2

(
k

n
− k − 1

n

)

=
n∑

k=1

1
n3k

2

= 1
n3

(
n∑

k=1
k2
)

= 1
n3
n(n+ 1)(2n+ 1)

2 = 2n3 + 3n2 + n

6n3 .
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Hence, since limn→∞
2n3−3n2+1

6n3 = limn→∞
2n3+3n2+1

6n3 = 1
3 , we see that

1
3 ≤ sup{L(f,P) | P a partition of [a, b]}

≤ inf{U(f,P) | P a partition of [a, b]} ≤ 1
3 .

Hence the inequalities must be equalities so f is Riemann integrable on [0, 1]
by definition with

∫ 1
0 x

2 dx = 1
3

Note in the previous two examples, the functions were demonstrated
to be Riemann integrable on [0, 1] via partitions P such that L(f,P) and
U(f,P) were as closes as one would like. Coincidence, I think not!

Theorem A.2.7. Let f : [a, b] → R be bounded. Then f is Riemann
integrable if and only if for every ϵ > 0 there exists a partition P of [a, b]
such that

0 ≤ U(f,P) − L(f,P) < ϵ.

Proof. Note we must have that 0 ≤ U(f,P) − L(f,P) for any partition P
by earlier discussions.

First assume that f is Riemann integrable. Hence, with I =
∫ b

a f(x) dx,
we have by the definition of the integral that

I = sup{L(f,P) | P a partition of [a, b]}
= inf{U(f,P) | P a partition of [a, b]}.

Let ϵ > 0 be arbitrary. By the definition of the supremum, there exists a
partition P1 of [a, b] such that

I − ϵ

2 < L(f,P1).

Similarly, by the definition of the infimum, there exists a partition P2 of
[a, b] such that

U(f,P2) < I + ϵ

2 .

Let P = P1 ∪ P2 which is a partition of [a, b]. Since P is a refinement of
both P1 and P2, we obtain that

L(f,P1) ≤ L(f,P) ≤ U(f,P) ≤ U(f,P2)

by Lemma A.1.7. Hence

U(f,P) − L(f,P) ≤ U(f,P2) − L(f,P1)
= (U(f,P2) − I) + (I − L(f,P1))

<
ϵ

2 + ϵ

2 = ϵ.
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Therefore, since ϵ > 0 was arbitrary, this direction of the proof is complete.
For the other direction, assume for every ϵ > 0 there exists a partition P

of [a, b] such that
0 ≤ U(f,P) − L(f,P) < ϵ.

In particular, for each n ∈ N there exists a partition Pn of [a, b] such that

0 ≤ U(f,Pn) − L(f,Pn) < 1
n
.

Let

L = sup{L(f,P) | P a partition of [a, b]} and
U = inf{U(f,P) | P a partition of [a, b]}.

Then L,U ∈ R are such that L ≤ U . Moreover, for each n ∈ N

0 ≤ U − L ≤ U(f,Pn) − L(f,Pn) < 1
n
.

Therefore it follows that U = L. Hence f is Riemann integrable on [a, b] by
definition.

Remark A.2.8. Using Theorem A.2.7, there is an easier method for ap-
proximating the Riemann integral of a Riemann integrable function. Indeed
suppose P = {tk}n

k=0 is a partition of [a, b] with

a = t0 < t1 < t2 < · · · < tn−1 < tn = b

and let f : [a, b] → R be bounded. For each k, let xk ∈ [tk−1, tk] and let

R(f,P, {xk}n
k=1) =

n∑
k=1

f(xk)(tk − tk−1).

The sum R(f,P, {xk}n
k=1) is called a Riemann sum.

Clearly
L(f,P) ≤ R(f,P, {xk}n

k=1) ≤ U(f,P)
by definitions. Hence, if f is Riemann integrable, we obtain via Theorem
A.2.7 that for any ϵ > 0 there exists a partition P ′ of [a, b] such that

L(f,P ′) ≤
∫ a

b
f(x) dx ≤ U(f,P ′) ≤ L(f,P)′ + ϵ

and thus ∣∣∣∣∣
∫ b

a
f(x) dx−R(f,P ′, {xk}n

k=1)
∣∣∣∣∣ < ϵ

for any choice of {xk}n
k=1. Consequently, if one knows that f is Riemann

integrable, one may approximate
∫ b

a f(x) dx using Riemann sums oppose to
lower/upper Riemann sums. This is occasionally useful as convenient choices
of {xn}n

k=1 may make computing the sum much easier.
Of course, our next question is, “Which types of functions are Riemann

integrable?”
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A.3 Some Integrable Functions
If the theory of Riemann integration will be of use to us, we must have a
wide variety of functions that are Riemann integrable. It is easy to show
some functions are Riemann integrable.

Proposition A.3.1. If f : [a, b] → R is monotonic and bounded, then f is
Riemann integrable on [a, b].

Proof. Assume f : [a, b] → R is monotone and bounded. In addition, we will
assume that f is non-decreasing as the proof when f is non-increasing is
similar.

Let ϵ > 0. Since

lim
n→∞

1
n

(b− a)(f(b) − f(a)) = 0,

there exists an N ∈ N such that

0 ≤ 1
N

(b− a)(f(b) − f(a)) < ϵ.

Let PN = {tk}N
k=0 be the partition such that

tk = a+ k

N
(b− a)

for all k ∈ {0, . . . , N}. Notice tk − tk−1 = 1
n(b− a) for all k (and thus we call

PN the uniform partition of [a, b] into N intervals). Since f is non-decreasing,
if for all k ∈ {1, . . . , N}

mk = inf{f(x) | x ∈ [tk−1, tk]} and Mk = sup{f(x) | x ∈ [tk−1, tk]},

then
mk = f(tk−1) and Mk = f(tk).

Hence

0 ≤ U(f,Pn) − L(f,Pn)

=
N∑

k=1
Mk(tk − tk−1) −

N∑
k=1

mk(tk − tk−1)

=
N∑

k=1
f(tk) 1

N
(b− a) −

N∑
k=1

f(tk−1) 1
N

(b− a)

= f(tN ) 1
N

(b− a) − f(t0) 1
N

(b− a)

= 1
N

(b− a)(f(b) − f(a)) < ϵ.

Therefore, since ϵ > 0 was arbitrary, Theorem A.2.7 implies that f is Riemann
integrable on [a, b].
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Of course, if continuous functions were not Riemann integrable, Riemann
integration would be worthless to us. The fact that continuous functions on
closed intervals are uniformly continuous is vital int he following proof.

Theorem A.3.2. If f : [a, b] → R is continuous, then f is Riemann
integrable on [a, b].

Proof. Assume f : [a, b] → R is continuous. Therefore f is bounded by
the Extreme Value Theorem. Hence it makes sense to discuss whether f is
Riemann integrable.

In order to invoke Theorem A.2.7 to show that f is Riemann integrable,
let ϵ > 0 be arbitrary. Since f : [a, b] → R is continuous, f is uniformly
continuous on [a, b]. Hence there exists a δ > 0 such that if x, y ∈ [a, b] and
|x− y| < δ then |f(x) − f(y)| < ϵ

b−a .
Choose n ∈ N such that 1

n < δ. Let P be the uniform partition of [a, b]
into n intervals; that is, let P = {tk}n

k=0 be the partition such that

tk = a+ k

n
(b− a)

for all k ∈ {0, . . . , n}. For all k ∈ {0, . . . , n}, let

mk = inf{f(x) | x ∈ [tk−1, tk]} and Mk = sup{f(x) | x ∈ [tk−1, tk]}.

Since |tk − tk−1| = 1
n < δ so |x − y| < δ for all x, y ∈ [tk−1, tk], it must

be the case that Mk −mk = |Mk −mk| ≤ ϵ
b−a for all k ∈ {1, . . . , n}. Hence

0 ≤ U(f,P) − L(f,P) =
n∑

k=1
(Mk −mk)(tk − tk−1)

≤
n∑

k=1

ϵ

b− a
(tk − tk−1)

= ϵ

b− a

n∑
k=1

tk − tk−1 = ϵ

b− a
(b− a) = ϵ.

Thus, since ϵ > 0 was arbitrary, f is Riemann integrable on [a, b] by Theorem
A.2.7.

Of course, not all functions we desire to integrate are continuous. How-
ever, many functions one sees and deals with in real-world applications are
continuous at almost every point. In particular, the following shows that if
our functions are piecewise continuous, then they are Riemann integrable.

Corollary A.3.3. If f : [a, b] → R is continuous on [a, b] except at a finite
number of points and f is bounded on [a, b], then f is Riemann integrable on
[a, b].
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Proof. Assume f : [a, b] → R is continuous except at a finite number of
points and f([a, b]) is bounded. Let {ak}q

k=0 contain all of the points for
which f is not continuous at and be such that

a = a0 < a1 < a2 < · · · < aq = b.

The idea of the proof is to construct a partition such that each interval of the
partition contains at most one ak, and if an interval of the partition contains
an ak, then its length is really small.

Let ϵ > 0 be arbitrary. Since f([a, b]) is bounded, there exists a K > 0
such that |f(x)| ≤ K for all x ∈ [a, b]. Therefore, if

L = sup{f(x) − f(y) | x, y ∈ [a, b]},

then 0 ≤ L ≤ 2K < ∞.
Let

δ = ϵ

2(q + 1)(L+ 1) > 0.

By taking a and b together with endpoints of intervals centred at each ak of
radius less than δ

2 , there exists a partition P ′ = {tk}2q+1
k=0 with

a = t0 < t1 < t2 < · · · < t2q+1 = b

such that t2k+1 − t2k < δ for all k ∈ {0, . . . , q} and t2k < ak < t2k+1 for all
k ∈ {1, . . . , q − 1}. For all k ∈ {1, . . . , 2q + 1}, let

mk = inf{f(x) | x ∈ [tk−1, tk]} and Mk = sup{f(x) | x ∈ [tk−1, tk]}.

Thus Mk −mk ≤ L for all k ∈ {1, . . . , 2q + 1}.
Since f is continuous on [t2k−1, t2k] for all k ∈ {1, . . . , q}, f is Riemann

integrable on [t2k−1, t2k] by Theorem A.3.2. Hence, by the definition of
Riemann integration, there exist partitions Pk of [t2k−1, t2k] such that

0 ≤ U(f,Pk) − L(f,Pk) < ϵ

2q .

Let P = P ′ ∪
(⋃q

k=1 Pk

)
. Then P is a partition of [a, b] such that

0 ≤ U(f,P) − L(f,P)

=
q∑

k=1
(U(f,Pk) − L(f,Pk)) +

q∑
k=0

(M2k+1 −m2k+1)(t2k+1 − t2k).

(that is, on each [t2k−1, t2k] the partition behaves like Pk and thus so do the
sums, and the parts of the partition remaining are of the form [t2k, t2k+1]
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each of which contains at most one aj). Hence

0 ≤ U(f,P) − L(f,P)

≤
q∑

k=1

ϵ

2q +
q∑

k=0
Lδ

≤ ϵ

2 + (q + 1)Lδ

≤ ϵ

2 + (q + 1)L ϵ

2(q + 1)(L+ 1) ≤ ϵ

2 + ϵ

2 = ϵ.

Thus, as ϵ > 0 was arbitrary, f is Riemann integrable on [a, b] by Theorem
A.2.7.

Using the similar ideas to those used to prove Corollary A.3.3, it is
possible to show that some truly bizarre functions are Riemann integrable.

Example A.3.4. Let f : [0, 1] → R defined by

f(x) =


0 if x is irrational
1 if x = 0
1
b if x = a

b where a ∈ Z \ {0}, b ∈ N, and gcd(a, b) = 1
.

Clearly f is bounded.
We claim that f is Riemann integrable on [0, 1]. To see this, let ϵ > 0 be

arbitrary. Choose N ∈ N such that 1
N < ϵ

2 .
By the definition of f , let {ak}q

k=0 be the finite set of x ∈ [0, 1] such that
f(x) ≤ 1

N and
0 = a0 < a1 < a2 < · · · < aq = 1.

Let
δ = ϵ

2(q + 1) > 0.

By taking 0 and 1 together with endpoints of intervals centred at each ak of
radius less than δ

2 , there exists a partition P = {tk}2q+1
k=0 with

0 = t0 < t1 < t2 < · · · < t2q+1 = 1

such that t2k+1 − t2k < δ for all k ∈ {0, . . . , q} and t2k < ak < t2k+1 for all
k ∈ {1, . . . , q − 1}.

For all k ∈ {1, . . . , 2q + 1}, let

mk = inf{f(x) | x ∈ [tk−1, tk]} and Mk = sup{f(x) | x ∈ [tk−1, tk]}.

Since 0 ≤ f(x) ≤ 1 for all x ∈ [0, 1], we see that Mk − mk ≤ 1 for all
k ∈ {1, . . . , 2q+1}. Moreover, since t2k < ak < t2k+1 for all k ∈ {1, . . . , q−1},
we have that

M2k −m2k ≤ 1
N

− 0 < ϵ

2
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for all k ∈ {1, . . . , q}. Therefore

0 ≤ U(f,P) − L(f,P)

=
q∑

k=1
(M2k −m2k)(t2k − t2k−1) +

q∑
k=0

(M2k+1 −m2k+1)(t2k+1 − t2k)

≤
q∑

k=1

ϵ

2(t2k − t2k−1) +
q∑

k=0
1δ

≤ ϵ

2

( q∑
k=1

(t2k − t2k−1)
)

+ (q + 1)δ

≤ ϵ

2(1 − 0) + (q + 1)δ

≤ ϵ

2 + (q + 1) ϵ

2(q + 1) ≤ ϵ

2 + ϵ

2 = ϵ.

Thus, as ϵ > 0 was arbitrary, f is Riemann integrable on [0, 1] by Theorem
A.2.7.

A.4 Properties of the Riemann Integral
Now that we know several functions are Riemann integrable, we desire to
derive the basic properties of the Riemann integral just as we did for limits
of sequences and functions. We begin with the following that enables us to
divide up a closed interval into a finite number of closed subintervals when
considering Riemann integration.
Proposition A.4.1. Let f : [a, b] → R be bounded and let c ∈ (a, b). Then
f is Riemann integrable on [a, b] if and only if f is Riemann integrable on
[a, c] and [c, b]. Moreover, when f is Riemann integrable on [a, b], we have
that ∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

Proof. To begin, assume that f is Riemann integrable on [a, b]. To see that
f is Riemann integrable on [a, c] and [c, b], let ϵ > 0 be arbitrary. Since f
is Riemann integrable on [a, b], Theorem A.2.7 implies that there exists a
partition P of [a, b] such that

L(f,P) ≤ U(f,P) ≤ L(f,P) + ϵ.

Therefore, if P0 = P ∪ {c}, then P0 is a partition of [a, b] containing c that
is a refinement of P. Therefore, by Remark A.2.3 and Lemma A.1.7

L(f,P0) ≤ U(f,P0)
≤ U(f,P)
≤ L(f,P) + ϵ

≤ L(f,P0) + ϵ.
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Let
P1 = P0 ∩ [a, c] and P2 = P0 ∩ [c, b].

Then P1 is a partition of [a, c] and P2 is a partition of [c, b]. Furthermore,
due to the nature of these partitions and the definitions of the upper and
lower Riemann sums, we easily see that

L(f,P0) = L(f,P1) + L(f,P2) and U(f,P0) = U(f,P1) + U(f,P2).

Hence

0 ≤ (U(f,P1) −L(f,P1)) + (U(f,P2) −L(f,P2)) = U(f,P0) −L(f,P0) ≤ ϵ.

Therefore, since 0 ≤ U(f,P1)−L(f,P1) and 0 ≤ U(f,P2)−L(f,P2), it must
be the case that

0 ≤ U(f,P1) − L(f,P1) ≤ ϵ and 0 ≤ U(f,P2) − L(f,P2) ≤ ϵ.

Hence f is integrable on both [a, c] and [c, b] by Theorem A.2.7.
To prove the converse and demonstrate the desired integral equation,

assume that f is Riemann integrable on [a, c] and [c, b]. To see that f is
Riemann integrable on [a, b], let ϵ > 0 be arbitrary. Since f is Riemann
integrable on [a, c] and [c, b], Remark A.2.3 together with Theorem A.2.7
imply that there exists partitions P1 and P2 of [a, c] and [c, b] respectively
such that

L(f,P1) ≤
∫ c

a
f(x) dx ≤ U(f,P1) ≤ L(f,P1) + ϵ

2 and

L(f,P2) ≤
∫ b

c
f(x) dx ≤ U(f,P2) ≤ L(f,P2) + ϵ

2 .

Let P = P1 ∪ P2. It is elementary to see that P is a partition of [a, b].
Moreover, due to the nature of these partitions and the definitions of the
upper and lower Riemann sums, we easily see that

L(f,P) = L(f,P1) + L(f,P2) and U(f,P) = U(f,P1) + U(f,P2).

Hence

0 ≤ U(f,P) − L(f,P)
= (U(f,P1) + U(f,P2)) + (L(f,P1) + L(f,P2))
= (U(f,P1) − L(f,P1)) + (U(f,P2) − L(f,P2))

<
ϵ

2 + ϵ

2 = ϵ.
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Therefore, since ϵ > 0 was arbitrary, f is Riemann integrable on [a, b] by
Theorem A.2.7. Moreover, we have for all ϵ > 0 that∫ c

a
f(x) dx+

∫ b

c
f(x) dx− ϵ ≤ L(f,P1) + L(f,P2)

= L(f,P)

≤
∫ b

a
f(x) dx

≤ U(f,P)
= U(f,P1) + U(f,P2)

≤
∫ c

a
f(x) dx+

∫ b

c
f(x) dx+ ϵ.

Hence ∣∣∣∣∣
∫ c

a
f(x) dx+

∫ b

c
f(x) dx−

∫ b

a
f(x) dx

∣∣∣∣∣ < ϵ.

Therefore, since ϵ > 0 was arbitrary, we obtain that∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx

as desired.

Of course, integrals behave well with respect to many of the same arith-
metic properties that limits satisfy as the following result shows. Unfortu-
nately, notice that multiplication is absent from this result.

Proposition A.4.2. Let f, g : [a, b] → R be Riemann integrable functions
on [a, b]. The following are true:

a) If α ∈ R, then αf is Riemann integrable on [a, b] and∫ b

a
(αf)(x) dx = α

∫ b

a
f(x) dx.

b) f + g is Riemann integrable on [a, b] and∫ b

a
(f + g)(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx.

c) If f(x) ≤ g(x) for all x ∈ [a, b], then∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

d) If m ≤ f(x) ≤ M for all x ∈ [a, b], then

m(b− a) ≤
∫ b

a
f(x) dx ≤ M(b− a).
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Proof. a) Assume f : [a, b] → R is a Riemann integrable function and α ∈ R.
To see that αf is Riemann integrable, consider an arbitrary partition P of
[a, b].

Notice if α ≥ 0 then sup(αA) = α sup(A) and inf(αA) = α inf(A) for all
subsets A ⊆ R. Therefore, if α > 0, we have that

L(αf,P) = αL(f,P) and U(αf,P) = αU(f,P)

Furthermore, since if A is a bounded subset of R then inf(−A) = − sup(A),
it follows that if α < 0 then

L(αf,P) = αU(f,P) and U(αf,P) = αL(f,P)

Since f is Riemann integrable on [a, b], we obtain by the definition of the
Riemann integral that∫ b

a
f(x) dx = sup{L(f,P) | P a partition of [a, b]}

= inf{U(f,P) | P a partition of [a, b]}.

Therefore, the previous above computations we obtain that

α

∫ b

a
f(x) dx = sup{L(αf,P) | P a partition of [a, b]}

= inf{U(αf,P) | P a partition of [a, b]}.

Hence αf is Riemann integrable on [a, b] with∫ b

a
(αf)(x) dx = α

∫ b

a
f(x) dx.

b) Let f, g : [a, b] → R be Riemann integrable. To begin the proof,
consider an arbitrary partition P of [a, b]. Since

sup{f(x)+g(x) | x ∈ [c, d]} ≤ sup{f(x) | x ∈ [c, d]}+sup{g(x) | x ∈ [c, d]}

and

inf{f(x) + g(x) | x ∈ [c, d]} ≥ inf{f(x) | x ∈ [c, d]} + inf{g(x) | x ∈ [c, d]}

for all c, d ∈ [a, b] with c < d, we obtain that

L(f,P) + L(g,P) ≤ L(f + g,P) ≤ U(f + g,P) ≤ U(f,P) + U(g,P)

by the definition of the Riemann sums.
To prove that f + g is Riemann integrable and obtain the desired integral

equation, let ϵ > 0 be arbitrary. Since f is Riemann integrable on [a, b],
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Remark A.2.3 together with Theorem A.2.7 imply that there exists a partition
P1 of [a, b] such that

L(f,P1) ≤
∫ b

a
f(x) dx ≤ U(f,P1) ≤ L(f,P1) + ϵ

2 .

Similarly, since g is Riemann integrable on [a, b], Remark A.2.3 together with
Theorem A.2.7 imply that there exists a partition P2 of [a, b] such that

L(g,P2) ≤
∫ b

a
g(x) dx ≤ U(g,P2) ≤ L(g,P2) + ϵ

2 .

Let P = P1 ∪ P2. Then P is a partition of [a, b] that is a refinement of both
P1 and P2. Therefore, Remark A.2.3 together with Lemma A.1.7 imply that

L(f,P) ≤
∫ b

a
f(x) dx ≤ U(f,P)

≤ U(f,P1)
≤ L(f,P1)

≤ L(f,P) + ϵ

2
and similarly

L(g,P) ≤
∫ b

a
g(x) dx ≤ U(g,P) ≤ L(g,P) + ϵ

2 .

Hence, since we know that

L(f,P) + L(g,P) ≤ L(f + g,P) ≤ U(f + g,P) ≤ U(f,P) + U(g,P)

we obtain that

L(f,P) + L(g,P) ≤ L(f + g,P) ≤ U(f + g,P) ≤ L(f,P) + L(g,P) + ϵ.

Hence 0 ≤ U(f + g,P) − L(f + g,P) < ϵ. Therefore, since ϵ was arbitrary,
Theorem A.2.7 implies that f + g is Riemann integrable on [a, b]. Moreover,
by repeating the above now knowing that f + g is Riemann integrable on
[a, b], we obtain that for all ϵ > 0 there exists a partition P such that∫ b

a
f(x) dx+

∫ b

a
g(x) dx− ϵ ≤ L(f,P) + L(g,P)

≤ L(f + g,P)∫ b

a
(f + g)(x) dx

≤ U(f + g,P)
≤ U(f,P) + U(g,P)

≤
∫ b

a
f(x) dx+

∫ b

a
g(x) dx+ ϵ.
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Hence ∣∣∣∣∣
∫ b

a
f(x) dx+

∫ b

a
g(x) dx−

∫ b

a
(f + g)(x) dx

∣∣∣∣∣ ≤ ϵ.

Therefore, as ϵ > 0 was arbitrary, we obtain that∫ b

a
(f + g)(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx

as desired.
c) Let f, g : [a, b] → R be Riemann integrable and assume f(x) ≤ g(x)

for all x ∈ [a, b]. To see the desired result, let ϵ > 0 be arbitrary. Remark
A.2.3 together with Theorem A.2.7 imply that there exists a partition P of
[a, b] such that

L(f,P) ≤
∫ b

a
f(x) dx ≤ U(f,P) ≤ L(f,P) + ϵ.

However, since f(x) ≤ g(x) for all x ∈ [a, b], we know that

inf{f(x) | x ∈ [c, d]} ≤ inf{g(x) | x ∈ [c, d]}

for all c, d ∈ [a, b] with c < d. Therefore L(f,P) ≤ L(g,P). Hence∫ b

a
f(x) dx− ϵ ≤ L(f,P) ≤ L(g,P) ≤

∫ b

a
g(x) dx.

Hence, for all ϵ > 0, we have that∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx+ ϵ.

Therefore, we have (“by sending ϵ to 0”) that∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx

as desired.
d) By part c) and Example A.2.4, we have that

m(b− a) =
∫ b

a
mdx ≤

∫ b

a
f(x) dx ≤

∫ b

a
M dx = M(b− a)

as desired.

Remark A.4.3. Note that Proposition A.4.2 does not produce a formula for
the Riemann integral of the product of Riemann integrable functions. Indeed
it is almost always the case that

∫ b
a (fg)(x) dx ̸=

(∫ b
a f(x) dx

) (∫ b
a g(x) dx

)
.

For example, using Examples A.2.5 and A.2.6, we see that∫ 1

0
x2 dx = 1

3 whereas
(∫ 1

0
x dx

)2
= 1

4 .
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In lieu of the above remark, it is still possible to show that if f and g
are Riemann integrable on [a, b], then fg is Riemann integrable on [a, b]. To
begin this proof, we first must deal with the case that f = g.

Lemma A.4.4. Let f : [a, b] → R be a Riemann integrable function on [a, b].
The function f2 : [a, b] → R defined by f2(x) = (f(x))2 for all x ∈ [a, b] is
Riemann integrable on [a, b].

Proof. Since f is bounded by the definition of Riemann integrable,

K = sup{|f(x)| | x ∈ [a, b]} < ∞.

To see that f2 is Riemann integrable, let ϵ > 0 be arbitrary. Since f
is Riemann integrable on [a, b], Theorem A.2.7 implies that there exists a
partition P of [a, b] such that

0 ≤ U(f,P) − L(f,P) < 1
2(K + 1)ϵ.

Write P = {tk}n
k=0 where

a = t0 < t1 < t2 < · · · < tn−1 < tn = b.

For each k ∈ {1, . . . , n} let

mk(f) = inf{f(x) | x ∈ [tk−1, tk]},
Mk(f) = sup{f(x) | x ∈ [tk−1, tk]},
mk(f2) = inf{(f(x))2 | x ∈ [tk−1, tk]}, and
Mk(f2) = sup{(f(x))2 | x ∈ [tk−1, tk]}.

Notice for all x, y ∈ [a, b] we have that

|(f(x))2 − (f(y))2| = |f(x) + f(y)||f(x) − f(y)|
≤ (|f(x)| + |f(y)|)|f(x) − f(y)|
≤ (K +K)|f(x) − f(y)| = 2K|f(x) − f(y)|.

Hence we obtain that

Mk(f2) −mk(f2) ≤ 2K(Mk(f) −mk(f))

for all k ∈ {1, . . . , n}. Therefore

0 ≤ U(f2,P) − L(f2,P) ≤ 2K(U(f,P) − L(f,P)) ≤ 2K 1
2(K + 1)ϵ < ϵ.

Hence f2 is Riemann integrable by Proposition A.4.6.
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Using the above and a clever decomposition of functions, we obtain the
product of Riemann integrable functions is Riemann integrable.

Proposition A.4.5. Let f, g : [a, b] → R be Riemann integrable functions
on [a, b]. Then fg : [a, b] → R is Riemann integrable on [a, b].

Proof. Since

f(x)g(x) = 1
2
(
(f(x) + g(x))2 − f(x)2 − g(x)2

)
and since f + g, f2, g2, and (f + g)2 are Riemann integrable by Proposition
A.4.2 and Lemma A.4.4, it follows by Proposition A.4.2 that fg is Riemann
integrable.

To complete our section on the properties of the Riemann integral, we
have one more useful result. The main reason why this result is useful in
analysis is that it plays the same role for integrals as the triangle inequality
plays for sums.

Proposition A.4.6. Let f : [a, b] → R a Riemann integrable function on
[a, b]. Then the function |f | : [a, b] → R defined by |f |(x) = |f(x)| for all
x ∈ [a, b] is Riemann integrable on [a, b] and∣∣∣∣∣

∫ b

a
f(x) dx

∣∣∣∣∣ ≤
∫ b

a
|f(x)| dx.

Proof. Let ϵ > 0 be arbitrary. By Theorem A.2.7, there exists a partition P
of [a, b] such that

0 ≤ U(f,P) − L(f,P) < ϵ.

Write P = {tk}n
k=0 where

a = t0 < t1 < t2 < · · · < tn−1 < tn = b.

For each k ∈ {1, . . . , n} let

mk(f) = inf{f(x) | x ∈ [tk−1, tk]},
Mk(f) = sup{f(x) | x ∈ [tk−1, tk]},
mk(|f |) = inf{|f(x)| | x ∈ [tk−1, tk]}, and
Mk(|f |) = sup{|f(x)| | x ∈ [tk−1, tk]}.

We claim that
Mk(|f |) −mk(|f |) ≤ Mk(f) −mk(f)

for all k ∈ {1, . . . , n}. Indeed notice if x, y ∈ [tk−1, tk] are such that:

• f(x), f(y) ≥ 0, then

|f(x)| − |f(y)| = f(x) − f(y) ≤ Mk(f) −mk(f).
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• f(x) ≥ 0 ≥ f(y), then

|f(x)| − |f(y)| ≤ f(x) − f(y) ≤ Mk(f) −mk(f).

• f(y) ≥ 0 ≥ f(x), then

|f(x)| − |f(y)| ≤ f(y) − f(x) ≤ Mk(f) −mk(f).

• f(x), f(y) ≤ 0, then

|f(x)| − |f(y)| = f(y) − f(x) ≤ Mk(f) −mk(f).

By considering the supreme of the above equations over x followed by the
infimum of the above equations over y, we obtain that

Mk(|f |) −mk(|f |) ≤ Mk(f) −mk(f).

Hence

U(|f |,P) − L(|f |,P) =
n∑

k=1
(Mk(|f |) −mk(|f |))(tk − tk−1)

≤
n∑

k=1
(Mk(f) −mk(f))(tk − tk−1)

= U(f,P) − L(f,P) < ϵ.

Therefore, since ϵ > 0 was arbitrary, |f | is Riemann integrable on [a, b] by
Theorem A.2.7.

Since |f | is Riemann integrable, Proposition A.4.2 implies that −|f | is
Riemann integrable. Moreover, since

−|f(x)| ≤ f(x) ≤ |f(x)|

for all x ∈ [a, b], Proposition A.4.2 also implies that

−
∫ b

a
|f(x)| dx ≤

∫ b

a
f(x) dx ≤

∫ b

a
|f(x)| dx.

Hence ∣∣∣∣∣
∫ b

a
f(x) dx

∣∣∣∣∣ ≤
∫ b

a
|f(x)| dx.

which completes the proof.
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Appendix B

Cardinality

One important question in analysis is, “Given a set, how large is it?” One
idea to solve this problem would be to ‘count’ the number of elements. For
finite sets, this enables us to determine whether two sets have the same
number of elements or whether one set has more elements than the other.
The problem is, “How do we count the number of elements in an infinite
set?”

B.1 Equivalence Relations and Partial Orders
In order to determine when two sets have the same size and when one set
is larger than another, we need generalize the notions of equality and of
ordering. Both of these notions are a type of relation:

Definition B.1.1. Given two non-empty sets X and Y , a relation between
X and Y is a subset of the product X × Y . Given a relation R, we write
xRy if (x, y) ∈ R. In the case that Y = X, we call R a relation on X.

Using a specific type of relation, we can generalize the notion of equality.

Definition B.1.2. Let X be a set. A relation ∼ on the elements of X is
said to be an equivalence relation if:

1. (reflexive) x ∼ x for all x ∈ X,

2. (symmetric) if x, y ∈ X and x ∼ y, then y ∼ x, and

3. (transitive) if x, y, z ∈ X, x ∼ y, and y ∼ z, then x ∼ z.

Given an x ∈ X, the set {a ∈ X | a ∼ x} is called the equivalence class of x
and is denoted [x].

Notice that [x] ∩ [y] ̸= ∅ if and only if x ∼ y. Thus by taking an index
set consisting of one element from each equivalence class, the set X can be
written as the disjoint union of its equivalence classes.
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Example B.1.3. Let V be a vector space and let W be a subspace of V . It
is elementary to check that if we define x⃗ ∼ y⃗ if and only if x⃗− y⃗ ∈ W , then ∼
is an equivalence relation on V . Note that the equivalence classes of V then
become a vector space, denoted V/W , with the operations [x⃗] + [y⃗] = [x⃗+ y⃗]
and α[x⃗] = [αx⃗]. Note the necessity of checking that these operations are
well-defined; that is, for addition to make sense, one must show that if
x⃗1 ∼ x⃗2 and y⃗1 ∼ y⃗2 then x⃗1 + y⃗1 ∼ x⃗2 + y⃗2.

Similarity, specific types of relations produce orderings on elements of a
set.

Definition B.1.4. Let X be a set. A relation ⪯ on the elements of X is
called a partial ordering if:

1. (reflexivity) a ⪯ a for all a ∈ X,

2. (antisymmetry) if a, b ∈ X, a ⪯ b, and b ⪯ a, then a = b, and

3. (transitivity) if a, b, c ∈ X are such that a ⪯ b and b ⪯ c, then a ⪯ c.

Clearly ≤ is a partial ordering on R. Here is another example:

Example B.1.5. Given a set X, the relation ⪯ on P(X) defined by

Z ⪯ Y if and only if Z ⊆ Y

is an equivalence relation on P(X).

The partial ordering in the previous example is not as nice as our ordering
on R. To see this, consider the sets Z = {1} and Y = {2}. Then Z ⪯̸ Y
and Y ⪯̸ Z; that is, we cannot use the partial ordering to compare Y and
Z. However, if x, y ∈ R, then either x ≤ y or y ≤ x. Consequently, a partial
ordering is nicer if it has the following property:

Definition B.1.6. Let X be a set. A partial ordering ⪯ on X is called a
total ordering if for all x, y ∈ X, either x ⪯ y or y ⪯ x (or both).

B.2 Definition of Cardinality
Let us return to the question of how to count the number of elements in a set
and try to determine reasonable equivalence relations and partial orderings
to compare the size of sets. One way to compare the number of elements
in a set is to use functions. For example, one way to see that {1, 2, 3} and
{5, π, 42} have the same number of elements is that we can pair up the
elements via {(1, 5), (3, π), (2, 42)} for example. However, we can see that
{1, 2, 3} and {5, π, 42, 29} do not have the same number of elements since
there is no such pairing.
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Remark B.2.1. Saying that there is such a pairing is precisely saying that
there exists a bijection from one set to the other. Consequently, we define a
relation ∼ on the ‘collection’ of all sets by X ∼ Y if and only if there exists
a bijection f : X → Y . Notice that ∼ ‘is’ an equivalence relation. Indeed, to
see that ∼ satisfies the properties in Definition B.1.2, first notice that X ∼ X
as the function f : X → X defined by f(x) = x for all x ∈ X is a bijection.
Next, if f : X → Y is a bijection, then f−1 : Y → X is a bijection so X ∼ Y
implies Y ∼ X. Finally, if X ∼ Y and Y ∼ Z, then there exists bijections
f : X → Y and g : Y → Z. If we define h : X → Z to be the composition of
g and f then it is not difficult to see that h is a bijection (either check h is
injective and surjective directly, or check that h−1 = f−1 ◦ g−1) so X ∼ Z

.
Consequently, given a set X, we will use |X| to denote the equivalence

class of X under the above equivalence relation. Oppose to always referring
to this equivalence relation, we make the following definition.

Definition B.2.2. Given two sets X and Y , it is said that X and Y have
the same cardinality (or are equinumerous), denoted |X| = |Y |, if there exists
a bijection f : X → Y .

Example B.2.3. Notice that the sets X = {3, 7, π, 2} and Y = {1, 2, 3, 4}
have the same cardinality via the function f : Y → X defined by f(1) = 3,
f(2) = π, f(3) = 2, and f(4) = 7.

Example B.2.4. We claim that |N| = |Z| (which may seem odd as N ⊆ Z).
To see this, define f : N → Z by

f(n) =
{

−n
2 if n is even

n−1
2 if n is odd

.

It is not difficult to verify that f is a bijection.

Using bijections gives us a method for determining when two sets have
the same size. However, we do not have any techniques for determining if
two sets have the same cardinality other than explicitly writing a bijection
(e.g. do N, Q, and R all have the same cardinality?). Thus it is useful to ask,
how can we determine when one set has fewer elements than another?

We have already seen that {1, 2, 3} and {5, π, 42, 29} do not have the
same number of elements. We know that {1, 2, 3} has fewer elements than
{5, π, 42, 29}. One way to see this is that we can define a function from
{1, 2, 3} to {5, π, 42, 29} that is optimal as possible; that is, we try to form a
bijective pairing, but we only obtain an injective function as we cannot hit
all of the elements of the later set. Consequently:

Definition B.2.5. Given two sets X and Y , it is said that X has cardinality
less than Y , denoted |X| ≤ |Y |, if there exists an injective function f : X →
Y .
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Note the above is a ‘relation’ on the equivalence classes used in Definition
B.2.2. Furthermore, it is not difficult to see that |X| ≤ |X| and if |X| ≤ |Y |
and |Y | ≤ |Z| then |X| ≤ |Z| (as the composition of injections is an injection).
However, it is not clear whether or not the relation in Definition B.2.5 is
antisymmetric, which must be demonstrated in order to show that this is a
well-defined partial ordering. Let us postpone this question for now for the
purpose of some examples.

Example B.2.6. Let n,m ∈ N be such that n < m. Then {1, . . . , n} has
cardinality less than {1, . . . ,m} as f : {1, . . . , n} → {1, . . . ,m} defined by
f(k) = k is injective.

Example B.2.7. Since the function f : N → Q defined by f(n) = n is
injective, we see that |N| ≤ |Q|. More generally, if X ⊆ Y , then |X| ≤ |Y |.
Thus |Q| ≤ |R|.

Observe that when determining that {1, 2, 3} has fewer elements than
{5, π, 42, 29}, we could have thought of things in a different light. In par-
ticular, we could define a function from {5, π, 42, 29} to {1, 2, 3} that was
onto. This should imply that {5, π, 42, 29} has more elements than {1, 2, 3}.
In order to show this, we require one of the ‘optional’ axioms of set theory.

Axiom B.2.8 (Axiom of Choice). Let I be a non-empty set. For each
i ∈ I let Ai be a non-empty set. Then there exists a function f : I →

⋃
i∈I Ai

such that f(i) ∈ Ai for all i ∈ I.

Note the Axiom of Choice says that for any collection of non-empty sets,
we can always choose an element from each set. This may seem natural,
but it is not one of the necessary axioms of Zermelo-Fraenkel set theory and
many mathematicians examine what happens when this axiom is removed.
However, for the purposes of analysis, the Axiom of Choice should be included
for otherwise arguments become substantially more complicated and some
results actually fail. One example argument using the Axiom of Choice
is the following that shows surjective functions give us information on the
cardinality of sets.

Proposition B.2.9. Let X and Y be non-empty sets. If f : X → Y is
surjective, then |Y | ≤ |X|.

Proof. For each y ∈ Y , let

Ay = f−1({y}).

Since f is surjective, Ay ̸= ∅ for all y ∈ Y . By the Axiom of Choice (Axiom
B.2.8) there exists a function g : Y →

⋃
y∈Y Ay ⊆ X is such that g(y) ∈ Ay

for all y ∈ Y .
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We claim that g is injective. To see this, assume y1, y2 ∈ Y are such that
g(y1) = g(y2). Let x = g(y1) = g(y2) ∈ X. By the properties of g, it must be
the case that x ∈ Ay1 and x ∈ Ay2 . Since x ∈ Ay1 , we must have f(x) = y1
by the definition of Ay1 . Similarly, since x ∈ Ay2 , we must have f(x) = y2.
Therefore y1 = y2 as desired.

B.3 Finite and Infinite Sets
Before we attempt to determine whether the relation in Definition B.2.5 is a
partial ordering, let us first formalize the notions of finite and infinite sets.
Definition B.3.1. A non-empty set X is said to be finite if there exists an
n ∈ N such that |X| = |{1, . . . , n}|. In this case, we write |X| = n.

A non-empty set X is said to be infinite if X is not finite.
We intuitively know which sets are finite and which are infinite. However,

there is a nicer characterization of infinite sets. To develop this characteriza-
tion, we begin with the following.
Lemma B.3.2. If X is an infinite set, there exists an injection f : N → X.
Proof. Since X is non-empty, the power set of X is non-empty. By the Axiom
of Choice (Axiom B.2.8) there exists a function f : P(X) \ {∅} → P(X) such
that f(A) ∈ A for all A ∈ P(X) \ {∅}.

Let a1 = f(X). Since |X| ̸= 1, X \ {a1} is non-empty. Hence define
a2 = f(X \ {a1}). By construction a2 ∈ X \ {a1} so a2 ̸= a1. Similarly,
since |X| ≠ 2, we may define a3 = f(X \ {a1, a2}) so that a3 /∈ {a1, a2}.
Repeating this process, we obtain a sequence {an}n≥1 of distinct elements of
X. Therefore the function g : N → X defined by g(n) = an is an injection.

Using the above, we can prove the following.
Proposition B.3.3. If X is an infinite set, then there exists a Y ⊆ X such
that Y ̸= X yet |Y | = |X|.
Proof. By Lemma B.3.2 there exists an injection f : N → X. For each n ∈ N
let an = f(n). Furthermore, let Y = X \ {a1}. Clearly Y ⊆ X and Y ≠ X.
To see that |Y | = |X|, define g : X → Y by

g(x) =
{
x if x /∈ f(N)
an+1 if x = an

for all x ∈ X. It is clear that g is a bijection and thus |Y | = |X| by
definition.

Since it is clear that any finite set is not equinumerous to a proper subset,
we obtain the following.
Corollary B.3.4. A non-empty set X is infinite if and only if X is equinu-
merous to a proper subset.
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B.4 Cantor-Schröder-Bernstein Theorem
To show that ≤ from Definition B.2.5 is a partial ordering, we must show
that ≤ is antisymmetric. To begin, let us first consider the following. In
Example B.2.7, it was shown that |N| ≤ |Q|. However, notice if

P =
{
m

n

∣∣∣∣ m ≥ 0, n > 0,m and n have no common divisors
}

N =
{
m

n

∣∣∣∣ m < 0, n > 0,m and n have no common divisors
}
,

then P ∩N = ∅ and P ∪N = Q. Furthermore, we may define f : Q → N by

f (q) =


1 if m = 0
2m3n if m > 0 and n > 0
5−m7n if m < 0 and n > 0

where q = m
n is the unique way to write q as an element of P or N . Using the

uniqueness of prime factorization, we see f is an injective function. Hence
|Q| ≤ |N|!

Since |N| ≤ |Q| and |Q| ≤ |N|, is |Q| = |N|? It is seems difficult to
construct a bijective function f : N → Q, so what hope do we have?

To answer this question, we have the following result (alternatively, we
could construct such a function, but it is not nice to define). Notice that
if X and Y are sets such that there exists injective functions f : X → Y
and g : Y → X, then we may invoke the following theorem with A = g(Y )
and B = f(X) to obtain that |X| = |Y |. Thus the following theorem
demonstrates that ≤ is indeed a partial ordering and eases the verification
that two sets have the same cardinality (as one need only find two injections
instead of one bijection, with the former far easier to construct).

Theorem B.4.1 (Cantor-Schröder–Bernstein Theorem). Let X and
Y be non-empty sets. Suppose A ⊆ X and B ⊆ Y are such that there exists
bijective functions f : X → B and g : Y → A. Then |X| = |Y |.

Proof. Let A0 = X and A1 = A. Define h = g ◦ f : A0 → A0 by h(x) =
g(f(x)). Notice h is injective since f and g are injective.

Let A2 = h(A0). Notice

A2 = h(A0) = g(f(A0)) = g(B) ⊆ g(Y ) = A1.

Hence A2 ⊆ A1 ⊆ A0. Next let A3 = h(A1). Then

A3 = h(A1) ⊆ h(A0) = A2.

Consequently, if for each n ∈ N we recursively define An = h(An−2), then,
by recursion (formally, we should apply the Principle of Mathematical In-
duction),

An = h(An−2) ⊆ h(An−3) = An−1
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for all n ∈ N.
We claim that |A| = |X|. To see this, notice that

X = A0 = (A0 \A1) ∪ (A1 \A2) ∪ (A2 \A3) ∪ (A3 \A4) ∪ · · · ∪
( ∞⋂

n=1
An

)

A = A1 = (A1 \A2) ∪ (A2 \A3) ∪ (A3 \A4) ∪ (A4 \A5) ∪ · · · ∪
( ∞⋂

n=1
An

)
.

Furthermore, notice that any two distinct sets chosen from either union have
empty intersection since An ⊆ An−1 for all n ∈ N.

Since h is injective

h(A2n \A2n+1) = h(A2n) \ h(A2n+1) = A2n+2 \A2n+3

for all n ∈ N ∪ {0}. Therefore, since the sets in the union description of X
are disjoint, we may define h0 : A0 → A1 via

h0(x) =


x if x ∈

⋂∞
n=1An

x if x ∈ A2n−1 \A2n for some n ∈ N
h(x) if x ∈ A2n \A2n+1 for some n ∈ N

Since

• h0 maps A2n \A2n+1 to A2n+2 \A2n+3 bijectively for all n ∈ N,

• h0 maps A2n−1 \A2n to A2n−1 \A2n bijectively for all n ∈ N, and

• h0 maps
⋂∞

n=1An to
⋂∞

n=1An bijectively,

we obtain that h0 is a bijection. Hence |A| = |X| as claimed.
However |A| = |Y | since g : Y → A is a bijection. Hence |Y | = |X| as

having equal cardinality is an equivalence relation.

Since we have shown |N| ≤ |Q| and |Q| ≤ |N|, we have by the Cantor-
Schröder–Bernstein Theorem (Theorem B.4.1) that |N| = |Q|; that is N and
Q have the same number of elements! Thus, is it possible that |Q| = |R|?

B.5 Countable Sets
One nice corollary about |N| = |Q| is that we can make a list of all rational
numbers; that is, as there is a bijective function f : N → Q, we can form
the sequence of all rational numbers (f(n))n≥1. Consequently, sets that are
equinumerous to the natural numbers are particularity nice sets as we can
index such sets by N. This leads us to the study of such sets.

Definition B.5.1. A non-empty set X is said to be
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• countable if X is finite or |X| = |N|,

• countably infinite if |X| = |N|,

• uncountable if X is not countable.

A natural question is, “Under what operations is the countability of sets
preserved?” The following demonstrates that subsets (and thus intersections)
of countable sets are countable.

Lemma B.5.2. If X is a countable set, then any subset of X must also be
countable.

Proof. Let X be countable and let Y ⊂ X. If Y is finite, then clearly Y is
countable. Otherwise Y is infinite. Hence |Y | ≥ |N| by Lemma B.3.2. Since
Y is infinite, X is infinite. Thus, since X is countable, there exists a bijection
f : X → N. Hence restricting f to Y produces an injection from Y to N.
Thus |Y | ≤ |N| so |Y | = |N| and thus Y is countable.

The following, which simply stated says the countable union of countable
sets is countable, is an nice example of why it is useful to be able to write
countable sets as a sequence.

Theorem B.5.3. For each n ∈ N, let Xn be a countable set. Then X =⋃∞
n=1Xn is countable.

Proof. We first desire to restrict to the case that our countable sets are
disjoint. Let B1 = X1 and for each k ≥ 2 let

Bk = Xk \

k−1⋃
j=1

Xj

 .
Clearly Bk ∩Bj = ∅ for all j ̸= k and X =

⋃∞
n=1Bn. Since Bn ⊆ Xn for all

n, each Bn is countable by Lemma B.5.2. Consequently, for each n ∈ N, we
may write

Bn = (bn,1, bn,2, bn,3, . . .).

We desire to define a function f : X → N by

f(bn,m) = 2n3m.

Note such a function is well-defined since Bk ∩Bj = ∅ for all j ̸= k. Since f
is injective by the uniqueness of the prime decomposition of natural numbers,
we obtain that |X| ≤ |N|. Hence X is countable.

Corollary B.5.4. If X and Y are countable sets, X
⋃
Y is a countable set.

Proof. Apply Theorem B.5.3 where X1 = X, X2 = Y , and Xn = ∅ for all
n ≥ 3.
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We briefly mention a few examples of countable sets.

Example B.5.5. The set N × N is countable. To show that N × N is
countable, it suffices by Lemma B.5.2 to show that there exists an injective
function f : N × N → N. Define f : N × N → N by

f(n,m) = 2n3m

for all n,m ∈ N. Since f is injective due to the uniqueness of the prime
decomposition, the claim is complete.

Example B.5.6. A real number α is said to be algebraic if there exists a
non-zero polynomial p(x) with integer coefficients such that p(α) = 0. It
turns out that the set of algebraic numbers is countable (and thus, as we
will shortly see that R is uncountable, most numbers in R are not algebraic).

To begin, for each n ∈ N ∪ {0}, consider the set

An = {(an, an−1, . . . , a1, a0) | ak ∈ Z}.

Notice that A0 = Z so A0 is countable. Furthermore, for each n ∈ N we may
view An as a countable union of copies of An−1; that is,⋃

k∈Z
An−1 ∼ An

where for all (an−1, . . . , a0) ∈ An−1 the kth copy of (an−1, . . . , a0) maps to
(k, an−1, . . . , a0). Hence An is countable for all n ∈ N ∪ {0}.

For each n ∈ N∪{0} and for each (an, an−1, . . . , a1, a0) ∈ An\{(0, . . . , 0)},
let

B(an,an−1,...,a1,a0) = {α ∈ R | anα
n + an−1α

n−1 + · · · + a1α+ a0 = 0}.

Since a non-zero polynomial of degree n has at most n roots (by, for example,
the division algorithm), each B(an,an−1,...,a1,a0) has at most n elements and
thus is countable. Hence, if

Cn =
{
α ∈ R

∣∣∣ anαn+an−1αn−1+···+a1α+a0=0
for some (an,an−1,...,a1,a0)∈An\{(0,...,0)}

}
then Cn is a union over An \ {(0, . . . , 0)} of finite sets and thus is countable
as An \ {(0, . . . , 0)} is countable.

Finally, let
Ψ = {α ∈ R | α is algebraic}.

Since Ψ =
⋃

n∈NCn, Ψ is a countable union of countable sets and thus is
countable.

The question of whether Q and R are equinumerous is equivalent to the
question of whether R is countable or not. To show that R is not countable,
we begin with the following.
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Theorem B.5.7. The open interval (0, 1) is uncountable.

Proof. The following proof is known as Cantor’s diagonalization argument
and has a wide variety of uses. Suppose that (0, 1) is countable. Then we
may write (0, 1) = {xn | n ∈ N} and there exists numbers {ai,j | i, j ∈
N} ⊆ {0, 1, . . . , 9} such that

xj =
∞∑

k=1

ak,j

10k

for all j ∈ N. Note that the sequence (ak,j)k≥1 in the above expression for
xj represents the decimal expansion of xj ; that is

xj = 0.a1,ja2,ja3,ja4,ja5,j · · · .

Consequently, this representation need not be unique due to the possibility
of repeating 9s (and this is the only possibility).

For each k ∈ N, define

yk =
{

3 if ak,k = 7
7 otherwise

and let y =
∑∞

k=1
yk

10k . It is not difficult to see that y ∈ (0, 1). Furthermore
y ̸= xn for all n ∈ N (as y and xn will disagree in the nth decimal place and
this is not because of repeating 9s). Therefore, since (0, 1) = {xn | n ∈ N},
we must have that y /∈ (0, 1), which contradicts the fact that y ∈ (0, 1).

Proposition B.5.8. A set containing an uncountable subset is uncountable.

Proof. Let X be a set such that there exists an uncountable subset Y of
X. Suppose X was countable. Then Y would be countable by Lemma
B.5.2, which contradicts the fact that Y is uncountable. Hence X must be
uncountable.

Combining Theorem B.5.7 and Proposition B.5.8, R is uncountable.
In fact |R| = |(0, 1)| as the function f : (0, 1) → R defined by f(x) =
tan

(
πx− π

2
)

is a bijection. Furthermore we have the following.

Corollary B.5.9. The irrational numbers R \ Q is an uncountable set.

Proof. Suppose R \ Q is a countable set. Since Q is countable and R =
Q ∪ (R \ Q), it would need to be the case that R is countable by Theorem
B.5.3. Since R is uncountable by Proposition B.5.8, we have obtained a
contradiction so R \ Q is an uncountable set.

One additional set that is important in analysis and measure theory is
the following.
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Theorem B.5.10. The Cantor set is uncountable.

Proof. Recall by Lemma 1.4.6 that every element of the Cantor set C has a
unique ternary representation using only 0s and 2s. Define f : C → [0, 1] as
follows: If x ∈ C has ternary representation x =

∑∞
n=1

an
3n with an ∈ {0, 2},

for all n ∈ N let bn = an
2 ∈ {0, 1} and define f(x) =

∑∞
n=1

bn
2n . Clearly f

is a surjective function so |C| ≥ |[0, 1]| by Proposition B.2.9. Hence, since
C ⊆ [0, 1] so |C| ≤ |[0, 1]|, we obtain that |C| = |[0, 1]| so C is uncountable.

One question we may ask since R is whether R the ‘smallest’ set larger
than N? In particular:

Question B.5.11 (The Continuum Hypothesis). If X ⊆ R is uncount-
able, must it be the case that |X| = |R|?

The Continuum Hypothesis was originally postulated by Cantor whom
spent many years (at the cost of his own health and possibly sanity) trying
to prove the hypothesis. Consequently, we will not try. In fact, the reason
for Cantor’s difficulty is that there is no proof. However, nor is there any
counter example. Like with the Axiom of Choice, the Continuum Hypothesis
is independent of Zermelo–Fraenkel set theory, even if the Axiom of Choice
is included. Most results in analysis do not require an assertion to whether
the Continuum Hypothesis is true of false. Thus we move on.

B.6 Comparability of Cardinals
Using the Cantor-Schröder–Bernstein Theorem (Theorem B.4.1), we saw
that cardinality gives a partial ordering on the size of sets. However, is it a
total ordering (Definition B.1.6)? That is, if X and Y are non-empty sets,
must it be the case that |X| ≤ |Y | or |Y | ≤ |X|?

The above is a desirable property since it makes the ordering nicer.
However, when given two sets, it is not clear whether there always exist
an injection from one set to the other. The goal of this subsection is to
develop the necessary tools in order to answer this problem in the subsequent
subsection. The tools we require are related to partial ordering, so the
following definition is made.

Definition B.6.1. A partially ordered set (or poset) is a pair (X,⪯) where
X is a non-empty set and ⪯ is a partial ordering on X.

For examples of posets, we refer the reader back to Section B.1. Our
main focus is a ‘result’ about totally ordered subsets of partially ordered
sets:

Definition B.6.2. Let (X,⪯) be a partially ordered set. A non-empty
subset Y ⊆ X is said to be a chain if Y is totally ordered with respect to ⪯;
that is, if a, b ∈ Y , then either a ⪯ b or b ⪯ a.
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Clearly any non-empty subset of a totally ordered set is a chain. Here is
a less obvious example.

Example B.6.3. Recall from Example B.1.5 that the power set P(R) of R
has a partial ordering ⪯ where

A ⪯ B ⇐⇒ A ⊆ B.

If Y = {An}∞
n=1 ⊆ P(R) are such that An ⊆ An+1 for all n ∈ N, then Y is a

chain.

Like with the real numbers, upper bounds play an important role with
respect to chains.

Definition B.6.4. Let (X,⪯) be a partially ordered set. A non-empty
subset Y ⊆ X is said to be a bounded above if there exists a z ∈ X such that
y ≤ z for all y ∈ Y . Such an element z is said to be an upper bound for Y .

Example B.6.5. Recall from Example B.6.3 that if Y = {An}∞
n=1 ⊆ P(R)

are such that An ⊆ An+1 for all n ∈ N, then Y is a chain with respect to the
partial ordering defined by inclusion. If

A =
∞⋃

n=1
An

then clearly A ∈ P(R) and An ⊆ A for all n ∈ N. Hence A is an upper
bound for Y .

Recall there are optimal upper bounds of subsets of R called least upper
bounds which need not be in the subset. We desire a slightly different object
when it comes to partially ordered sets as the lack of a total ordering means
there may not be a unique ‘optimal’ upper bound.

Definition B.6.6. Let X be a non-empty set and let ⪯ be a partial ordering
on X. An element x ∈ X is said to be maximal if there does not exist a
y ∈ X \ {x} such that x ⪯ y; that is, there is no element of X that is larger
than x with respect to ⪯.

Notice that R together with its usual ordering ≤ does not have a maximal
element. However, many partially ordered sets do have maximal elements.
For example ([0, 1],≤) has 1 as a maximal element although ((0, 1),≤) does
not.

For an example involving a partial ordering that is not a total ordering,
suppose X = {x, y, z, w} and ⪯ is defined such that a ⪯ a for all a ∈ X, a ⪯ b
for all a ∈ {x, y} and b ∈ {z, w}, and a ⪯̸ b for all other pairs (a, b) ∈ X ×X.
It is not difficult to see that z and w are maximal elements and x and y
are not maximal elements. Thus it is possible, when dealing with a partial
ordering that is not a total ordering, to have multiple maximal elements.

The result we require for the next subsection may now be stated using
the above notions.
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Axiom B.6.7 (Zorn’s Lemma). Let (X,⪯) be a non-empty partially
ordered set. If every chain in X has an upper bound, then X has a maximal
element.

We will not prove Zorn’s Lemma. To do so, we would need to use the Ax-
iom of Choice (Axiom B.2.8). In fact, Zorn’s Lemma and the Axiom of Choice
are logically equivalent; that is, assuming the axioms of Zermelo–Fraenkel
set theory, one may use the Axiom of Choice to prove Zorn’s Lemma, and
one may use Zorn’s Lemma to prove the Axiom of Choice.

Before using Zorn’s Lemma to demonstrate that the ordering on cardinals
is a total ordering, we analyze a simpler example.

Example B.6.8. Let V be a (non-zero) vector space. We claim that V
has a basis; that is, a linearly independent spanning set. To see this, let
L denote the collection of all linearly independent subsets of V (which is
clearly non-empty) and define a partial ordering on L by A ⪯ B if and only
if A ⊆ B (clearly this is a partial ordering on L).

To invoke Zorn’s Lemma, we need to demonstrate that every chain in L
has an upper bound. Let {Aα}α∈I be a chain in L and let

A =
⋃
α∈I

Aα.

We claim that A ∈ L. To see this, assume v⃗1, . . . , v⃗n ∈ A and a1v⃗1+· · · anv⃗n =
0 for some scalars ak. By the definition of A and the fact that {Aα}α∈I is a
chain, there exists an i ∈ I such that v⃗1, . . . , v⃗n ∈ Ai (that is, each v⃗k is in
some Aα and as the Aα are totally ordered, take the largest). Hence, since Ai

is a linearly independent set, a1v⃗1 + · · · anv⃗n = 0 implies a1 = · · · = an = 0.
Hence A ∈ L. Since A is clearly an upper bound for {Aα}α∈I , ever chain in
L has an upper bound.

By Zorn’s Lemma there exists a maximal element B ∈ L. We claim that
B is a basis for V . To see this, suppose for the sake of a contradiction that
span(B) ̸= V . Thus there exists a non-zero vector v⃗ ∈ V \ span(B). This
implies that B ∪ {v⃗} is linearly independent. However, since B ⪯ B ∪ {v⃗}
and B ̸= B ∪ {v⃗}, we have a contradiction to the fact that B is a maximal
element in L. Hence it must have been the case that span(B) = V and thus
B is a basis for V .

Onto demonstrating the ordering on cardinals is a total ordering.

Theorem B.6.9. Let X and Y be non-empty sets. Then either |X| ≤ |Y |
or |Y | ≤ |X|.

Proof. Let

F = {(A,B, f) | A ⊆ X,B ⊆ Y, f : A → B is a bijection}.
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Notice that F is non-empty since, by assumption, there exists an x ∈ X and
a y ∈ Y so we may select A = {x}, B = {y}, and f : A → B defined by
f(x) = y.

Given (A1, B1, f1), (A2, B2, f2) ∈ F , define (A1, B1, f1) ⪯ (A2, B2, f2) if
and only if

A1 ⊆ A2, B1 ⊆ B2, and f2(x) = f1(x) for all x ∈ A1.

It is not difficult to verify that ⪯ is a partial ordering on F .
We desire to invoke Zorn’s Lemma (Axiom B.6.7) in order to obtain a

maximal element of F . To invoke Zorn’s Lemma, it must be demonstrated
that every chain in (F ,⪯) has an upper bound. Let

C = {(Aα, Bα, fα) | α ∈ I}

be an arbitrary chain in (F ,⪯). Let

A =
⋃
α∈I

Aα and B =
⋃
α∈I

Bα.

We desire to define f : A → B such that f(x) = fα(x) whenever x ∈ Aα.
The question is, “Will such an f be well-defined as each x could be in
multiple Aα?” To see that f is well-defined, assume x ∈ Ai and x ∈ Aj

for some i, j ∈ I. Since C is a chain, either (Ai, Bi, fi) ⪯ (Aj , Bj , fj) or
(Aj , Bj , fj) ⪯ (Ai, Bi, fi). If (Ai, Bi, fi) ⪯ (Aj , Bj , fj), then Ai ⊆ Aj and ⪯
implies that fj(x) = fi(x). Since the case that (Aj , Bj , fj) ⪯ (Ai, Bi, fi) is
the same (reversing i and j), we obtain that f is well-defined.

In order for (A,B, f) to be an upper bound for C, we must first demon-
strate that (A,B, f) ∈ F . Clearly A ⊆ X, B ⊆ Y , and f : A → B is a
function. It remains to check that f is a bijection.

To see that f is injective, assume x1, x2 ∈ A are such that f(x1) = f(x2).
Since A =

⋃
α∈I Aα, there exists i, j ∈ I such that xi ∈ Ai and xj ∈ Aj . Since

C is a chain, we must have either (Ai, Bi, fi) ⪯ (Aj , Bj , fj) or (Aj , Bj , fj) ⪯
(Ai, Bi, fi). In the former case, we obtain that fj(x1) = f(x1) = f(x2) =
fj(x2). Therefore, since fj is injective, it must be the case that x1 = x2.
Since the case that (Aj , Bj , fj) ⪯ (Ai, Bi, fi) is the same (reversing i and j),
we obtain that f is injective.

To see that f is surjective, let y ∈ B be arbitrary. Since B =
⋃

α∈I Bα,
there exists an i ∈ I such that y ∈ Bi. Since fi is surjective, there exists an
x ∈ Ai such that fi(x) = y. Hence x ∈ A and f(x) = fi(x) = y. Therefore,
as y was arbitrary, f is surjective. Hence f is a bijection and (A,B, f) ∈ F .

Since (A,B, f) ∈ F , it is easy to see that (A,B, f) is an upper bound for
C by the definition of (A,B, f) and the partial ordering ⪯. Hence, since C
was an arbitrary chain, every chain in F has an upper bound. Thus Zorn’s
Lemma implies that (F ,⪯) has a maximal element.
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Let (A0, B0, f0) ∈ F be a maximal element. We claim that either A0 = X
or B0 = Y . To see this, suppose for the sake of a contradiction that A0 ̸= X
and B0 ̸= Y . Therefore, there exist x0 ∈ X \ A0 and y0 ∈ Y \ B0. Let
A′ = A0 ∪ {x0}, B′ = B0 ∪ {y0}, and g : A′ → B′ be defined by g(x0) = y0
and g(x) = f0(x) for all x ∈ A0. Clearly g is a well-defined bijection
by construction so (A′, B′, g) ∈ F . However, it is elementary to see that
(A0, B0, f0) ⪯ (A′, B′, g) and (A0, B0, f0) ̸= (A′, B′, g). Since this contradicts
the fact that (A0, B0, f0) ∈ F is a maximal element, we have obtained a
contradiction. Hence either A0 = X or B0 = Y .

If A0 = X, then f0 : X → B ⊆ Y is injective so |X| ≤ |Y | by definition.
Otherwise, if B0 = Y , then f0 : A0 → Y is surjective. Thus |Y | ≤ |A0| ≤ |X|
by Proposition B.2.9.

B.7 Cardinal Arithmetic
One natural question to ask is, “If X and Y are disjoint sets and we know
|X| and |Y |, can we determine |X ∪ Y |?” Of course if X and Y are finite
sets, then |X ∪ Y | = |X| + |Y |. Thus determining the cardinality of X ∪ Y
from the cardinality of X and Y really is a form of cardinal arithmetic.

As we already know the answer when both sets are finite, we will focus
on the case where at least one set is infinite. Furthermore, since we know if
|X| = |Y | = |N| then |X ∪ Y | = |N| by Theorem B.5.3, we need not study
this case.

We begin with the case that one set is finite. To show that adding a finite
set to an infinite set does not change the cardinality, we prove the following.

Theorem B.7.1. Let X be an infinite set and let Y be a finite subset of X.
Then |X \ Y | = |X|.

Proof. Assume X is an infinite set and Y is a finite subset of X. Then Z =
X \ Y is an infinite set. Since Z is infinite, there exists an infinite countable
set W ⊆ Z by Lemma B.3.2. Write W = {an}n∈N and Y = {y1, . . . , ym} for
some m ∈ N. Define f : Z → X by

f(z) =


z if z /∈ W

yn if z = an for some n ≤ m

an−m if z = an for some n > m

.

It is elementary to see that f is a well-defined bijection. Hence |X| = |Z| =
|X \ Y |

To deal with the case that both sets are infinite, we will develop the
following idea: “If X is an infinite set, then X can be divided into two
disjoint subsets of the same cardinality”. Seeing this idea is true in the case
that X is countably infinite is rather trivial.
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Lemma B.7.2. Let X be a countably infinite set. There exists two disjoint
infinite countable sets Y and Z such that Y ∪ Z = X.

Proof. Let X be a countably infinite set. Hence there exists a bijection
f : N → X. Let

Y = {f(2n) | n ∈ N} and Z = {f(2n− 1) | n ∈ N}.

Since f is a bijection, it is elementary to verify that Y and Z have the desired
properties.

The extension of Lemma B.7.2 to uncountable sets is more involved.

Lemma B.7.3. Let X be an infinite set. There exists two disjoint sets Y
and Z such that Y ∪ Z = X and |X| = |Y | = |Z|.

Proof. If X is countable, the result follows from Lemma B.7.2. Thus suppose
X is an uncountable set. Define

F =
{

(W,A,B, f, g)
∣∣∣A,B,W ⊆X,f :W →A and g:W →B bijections,

A∩B=∅,W =A∪B

}
.

For two elements (W1, A1, B1, f1, g1), (W2, A2, B2, f2, g2) ∈ F , define

(W1, A1, B1, f1, g1) ⪯ (W2, A2, B2, f2, g2)

if W1 ⊆ W2, A1 ⊆ A2, B1 ⊆ B2, and f2(w) = f1(w) and g2(w) = g1(w) for
all w ∈ W1. It is not difficult to verify that ⪯ is a partial ordering.

We desire to invoke Zorn’s Lemma (Axiom B.6.7). To do this, first we
must verify that F is non-empty. Since X is uncountable, by Lemma B.3.2
there exists a W ⊆ X such that W is infinite and countable. By Lemma B.7.2
there exists A,B ⊆ W such that A∩B = ∅, W = A∪B, and |A| = |B| = |W |.
As the later implies the existence of bijections f : W → A and g : W → B,
we obtain that F is non-empty.

Next let C = {(Wα, Aα, Bα, fα, gα) | α ∈ I} be an arbitrary chain in F .
Let

W =
⋃
α∈I

Wα, A =
⋃
α∈I

Aα, B =
⋃
α∈I

Bα,

and define f : W → A and g : W → B by f(w) = fα(w) and g(w) = gα(w)
for all w ∈ Wα. By the proof of Theorem B.6.9, f and g are well-defined
bijections. Furthermore, we claim that A∩B = ∅. To see this, suppose for the
sake of a contradiction that x ∈ A∩B. Hence there exists α, β ∈ I such that
x ∈ Aα and x ∈ Bβ . Since C is a chain, either α ≤ β or β ≤ α. Hence if ι =
max{α, β} we obtain that x ∈ Aι ∩Bι as C is a chain. Since this contradicts
the definition of F , we obtain that A∩B = ∅. Since it is clear that W = A∪B,
we see that (W,A,B, f, g) ∈ F . Since (Wα, Aα, Bα, fα, gα) ⪯ (W,A,B, f, g)
for all α ∈ I, (W,A,B, f, g) is an upper bound for C. Therefore, as C was
arbitrary, every chain in F has an upper bound.
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By Zorn’s Lemma F has a maximal element. Let (W0, A0, B0, f0, g0) be
a maximal element of F . We claim that X \W0 is finite. To see this, suppose
for the sake of a contradiction that X \ W0 is infinite. Thus there exists
a countable subset Z ⊆ X \ W0. By Lemma B.7.2 there exists countable
subsets A′ and B′ such that A′ ∩B′ = ∅ and A′ ∪B′ = Z. Thus there exist
bijections f ′ : Z → A′ and g′ : Z → B′.

Let W = W0 ∪ Z, A = A0 ∪ A′, and B = B0 ∪ B′. Define f : W → A
and g : W → B by

f(w) =
{
f0(w) if w ∈ W0

f ′(w) if w ∈ Z
and g(w) =

{
g0(w) if w ∈ W0

g′(w) if w ∈ Z
.

Since W0 ∩ Z = A0 ∩A′ = B0 ∩B′ = ∅, f and g are well-defined bijections.
Clearly (W,A,B, f, g) ∈ F and (W0, A0, B0, f0, g0) ⪯ (W,A,B, f, g), which
contradicts the fact that (W0, A0, B0, f0, g0) was a maximal element. Hence
X \W0 is finite.

By the above, we have thatA0∩B0 = ∅, W0 = A0∪B0, |W0| = |A0| = |B0|,
and C = X \ W0 is finite. Therefore, if we let Y = A0 ∪ C and Z = B0,
then |X| = |W0| = |Z| = |A0| = |Y | by Theorem B.7.1, Y ∩ Z = ∅, and
X = Y ∪ Z as desired.

Finally, we obtain the following demonstrating that the cardinality of the
union of two infinite sets is the larger of the cardinalities of the individual
sets.

Theorem B.7.4. Let X and Y be non-empty sets with X infinite. If
|Y | ≤ |X| then |X ∪ Y | = |X|.

Proof. Let X be an infinite set and let Y be a set such that |Y | ≤ |X|. Let
Z = Y \ X so that X ∩ Z = ∅ and X ∪ Z = X ∪ Y . Hence it suffices to
show that |X ∪ Z| = |X|. Since X ⊆ X ∪ Z, we clearly have |X| ≤ |X ∪ Z|.
For the other inequality, notice that Z ⊆ Y so |Z| ≤ |Y | ≤ |X|. By Lemma
B.7.3 there exists two disjoint sets S and T such that S ∪ T = X and
|S| = |T | = |X|. Since |Z| ≤ |S|, there exists an injective function f : Z → S.
Similarly, since |X| = |T |, there exists a bijective function g : X → T . Define
h : X ∪ Z → X by

h(q) =
{
f(q) if q ∈ Z

g(q) if q ∈ X
.

Since Z ∩X = ∅, h is a well-defined function. Furthermore, since f and g
are injective and since S ∩ T = ∅, h is injective. Hence |X ∪ Z| ≤ |X| so
|X| = |X ∪ Z| as desired.

As a corollary of the proof of Theorem B.7.4, we note the following result
which improves upon Theorem B.5.3.
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Corollary B.7.5. Let X be an infinite set. Let {Xn}n∈N be a countable
collection of infinite sets such that |Xn| ≤ |X| for all n ∈ N. If Y =

⋃∞
n=1Xn,

then |Y | ≤ |X|.

Proof. By repeating the same argument as in Theorem B.5.3, we may assume
that the Xn are pairwise disjoint.

Since X is infinite, Lemma B.7.3 implies there exists two subsets of X,
denoted Y1 and Z1 such that Y1 ∪ Z1 = X and |Y1| = |Z1| = |X|. Since Y1
is infinite, Lemma B.7.3 implies there two subsets of Y1, denoted Y2 and
Z2 such that Y2 ∪ Z2 = Y1 and |Y2| = |Z2| = |Y1| = |X|. By repeating this
argument ad infinitum, there exists a collection {Zn}n∈N of pairwise disjoint
subsets of X such that |Zn| = |X| for all n ∈ N.

Since |Xn| ≤ |X| = |Zn| for all n ∈ N, there exists an injective function
fn : Xn → Zn. Define f : Y → X by f(x) = fn(x) whenever x ∈ Xn.
Notice that f is well-defined since {Xn}n∈N are pairwise disjoint with union
Y . Furthermore, since {Zn}n∈N are pairwise disjoint and since each fn is
injective, f is injective. Hence |Y | ≤ |X| as desired.

To conclude this appendix chapter on cardinality, we note that there are
many other results pertaining to cardinality that we may study. For example,
we can study how cardinality behaves under infinite unions, products, and
exponentials. This would lead us to a rich notion of cardinal arithmetic. To
be rigorous in this study would take substantial time and distract us from
studying the main objects of focus in this course. Thus we mention the
following two results.

Theorem B.7.6 (Cantor’s Theorem). If X is an non-empty set, then
|X| ≤ |P(X)| but |X| ≠ |P(X)|.

Proof. To see that |X| ≤ |P(X)|, define f : X → P(X) by f(x) = {x}.
Clearly f is injective so |X| ≤ |P(X)| by definition.

To see that |X| ≠ |P(X)|, we return to a Russell’s Paradox-like argument.
Suppose for the sake of a contradiction that there exists a function f : X →
P(X) that is bijective (in particular, f is surjective). Consider the set

Ψ = {x ∈ X | x /∈ f(x)}.

Since f is surjective, there exists a z ∈ X such that f(z) = Ψ.
If z ∈ Ψ then, by the definition of Ψ, it must be the case that z /∈ f(z) = Ψ,

which is a contradiction. Hence it must be the case that z /∈ Ψ. Therefore,
by the definition of Ψ, it must be the case that z ∈ f(z) = Ψ, which is also a
contradiction. Hence we have a contradiction to the existence of such an f
and thus |X| ≠ |P(X)|.
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Example B.7.7. Let X =
∏∞

n=1{0, 1}. The cardinality of X is denoted by
2|N| (as we are taking a |N| product of {0, 1} which has cardinality 2). We
claim that 2|N| = |R|. To see this, first define f : X → [0, 1] by

f((an)n≥1) =
∞∑

n=1

2an

3n
.

We claim that f is injective. To see this, we notice that f((an)n≥1) is a
ternary expansion of a number in [0, 1]. Since the ternary expansion of
a number in [0, 1] is unique up to repeating 2s (i.e.

∑∞
n=2

2
3n = 1

3), and
changing repeating 2s either changes a 1 to a 2 or a 0 to a 1, each number in
[0, 1] that can be expressed using ternary numbers only involving 0s and 2s
can be done so in a unique way. Hence f is injective so |X| ≤ |[0, 1]| ≤ |R|.

For the other direction, define g : (0, 1) → X as follows: for each x ∈ (0, 1)
write a binary expansion of x, say x =

∑∞
n=1

an
2n where an ∈ {0, 1}, and define

g(x) = (an)n≥1 (this is valid by the Axiom of Choice). Clearly g is well-
defined. Furthermore, g is injective since if two numbers have the same
binary expansion, they are the same number. Hence |R| = |(0, 1)| ≤ |X| so
2|N| = |R| by Theorem B.6.9 as desired.
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Appendix C

Banach Spaces

In this appendix, we briefly review many important definitions, concepts,
and results relating to Banach spaces that are important to this course.

C.1 Metric and Normed Linear Spaces
Definition C.1.1. Let X be a non-empty set. A metric on X is a function
d : X ×X → [0,∞) such that

1. for x, y ∈ X, d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x) for all x, y ∈ X, and

3. (Triangle Inequality) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.
Definition C.1.2. A metric space is a pair (X , d) where X is a non-empty
set and d is a metric on X .
Example C.1.3. For any c > 0, define d : R × R → [0,∞) by d(x, y) =
c|x− y|. Then (R, d) is a metric space. In particular, there are many metrics
that may be placed on a given set.
Example C.1.4. The usual notion of measuring the distance between two
points in a plane is a metric. Indeed define d2 : R2 × R2 → [0,∞) by
d2((x1, y1), (x2, y2)) =

√
(x1 − x2)2 + (y1 − y2)2. Then (R2, d2) is a metric

space and the metric d2 is called the Euclidean metric.
Example C.1.5. Define d : C × C → [0,∞) by d(x, y) = |x − y|. Then
(C, d) is a metric space.
Example C.1.6. Given n ∈ N, define d1 : Cn × Cn → [0,∞) by

d1((z1, . . . , zn), (w1, . . . , wn)) =
n∑

k=1
|zk − wk|

for all (z1, . . . , zn), (w1, . . . , wn) ∈ Cn. Then it is easy to verify that (Cn, d1)
is a metric space.
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In fact, given any set, it is possible to place a metric on the set.
Example C.1.7. Let X be a non-empty set. Define d : X × X → [0,∞) by

d(x, y) =
{

0 if x = y

1 if x ̸= y
.

It is elementary to verify that d is a metric, which is called the discrete or
trivial metric.

Although the above gives several examples of metrics, not all metrics
were created equal. In particular, we desire to study special types of metric
spaces. These metric spaces come from specific functions on vector spaces
that behave like the absolute value does on R and C. Consequently, we will
restrict to vector spaces where the scalars are either the real or the complex
numbers. Consequently, it will be convenient to use K to denote either R or
C.

The following is our generalization of the absolute value to vector spaces.
Definition C.1.8. Let V be a vector space over K. A norm on V is a
function ∥ · ∥ : V → [0,∞) such that

1. for v⃗ ∈ V , ∥v⃗∥ = 0 if and only if v⃗ = 0⃗,

2. ∥αv⃗∥ = |α| ∥v⃗∥ for all α ∈ K and v⃗ ∈ V , and

3. (Triangle Inequality) ∥v⃗ + w⃗∥ ≤ ∥v⃗∥ + ∥w⃗∥ for all v⃗, w⃗ ∈ V .
Definition C.1.9. A normed linear space is a pair (V, ∥ · ∥) where V is a
vector space over K and ∥ · ∥ is a norm on V .

As our motivation for generalizing the absolute value was to induce a
metric, we note the following.
Proposition C.1.10. If (V, ∥ · ∥) is a normed linear space, then V is a metric
space with the metric d : V × V → [0,∞) defined by d(v⃗, w⃗) = ∥v⃗ − w⃗∥. We
call d the metric induced by ∥ · ∥.
Proof. It suffices to show that d is a metric. Clearly d : V × V → [0,∞).
Furthermore notice d(v⃗, w⃗) = 0 if and only if ∥v⃗ − w⃗∥ = 0 if and only if
v⃗ − w⃗ = 0⃗ if and only if v⃗ = w⃗.

Next notice for all v⃗, w⃗ ∈ V that

d(v⃗, w⃗) = ∥v⃗ − w⃗∥ = ∥(−1)(w⃗ − v⃗)∥ = | − 1| ∥w⃗ − v⃗∥ = d(w⃗, v⃗).

Finally, to see that d satisfies the triangle inequality, notice for all v⃗, w⃗, z⃗ ∈ V
that

d(v⃗, z⃗) + d(z⃗, w⃗) = ∥v⃗ − z⃗∥ + ∥z⃗ − w⃗∥
≥ ∥(v⃗ − z⃗) + (z⃗ − w⃗)∥
= ∥v⃗ − w⃗∥ = d(v⃗, w⃗).

Hence d is a metric.
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Remark C.1.11. Notice in the proof of the triangle inequality in Proposition
C.1.10 that using w⃗ = 0⃗ produced ∥v⃗ − z⃗∥+∥z⃗∥ ≥ ∥v⃗∥ for all v⃗, z⃗ ∈ V . Hence

∥v⃗∥ − ∥z⃗∥ ≤ ∥v⃗ − z⃗∥

for all v⃗, z⃗ ∈ V . Thus, by interchanging v⃗ and z⃗, we obtain that

|∥v⃗∥ − ∥z⃗∥| ≤ ∥v⃗ − z⃗∥

for all v⃗, z⃗ ∈ V . This potentially useful inequality is often called the reverse
triangle inequality.

Clearly the absolute value on K is an norm on K. Furthermore, the
metric induced by this norm is exactly the metric introduced in Examples
C.1.3 and C.1.5. In fact, some of the other metrics we have seen come from
norms.

Example C.1.12. For n ∈ N, define ∥ · ∥1 : Kn → [0,∞) by

∥(z1, . . . , zn)∥1 =
n∑

k=1
|zk|

for all (z1, . . . , zn) ∈ Kn. It is elementary to verify that ∥ · ∥1 is a norm on Kn

that induces the metric d1 as in Example C.1.6. We call ∥ · ∥1 the 1-norm.

Example C.1.13. Define ∥ · ∥2 : R2 → [0,∞) by

∥(x, y)∥2 =
√

|x|2 + |y|2

for all (x, y) ∈ R2. It is possible to verify that ∥ · ∥2 is a norm on R2 that
induces the Euclidean metric as in Example C.1.4. We call ∥ · ∥2 the Euclidean
norm or the 2-norm.

However, some of the metrics we have seen are not norms. For example,
if V is a vector space over K, the trivial metric cannot be induced by a norm
since if a norm (and thus its induced metric) takes the value 1, then it takes
all values in [0,∞).

There are many more useful norms. In fact, there are several norms we
can place on Kn.

Example C.1.14. For n ∈ N, define ∥ · ∥∞ : Kn → [0,∞) by

∥(z1, . . . , zn)∥∞ = sup
1≤k≤n

|zk|

for all (z1, . . . , zn) ∈ Kn. It is elementary to verify that ∥ · ∥∞ is a norm on
Kn. We call ∥ · ∥∞ the sup-norm or the ∞-norm.
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Using the idea of the ∞-norm, we can develop a norm on vector spaces
we have yet to consider.

Example C.1.15. Let C[a, b] denote the set of all real-valued continuous
functions on a closed interval [a, b]. Then C[a, b] is a vector space over R
under the operations of pointwise addition and scalar multiplication. Define
∥ · ∥∞ : C[a, b] → [0,∞) by

∥f∥∞ = sup
x∈[a,b]

|f(x)|

for all f ∈ C[a, b]. Note ∥ · ∥∞ does take values in [0,∞) by the Extreme
Value Theorem. It is elementary to see that ∥ · ∥∞ is a norm on C[a, b]. We
call ∥ · ∥∞ the sup-norm or the ∞-norm.

Of course, the sup-norm works perfectly well if we restrict the set of
continuous functions to, for example, the polynomials. In particular, this
holds true in more generality.

Proposition C.1.16. Let (V, ∥ · ∥) be a normed linear space and let W be a
subspace of V . The restriction of ∥ · ∥ to W is a norm on W .

There are many more norms we can place on Kn. In particular, we can
generalize the Euclidean norm.

Example C.1.17. For n ∈ N, define ∥ · ∥2 : Kn → [0,∞) by

∥(z1, . . . , zn)∥2 =
(

sup
1≤k≤n

|zk|2
) 1

2

for all (z1, . . . , zn) ∈ Kn. Then ∥ · ∥∞ is a norm on Kn called the Euclidean
norm or the 2-norm.

Example C.1.18. For n ∈ N and a fixed p ∈ (1,∞), define ∥ · ∥p : Kn →
[0,∞) by

∥(z1, . . . , zn)∥p =
(

n∑
k=1

|zk|p
) 1

p

for all (z1, . . . , zn) ∈ Kn. Then ∥ · ∥p is a norm on Kn called the p-norm.

C.2 Topology on Metric Spaces
In this section, we will analyze the notion of convergent sequences in metric
spaces. Of course we could jump right in and define the convergence of
a sequence using our distance function. However, in doing so we will not
obtain too much information about the structure of our spaces and of the
subsets of our spaces. Thus we will begin with another view of how to define
a sequence to converge thereby permitting a deeper discussion of types and
properties of subsets of metric spaces.
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C.2.1 Open and Closed Sets

One way to interpret the notion of a convergence sequence of real numbers
without a notion of distance is to say that an ∈ (L− ϵ, L+ ϵ) for all n ≥ N .
Thus for (an)n≥1 to be ‘close’ to L means that each element in (an)n≥1 must
eventually be in any fixed open interval containing L. Thus if we can analyze
the essential properties of open intervals and generalize these to metric spaces,
we may generalize the notion of a convergent sequence. If fact, we want a
concept slightly more general than an open interval.

Definition C.2.1. Let X be a non-empty set. A collection T ⊆ P(X) is
said to be a topology on X if

1. ∅, X ∈ T ,

2. if {Uα | α ∈ I} ⊆ T , then
⋃

α∈I Uα ∈ T , and

3. if n ∈ N and U1, . . . , Un ∈ T , then
⋂n

i=1 Ui ∈ T .

The elements of T are called the open sets of the topology.

There are many examples of topologies we may place on a set.

Example C.2.2. Let X be a non-empty set. The set T = {X, ∅} is a
topology on X known as the trivial topology.

Example C.2.3. Let X be a non-empty set. The set T = P(X) is a
topology on X known as the discrete topology.

Of course, the above topologies may not be the best topologies for a
metric space as we desire a topology related to the metric. Thus we begin
with the following definitions.

Definition C.2.4. Let (X , d) be a metric space. Given an x ∈ X and an
r > 0, the open ball of radius r centred at x, denoted B(x, r), is the set

B(x, r) = {y ∈ X | d(x, y) < r}.

Similarly, given an x ∈ X and an r ≥ 0, the closed ball of radius r centred at
x, denoted B[x, r], is the set

B[x, r] = {y ∈ X | d(x, y) ≤ r}.

Example C.2.5. In R with the absolute value metric, B(x, r) = (x−r, x+r)
and B[x, r] = [x− r, x+ r] for all x ∈ R and r > 0.
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Example C.2.6. For R2, the following diagram illustrates B(0, 1) for various
p-norms:

∥ · ∥∞∥ · ∥2

∥ · ∥1

Example C.2.7. Let X be a non-empty set and let d be the discrete metric
on X . Then, for all x ∈ X ,

B(x, r1) = B[x, r2] = {x} if r1 ≤ 1 and r2 < 1, and
B(x, r1) = B[x, r2] = X if r1 > 1 and r2 ≥ 1.

Unsurprisingly, to obtain a desirably topology on a metric space, we will
use our open balls to construct the open sets.

Theorem C.2.8. Let (X , d) be a metric space. Let T be the set of all subsets
U of X such that for each x ∈ U there exists an ϵ > 0 such that B(x, ϵ) ⊆ U .
Then T is a topology on X .

Proof. To see that T is a topology, we must verify the three properties in
Definition C.2.1. It is clear by definition that ∅,X ∈ T .

Suppose {Uα}α∈I is a set of elements of T . To see that
⋃

α∈I Uα ∈ T ,
let x ∈

⋃
α∈I Uα be arbitrary. Then there must be an i ∈ I such that

x ∈ Ui. Since Ui ∈ T , there exists an ϵ > 0 such that B(x, ϵ) ⊆ Ui. Hence
B(x, ϵ) ⊆ Ui ⊆

⋃
α∈I Uα. As x ∈

⋃
α∈I Uα was arbitrary,

⋃
α∈I Uα ∈ T .

Finally, suppose U1, . . . , Un ∈ T . To see that
⋂n

i=1 Ui ∈ T , suppose
x ∈

⋂n
i=1 Ui be arbitrary. Hence x ∈ Ui for all i ∈ {1, . . . , n}. Since each

Ui ∈ T , there exists an ϵi > 0 such that B(x, ϵi) ⊆ Ui for all i ∈ {1, . . . , n}.
Let ϵ = min1≤i≤n ϵi > 0. Notice for each i ∈ {1, . . . , n} that

B(x, ϵ) ⊆ B(x, ϵi) ⊆ Ui.

Hence B(x, ϵ) ⊆
⋂n

i=1 Ui. As x ∈
⋂n

i=1 Ui was arbitrary,
⋂n

i=1 Ui ∈ T as
desired.

Definition C.2.9. Let (X , d) be a metric space. The topology T from
Theorem C.2.8 is called the metric space topology on (X , d). Unless otherwise
specified, given a metric space (X , d) the topology on X will always be the
metric space topology and the elements of T will be referred to as open sets.
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Of course, it is useful to be able to determine which sets are open. It
should not be a surprise that our open balls are indeed open sets. In fact, it
is not difficult to see that the metric topology is the smallest topology where
every open ball is an open set.

Proposition C.2.10. Let (X , d) be a metric space. Every open ball in X is
an open set.

Proof. Consider the open ball B(x, ϵ) for some x ∈ X and ϵ > 0. To see that
B(x, ϵ) is open, let y ∈ B(x, ϵ) be arbitrary. Thus d(x, y) < ϵ.

Let δ = ϵ− d(x, y) > 0. We claim that B(y, δ) ⊆ B(x, ϵ). To see this, let
z ∈ B(y, δ) be arbitrary. Then d(z, y) < δ so, by the triangle inequality,

d(z, x) ≤ d(z, y) + d(y, x) < δ + d(y, x) = ϵ.

Therefore, since z ∈ B(y, δ) was arbitrary, B(y, δ) ⊆ B(x, ϵ). Hence B(x, ϵ)
is open as y ∈ B(x, ϵ) was arbitrary.

We also note the following complete description of open subsets of R.

Proposition C.2.11. Every open subset of R is a countable union of open
intervals

Proof. Let U be an arbitrary non-empty open subset of R. Define a relation
∼ on U by x ∼ y if and only if whenever x < z < y or y < z < x then
z ∈ U . We claim that ∼ is an equivalence relation on U . To see this first
notice that if x ∈ U , then x ∼ x trivially. Furthermore, clearly if x ∼ y then
z ∈ U whenever x < z < y or y < z < x, and thus y ∼ x. Finally, suppose
x, y, w ∈ U are such that x ∼ y and y ∼ w. To see that x ∼ w, we divide
the discussion into five cases:

Case 1: x ≤ y ≤ w. In this case, we have x < z < y implies z ∈ U and
y < z < w implies z ∈ U . If z is such that x < z < w, then either x < z < y,
y < z < w, or y = z. As all of these imply z ∈ U , we have x ∼ w in this
case.

Case 2: w ≤ y ≤ x. This case follows from Case 1 by interchanging x and
w.

Case 3: y ≤ x ≤ w. In this case, we have y < z < w implies z ∈ U . Thus
if x < z < w then y < z < w so z ∈ U . Hence z ∼ x in this case.

Case 4: y ≤ w ≤ x. This case follows from Case 3 by interchanging x and
w.

Case 5: x ≤ w ≤ y or w ≤ x ≤ y. This case follows from Cases 3 and 4
by reversing the inequalities.

Thus, in any case x ∼ w. Thus ∼ is an equivalence relation.
Next we claim that each equivalence class is an open interval. To see

this let x ∈ U be arbitrary and let Ex denote the equivalence class of x with
respect to ∼. To see that Ex is an open interval, let

αx = inf(Ex) and βx = sup(Ex).
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We claim that Ex = (αx, βx).
First, we claim that αx < βx. To see this, notice that x ∈ Ex ⊆ U . Hence,

as U is open, there exists an ϵ > 0 such that (x − ϵ, x + ϵ) ⊆ U . Clearly
y ∼ x for all y ∈ (x− ϵ, x+ ϵ) so

αx ≤ x− ϵ < x+ ϵ ≤ βx.

To see that (αx, βx) ⊆ Ex, let y ∈ (αx, βx) be arbitrary. Since αx < y <
βx, by the definition of inf and sup there exists z1, z2 ∈ Ex such that

αx ≤ z1 < y < z2 ≤ βx.

Since z1, z2 ∈ Ex, we have z1 ∼ x and z2 ∼ x. Thus z1 ∼ z2 so [z1, z2] ⊆ U .
Hence y ∈ [z1, z2] ⊆ U . Therefore, as y ∈ (αx, βx) was arbitrary, (αx, βx) ⊆
Ex.

To see that Ex ⊆ (αx, βx), note that Ex ⊆ (αx, βx) ∪ {αx, βx} by the
definition of αx and βx. Thus it suffices to show that αx, βx /∈ Ex. Suppose
βx ∈ Ex (this implies βx ̸= ∞). Then βx ∈ U so there exists an ϵ > 0 so
that (βx − ϵ, βx + ϵ) ⊆ U . Hence βx + 1

2ϵ ∼ βx ∼ x (as βx ∈ Ex). Hence
βx + 1

2ϵ ∈ Ex. However βx + 1
2ϵ > βx so βx + 1

2ϵ ∈ Ex contradicts the fact
that βx = sup(Ex). Hence we have obtained a contradiction so βx /∈ Ex.
Similar arguments show that αx /∈ Ex. Hence Ex = (αx, βx) as desired.

To complete the proof, first notice that clearly

U =
⋃

x∈U

Ex

so U is a union of open intervals. It remains to be verify that the above
union can be made countable. Since each Ex is an open interval, Ex ∩Q ≠ ∅.
Hence, as each Ex ∩ Q is non-empty, by the Axiom of Choice there exists a
function f : {Ex | x ∈ U} → Q such that f(Ex) ∈ Ex for all x ∈ U . Hence,
as Ex ∩Ey = ∅ if Ex ̸= Ey, f is an injective function. Hence {Ex | x ∈ U} is
countable. Thus the union U =

⋃
x∈U Ex can be made into a countable union

by choosing one representative from each equivalence class (or, alternatively,
U =

⋃
q∈Q f

−1({q})).

Remark C.2.12. Note that Definition C.2.1 only requires that a finite
intersection of open sets is open. To see why this is required, note that in R
that Un = (− 1

n ,
1
n) is an open subsets of R for all n ∈ N yet

⋂∞
n=1 Un = {0}

is not an open set.

Remark C.2.13. Although we have many norms on Kn, each metric space
topology we have seen on Kn agrees. To see this, fix n ∈ N. If p ∈ [1,∞] let
Tp denoted the topology on Kn induced by the p-norm.
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To see that Tp = T∞ for all p ∈ [1,∞) (and thus Tp = Tq for all
p, q ∈ [1,∞]), first notice for an arbitrary x⃗ = (x1, . . . , xn) ∈ Kn that

∥x⃗∥p
∞ = sup{|xk|p | 1 ≤ k ≤ n}

≤
n∑

k=1
|xk|p

= ∥x⃗∥p

≤
n∑

k=1
∥x⃗∥p

∞

= n ∥x⃗∥p
∞ .

Hence ∥x⃗∥∞ ≤ ∥x⃗∥p ≤ n
1
p ∥x⃗∥∞ for all x⃗ ∈ Kn.

To show that Tp = T∞ we must show that every open subset of Kn with
respect to either norm is open with respect to the other norm. For notational
simplicity, we will use Bp(x⃗, r) to denote the open ball centred at x⃗ of radius
r with respect to the p-norm and we will use B∞(x⃗, r) to denote the open
ball centred at x⃗ of radius r with respect to the ∞-norm

To begin, let U ∈ Tp be arbitrary. To see that U ∈ T∞, let x ∈ U be
arbitrary. Since U ∈ Tp there exists an r > 0 such that Bp(x⃗, r) ⊆ U . As

B∞
(
x⃗, 1

n
1
p
r

)
⊆ Bp(x⃗, r) ⊆ U by the above norm estimates, and as x ∈ U

was arbitrary, we obtain that U ∈ T∞. Hence Tp ⊆ T∞.
For the other inclusion, let U ∈ T∞ be arbitrary. To see that U ∈ Tp,

let x ∈ U be arbitrary. Since U ∈ T∞ there exists an r > 0 such that
B∞(x⃗, r) ⊆ U . As Bp (x⃗, r) ⊆ B∞(x⃗, r) ⊆ U by the above norm estimates,
we obtain that U ∈ Tp. Hence T∞ ⊆ Tp. Thus T∞ = Tp as desired.

Although we have been interested in open sets in relation to convergent
sequences, the complements of open sets will be of incredibly interest.

Definition C.2.14. Let T be a topology on a set X. A subset F ⊆ X is
said to be closed if F c is open.

Example C.2.15. Let (X , d) be a metric space. Then ∅ and X are both
closed and open sets.

Example C.2.16. In R with the absolute value metric, (a, b] is neither
open nor closed. Indeed (a, b] is not open as there is no open ball around b
contained in (a, b], and (a, b] is not closed as (a, b]c = (−∞, a] ∪ (b,∞) is not
open since there is no open ball around a contained in (a, b]c.

Example C.2.17. In R with the absolute value metric, [a, b] is closed for
all a, b ∈ R since [a, b]c = (−∞, a) ∪ (b,∞) is a union of open sets and thus
open.
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Proposition C.2.18. Every closed ball in a metric space (X , d) is a closed
set.

Proof. Let x ∈ X and r > 0. We claim that B[x, r]c is open. To see this, let
y ∈ B[x, r]c be arbitrary. Then d(x, y) > r. Let ϵ = d(x, y) − r > 0. Notice
if z ∈ B(y, ϵ) then

d(x, y) ≤ d(x, z) + d(z, y) < d(x, z) + ϵ = d(x, z) + d(x, y) − r

which implies r < d(x, z). Hence B(y, ϵ) ⊆ B[x, r]c. Therefore, as y ∈
B[x, r]c was arbitrary, B[x, r]c is an open set. Hence B[x, r] is closed.

Example C.2.19. Let d be the discrete metric on a non-empty set X . Then
every open ball is closed and every closed ball is open.

Like with open sets, there are set operations we may perform on closed
sets.

Proposition C.2.20. Let T be a topology on a set X, let I be an non-empty
set, and for each α ∈ I let Fα be a closed subset of X. Then

•
⋂

α∈I Fα is closed in X, and

•
⋃

α∈I Fα is open in X provided I has a finite number of element.

Proof. Since De Morgan’s Laws imply(⋂
α∈I

Fα

)c

=
⋃
α∈I

F c
α and

(⋃
α∈I

Fα

)c

=
⋂
α∈I

F c
α,

the result follows by the definition of a closed set along with the definition
of a topology.

Remark C.2.21. Complementing the fact that a countable intersection of
open sets need not be open, a countable union of closed sets need not be
closed. Indeed A =

⋃∞
n=1{ 1

n} is a countable union of closed sets in R that is
not closed since 0 ∈ Ac yet (−ϵ, ϵ) ⊈ Ac for all ϵ > 0 (we will see later that
A ∪ {0} is a closed set). Furthermore, there exist closed subsets of R that
are not countable unions of closed intervals.

Of course, the most important property of a closed set is related to
convergent sequences (see Theorem C.2.32).

C.2.2 Convergence of Sequences

By modelling the notion of a convergent sequence in R, we have finally
arrived at defining when a sequence in a metric spaces converges.
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Definition C.2.22. Let (X , d) be a metric space and let (xn)n≥1 be a
sequence in X . The sequence (xn)n≥1 is said to converge in X to an element
x0 ∈ X if for all ϵ > 0 there exists an N ∈ N such that d(xn, x0) < ϵ for all
n ≥ N . In this case x0 is said to be a limit of the sequence (xn)n≥1 and we
write x0 = limn→∞ xn.

Of course, like in previous courses, the ‘< ϵ’ in Definition C.2.22 can be
replaced with ‘≤ ϵ’ without changing the definition. Furthermore, as we
have seen examples of convergent sequences in R in previous courses, we will
examine some more exotic examples.

Example C.2.23. Let d be the discrete metric on a non-empty set X . If
(xn)n≥1 is a sequence in X , then (xn)n≥1 converges to a point x0 ∈ X if and
only if there exists an N ∈ N such that xn = x0 for all n ≥ N ; that is, the
sequence is eventually constant.

Example C.2.24. Let m ∈ N and p ∈ [1,∞]. For each n ∈ N, let x⃗n =
(z1,n, . . . , zm,n) ∈ Km. Given x⃗ = (z1, . . . , zm) ∈ Km, the following are
equivalent:

1. (x⃗n)n≥1 converges to x⃗ with respect to the p-norm.

2. limn→∞ |zk,n − zk| = 0 for all k ∈ {1, . . . ,m}

Indeed notice |zk,n − zk| ≤ ∥x⃗n − x⃗∥p. Thus (1) implies (2). For the other
direction, notice if |zk,n − zk| < ϵ for all k ∈ {1, . . . ,m} then

∥x⃗n − x⃗∥p =
(

m∑
k=1

|zk,n − zk|p
) 1

p

≤
(

m∑
k=1

ϵp
) 1

p

= m
1
p ϵ.

As m is fixed, m
1
p ϵ may be made as small as desired thereby completing the

equivalence.

Example C.2.25. Repeating the same arguments in Example C.2.24 for
K = R and p = 2, if (zn)n≥1 is a sequence in C, z ∈ C, and an, bn, a, b ∈ R
are such that z = a+ bi and zn = an + bni for all n ∈ N, then z = limn→∞ zn

if and only if a = limn→∞ an and b = limn→∞ bn.

Example C.2.26. Given a sequence (fn)n≥1 of elements of C[a, b], notice
that (fn)n≥1 converges to an element f ∈ C[a, b] with respect to ∥ · ∥∞ if and
only if for all ϵ > 0 there exists an N ∈ N such that |fn(x) − f(x)| < ϵ for
all x ∈ [a, b] and n ≥ N . This is precisely the notion of uniform convergence
of functions discussed in previous analysis courses.

In the case of normed linear spaces, the notion of convergent sequences
behaves well with respect to vector space operations.
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Proposition C.2.27. Let (X , ∥ · ∥X ) be a normed linear space over K. If
(x⃗n)n≥1 and (y⃗n)n≥1 are sequences that converge to x⃗ and y⃗ respectively, then

• (x⃗n + y⃗n)n≥1 converges to x⃗+ y⃗, and

• (αx⃗n)n≥1 converges to αx⃗ for all α ∈ K.

Proof. Let ϵ > 0. Since

∥(x⃗n + y⃗n) − (x⃗− y⃗)∥ ≤ ∥x⃗n − x⃗∥ + ∥y⃗n − y⃗∥ and
∥αx⃗n − αx⃗∥ ≤ |α| ∥x⃗n − x⃗∥

for all n and since we may chose N sufficiently large so that the right-hand
sides of both inequalities is less than ϵ, the result follows.

As the statement “d(xn, x0) < ϵ” is equivalent to saying that xn ∈
B(x0, ϵ), we directly have a connection between convergence of sequences
and topology.

Proposition C.2.28. Let (X , d) be a metric space. A sequence (xn)n≥1
converges to an element x0 ∈ X if and only if for every open set U of X such
that x0 ∈ U there exists an N ∈ N such that xn ∈ U for all n ≥ N .

For general topological spaces (i.e. a space with a topology), the notion
of convergence is defined via Proposition C.2.28. One thinks of each open
set as a ‘neighbourhood’ around a point and for a sequence to converge to
a point, it must eventually inside every open set. This becomes a problem
for a general topological space due to examples like the trivial topology for
which two or more points are contained in the same open sets and thus are
both limits of the same sequences. In metric spaces, we do not have this
problem.

Proposition C.2.29. Let (X , d) be a metric space and let (xn)n≥1 be a
sequence in X . If x0 = limn→∞ xn and y0 = limn→∞ xn, then x0 = y0.

Proof. Suppose x0 = limn→∞ xn and y0 = limn→∞ xn. Let ϵ > 0 be arbitrary.
Since x0 = limn→∞ xn there exists an N1 ∈ N such that d(xn, x0) < ϵ for all
n ≥ N1. Similarly, since y0 = limn→∞ xn there exists an N2 ∈ N such that
d(xn, y0) < ϵ for all n ≥ N2. Therefore, if N = max{N1, N2}, we obtain that

0 ≤ d(x0, y0) ≤ d(x0, xN ) + d(xN , y0) < 2ϵ.

Since the above inequality holds for all ϵ > 0, we obtain that d(x0, y0) = 0.
Hence x0 = y0 by property (1) of Definition C.1.1

Given a sequence, it is often useful to be able to construct other sequences
by removing elements. This leads to the following notion.
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Definition C.2.30. Let (X , d) be a metric space. A subsequence of a
sequence (xn)n≥1 of elements of X is any sequence (yn)n≥1 such that there
exists an increasing sequence of natural numbers (kn)n≥1 so that yn = xkn

for all n ∈ N.

Unsurprisingly, if a sequence converges to a point, so does every subse-
quence.

Proposition C.2.31. Let (X , d) be a metric space and let (xn)n≥1 be a
sequence that converges to x ∈ X . Every subsequence of (xn)n≥1 converges
to x.

Proof. Let (xkn)n≥1 be a subsequence of (xn)n≥1. Let ϵ > 0. Since x =
limn→∞ xn, there exists an N ∈ N such that d(xn, x) < ϵ for all n ≥ N .
Since (kn)n≥1 is an increasing sequence of natural numbers, there exists an
N0 ∈ N such that kn ≥ N for all n ≥ N0. Hence d(xkn , x) < ϵ for all n ≥ N0.
Therefore, as ϵ > 0 was arbitrary, we obtain that limn→∞ xkn = x by the
definition of the limit.

Of course, convergent sequences can be used to characterize closed sets.

Theorem C.2.32. Let (X , d) be a metric space and let A ⊆ X . Then A is
a closed set if and only if whenever (an)n≥1 is a sequence of elements of A
that converge to an element x ∈ X , then x ∈ A.

Proof. Suppose that A is a closed set. Suppose to the contrary that there
exists a sequence (an)n≥1 of elements from A such that x = limn→∞ an and
x ∈ Ac. Since A is closed, Ac is open so there exists an ϵ > 0 such that
B(x, ϵ) ⊆ Ac. However, since x = limn→∞ an, there exists an N ∈ N such
that an ∈ B(x, ϵ) ⊆ Ac for all n ≥ N . Notice this is a contradiction as
an ∈ A for all n ∈ N. Therefore one direction is complete.

To see the converse, suppose that whenever (an)n≥1 is a sequence of
elements of A that converge to an element x ∈ X , then x ∈ A. Suppose to
the contrary that A is not closed. Therefore Ac is not open. Thus there
exists an x ∈ Ac such that B(x, ϵ) ∩ A ̸= ∅ for all ϵ > 0. For each n ∈ N
choose an ∈ B(x, 1

n) ∩A. Clearly (an)n≥1 is a sequence of elements of A that
converges to x so, by assumption, x ∈ A. As this contradicts the fact that
x ∈ Ac, the proof is complete.

C.3 Continuity
In this section we will focus on studying continuous functions as these are
functions that are very well-behaved with respect to the topological properties
of metric spaces. In particular, continuous functions are those that preserve
convergent sequences. Furthermore, continuous functions interact in a very
specific and useful way with the metric space topology.
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C.3.1 Continuity and Topology

To generalize the notion of a continuous function on R to a function between
metric spaces, we begin by recalling the ϵ-δ notion of continuity.

Definition C.3.1. Recall a function f : R → R is said to be continuous
at a ∈ R if for all ϵ > 0 there exists a δ > 0 such that |x − a| < δ implies
|f(x) − f(x)| < ϵ.

It is clear that to generalize the notion of continuity to functions between
metric spaces, we need only insert the appropriate notion of distance.

Definition C.3.2. Let (X , dX ) and (Y, dY) be metric spaces. It is said that
a function f : X → Y is continuous at a point x0 ∈ X if for all ϵ > 0 there
exists a δ > 0 such that if dX (x, x0) < δ then dY(f(x), f(x0)) < ϵ. Otherwise
it is said that f is discontinuous at x0.

The set of continuous functions from X to Y is denoted C(X ,Y).

Remark C.3.3. Note that the ‘<’ in both the ‘< δ’ and ‘< ϵ’ portions of
Definition C.3.2 may be replaced by ‘≤’. Indeed this follows since for all
x ∈ X and r > 0,

B

(
x,

1
2r
)

⊆ B

[
x,

1
2r
]

⊆ B (x, r) .

Definition C.3.4. Let (X , dX ) and (Y, dY) be metric spaces. It is said that
a function f : X → Y is continuous (on X ) if f is continuous at each point
in X .

We have already seen several continuous functions on R in previous
courses (e.g. polynomials, trigonometric functions, exponentials, etc.). Here
are some more unusual examples.

Example C.3.5. Let (X , dX ) and (Y, dY) be metric spaces. If dX is the
discrete metric, then any function f : X → Y is continuous. If dY is the
discrete metric, then a function f : X → Y is continuous at x0 if and only
if there exists a neighbourhood U of x0 such that f is constant on U . In
particular, if X = R and dY is the discrete metric, f : X → Y is continuous
if and only if f is constant.

As with continuous functions on R, continuity of functions between metric
spaces may be characterized via preservation of convergent sequences. Fur-
thermore, continuity can also be characterized using topological properties.

Theorem C.3.6. Let (X , dX ) and (Y, dY) be metric spaces, let f : X → Y,
and let x0 ∈ X . The following are equivalent:

(1) f is continuous at x0.

©For use through and only available at pskoufra.info.yorku.ca.



C.3. CONTINUITY 271

(2) For every sequence (xn)n≥1 in X that converges to x0, the sequence
(f(xn))n≥1 converges to f(x0).

(3) For every neighbourhood V of f(x0), f−1(V ) is a neighbourhood of x0.

Proof. To see that (1) implies (2), suppose f is continuous at x0 and that
(xn)n≥1 is a sequence in X that converges to x0. To see that (f(xn))n≥1
converges to f(x0), let ϵ > 0. Since f is continuous at x0, there exists a δ > 0
such that if dX (x, x0) < δ then dY(f(x), f(x0)) < ϵ. Since x0 = limn→∞ xn,
there exists an N ∈ N such that d(xn, x0) < δ for all n ≥ N . Hence
d(f(xn), f(x0)) < ϵ for all n ≥ N . Since ϵ > 0 was arbitrary, we obtain that
f(x0) = limn→∞ f(xn) as desired.

To see that (2) implies (3), suppose to the contrary that there exists a
neighbourhood V of f(x0) such that f−1(V ) is not a neighbourhood of x0.
Since x0 ∈ f−1(V ) this implies that B

(
x0,

1
n

)
∩ (f−1(V ))c ≠ ∅ for all n ∈ N.

For each n ∈ N choose an element

xn ∈ B

(
x0,

1
n

)
∩ (f−1(V ))c.

Hence (xn)n≥1 converges to x0. So, by the assumption of (2), we obtain that
f(x0) = limn→∞ f(xn). Since V is a neighbourhood of f(x0), this implies
f(xn) ∈ V for some n ∈ N which implies xn ∈ f−1(V ). As xn ∈ (f−1(V ))c,
we have obtained a contradiction. Hence (2) implies (3).

To see that (3) implies (1), let ϵ > 0 be arbitrary. Since B(f(x0), ϵ) is a
neighbourhood of f(x0), f−1(B(f(x0), ϵ)) is a neighbourhood of x0 by the
assumption of (3). Hence there exists a δ > 0 such that

B(x0, δ) ⊆ f−1(B(f(x0), ϵ)).

Thus, if d(x, x0) < δ then

x ∈ B(x0, δ) ⊆ f−1(B(f(x0), ϵ))

so f(x) ∈ B(f(x0), ϵ) and thus d(f(x), f(x0)) < ϵ. Hence f is continuous by
definition.

In addition to the above we obtain the following characterization of
continuity using open sets. As the following characterization makes no use of
the metric, one may generalize this result to obtain a definition of continuous
functions between any two sets with given topologies.

Proposition C.3.7. Let (X , dX ) and (Y, dY) be metric spaces. A function
f : X → Y is continuous if and only if f−1(V ) is open (in X ) for every open
subset V of Y.
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Proof. If f−1(V ) is open (in X ) for every open subset V of Y , then the fact
that f is continuous at each point in X follows from the proof of (3) implies
(1) in Theorem C.3.6.

Suppose f : X → Y is continuous and let V be an open subset of Y . Let
U = f−1(V ) and let x ∈ U be arbitrary. Since f(x) ∈ V and since V is open,
there exists an ϵ > 0 such that B(f(x), ϵ) ⊆ V . Since f is continuous, there
exists a δ > 0 such that if y ∈ B(x, δ) then f(y) ∈ B(f(x), ϵ) ⊆ V . Hence
B(x, δ) ⊆ U . Therefore, since x was arbitrary U is open as desired.

Corollary C.3.8. Let (X , dX ) and (Y, dY) be metric spaces. A function
f : X → Y is continuous if and only if f−1(F ) is closed (in X ) for every
closed subset F of Y.

Proof. Since f−1(Ac) = (f−1(A))c, the result follows from Proposition C.3.7.

As with continuous functions on R, composition continuous functions
preserves continuity.

Proposition C.3.9. Let (X , dX ), (Y, dY), and (Z, dZ) be metric spaces, and
let f : X → Y and g : Y → Z be continuous functions. Then g ◦ f : X → Z
is continuous.

Proof. Let x ∈ X be arbitrary. To see that g ◦ f is continuous at x, let
(xn)n≥1 be a sequence in X that converges to x. Therefore, by Theorem C.3.6,
f(x) = limn→∞ f(xn) as f is continuous and thus g(f(x)) = limn→∞ g(f(xn))
as g is continuous. Hence g ◦ f is continuous at x by Theorem C.3.6. As
x ∈ X was arbitrary, the proof is complete.

C.3.2 Useful Continuous Functions

In this section we will describe some useful continuous functions and the
existence of certain continuous functions on metric spaces. All of these results
we be related to the following notion.

Definition C.3.10. Let (X , d) be a metric space and let A ⊆ X be a
non-empty set. Given x ∈ X , the distance from x to A, denoted dist(x,A),
is defined to be

dist(x,A) = inf{d(x, a) | a ∈ A}.

Example C.3.11. If A = {a} then clearly d(x,A) = d(x, a). Furthermore,
if X is a normed linear space, then d(x,A) = ∥x− a∥.

As a further example and to exhibit some important properties of
dist(x,A), we note the following.
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Lemma C.3.12. Let (X , d) be a metric space and let A ⊆ X be a non-
empty set. For each x ∈ X , dist(x,A) = 0 if and only if x ∈ A (the set
of all points that are limits of sequences of points from A). Consequently
dist(x,A) = dist(x,A) for all x ∈ X .

Proof. First suppose x ∈ X is such that dist(x,A) = 0. Therefore for all
n ∈ N there exists an an ∈ A such that d(x, an) < 1

n . Hence x = limn→∞ an

so x ∈ A.
Conversely, suppose x ∈ A. Hence there exists a sequence (an)n≥1 of

elements of A such that x = limn→∞ an. Thus limn→∞ d(x, an) = 0 so
dist(x,A) = 0.

For the second part, note clearly A ⊆ A so dist(x,A) ≤ dist(x,A)
for all x ∈ X . To see the other inequality, fix x ∈ X . Let ϵ > 0 be
arbitrary. By the definition of the distance, there exists an y ∈ A such that
d(x, y) ≤ dist(x,A) + ϵ. However, since y ∈ A there exists an a ∈ A such
that d(y, a) < ϵ. Hence

d(x, a) ≤ d(x, y) + d(y, a) ≤ dist(x,A) + 2ϵ.

Hence, as a ∈ A,
dist(x,A) ≤ dist(x,A) + 2ϵ.

Therefore, as ϵ > 0 was arbitrary, dist(x,A) ≤ dist(x,A) thereby completing
the proof.

Next we demonstrate the continuity of the distance function to a set. In
particular, by applying the following to the examples contained in Example
C.3.11, we obtain that the distance to a point in any metric space and the
norm in any normed linear space are continuous functions.

Theorem C.3.13. Let (X , d) be a metric space and let A ⊆ X be a non-
empty set. The function F : X → R defined by F (x) = dist(x,A) for all
x ∈ X is continuous.

Proof. To see that F is continuous, let x, y ∈ X be arbitrary. By the
definition of the distance function, given any δ > 0 there exists an a ∈ A
such that d(x, a) ≤ dist(x,A) + δ. Therefore

dist(y,A) ≤ dist(y, a) ≤ d(x, y) + d(x, a) ≤ d(x, y) + dist(x,A) + δ.

As the above inequality holds for all δ > 0, we obtain that F (y) ≤ F (x) +
d(x, y). By reversing the roles of x and y, we obtain that F (x) ≤ F (y)+d(x, y)
and hence |F (x) − F (y)| ≤ d(x, y).

To see now that F is continuous, fix x0 ∈ X and let ϵ > 0. Let δ = ϵ > 0.
Therefore, if y ∈ X is such that d(x0, y) < δ then |F (x0)−F (y)| ≤ d(x0, y) <
δ = ϵ. Hence F is continuous at x0. Therefore, as x0 was arbitrary, F is
continuous as desired.
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To conclude this section, we note the following result that ‘separates’
closed subsets of a metric space using continuous functions.

Theorem C.3.14 (Urysohn’s Lemma). Let (X , d) be a metric space and
let B and C be two non-empty disjoint closed subsets of X . There exists a
function f : X → [0, 1] such that f(x) = 0 if x ∈ B, f(x) = 1 if x ∈ C, and
0 < f(x) < 1 if x /∈ B ∪ C.

Proof. Consider the function f : X → R defined by

f(x) = dist(x,B)
dist(x,B) + dist(x,C) .

for all x ∈ X . We claim that f is well-defined; that is, the denominator
never vanishes. To see this, suppose there exists an x ∈ X such that
dist(x,B) + dist(x,C) = 0. Thus dist(x,B) = dist(x,C) = 0 so by Lemma
C.3.12, x ∈ B = B and x ∈ C = C as B and C are closed. Therefore, as
B ∩ C = ∅, we have obtained a contradiction. Hence f is well-defined.

Clearly f(x) ≥ 0 for all x ∈ X . Since

0 ≤ dist(x,B) ≤ dist(x,B) + dist(x,C)

we see that f : X → [0, 1]. Furthermore, by Theorem C.3.13 and elementary
properties of continuous functions, f is continuous (i.e. use part (2) of Theo-
rem C.3.6 together with Proposition C.2.27 to show the sum of continuous
functions is continuous).

To complete the proof, first notice that f(x) = 0 if and only if dist(x,B) =
0 if and only if x ∈ B = B by Lemma C.3.12. Similarly f(x) = 1 if and
only if dist(x,B) = dist(x,B) + dist(x,C) if and only if dist(x,C) = 0 if and
only if x ∈ C = C by Lemma C.3.12. Since f : X → [0, 1], we obtain that
0 < f(x) < 1 for all x /∈ B ∪ C thereby completing the proof.

C.3.3 Metric Spaces of Continuous Functions

Unfortunately, the set of continuous functions between two metric spaces
need not be a ‘nice’ metric space. Of course we may place the discrete metric
on any set, but for continuous functions we would like a non-trivial metric
such that the distance between two functions is related to the pointwise
distance between the functions. To do this, we will need to restrict the
collection of continuous functions. To do so, we define the following.

Definition C.3.15. Let (X , d) be a metric space and let A ⊆ X . It is said
that A is bounded if there exists an x ∈ X such that

sup{d(x, a) | a ∈ A} < ∞.
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Remark C.3.16. Since for all y ∈ X we have

d(y, a) ≤ d(y, x) + d(x, a),

the choice of x does not matter in Definition C.3.15. Hence, if X is a normed
linear space, we may choose x = 0⃗ to obtain that A is bounded if and only if

sup{∥a∥X | a ∈ A} < ∞.

Definition C.3.17. Let (X , dX ) and (Y, dY) be metric spaces. A function
f : X → Y is said to be bounded if f(X ) is a bounded set in Y. The set of
all bounded continuous functions f : X → Y is denoted Cb(X ,Y).

Example C.3.18. If X = N and Y = K, then Cb(X ,Y) = ℓ∞(N,K).

Theorem C.3.19. Let (X , dX ) and (Y, dY) be metric spaces. Then Cb(X ,Y)
is a metric space with the metric

d(f, g) = sup{dY(f(x), g(x)) | x ∈ X }.

Proof. First, given f, g ∈ Cb(X ,Y), to see that d(f, g) < ∞, we note there
exists an a ∈ y such that

sup{dY(f(x), a) | x ∈ X } < ∞ and sup{dY(g(x), a) | x ∈ X } < ∞.

From this it clearly follows from the triangle inequality on dY that d(f, g) < ∞.
The remaining properties of a metric are trivial to verify.

Of course, with continuous functions on R, the sum of continuous functions
is continuous and a scalar multiple of continuous functions is continuous.
This means that continuous functions on R are a vector space. To repeat
these ideas for Cb(X ,Y) is only possible if Y is a normed linear space. This
yields the following thereby generalizing the sup norm on C[a, b].

Theorem C.3.20. Let (X , dX ) be a metric space and let (Y, ∥ · ∥Y) be a
normed linear space over K. Then Cb(X ,Y) is a normed linear space over K
with the operations of pointwise addition and scalar multiplication, and the
norm

∥f∥∞ = sup{∥f(x)∥Y | x ∈ X }.

The norm ∥ · ∥∞ is called the supremum norm or the infinity norm.

Proof. If f, g : X → Y are continuous functions, then one can verify that
f +g and αf are continuous for all α ∈ K by using part (2) of Theorem C.3.6
together with Proposition C.2.27. If f and g are bounded, the properties
of ∥ · ∥Y easily imply that f + g and αf are bounded. Hence Cb(X ,Y) is a
vector space over F. The fact that ∥ · ∥∞ is a norm easily follows (with the
proof that it is finite following as in Theorem C.3.19).
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C.3.4 Continuous Linear Maps

To complete this section, we desire to analyze continuity in the context of
normed linear spaces. In particular, the ‘nice’ maps between vector spaces
are the linear maps as these are precisely the functions that preserve the
vector space operations. Thus we desire to study when a linear map between
normed linear spaces is continuous. To do this, as linear maps will clearly
not be bounded as defined above, we modify the definition of boundedness.

Definition C.3.21. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces
over K. A linear map T : X → Y is said to be bounded if

sup{∥T (x⃗)∥Y | x⃗ ∈ X , ∥x⃗∥X ≤ 1} < ∞.

If T is bounded, then we write

∥T∥ = sup{∥T (x⃗)∥Y | x⃗ ∈ X , ∥x⃗∥X ≤ 1}.

The quantity ∥T∥ is called the operator norm of T . Furthermore, the set of
bounded linear maps from X to Y is denoted B(X ,Y).

To see that the operator norm is indeed a norm, we note that the only
non-trivial property of Definition C.1.8 to verify is that if ∥T∥ = 0, then T
is the zero linear map. Note the following lemma yields the result.

Lemma C.3.22. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces over
K and let T ∈ B(X ,Y). Then

∥T (x⃗)∥Y ≤ ∥T∥ ∥x⃗∥X

for all x⃗ ∈ X .

Proof. Since
∥∥∥T (⃗0)

∥∥∥
Y

=
∥∥∥⃗0∥∥∥

X
= 0, the result holds when x⃗ = 0⃗. If x⃗ ̸= 0⃗,

then ∥x⃗∥X ̸= 0. Consequently, as∥∥∥∥∥ 1
∥x⃗∥X

x⃗

∥∥∥∥∥
X

= 1
∥x⃗∥X

∥x⃗∥X = 1,

we obtain from the definition of the operator norm that

1
∥x⃗∥X

∥T (x⃗)∥Y =
∥∥∥∥∥ 1

∥x⃗∥X
T (x⃗)

∥∥∥∥∥
Y

=
∥∥∥∥∥T
(

1
∥x⃗∥X

x⃗

)∥∥∥∥∥
Y

≤ ∥T∥ .

Therefore ∥T (x⃗)∥Y ≤ ∥T∥ ∥x⃗∥X as desired.

Theorem C.3.23. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces
over K. Then B(X ,Y) is a normed linear space over K with the operator
norm as defined in Definition C.3.21.
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The reason we have been analyzing bounded linear maps in reference to
continuous function is that B(X ,Y) is all continuous linear functions from
X to Y.

Theorem C.3.24. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces
over K and let T : X → Y be linear. The following are equivalent:

(1) T is continuous.

(2) T is continuous at 0.

(3) T is bounded.

Proof. Clearly (1) implies (2). To see that (2) implies (3), let ϵ = 1. Since T
is continuous at 0, there exists a δ > 0 such that if ∥x⃗∥ ≤ δ then ∥T (x⃗)∥ ≤ 1.
Therefore, if x⃗ ∈ X is such that ∥x⃗∥ ≤ 1, then ∥δx⃗∥ ≤ δ so

δ ∥T (x⃗)∥ = ∥δT (x⃗)∥ = ∥T (δx⃗)∥ ≤ 1.

Hence ∥x⃗∥ ≤ 1 implies ∥T (x⃗)∥ ≤ δ−1 so T is bounded by definition.
To see that (3) implies (1), let x⃗0 ∈ X be arbitrary. To see that T is

continuous at x, let ϵ > 0. Let δ = ϵ
∥T ∥+1 > 0. If x⃗ ∈ X is such that

∥x⃗− x⃗0∥ < δ, then Lemma C.3.22 implies that

∥T (x⃗) − T (x⃗0)∥ = ∥T (x⃗− x⃗0)∥ ≤ ∥T∥ ∥x⃗− x⃗0∥ < ∥T∥ ϵ

∥T∥ + 1 < ϵ.

Therefore T is continuous at x⃗0 as ϵ > 0 was arbitrary. Therefore, as x⃗0 ∈ X
was arbitrary, T is continuous on X .

C.4 Cauchy Sequences
In order for a sequence to converge, given any ϵ > 0 all the elements of the
sequence must be within ϵ of their limit. In particular, this means that the
terms in the sequence must eventually be within 2ϵ of each other. This leads
us to the following concept previously seen for sequences in R.

Definition C.4.1. Let (X , d) be a metric space. A sequence (xn)n≥1 is said
to be Cauchy if for all ϵ > 0 there exists an N ∈ N such that d(xn, xm) < ϵ
for all n,m ≥ N .

Remark C.4.2. There exists sequences (xn)n≥1 such that

lim
n→∞

d(xn, xn+1) = 0

that are not Cauchy. Indeed let xn =
∑n

k=1
1
k for all n ∈ N. Clearly

d(xn, xn+1) = 1
n+1 yet (xn)n≥1 is not Cauchy as for all m ∈ N

sup
m→∞

d(xn, xm) = sup
m→∞

m∑
k=n

1
k

= ∞.
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There are immediately sequences we can deduce are not Cauchy.
Lemma C.4.3. Every Cauchy Sequence in a metric space is bounded.
Proof. Let (xn)n≥1 be a Cauchy sequence in a metric space (X , d). Since
(xn)n≥1 is Cauchy, there exists an N ∈ N such that d(xn, xm) < 1 for all
n,m ≥ N .

Let M = max{d(x1, xN ), . . . , d(xN−1, xN ), 1}. Using the above para-
graph, we see that d(xn, xN ) ≤ M for all n ∈ N. Hence (xn)n≥1 is
bounded.

Furthermore, we have already seen several examples of Cauchy sequences.
Lemma C.4.4. Every convergent sequence in a metric space is Cauchy.
Proof. Let (xn)n≥1 be a convergent sequence in a metric space (X , d). Let
x0 = limn→∞ xn. To see that (xn)n≥1 is Cauchy, let ϵ > 0 be arbitrary.
Since x0 = limn→∞ xn, there exists an N ∈ N such that d(xn, x0) < ϵ

2 for all
n ≥ N . Therefore, for all n,m ≥ N ,

d(xn, xm) ≤ d(xn, x0) + d(x0, xm) < ϵ

2 + ϵ

2 = ϵ.

Thus, as ϵ > 0 was arbitrary, (xn)n≥1 is Cauchy by definition.

Corollary C.4.5. Every convergent sequence in a metric spaces is bounded.
Of course, it would be nice if the converse Lemma C.4.4 were true as this

would enable us to deduce the convergence of a sequence by checking it is
Cauchy without any knowledge of the limit. Thus we make the following
definition.
Definition C.4.6. A metric space (X , d) is said to be complete if every
Cauchy sequence converges.

Any metric space with the discrete metric is complete as any Cauchy
sequence with respect to the discrete metric is eventually constant. Further-
more R is complete. We will quickly recall the proof that R is complete by
beginning with the following result which holds in any metric space.
Lemma C.4.7. Let (xn)n≥1 be a Cauchy sequence in a metric space (X , d).
If a subsequence of (xn)n≥1 converges, then (xn)n≥1 converges.
Proof. Let (xn)n≥1 be a Cauchy sequence with a convergent subsequence
(xkn)n≥1 and let x0 = limn→∞ xkn . We claim that limn→∞ xn = x0. To
see this, let ϵ > 0 be arbitrary. Since (xn)n≥1 is Cauchy, there exists an
N ∈ N such that d(xn, xm) < ϵ

2 for all n,m ≥ N . Furthermore, since
x0 = limn→∞ xkn , there exists an kj ≥ N such that d(xkj

, x0) < ϵ
2 . Hence, if

n ≥ N , then

d(xn, x0) ≤ d(xn, xkj
) + d(xkj

, x0) < ϵ

2 + ϵ

2 = ϵ.

Thus, as ϵ > 0 was arbitrary, (xn)n≥1 is converges to x0 by definition.
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In addition, recall the following theorem.

Theorem C.4.8 (Bolzano-Weierstrass Theorem). Every bounded se-
quence of real numbers has a convergent sequence.

Theorem C.4.9 (Completeness of the Real Numbers). Every Cauchy
sequence of real numbers converges.

Proof. Let (xn)n≥1 be a Cauchy sequence of real numbers. Thus (xn)n≥1
is bounded by Lemma C.4.3. Therefore (xn)n≥1 has a convergent sequence
by the Bolzano-Weierstrass Theorem. Hence (xn)n≥1 converges by Lemma
C.4.7.

For other examples of complete metric spaces, we turn to the following.

Corollary C.4.10. For every p ∈ [1,∞] and n ∈ N, (Kn, ∥ · ∥p) is complete.

Proof. To see that (Rn, ∥ · ∥p) is complete, let (x⃗k)k≥1 be an arbitrary Cauchy
sequence in (Rn, ∥ · ∥p). Write x⃗k = (xk,1, . . . , xk,n). Since for all k,m ∈ N
we have

|xk,j − xm,j | ≤ ∥x⃗k − x⃗m∥p ,

it is elementary to see that (xk,j)k≥1 is a Cauchy sequence in R for all
j ∈ {1, . . . , n}. Since R is complete, for each j ∈ {1, . . . , n} there exists an
xj ∈ R such that xj = limk→∞ xk,j . If x⃗ = (x1, . . . , xn), then x⃗ = limk→∞ x⃗k

in (Rn, ∥ · ∥p) by Example C.2.24. Therefore, as (x⃗k)k≥1 was arbitrary,
(Rn, ∥ · ∥p) is complete.

To see that (Cn, ∥ · ∥p), it suffices by the same arguments to show that
(C, | · |) is complete. To see that (C, | · |) is complete, let (zk)k≥1 be an
arbitrary Cauchy sequence in C. For each k, write zk = ak + ibk where
ak, bk ∈ R. Since for all k,m ∈ N we have

|ak − am|, |bk − bm| ≤ |zk − zm|,

it is elementary to see that (ak)k≥1 and (bk)k≥1 are Cauchy sequences in
R. Since R is complete, a = limk→∞ ak and b = limk→∞ bk exist. Hence
z = a+ bi, then z = limk→∞ zk by Example C.2.25. Hence, as (zk)k≥1 was
arbitrary, (C, | · |) is complete.

Using our knowledge of complete metric spaces, we can construct addi-
tional examples.

Theorem C.4.11. Let (X , d) be a complete metric space and let A ⊆ X be
non-empty. Then (A, d) is complete if and only if A is closed in X .

Proof. Suppose (A, d) is complete. To see that A is closed, let (an)n≥1 be
an arbitrary sequence of elements from A that converges to some element
x ∈ X . Since (an)n≥1 converges in X , (an)n≥1 is Cauchy in X by Lemma
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C.4.4 and therefore is Cauchy in (A, d). Hence (an)n≥1 converges in A to
some element a ∈ A as (A, d) is complete. Since limits in metric spaces are
unique (Proposition C.2.29), a = x. Hence x ∈ A so A is closed by Theorem
C.2.32.

For the converse, suppose A is closed in X . To see that (A, d) is complete,
let (an)n≥1 be an arbitrary Cauchy sequence in (A, d). Hence (an)n≥1 is
a Cauchy sequence in (X , d). Since (X , d) is complete, (an)n≥1 converges
to some element x ∈ X . Since A is closed in X , Theorem C.2.32 implies
that x ∈ A. Hence as (an)n≥1 was an arbitrary Cauchy sequence, (A, d) is
complete.

Corollary C.4.12. Every closed subset of Kn is a complete metric space.

Notice that one direction of the proof of Theorem C.4.11 did not require
(X , d) to be complete. Thus we obtain the following.

Corollary C.4.13. Let (X , d) be a complete metric space and let A ⊆ X be
non-empty. If (A, d) is complete, then A is closed in X .

C.5 Banach Spaces
The above produced several examples of complete metric spaces including
many that were not normed linear spaces. As complete normed linear spaces
are incredibly nice and important for the remainder of the course, and as
saying/typing complete normed linear spaces is rather cumbersome, we make
the following definition.

Definition C.5.1. A Banach space is a complete normed linear space.

Corollary C.4.10 produced for us a collection of Banach spaces. For
the remainder of this subsection, we will note several of the normed linear
spaces we have seen previously are Banach spaces. Furthermore, via Theorem
C.4.11, we obtain any closed vector subspace of these Banach spaces is also
a Banach space (and any closed subset is a complete metric space).

As we go through the following, note there is a similar theme to the
proofs.

Proposition C.5.2. For each p ∈ [1,∞], (ℓp(N,K), ∥ · ∥p) is a Banach space.

Proof. Note the proof of this proposition is very similar to that of Proposition
C.2.29 except for the complication that convergences entrywise need not
imply convergence in (ℓp(N,K), ∥ · ∥p). To bi-pass this problem, we will invoke
a technique that will be used repeatedly in this section.

Fix p ∈ [1,∞] and let (x⃗n)n≥1 be an arbitrary Cauchy sequence in
(ℓp(N,K), ∥ · ∥p). For each n ∈ N, write x⃗n = (xn,k)k≥1. Since for all
m, j, k ∈ N,

|xm,k − xj,k| ≤ ∥x⃗m − x⃗j∥p ,
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we see that for each k ∈ N the sequence (xn,k)n≥1 is Cauchy in (K, | · |).
Therefore, as (K, | · |) is complete, yk = limn→∞ xn,k exists in (K, | · |) for
each k ∈ N.

Let y⃗ = (yn)n≥1. To complete the proof, it suffices to verify two things:
that y⃗ ∈ ℓp(N,K), and that limn→∞ ∥y⃗ − x⃗n∥p = 0. We will only discuss the
case p ̸= ∞ and the case p = ∞ is similar. For p ̸= ∞ notice for all m ∈ N
that(

m∑
k=1

|yk − x1,k|p
) 1

p

= lim
n→∞

(
m∑

k=1
|xn,k − x1,k|p

) 1
p

≤ lim sup
n→∞

∥x⃗n − x⃗1∥p .

Since (x⃗n)n≥1 is Cauchy in (ℓp(N,K), ∥ · ∥p), (x⃗n)n≥1 is bounded in (ℓp(N,K), ∥ · ∥p)
since Cauchy sequences are bounded. Hence lim supn→∞ ∥x⃗n − x⃗1∥p is finite.
Therefore, by taking the limit as m tends to infinity, we obtain that

( ∞∑
k=1

|yk − x1,k|p
) 1

p

≤ lim sup
n→∞

∥x⃗n − x⃗1∥p .

Hence z⃗ = (yk − x1,k)k≥1 ∈ ℓp(N,K). Therefore, as y⃗ = z⃗ + x⃗1, we obtain
that y⃗ ∈ ℓp(N,K) by the triangle inequality.

To see that limn→∞ ∥y⃗ − x⃗n∥p = 0, let ϵ > 0 be arbitrary. Note the above
proof also shows for all j ∈ N that

∥y⃗ − x⃗j∥p ≤ lim sup
n→∞

∥x⃗n − x⃗j∥p .

Since (x⃗n)n≥1 is Cauchy in (ℓp(N,K), ∥ · ∥p), there exists an N ∈ N such
that ∥x⃗m − x⃗j∥p ≤ ϵ for all m, j ≥ N . Hence if j ≥ N , the above im-
plies ∥y⃗ − x⃗j∥p ≤ ϵ. Therefore, as ϵ > 0 was arbitrary, we obtain that
limn→∞ ∥y⃗ − x⃗n∥p = 0. Hence (x⃗n)n≥1 converges in (ℓp(N,K), ∥ · ∥p) so, as
(x⃗n)n≥1 was arbitrary, (ℓp(N,K), ∥ · ∥p) is complete.

To discuss Banach spaces consisting of functions, we first note the fol-
lowing types of convergence and a lemma which guarantees certain limits
are continuous. This lemma is the generalization to metric spaces of a result
that is a cornerstone of any first course in analysis.

Definition C.5.3. Let (X , dX ) and (Y, dY) be metric spaces. For each
n ∈ N let fn : X → Y . Given f : X → Y , it is said that the sequence (fn)n≥1

• converges pointwise to f if limn→∞ fn(x) = f(x) for all x ∈ X .

• converges uniformly to f if (fn)n≥1 converges to f with respect to the
uniform metric (provided it makes sense); that is, for all ϵ > 0 there
exists an N ∈ N such that dY(f(x), fn(x)) < ϵ for all n ≥ N and for
all x ∈ X .
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Theorem C.5.4. Let (X , dX ) and (Y, dY) be metric spaces and let f : X →
Y. If (fn)n≥1 is a sequence of continuous functions from X to Y that converge
to f uniformly, then f is continuous.

Proof. To see that f is continuous, let x0 ∈ X be arbitrary. To see that
f is continuous at x0 let ϵ > 0 be arbitrary. Since (fn)n≥1 converges to f
uniformly, there exists an N ∈ N such that dY(f(x), fN (x)) < ϵ

3 for all x ∈ X .
Since fN is continuous at x0, there exists a δ > 0 such that if dX (x, x0) < δ
then dY(fN (x), fN (x0)) < ϵ

3 . Hence if x ∈ X and dX (x, x0) < δ, then, by
the triangle inequality,

dY(f(x), f(x0)) ≤ dY(f(x), fN (x)) + dY(fN (x), fN (x0)) + dY(fN (x0), f(x0))

<
ϵ

3 + ϵ

3 + ϵ

3 = ϵ.

Hence, as ϵ > 0 was arbitrary, f is continuous at x0. Thus, as x0 was
arbitrary, f is continuous on X .

Using the above, we obtain the following result for metric spaces.

Theorem C.5.5. Let (X , dX ) and (Y, dY) be metric spaces. If Y is complete,
then (Cb(X ,Y), d∞) is a complete metric space.

Proof. Let (fn)n≥1 be an arbitrary Cauchy sequence in (Cb(X ,Y), d∞). For
each x ∈ X , notice

dY(fn(x), fm(x)) ≤ d∞(fn, fm)

for all n,m ∈ N. Hence it is elementary to see that (fn(x))n≥1 is a Cauchy
sequence in Y for all x ∈ X . Therefore, since Y is complete, for each
x ∈ X there exists an f(x) ∈ Y such that f(x) = limn→∞ fn(x). Clearly the
function x 7→ f(x) defines a function f : X → Y.

To complete the proof, it suffices to verify three things: that f : X → Y
is continuous, that f is bounded, and that limn→∞ d∞(f, fn) = 0. For the
first, we claim that (fn)n≥1 converges to f uniformly on X . To see this, first
notice for all x ∈ X and m ∈ N that

dY(f(x), fm(x)) = lim
n→∞

dY(fn(x), fm(x)) ≤ lim sup
n→∞

d∞(fn, fm).

Since (fn)n≥1 is Cauchy in (Cb(X ,Y), d∞), (fn)n≥1 is bounded in (Cb(X ,Y), d∞)
since Cauchy sequences are bounded. Hence lim supn→∞ d∞(fn, fm) is finite.
Therefore, by taking the supremum over all x ∈ X , we obtain that

sup{dY(f(x), fm(x)) | x ∈ X } ≤ lim sup
n→∞

d∞(fn, fm)

for all m ∈ N. Thus, by taking m = 1 and using the fact that f1 is bounded,
we easily see that f is bounded.
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To see that f is continuous, we will show that (fn)n≥1 converges uniformly
to f using the above. Thus let ϵ > 0 be arbitrary. Since (fn)n≥1 is Cauchy
in (Cb(X ,Y), d∞), there exists an N ∈ N such that d∞(fj , fm) ≤ ϵ for all
m, j ≥ N . Hence if m ≥ N , the above implies

sup{dY(f(x), fm(x)) | x ∈ X } < ϵ.

Thus (fn)n≥1 converges to f uniformly on X . Hence f is continuous by
Theorem C.5.4.

As the above shows that limm→∞ d∞(f, fm) = 0, (fn)n≥1 converges to
f in (Cb(X ,Y), d∞). Thus, as (fn)n≥1 was an arbitrary Cauchy sequence,
(Cb(X ,Y), d∞) is complete.

Since Cb(X ,Y) is a normed linear space provided Y is, we obtain the
following.

Corollary C.5.6. Let (X , dX ) be a metric space and let (Y, ∥ · ∥Y) be a
Banach space. Then (Cb(X ,Y), ∥ · ∥∞) is a Banach space.

Corollary C.5.7. Let (X , dX ) be a metric space. Then (Cb(X ,R), ∥ · ∥∞) is
a Banach space.

Finally, returning to bounded linear maps between normed linear spaces,
we obtain the following.

Theorem C.5.8. Let (X , ∥ · ∥X ) and (Y, ∥ · ∥Y) be normed linear spaces. If
Y is a Banach space, then (B(X ,Y), ∥ · ∥) is a Banach space (where ∥ · ∥ is
the operator norm).

Proof. Let (Tn)n≥1 be an arbitrary Cauchy sequence in (B(X ,Y), ∥ · ∥). For
each x⃗ ∈ X , notice

∥Tn(x⃗) − Tm(x⃗)∥Y ≤ ∥Tn − Tm∥ ∥x⃗∥X

for all n,m ∈ N. Hence it is elementary to see that (Tn(x⃗))n≥1 is a Cauchy
sequence in Y for all x⃗ ∈ X . Therefore, since Y is complete, for each x⃗ ∈ X
there exists an T (x⃗) ∈ Y such that T (x⃗) = limn→∞ Tn(x⃗).

To complete the proof, it suffices to verify three things: that T : X → Y
is linear, that T is bounded, and that limn→∞ ∥T − Tn∥ = 0. To see that T
is linear, notice for all x⃗1, x⃗2 ∈ X and α ∈ K that

T (αx⃗1+x⃗2) = lim
n→∞

Tn(αx⃗1+x⃗2) = lim
n→∞

αTn(x⃗1)+T )n(x⃗2) = αT (x⃗1)+T (x⃗2).

Hence T is linear.
To see that T is bounded, notice for all x⃗ ∈ X with ∥x⃗∥X ≤ 1 and m ∈ N

that

∥T (x⃗) − Tm(x⃗)∥Y = lim
n→∞

∥Tn(x⃗) − Tm(x⃗)∥Y ≤ lim sup
n→∞

∥Tn − Tm∥

©For use through and only available at pskoufra.info.yorku.ca.



284 APPENDIX C. BANACH SPACES

Since (Tn)n≥1 is Cauchy in (B(X ,Y), ∥ · ∥), (Tn)n≥1 is bounded in (B(X ,Y), ∥ · ∥)
since Cauchy sequences are bounded. Hence lim supn→∞ ∥Tn − Tm∥ is finite.
In particular, we obtain that there exists a constant K such that

∥T (x⃗)∥Y ≤ ∥T1(x⃗)∥Y +K ≤ ∥T1∥ +K

for all x⃗ ∈ X with ∥x⃗∥X ≤ 1. Hence T is bounded with ∥T∥ ≤ ∥T1∥ +K.
To see that limn→∞ ∥T − Tn∥ = 0, let ϵ > 0 be arbitrary. Since (Tn)n≥1

is Cauchy in (B(X ,Y), ∥ · ∥), there exists an N ∈ N such that ∥Tm − Tj∥ ≤ ϵ
for all m, j ≥ N . Hence if j ≥ N , the above implies ∥T (x⃗) − Tj(x⃗)∥ ≤ ϵ
for all x⃗ ∈ X with ∥x⃗∥X ≤ 1. Therefore, as ϵ > 0 was arbitrary, we obtain
that limn→∞ ∥T − Tn∥ = 0. Hence (Tn)n≥1 converges in (B(X ,Y), ∥ · ∥) so,
as (Tn)n≥1 was arbitrary, (B(X ,Y), ∥ · ∥) is complete.

C.6 Absolute Summability

The above has painstakingly demonstrated that several of the space we
naturally desire to consider are Banach spaces. Thus, as we have several
Banach spaces and complete metric spaces, it is nice to determine what
additional properties these spaces have beyond the convergence of all Cauchy
sequences. In this section, we will analyze one of these properties.

One important property of the real numbers is the convergence of specific
types of series. In particular, every ‘absolutely summable’ series converges.
We can generalize these concepts to metric spaces as follows.

Definition C.6.1. Let (X , ∥ · ∥) be a normed linear space. A series
∑∞

n=1 x⃗n

is said to be summable if the sequence of partial sums (sn)n≥1 converges
(where sn =

∑n
k=1 x⃗k).

A series
∑∞

n=1 x⃗n is said to be absolutely summable if
∑∞

n=1 ∥x⃗n∥ < ∞.

Theorem C.6.2. Let (X , ∥ · ∥) be a normed linear space. Then X is complete
(i.e. a Banach space) if and only if every absolutely summable series is
summable.

Proof. Suppose (X , ∥ · ∥) is complete. Let
∑∞

n=1 x⃗n be an absolutely summable
series. To see that

∑∞
n=1 x⃗n is summable, let ϵ > 0 be arbitrary. Since∑∞

n=1 ∥x⃗n∥ < ∞, there exists an N ∈ N such that
∑∞

n=N ∥x⃗n∥ < ϵ. There-
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fore, if k,m ≥ N and, without loss of generality, m ≥ k, then

∥sm − sk∥ =
∥∥∥∥∥

m∑
n=1

x⃗n −
k∑

n=1
x⃗n

∥∥∥∥∥
=

∥∥∥∥∥∥
m∑

n=k+1
x⃗n

∥∥∥∥∥∥
≤

m∑
n=k+1

∥x⃗n∥

≤
∞∑

n=N

∥x⃗n∥ < ϵ.

Therefore, as ϵ > 0 was arbitrary, the sequence of partial sums (sn)n≥1 is
Cauchy. Hence (sn)n≥1 converges as X is complete. Thus, as

∑∞
n=1 x⃗n was

arbitrary, every absolutely summable series in X is summable.
For the converse, suppose every absolutely summable sequence in X

is summable. To see that X is complete, let (x⃗n)n≥1 be an arbitrary
Cauchy sequence. Since (x⃗n)n≥1 is Cauchy, there exists an n1 ∈ N such that
∥x⃗m − x⃗j∥ < 1

2 for all m, j ≥ n1. Similarly, since (x⃗n)n≥1 is Cauchy, there
exists an n2 ∈ N such that n2 > n1 and ∥x⃗m − x⃗j∥ < 1

22 for all m, j ≥ n2.
By repeating the above process, for each k ∈ N there exists an nk ∈ N such
that nk < nk+1 for all k and ∥x⃗m − x⃗j∥ < 1

2k for all m, j ≥ nk.
For each k ∈ N let y⃗k = x⃗nk+1 − x⃗nk

. By the above paragraph, we see
that

∞∑
k=1

∥y⃗k∥ ≤
∞∑

k=1

1
2k

< ∞.

Hence
∑∞

k=1 y⃗k is an absolutely summable series in X . Therefore, by the
assumptions on X ,

∑∞
k=1 y⃗k is summable in X .

Let x⃗ = x⃗n1 +
∑∞

k=1 y⃗k. We claim that (x⃗nk
)k≥1 converges to x⃗. To see

this, let ϵ > 0 be arbitrary. Then there exists a M ∈ N such that if m ≥ M
then ∥∥∥∥∥

∞∑
k=1

y⃗k −
m∑

k=1
y⃗k

∥∥∥∥∥ < ϵ.

Therefore, if m ≥ M ,

∥∥x⃗− x⃗nm+1

∥∥ ≤
∥∥∥∥∥

∞∑
k=1

y⃗k −
m∑

k=1
y⃗k

∥∥∥∥∥+
∥∥∥∥∥x⃗n1 − x⃗nm+1 +

m∑
k=1

y⃗k

∥∥∥∥∥
< ϵ+

∥∥∥∥∥x⃗n1 − x⃗nm+1 +
m∑

k=1
x⃗nk+1 − x⃗nk

∥∥∥∥∥
= ϵ.
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Therefore, as ϵ > 0 was arbitrary, (x⃗nk
)k≥1 converges to x⃗. Hence (x⃗n)n≥1

converges to x⃗ by Lemma C.4.7. Therefore, as (x⃗n)n≥1 was an arbitrary
Cauchy sequence, X is complete.

As an immediate corollary, we obtain the following result pertaining to
convergence of series of continuous functions.

Corollary C.6.3 (Weierstrass M-Test). Let (X , d) be a metric space and
let (fn)n≥1 be a sequence of functions from Cb(X ,R). Suppose there exists
an M ∈ R such that

∑∞
n=1 ∥fn∥∞ < M . Then

∑∞
n=1 fn converges uniformly

on X to a continuous function.
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2-norm, 260
L∞-space, 119
Lp-space, 112
∞-norm, 259, 260, 275
σ-algebra, 1
σ-algebra, generated by a set, 3
p-integrable, 110
p-norm, 112, 260
1-norm, 259

absolute value, signed measure, 162
absolutely continuous, functions, 140
absolutely continuous, measures, 169
absolutely summable, 284
algebra, 19
almost everywhere, 64
Axiom of Choice, 240

Banach space, 280
Bolzano-Weierstrass Theorem, 279
Borel σ-algebra, 3
Borel sets, 3
Borel-Stieljtes measure, 27
bounded above, general, 248
bounded function, metric space, 275
bounded set, metric space, 274
bounded variation, 136
bounded, linear map, 276

Cantor set, 31
Cantor ternary function, 53
Cantor’s Theorem, Cardinality, 254
Cantor-Schröder–Bernstein Theorem, 242
Carathéodory extension of a measure, 23
Carathéodory-Hahn Extension Theorem, 21
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cardinality, 239
cardinality, less than or equal to, 239
Cauchy sequence, 277
chain, 247
characteristic function, 52
closed ball, 261
closed set, 265
common refinement, 219
complete, 278
complete, measure space, 18
Completeness of R, 279
continuous function, 270
converge, sequence, 267
countable, 244
countably infinite, 244

derivative, 131
diameter, 45
differentiable function, 131
discontinuous, 270
discrete metric, 258
discrete topology, 261
distance to a set, 272
Dominated Convergence Theorem, 108
dual space, 202

equinumerous, 239
equivalence class, 237
equivalence relation, 237
essentially bounded, 118
Euclidean metric, 257
Euclidean norm, 260

Fatou’s Lemma, 107
finite signed measure, 163
Fubini’s Theorem, 189
function, imaginary part, 62
function, negative part, 62
function, positive part, 62
function, real part, 62
Fundamental Theorem of Calculus, I, 148
Fundamental Theorem of Calculus, II, 150

Hölder’s Inequality, 113, 123
Hahn Decomposition Theorem, 157
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Hausdorff dimension, 47
Hausdorff measure, 46

indicator function, 52
inner regular, 36
inner regular measure, 69
integrable function, 91
integral, complex function, 92
integral, positive function, 82
integral, simple function, 78

Jordan Decomposition Theorem, functions of bounded variation, 138
Jordan Decomposition Theorem, signed measures, 158

Lebesgue Decomposition Theorem, 179
Lebesgue Differentiation Theorem, 131
Lebesgue integrable, 92
Lebesgue integral, 92
Lebesgue integral, positive function, 82
Lebesgue measurable sets, 17
Lebesgue measure, 17
Lebesgue measure, n-dimensional, 17
Lebesgue outer measure, 13
Lebesgue outer measure, n-dimensional, 14
Lebesgue-Stieljtes measure, 27
limit, sequence, 267
linear functional, 201
Lusin’s Theorem, 71
Lusin’s Theorem, Lebesgue measure on R, 73
Lusin’s Theorem, locally compact, 74

maximal element, 248
measurable function, 51
measurable rectangles, 184
measurable sets, 1
measurable space, 1
measurable, extended real-value function, 63
measurable, real-valued function, 52
measure, 3
measure space, 4
measure, σ-finite, 7
measure, counting, 4
measure, finite, 7
measure, outer, 12
measure, point-mass, 4
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measure, probability, 6
metric, 257
metric outer measure, 40
metric space, 257
Minkowski’s Inequality, 114
Monotone Convergence Theorem, integrals, 86
Monotone Convergence Theorem, measures, 8
mutually singular measures, 159

negative set, signed measure, 155
norm, 258
normed linear space, 258
null set, signed measure, 155

open ball, 261
open set, 261
operator norm, 276
outer measurable, 14
outer measure, associated to a function, 12
outer regular, 36
outer regular measure, 69

partial ordering, 238
partially ordered set, 247
partition, 215
pointwise convergence, 281
poset, 247
positive set, signed measure, 155
pre-measure, 19
probability space, 6
product measure, 187

Radon-Nikodym derivative, 177
Radon-Nikodym Theorem, 170
refinement, 217
regular measure, 69
relation, 237
Reverse Triangle Inequality, 259
Riemann integrable, 220
Riemann sum, 223
Riemann sum, lower, 215
Riemann sum, upper, 216
Riesz Representation Theorem, L∞, 213
Riesz Representation Theorem, Lp, 205
Riesz-Fisher Theorem, L∞, 121
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Riesz-Fisher Theorem, Lp, 116
Riesz-Markov Theorem, 213

set, finite, 241
set, infinite, 241
signed measure, 153
signed measure, negative part, 161
signed measure, positive part, 161
simple function, 66
simple function, canonical representation, 66
step function, 66
subsequence, 269
summable, 284
sup-norm, 259, 260, 275

Tietze’s Extension Theorem - R, 71
Tonelli’s Theorem, 190
topology, 261
total ordering, 238
total variation, 138
total variation, signed measure, 162
Triangle Inequality, metric, 257
Triangle Inequality, norm, 258
trivial metric, 258
trivial topology, 261

uncountable, 244
uniform convergence, 267, 281
uniform partition, 224
upper bound, arbitrary, 248
Urysohn’s Lemma, 274

Vitali covering, 128
Vitali Covering Lemma, 128

Weierstrass M-Test, 286

Young’s Inequality, 113

Zorn’s Lemma, 249
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